1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 #include <linux/sched/mm.h> 44 45 #include <asm/tlbflush.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/migrate.h> 49 50 #include "internal.h" 51 52 /* 53 * migrate_prep() needs to be called before we start compiling a list of pages 54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 55 * undesirable, use migrate_prep_local() 56 */ 57 int migrate_prep(void) 58 { 59 /* 60 * Clear the LRU lists so pages can be isolated. 61 * Note that pages may be moved off the LRU after we have 62 * drained them. Those pages will fail to migrate like other 63 * pages that may be busy. 64 */ 65 lru_add_drain_all(); 66 67 return 0; 68 } 69 70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 71 int migrate_prep_local(void) 72 { 73 lru_add_drain(); 74 75 return 0; 76 } 77 78 int isolate_movable_page(struct page *page, isolate_mode_t mode) 79 { 80 struct address_space *mapping; 81 82 /* 83 * Avoid burning cycles with pages that are yet under __free_pages(), 84 * or just got freed under us. 85 * 86 * In case we 'win' a race for a movable page being freed under us and 87 * raise its refcount preventing __free_pages() from doing its job 88 * the put_page() at the end of this block will take care of 89 * release this page, thus avoiding a nasty leakage. 90 */ 91 if (unlikely(!get_page_unless_zero(page))) 92 goto out; 93 94 /* 95 * Check PageMovable before holding a PG_lock because page's owner 96 * assumes anybody doesn't touch PG_lock of newly allocated page 97 * so unconditionally grapping the lock ruins page's owner side. 98 */ 99 if (unlikely(!__PageMovable(page))) 100 goto out_putpage; 101 /* 102 * As movable pages are not isolated from LRU lists, concurrent 103 * compaction threads can race against page migration functions 104 * as well as race against the releasing a page. 105 * 106 * In order to avoid having an already isolated movable page 107 * being (wrongly) re-isolated while it is under migration, 108 * or to avoid attempting to isolate pages being released, 109 * lets be sure we have the page lock 110 * before proceeding with the movable page isolation steps. 111 */ 112 if (unlikely(!trylock_page(page))) 113 goto out_putpage; 114 115 if (!PageMovable(page) || PageIsolated(page)) 116 goto out_no_isolated; 117 118 mapping = page_mapping(page); 119 VM_BUG_ON_PAGE(!mapping, page); 120 121 if (!mapping->a_ops->isolate_page(page, mode)) 122 goto out_no_isolated; 123 124 /* Driver shouldn't use PG_isolated bit of page->flags */ 125 WARN_ON_ONCE(PageIsolated(page)); 126 __SetPageIsolated(page); 127 unlock_page(page); 128 129 return 0; 130 131 out_no_isolated: 132 unlock_page(page); 133 out_putpage: 134 put_page(page); 135 out: 136 return -EBUSY; 137 } 138 139 /* It should be called on page which is PG_movable */ 140 void putback_movable_page(struct page *page) 141 { 142 struct address_space *mapping; 143 144 VM_BUG_ON_PAGE(!PageLocked(page), page); 145 VM_BUG_ON_PAGE(!PageMovable(page), page); 146 VM_BUG_ON_PAGE(!PageIsolated(page), page); 147 148 mapping = page_mapping(page); 149 mapping->a_ops->putback_page(page); 150 __ClearPageIsolated(page); 151 } 152 153 /* 154 * Put previously isolated pages back onto the appropriate lists 155 * from where they were once taken off for compaction/migration. 156 * 157 * This function shall be used whenever the isolated pageset has been 158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 159 * and isolate_huge_page(). 160 */ 161 void putback_movable_pages(struct list_head *l) 162 { 163 struct page *page; 164 struct page *page2; 165 166 list_for_each_entry_safe(page, page2, l, lru) { 167 if (unlikely(PageHuge(page))) { 168 putback_active_hugepage(page); 169 continue; 170 } 171 list_del(&page->lru); 172 /* 173 * We isolated non-lru movable page so here we can use 174 * __PageMovable because LRU page's mapping cannot have 175 * PAGE_MAPPING_MOVABLE. 176 */ 177 if (unlikely(__PageMovable(page))) { 178 VM_BUG_ON_PAGE(!PageIsolated(page), page); 179 lock_page(page); 180 if (PageMovable(page)) 181 putback_movable_page(page); 182 else 183 __ClearPageIsolated(page); 184 unlock_page(page); 185 put_page(page); 186 } else { 187 dec_node_page_state(page, NR_ISOLATED_ANON + 188 page_is_file_cache(page)); 189 putback_lru_page(page); 190 } 191 } 192 } 193 194 /* 195 * Restore a potential migration pte to a working pte entry 196 */ 197 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 198 unsigned long addr, void *old) 199 { 200 struct page_vma_mapped_walk pvmw = { 201 .page = old, 202 .vma = vma, 203 .address = addr, 204 .flags = PVMW_SYNC | PVMW_MIGRATION, 205 }; 206 struct page *new; 207 pte_t pte; 208 swp_entry_t entry; 209 210 VM_BUG_ON_PAGE(PageTail(page), page); 211 while (page_vma_mapped_walk(&pvmw)) { 212 if (PageKsm(page)) 213 new = page; 214 else 215 new = page - pvmw.page->index + 216 linear_page_index(vma, pvmw.address); 217 218 get_page(new); 219 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 220 if (pte_swp_soft_dirty(*pvmw.pte)) 221 pte = pte_mksoft_dirty(pte); 222 223 /* 224 * Recheck VMA as permissions can change since migration started 225 */ 226 entry = pte_to_swp_entry(*pvmw.pte); 227 if (is_write_migration_entry(entry)) 228 pte = maybe_mkwrite(pte, vma); 229 230 #ifdef CONFIG_HUGETLB_PAGE 231 if (PageHuge(new)) { 232 pte = pte_mkhuge(pte); 233 pte = arch_make_huge_pte(pte, vma, new, 0); 234 } 235 #endif 236 flush_dcache_page(new); 237 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 238 239 if (PageHuge(new)) { 240 if (PageAnon(new)) 241 hugepage_add_anon_rmap(new, vma, pvmw.address); 242 else 243 page_dup_rmap(new, true); 244 } else if (PageAnon(new)) 245 page_add_anon_rmap(new, vma, pvmw.address, false); 246 else 247 page_add_file_rmap(new, false); 248 249 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 250 mlock_vma_page(new); 251 252 /* No need to invalidate - it was non-present before */ 253 update_mmu_cache(vma, pvmw.address, pvmw.pte); 254 } 255 256 return true; 257 } 258 259 /* 260 * Get rid of all migration entries and replace them by 261 * references to the indicated page. 262 */ 263 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 264 { 265 struct rmap_walk_control rwc = { 266 .rmap_one = remove_migration_pte, 267 .arg = old, 268 }; 269 270 if (locked) 271 rmap_walk_locked(new, &rwc); 272 else 273 rmap_walk(new, &rwc); 274 } 275 276 /* 277 * Something used the pte of a page under migration. We need to 278 * get to the page and wait until migration is finished. 279 * When we return from this function the fault will be retried. 280 */ 281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 282 spinlock_t *ptl) 283 { 284 pte_t pte; 285 swp_entry_t entry; 286 struct page *page; 287 288 spin_lock(ptl); 289 pte = *ptep; 290 if (!is_swap_pte(pte)) 291 goto out; 292 293 entry = pte_to_swp_entry(pte); 294 if (!is_migration_entry(entry)) 295 goto out; 296 297 page = migration_entry_to_page(entry); 298 299 /* 300 * Once radix-tree replacement of page migration started, page_count 301 * *must* be zero. And, we don't want to call wait_on_page_locked() 302 * against a page without get_page(). 303 * So, we use get_page_unless_zero(), here. Even failed, page fault 304 * will occur again. 305 */ 306 if (!get_page_unless_zero(page)) 307 goto out; 308 pte_unmap_unlock(ptep, ptl); 309 wait_on_page_locked(page); 310 put_page(page); 311 return; 312 out: 313 pte_unmap_unlock(ptep, ptl); 314 } 315 316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 317 unsigned long address) 318 { 319 spinlock_t *ptl = pte_lockptr(mm, pmd); 320 pte_t *ptep = pte_offset_map(pmd, address); 321 __migration_entry_wait(mm, ptep, ptl); 322 } 323 324 void migration_entry_wait_huge(struct vm_area_struct *vma, 325 struct mm_struct *mm, pte_t *pte) 326 { 327 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 328 __migration_entry_wait(mm, pte, ptl); 329 } 330 331 #ifdef CONFIG_BLOCK 332 /* Returns true if all buffers are successfully locked */ 333 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 334 enum migrate_mode mode) 335 { 336 struct buffer_head *bh = head; 337 338 /* Simple case, sync compaction */ 339 if (mode != MIGRATE_ASYNC) { 340 do { 341 get_bh(bh); 342 lock_buffer(bh); 343 bh = bh->b_this_page; 344 345 } while (bh != head); 346 347 return true; 348 } 349 350 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 351 do { 352 get_bh(bh); 353 if (!trylock_buffer(bh)) { 354 /* 355 * We failed to lock the buffer and cannot stall in 356 * async migration. Release the taken locks 357 */ 358 struct buffer_head *failed_bh = bh; 359 put_bh(failed_bh); 360 bh = head; 361 while (bh != failed_bh) { 362 unlock_buffer(bh); 363 put_bh(bh); 364 bh = bh->b_this_page; 365 } 366 return false; 367 } 368 369 bh = bh->b_this_page; 370 } while (bh != head); 371 return true; 372 } 373 #else 374 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 375 enum migrate_mode mode) 376 { 377 return true; 378 } 379 #endif /* CONFIG_BLOCK */ 380 381 /* 382 * Replace the page in the mapping. 383 * 384 * The number of remaining references must be: 385 * 1 for anonymous pages without a mapping 386 * 2 for pages with a mapping 387 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 388 */ 389 int migrate_page_move_mapping(struct address_space *mapping, 390 struct page *newpage, struct page *page, 391 struct buffer_head *head, enum migrate_mode mode, 392 int extra_count) 393 { 394 struct zone *oldzone, *newzone; 395 int dirty; 396 int expected_count = 1 + extra_count; 397 void **pslot; 398 399 if (!mapping) { 400 /* Anonymous page without mapping */ 401 if (page_count(page) != expected_count) 402 return -EAGAIN; 403 404 /* No turning back from here */ 405 newpage->index = page->index; 406 newpage->mapping = page->mapping; 407 if (PageSwapBacked(page)) 408 __SetPageSwapBacked(newpage); 409 410 return MIGRATEPAGE_SUCCESS; 411 } 412 413 oldzone = page_zone(page); 414 newzone = page_zone(newpage); 415 416 spin_lock_irq(&mapping->tree_lock); 417 418 pslot = radix_tree_lookup_slot(&mapping->page_tree, 419 page_index(page)); 420 421 expected_count += 1 + page_has_private(page); 422 if (page_count(page) != expected_count || 423 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 424 spin_unlock_irq(&mapping->tree_lock); 425 return -EAGAIN; 426 } 427 428 if (!page_ref_freeze(page, expected_count)) { 429 spin_unlock_irq(&mapping->tree_lock); 430 return -EAGAIN; 431 } 432 433 /* 434 * In the async migration case of moving a page with buffers, lock the 435 * buffers using trylock before the mapping is moved. If the mapping 436 * was moved, we later failed to lock the buffers and could not move 437 * the mapping back due to an elevated page count, we would have to 438 * block waiting on other references to be dropped. 439 */ 440 if (mode == MIGRATE_ASYNC && head && 441 !buffer_migrate_lock_buffers(head, mode)) { 442 page_ref_unfreeze(page, expected_count); 443 spin_unlock_irq(&mapping->tree_lock); 444 return -EAGAIN; 445 } 446 447 /* 448 * Now we know that no one else is looking at the page: 449 * no turning back from here. 450 */ 451 newpage->index = page->index; 452 newpage->mapping = page->mapping; 453 get_page(newpage); /* add cache reference */ 454 if (PageSwapBacked(page)) { 455 __SetPageSwapBacked(newpage); 456 if (PageSwapCache(page)) { 457 SetPageSwapCache(newpage); 458 set_page_private(newpage, page_private(page)); 459 } 460 } else { 461 VM_BUG_ON_PAGE(PageSwapCache(page), page); 462 } 463 464 /* Move dirty while page refs frozen and newpage not yet exposed */ 465 dirty = PageDirty(page); 466 if (dirty) { 467 ClearPageDirty(page); 468 SetPageDirty(newpage); 469 } 470 471 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 472 473 /* 474 * Drop cache reference from old page by unfreezing 475 * to one less reference. 476 * We know this isn't the last reference. 477 */ 478 page_ref_unfreeze(page, expected_count - 1); 479 480 spin_unlock(&mapping->tree_lock); 481 /* Leave irq disabled to prevent preemption while updating stats */ 482 483 /* 484 * If moved to a different zone then also account 485 * the page for that zone. Other VM counters will be 486 * taken care of when we establish references to the 487 * new page and drop references to the old page. 488 * 489 * Note that anonymous pages are accounted for 490 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 491 * are mapped to swap space. 492 */ 493 if (newzone != oldzone) { 494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 495 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 496 if (PageSwapBacked(page) && !PageSwapCache(page)) { 497 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 498 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 499 } 500 if (dirty && mapping_cap_account_dirty(mapping)) { 501 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 502 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 503 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 504 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 505 } 506 } 507 local_irq_enable(); 508 509 return MIGRATEPAGE_SUCCESS; 510 } 511 EXPORT_SYMBOL(migrate_page_move_mapping); 512 513 /* 514 * The expected number of remaining references is the same as that 515 * of migrate_page_move_mapping(). 516 */ 517 int migrate_huge_page_move_mapping(struct address_space *mapping, 518 struct page *newpage, struct page *page) 519 { 520 int expected_count; 521 void **pslot; 522 523 spin_lock_irq(&mapping->tree_lock); 524 525 pslot = radix_tree_lookup_slot(&mapping->page_tree, 526 page_index(page)); 527 528 expected_count = 2 + page_has_private(page); 529 if (page_count(page) != expected_count || 530 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 531 spin_unlock_irq(&mapping->tree_lock); 532 return -EAGAIN; 533 } 534 535 if (!page_ref_freeze(page, expected_count)) { 536 spin_unlock_irq(&mapping->tree_lock); 537 return -EAGAIN; 538 } 539 540 newpage->index = page->index; 541 newpage->mapping = page->mapping; 542 543 get_page(newpage); 544 545 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 546 547 page_ref_unfreeze(page, expected_count - 1); 548 549 spin_unlock_irq(&mapping->tree_lock); 550 551 return MIGRATEPAGE_SUCCESS; 552 } 553 554 /* 555 * Gigantic pages are so large that we do not guarantee that page++ pointer 556 * arithmetic will work across the entire page. We need something more 557 * specialized. 558 */ 559 static void __copy_gigantic_page(struct page *dst, struct page *src, 560 int nr_pages) 561 { 562 int i; 563 struct page *dst_base = dst; 564 struct page *src_base = src; 565 566 for (i = 0; i < nr_pages; ) { 567 cond_resched(); 568 copy_highpage(dst, src); 569 570 i++; 571 dst = mem_map_next(dst, dst_base, i); 572 src = mem_map_next(src, src_base, i); 573 } 574 } 575 576 static void copy_huge_page(struct page *dst, struct page *src) 577 { 578 int i; 579 int nr_pages; 580 581 if (PageHuge(src)) { 582 /* hugetlbfs page */ 583 struct hstate *h = page_hstate(src); 584 nr_pages = pages_per_huge_page(h); 585 586 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 587 __copy_gigantic_page(dst, src, nr_pages); 588 return; 589 } 590 } else { 591 /* thp page */ 592 BUG_ON(!PageTransHuge(src)); 593 nr_pages = hpage_nr_pages(src); 594 } 595 596 for (i = 0; i < nr_pages; i++) { 597 cond_resched(); 598 copy_highpage(dst + i, src + i); 599 } 600 } 601 602 /* 603 * Copy the page to its new location 604 */ 605 void migrate_page_copy(struct page *newpage, struct page *page) 606 { 607 int cpupid; 608 609 if (PageHuge(page) || PageTransHuge(page)) 610 copy_huge_page(newpage, page); 611 else 612 copy_highpage(newpage, page); 613 614 if (PageError(page)) 615 SetPageError(newpage); 616 if (PageReferenced(page)) 617 SetPageReferenced(newpage); 618 if (PageUptodate(page)) 619 SetPageUptodate(newpage); 620 if (TestClearPageActive(page)) { 621 VM_BUG_ON_PAGE(PageUnevictable(page), page); 622 SetPageActive(newpage); 623 } else if (TestClearPageUnevictable(page)) 624 SetPageUnevictable(newpage); 625 if (PageChecked(page)) 626 SetPageChecked(newpage); 627 if (PageMappedToDisk(page)) 628 SetPageMappedToDisk(newpage); 629 630 /* Move dirty on pages not done by migrate_page_move_mapping() */ 631 if (PageDirty(page)) 632 SetPageDirty(newpage); 633 634 if (page_is_young(page)) 635 set_page_young(newpage); 636 if (page_is_idle(page)) 637 set_page_idle(newpage); 638 639 /* 640 * Copy NUMA information to the new page, to prevent over-eager 641 * future migrations of this same page. 642 */ 643 cpupid = page_cpupid_xchg_last(page, -1); 644 page_cpupid_xchg_last(newpage, cpupid); 645 646 ksm_migrate_page(newpage, page); 647 /* 648 * Please do not reorder this without considering how mm/ksm.c's 649 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 650 */ 651 if (PageSwapCache(page)) 652 ClearPageSwapCache(page); 653 ClearPagePrivate(page); 654 set_page_private(page, 0); 655 656 /* 657 * If any waiters have accumulated on the new page then 658 * wake them up. 659 */ 660 if (PageWriteback(newpage)) 661 end_page_writeback(newpage); 662 663 copy_page_owner(page, newpage); 664 665 mem_cgroup_migrate(page, newpage); 666 } 667 EXPORT_SYMBOL(migrate_page_copy); 668 669 /************************************************************ 670 * Migration functions 671 ***********************************************************/ 672 673 /* 674 * Common logic to directly migrate a single LRU page suitable for 675 * pages that do not use PagePrivate/PagePrivate2. 676 * 677 * Pages are locked upon entry and exit. 678 */ 679 int migrate_page(struct address_space *mapping, 680 struct page *newpage, struct page *page, 681 enum migrate_mode mode) 682 { 683 int rc; 684 685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 686 687 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 688 689 if (rc != MIGRATEPAGE_SUCCESS) 690 return rc; 691 692 migrate_page_copy(newpage, page); 693 return MIGRATEPAGE_SUCCESS; 694 } 695 EXPORT_SYMBOL(migrate_page); 696 697 #ifdef CONFIG_BLOCK 698 /* 699 * Migration function for pages with buffers. This function can only be used 700 * if the underlying filesystem guarantees that no other references to "page" 701 * exist. 702 */ 703 int buffer_migrate_page(struct address_space *mapping, 704 struct page *newpage, struct page *page, enum migrate_mode mode) 705 { 706 struct buffer_head *bh, *head; 707 int rc; 708 709 if (!page_has_buffers(page)) 710 return migrate_page(mapping, newpage, page, mode); 711 712 head = page_buffers(page); 713 714 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 715 716 if (rc != MIGRATEPAGE_SUCCESS) 717 return rc; 718 719 /* 720 * In the async case, migrate_page_move_mapping locked the buffers 721 * with an IRQ-safe spinlock held. In the sync case, the buffers 722 * need to be locked now 723 */ 724 if (mode != MIGRATE_ASYNC) 725 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 726 727 ClearPagePrivate(page); 728 set_page_private(newpage, page_private(page)); 729 set_page_private(page, 0); 730 put_page(page); 731 get_page(newpage); 732 733 bh = head; 734 do { 735 set_bh_page(bh, newpage, bh_offset(bh)); 736 bh = bh->b_this_page; 737 738 } while (bh != head); 739 740 SetPagePrivate(newpage); 741 742 migrate_page_copy(newpage, page); 743 744 bh = head; 745 do { 746 unlock_buffer(bh); 747 put_bh(bh); 748 bh = bh->b_this_page; 749 750 } while (bh != head); 751 752 return MIGRATEPAGE_SUCCESS; 753 } 754 EXPORT_SYMBOL(buffer_migrate_page); 755 #endif 756 757 /* 758 * Writeback a page to clean the dirty state 759 */ 760 static int writeout(struct address_space *mapping, struct page *page) 761 { 762 struct writeback_control wbc = { 763 .sync_mode = WB_SYNC_NONE, 764 .nr_to_write = 1, 765 .range_start = 0, 766 .range_end = LLONG_MAX, 767 .for_reclaim = 1 768 }; 769 int rc; 770 771 if (!mapping->a_ops->writepage) 772 /* No write method for the address space */ 773 return -EINVAL; 774 775 if (!clear_page_dirty_for_io(page)) 776 /* Someone else already triggered a write */ 777 return -EAGAIN; 778 779 /* 780 * A dirty page may imply that the underlying filesystem has 781 * the page on some queue. So the page must be clean for 782 * migration. Writeout may mean we loose the lock and the 783 * page state is no longer what we checked for earlier. 784 * At this point we know that the migration attempt cannot 785 * be successful. 786 */ 787 remove_migration_ptes(page, page, false); 788 789 rc = mapping->a_ops->writepage(page, &wbc); 790 791 if (rc != AOP_WRITEPAGE_ACTIVATE) 792 /* unlocked. Relock */ 793 lock_page(page); 794 795 return (rc < 0) ? -EIO : -EAGAIN; 796 } 797 798 /* 799 * Default handling if a filesystem does not provide a migration function. 800 */ 801 static int fallback_migrate_page(struct address_space *mapping, 802 struct page *newpage, struct page *page, enum migrate_mode mode) 803 { 804 if (PageDirty(page)) { 805 /* Only writeback pages in full synchronous migration */ 806 if (mode != MIGRATE_SYNC) 807 return -EBUSY; 808 return writeout(mapping, page); 809 } 810 811 /* 812 * Buffers may be managed in a filesystem specific way. 813 * We must have no buffers or drop them. 814 */ 815 if (page_has_private(page) && 816 !try_to_release_page(page, GFP_KERNEL)) 817 return -EAGAIN; 818 819 return migrate_page(mapping, newpage, page, mode); 820 } 821 822 /* 823 * Move a page to a newly allocated page 824 * The page is locked and all ptes have been successfully removed. 825 * 826 * The new page will have replaced the old page if this function 827 * is successful. 828 * 829 * Return value: 830 * < 0 - error code 831 * MIGRATEPAGE_SUCCESS - success 832 */ 833 static int move_to_new_page(struct page *newpage, struct page *page, 834 enum migrate_mode mode) 835 { 836 struct address_space *mapping; 837 int rc = -EAGAIN; 838 bool is_lru = !__PageMovable(page); 839 840 VM_BUG_ON_PAGE(!PageLocked(page), page); 841 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 842 843 mapping = page_mapping(page); 844 845 if (likely(is_lru)) { 846 if (!mapping) 847 rc = migrate_page(mapping, newpage, page, mode); 848 else if (mapping->a_ops->migratepage) 849 /* 850 * Most pages have a mapping and most filesystems 851 * provide a migratepage callback. Anonymous pages 852 * are part of swap space which also has its own 853 * migratepage callback. This is the most common path 854 * for page migration. 855 */ 856 rc = mapping->a_ops->migratepage(mapping, newpage, 857 page, mode); 858 else 859 rc = fallback_migrate_page(mapping, newpage, 860 page, mode); 861 } else { 862 /* 863 * In case of non-lru page, it could be released after 864 * isolation step. In that case, we shouldn't try migration. 865 */ 866 VM_BUG_ON_PAGE(!PageIsolated(page), page); 867 if (!PageMovable(page)) { 868 rc = MIGRATEPAGE_SUCCESS; 869 __ClearPageIsolated(page); 870 goto out; 871 } 872 873 rc = mapping->a_ops->migratepage(mapping, newpage, 874 page, mode); 875 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 876 !PageIsolated(page)); 877 } 878 879 /* 880 * When successful, old pagecache page->mapping must be cleared before 881 * page is freed; but stats require that PageAnon be left as PageAnon. 882 */ 883 if (rc == MIGRATEPAGE_SUCCESS) { 884 if (__PageMovable(page)) { 885 VM_BUG_ON_PAGE(!PageIsolated(page), page); 886 887 /* 888 * We clear PG_movable under page_lock so any compactor 889 * cannot try to migrate this page. 890 */ 891 __ClearPageIsolated(page); 892 } 893 894 /* 895 * Anonymous and movable page->mapping will be cleard by 896 * free_pages_prepare so don't reset it here for keeping 897 * the type to work PageAnon, for example. 898 */ 899 if (!PageMappingFlags(page)) 900 page->mapping = NULL; 901 } 902 out: 903 return rc; 904 } 905 906 static int __unmap_and_move(struct page *page, struct page *newpage, 907 int force, enum migrate_mode mode) 908 { 909 int rc = -EAGAIN; 910 int page_was_mapped = 0; 911 struct anon_vma *anon_vma = NULL; 912 bool is_lru = !__PageMovable(page); 913 914 if (!trylock_page(page)) { 915 if (!force || mode == MIGRATE_ASYNC) 916 goto out; 917 918 /* 919 * It's not safe for direct compaction to call lock_page. 920 * For example, during page readahead pages are added locked 921 * to the LRU. Later, when the IO completes the pages are 922 * marked uptodate and unlocked. However, the queueing 923 * could be merging multiple pages for one bio (e.g. 924 * mpage_readpages). If an allocation happens for the 925 * second or third page, the process can end up locking 926 * the same page twice and deadlocking. Rather than 927 * trying to be clever about what pages can be locked, 928 * avoid the use of lock_page for direct compaction 929 * altogether. 930 */ 931 if (current->flags & PF_MEMALLOC) 932 goto out; 933 934 lock_page(page); 935 } 936 937 if (PageWriteback(page)) { 938 /* 939 * Only in the case of a full synchronous migration is it 940 * necessary to wait for PageWriteback. In the async case, 941 * the retry loop is too short and in the sync-light case, 942 * the overhead of stalling is too much 943 */ 944 if (mode != MIGRATE_SYNC) { 945 rc = -EBUSY; 946 goto out_unlock; 947 } 948 if (!force) 949 goto out_unlock; 950 wait_on_page_writeback(page); 951 } 952 953 /* 954 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 955 * we cannot notice that anon_vma is freed while we migrates a page. 956 * This get_anon_vma() delays freeing anon_vma pointer until the end 957 * of migration. File cache pages are no problem because of page_lock() 958 * File Caches may use write_page() or lock_page() in migration, then, 959 * just care Anon page here. 960 * 961 * Only page_get_anon_vma() understands the subtleties of 962 * getting a hold on an anon_vma from outside one of its mms. 963 * But if we cannot get anon_vma, then we won't need it anyway, 964 * because that implies that the anon page is no longer mapped 965 * (and cannot be remapped so long as we hold the page lock). 966 */ 967 if (PageAnon(page) && !PageKsm(page)) 968 anon_vma = page_get_anon_vma(page); 969 970 /* 971 * Block others from accessing the new page when we get around to 972 * establishing additional references. We are usually the only one 973 * holding a reference to newpage at this point. We used to have a BUG 974 * here if trylock_page(newpage) fails, but would like to allow for 975 * cases where there might be a race with the previous use of newpage. 976 * This is much like races on refcount of oldpage: just don't BUG(). 977 */ 978 if (unlikely(!trylock_page(newpage))) 979 goto out_unlock; 980 981 if (unlikely(!is_lru)) { 982 rc = move_to_new_page(newpage, page, mode); 983 goto out_unlock_both; 984 } 985 986 /* 987 * Corner case handling: 988 * 1. When a new swap-cache page is read into, it is added to the LRU 989 * and treated as swapcache but it has no rmap yet. 990 * Calling try_to_unmap() against a page->mapping==NULL page will 991 * trigger a BUG. So handle it here. 992 * 2. An orphaned page (see truncate_complete_page) might have 993 * fs-private metadata. The page can be picked up due to memory 994 * offlining. Everywhere else except page reclaim, the page is 995 * invisible to the vm, so the page can not be migrated. So try to 996 * free the metadata, so the page can be freed. 997 */ 998 if (!page->mapping) { 999 VM_BUG_ON_PAGE(PageAnon(page), page); 1000 if (page_has_private(page)) { 1001 try_to_free_buffers(page); 1002 goto out_unlock_both; 1003 } 1004 } else if (page_mapped(page)) { 1005 /* Establish migration ptes */ 1006 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1007 page); 1008 try_to_unmap(page, 1009 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1010 page_was_mapped = 1; 1011 } 1012 1013 if (!page_mapped(page)) 1014 rc = move_to_new_page(newpage, page, mode); 1015 1016 if (page_was_mapped) 1017 remove_migration_ptes(page, 1018 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1019 1020 out_unlock_both: 1021 unlock_page(newpage); 1022 out_unlock: 1023 /* Drop an anon_vma reference if we took one */ 1024 if (anon_vma) 1025 put_anon_vma(anon_vma); 1026 unlock_page(page); 1027 out: 1028 /* 1029 * If migration is successful, decrease refcount of the newpage 1030 * which will not free the page because new page owner increased 1031 * refcounter. As well, if it is LRU page, add the page to LRU 1032 * list in here. 1033 */ 1034 if (rc == MIGRATEPAGE_SUCCESS) { 1035 if (unlikely(__PageMovable(newpage))) 1036 put_page(newpage); 1037 else 1038 putback_lru_page(newpage); 1039 } 1040 1041 return rc; 1042 } 1043 1044 /* 1045 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1046 * around it. 1047 */ 1048 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1049 #define ICE_noinline noinline 1050 #else 1051 #define ICE_noinline 1052 #endif 1053 1054 /* 1055 * Obtain the lock on page, remove all ptes and migrate the page 1056 * to the newly allocated page in newpage. 1057 */ 1058 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1059 free_page_t put_new_page, 1060 unsigned long private, struct page *page, 1061 int force, enum migrate_mode mode, 1062 enum migrate_reason reason) 1063 { 1064 int rc = MIGRATEPAGE_SUCCESS; 1065 int *result = NULL; 1066 struct page *newpage; 1067 1068 newpage = get_new_page(page, private, &result); 1069 if (!newpage) 1070 return -ENOMEM; 1071 1072 if (page_count(page) == 1) { 1073 /* page was freed from under us. So we are done. */ 1074 ClearPageActive(page); 1075 ClearPageUnevictable(page); 1076 if (unlikely(__PageMovable(page))) { 1077 lock_page(page); 1078 if (!PageMovable(page)) 1079 __ClearPageIsolated(page); 1080 unlock_page(page); 1081 } 1082 if (put_new_page) 1083 put_new_page(newpage, private); 1084 else 1085 put_page(newpage); 1086 goto out; 1087 } 1088 1089 if (unlikely(PageTransHuge(page))) { 1090 lock_page(page); 1091 rc = split_huge_page(page); 1092 unlock_page(page); 1093 if (rc) 1094 goto out; 1095 } 1096 1097 rc = __unmap_and_move(page, newpage, force, mode); 1098 if (rc == MIGRATEPAGE_SUCCESS) 1099 set_page_owner_migrate_reason(newpage, reason); 1100 1101 out: 1102 if (rc != -EAGAIN) { 1103 /* 1104 * A page that has been migrated has all references 1105 * removed and will be freed. A page that has not been 1106 * migrated will have kepts its references and be 1107 * restored. 1108 */ 1109 list_del(&page->lru); 1110 1111 /* 1112 * Compaction can migrate also non-LRU pages which are 1113 * not accounted to NR_ISOLATED_*. They can be recognized 1114 * as __PageMovable 1115 */ 1116 if (likely(!__PageMovable(page))) 1117 dec_node_page_state(page, NR_ISOLATED_ANON + 1118 page_is_file_cache(page)); 1119 } 1120 1121 /* 1122 * If migration is successful, releases reference grabbed during 1123 * isolation. Otherwise, restore the page to right list unless 1124 * we want to retry. 1125 */ 1126 if (rc == MIGRATEPAGE_SUCCESS) { 1127 put_page(page); 1128 if (reason == MR_MEMORY_FAILURE) { 1129 /* 1130 * Set PG_HWPoison on just freed page 1131 * intentionally. Although it's rather weird, 1132 * it's how HWPoison flag works at the moment. 1133 */ 1134 if (!test_set_page_hwpoison(page)) 1135 num_poisoned_pages_inc(); 1136 } 1137 } else { 1138 if (rc != -EAGAIN) { 1139 if (likely(!__PageMovable(page))) { 1140 putback_lru_page(page); 1141 goto put_new; 1142 } 1143 1144 lock_page(page); 1145 if (PageMovable(page)) 1146 putback_movable_page(page); 1147 else 1148 __ClearPageIsolated(page); 1149 unlock_page(page); 1150 put_page(page); 1151 } 1152 put_new: 1153 if (put_new_page) 1154 put_new_page(newpage, private); 1155 else 1156 put_page(newpage); 1157 } 1158 1159 if (result) { 1160 if (rc) 1161 *result = rc; 1162 else 1163 *result = page_to_nid(newpage); 1164 } 1165 return rc; 1166 } 1167 1168 /* 1169 * Counterpart of unmap_and_move_page() for hugepage migration. 1170 * 1171 * This function doesn't wait the completion of hugepage I/O 1172 * because there is no race between I/O and migration for hugepage. 1173 * Note that currently hugepage I/O occurs only in direct I/O 1174 * where no lock is held and PG_writeback is irrelevant, 1175 * and writeback status of all subpages are counted in the reference 1176 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1177 * under direct I/O, the reference of the head page is 512 and a bit more.) 1178 * This means that when we try to migrate hugepage whose subpages are 1179 * doing direct I/O, some references remain after try_to_unmap() and 1180 * hugepage migration fails without data corruption. 1181 * 1182 * There is also no race when direct I/O is issued on the page under migration, 1183 * because then pte is replaced with migration swap entry and direct I/O code 1184 * will wait in the page fault for migration to complete. 1185 */ 1186 static int unmap_and_move_huge_page(new_page_t get_new_page, 1187 free_page_t put_new_page, unsigned long private, 1188 struct page *hpage, int force, 1189 enum migrate_mode mode, int reason) 1190 { 1191 int rc = -EAGAIN; 1192 int *result = NULL; 1193 int page_was_mapped = 0; 1194 struct page *new_hpage; 1195 struct anon_vma *anon_vma = NULL; 1196 1197 /* 1198 * Movability of hugepages depends on architectures and hugepage size. 1199 * This check is necessary because some callers of hugepage migration 1200 * like soft offline and memory hotremove don't walk through page 1201 * tables or check whether the hugepage is pmd-based or not before 1202 * kicking migration. 1203 */ 1204 if (!hugepage_migration_supported(page_hstate(hpage))) { 1205 putback_active_hugepage(hpage); 1206 return -ENOSYS; 1207 } 1208 1209 new_hpage = get_new_page(hpage, private, &result); 1210 if (!new_hpage) 1211 return -ENOMEM; 1212 1213 if (!trylock_page(hpage)) { 1214 if (!force || mode != MIGRATE_SYNC) 1215 goto out; 1216 lock_page(hpage); 1217 } 1218 1219 if (PageAnon(hpage)) 1220 anon_vma = page_get_anon_vma(hpage); 1221 1222 if (unlikely(!trylock_page(new_hpage))) 1223 goto put_anon; 1224 1225 if (page_mapped(hpage)) { 1226 try_to_unmap(hpage, 1227 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1228 page_was_mapped = 1; 1229 } 1230 1231 if (!page_mapped(hpage)) 1232 rc = move_to_new_page(new_hpage, hpage, mode); 1233 1234 if (page_was_mapped) 1235 remove_migration_ptes(hpage, 1236 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1237 1238 unlock_page(new_hpage); 1239 1240 put_anon: 1241 if (anon_vma) 1242 put_anon_vma(anon_vma); 1243 1244 if (rc == MIGRATEPAGE_SUCCESS) { 1245 hugetlb_cgroup_migrate(hpage, new_hpage); 1246 put_new_page = NULL; 1247 set_page_owner_migrate_reason(new_hpage, reason); 1248 } 1249 1250 unlock_page(hpage); 1251 out: 1252 if (rc != -EAGAIN) 1253 putback_active_hugepage(hpage); 1254 1255 /* 1256 * If migration was not successful and there's a freeing callback, use 1257 * it. Otherwise, put_page() will drop the reference grabbed during 1258 * isolation. 1259 */ 1260 if (put_new_page) 1261 put_new_page(new_hpage, private); 1262 else 1263 putback_active_hugepage(new_hpage); 1264 1265 if (result) { 1266 if (rc) 1267 *result = rc; 1268 else 1269 *result = page_to_nid(new_hpage); 1270 } 1271 return rc; 1272 } 1273 1274 /* 1275 * migrate_pages - migrate the pages specified in a list, to the free pages 1276 * supplied as the target for the page migration 1277 * 1278 * @from: The list of pages to be migrated. 1279 * @get_new_page: The function used to allocate free pages to be used 1280 * as the target of the page migration. 1281 * @put_new_page: The function used to free target pages if migration 1282 * fails, or NULL if no special handling is necessary. 1283 * @private: Private data to be passed on to get_new_page() 1284 * @mode: The migration mode that specifies the constraints for 1285 * page migration, if any. 1286 * @reason: The reason for page migration. 1287 * 1288 * The function returns after 10 attempts or if no pages are movable any more 1289 * because the list has become empty or no retryable pages exist any more. 1290 * The caller should call putback_movable_pages() to return pages to the LRU 1291 * or free list only if ret != 0. 1292 * 1293 * Returns the number of pages that were not migrated, or an error code. 1294 */ 1295 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1296 free_page_t put_new_page, unsigned long private, 1297 enum migrate_mode mode, int reason) 1298 { 1299 int retry = 1; 1300 int nr_failed = 0; 1301 int nr_succeeded = 0; 1302 int pass = 0; 1303 struct page *page; 1304 struct page *page2; 1305 int swapwrite = current->flags & PF_SWAPWRITE; 1306 int rc; 1307 1308 if (!swapwrite) 1309 current->flags |= PF_SWAPWRITE; 1310 1311 for(pass = 0; pass < 10 && retry; pass++) { 1312 retry = 0; 1313 1314 list_for_each_entry_safe(page, page2, from, lru) { 1315 cond_resched(); 1316 1317 if (PageHuge(page)) 1318 rc = unmap_and_move_huge_page(get_new_page, 1319 put_new_page, private, page, 1320 pass > 2, mode, reason); 1321 else 1322 rc = unmap_and_move(get_new_page, put_new_page, 1323 private, page, pass > 2, mode, 1324 reason); 1325 1326 switch(rc) { 1327 case -ENOMEM: 1328 nr_failed++; 1329 goto out; 1330 case -EAGAIN: 1331 retry++; 1332 break; 1333 case MIGRATEPAGE_SUCCESS: 1334 nr_succeeded++; 1335 break; 1336 default: 1337 /* 1338 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1339 * unlike -EAGAIN case, the failed page is 1340 * removed from migration page list and not 1341 * retried in the next outer loop. 1342 */ 1343 nr_failed++; 1344 break; 1345 } 1346 } 1347 } 1348 nr_failed += retry; 1349 rc = nr_failed; 1350 out: 1351 if (nr_succeeded) 1352 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1353 if (nr_failed) 1354 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1355 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1356 1357 if (!swapwrite) 1358 current->flags &= ~PF_SWAPWRITE; 1359 1360 return rc; 1361 } 1362 1363 #ifdef CONFIG_NUMA 1364 /* 1365 * Move a list of individual pages 1366 */ 1367 struct page_to_node { 1368 unsigned long addr; 1369 struct page *page; 1370 int node; 1371 int status; 1372 }; 1373 1374 static struct page *new_page_node(struct page *p, unsigned long private, 1375 int **result) 1376 { 1377 struct page_to_node *pm = (struct page_to_node *)private; 1378 1379 while (pm->node != MAX_NUMNODES && pm->page != p) 1380 pm++; 1381 1382 if (pm->node == MAX_NUMNODES) 1383 return NULL; 1384 1385 *result = &pm->status; 1386 1387 if (PageHuge(p)) 1388 return alloc_huge_page_node(page_hstate(compound_head(p)), 1389 pm->node); 1390 else 1391 return __alloc_pages_node(pm->node, 1392 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1393 } 1394 1395 /* 1396 * Move a set of pages as indicated in the pm array. The addr 1397 * field must be set to the virtual address of the page to be moved 1398 * and the node number must contain a valid target node. 1399 * The pm array ends with node = MAX_NUMNODES. 1400 */ 1401 static int do_move_page_to_node_array(struct mm_struct *mm, 1402 struct page_to_node *pm, 1403 int migrate_all) 1404 { 1405 int err; 1406 struct page_to_node *pp; 1407 LIST_HEAD(pagelist); 1408 1409 down_read(&mm->mmap_sem); 1410 1411 /* 1412 * Build a list of pages to migrate 1413 */ 1414 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1415 struct vm_area_struct *vma; 1416 struct page *page; 1417 1418 err = -EFAULT; 1419 vma = find_vma(mm, pp->addr); 1420 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1421 goto set_status; 1422 1423 /* FOLL_DUMP to ignore special (like zero) pages */ 1424 page = follow_page(vma, pp->addr, 1425 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1426 1427 err = PTR_ERR(page); 1428 if (IS_ERR(page)) 1429 goto set_status; 1430 1431 err = -ENOENT; 1432 if (!page) 1433 goto set_status; 1434 1435 pp->page = page; 1436 err = page_to_nid(page); 1437 1438 if (err == pp->node) 1439 /* 1440 * Node already in the right place 1441 */ 1442 goto put_and_set; 1443 1444 err = -EACCES; 1445 if (page_mapcount(page) > 1 && 1446 !migrate_all) 1447 goto put_and_set; 1448 1449 if (PageHuge(page)) { 1450 if (PageHead(page)) 1451 isolate_huge_page(page, &pagelist); 1452 goto put_and_set; 1453 } 1454 1455 err = isolate_lru_page(page); 1456 if (!err) { 1457 list_add_tail(&page->lru, &pagelist); 1458 inc_node_page_state(page, NR_ISOLATED_ANON + 1459 page_is_file_cache(page)); 1460 } 1461 put_and_set: 1462 /* 1463 * Either remove the duplicate refcount from 1464 * isolate_lru_page() or drop the page ref if it was 1465 * not isolated. 1466 */ 1467 put_page(page); 1468 set_status: 1469 pp->status = err; 1470 } 1471 1472 err = 0; 1473 if (!list_empty(&pagelist)) { 1474 err = migrate_pages(&pagelist, new_page_node, NULL, 1475 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1476 if (err) 1477 putback_movable_pages(&pagelist); 1478 } 1479 1480 up_read(&mm->mmap_sem); 1481 return err; 1482 } 1483 1484 /* 1485 * Migrate an array of page address onto an array of nodes and fill 1486 * the corresponding array of status. 1487 */ 1488 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1489 unsigned long nr_pages, 1490 const void __user * __user *pages, 1491 const int __user *nodes, 1492 int __user *status, int flags) 1493 { 1494 struct page_to_node *pm; 1495 unsigned long chunk_nr_pages; 1496 unsigned long chunk_start; 1497 int err; 1498 1499 err = -ENOMEM; 1500 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1501 if (!pm) 1502 goto out; 1503 1504 migrate_prep(); 1505 1506 /* 1507 * Store a chunk of page_to_node array in a page, 1508 * but keep the last one as a marker 1509 */ 1510 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1511 1512 for (chunk_start = 0; 1513 chunk_start < nr_pages; 1514 chunk_start += chunk_nr_pages) { 1515 int j; 1516 1517 if (chunk_start + chunk_nr_pages > nr_pages) 1518 chunk_nr_pages = nr_pages - chunk_start; 1519 1520 /* fill the chunk pm with addrs and nodes from user-space */ 1521 for (j = 0; j < chunk_nr_pages; j++) { 1522 const void __user *p; 1523 int node; 1524 1525 err = -EFAULT; 1526 if (get_user(p, pages + j + chunk_start)) 1527 goto out_pm; 1528 pm[j].addr = (unsigned long) p; 1529 1530 if (get_user(node, nodes + j + chunk_start)) 1531 goto out_pm; 1532 1533 err = -ENODEV; 1534 if (node < 0 || node >= MAX_NUMNODES) 1535 goto out_pm; 1536 1537 if (!node_state(node, N_MEMORY)) 1538 goto out_pm; 1539 1540 err = -EACCES; 1541 if (!node_isset(node, task_nodes)) 1542 goto out_pm; 1543 1544 pm[j].node = node; 1545 } 1546 1547 /* End marker for this chunk */ 1548 pm[chunk_nr_pages].node = MAX_NUMNODES; 1549 1550 /* Migrate this chunk */ 1551 err = do_move_page_to_node_array(mm, pm, 1552 flags & MPOL_MF_MOVE_ALL); 1553 if (err < 0) 1554 goto out_pm; 1555 1556 /* Return status information */ 1557 for (j = 0; j < chunk_nr_pages; j++) 1558 if (put_user(pm[j].status, status + j + chunk_start)) { 1559 err = -EFAULT; 1560 goto out_pm; 1561 } 1562 } 1563 err = 0; 1564 1565 out_pm: 1566 free_page((unsigned long)pm); 1567 out: 1568 return err; 1569 } 1570 1571 /* 1572 * Determine the nodes of an array of pages and store it in an array of status. 1573 */ 1574 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1575 const void __user **pages, int *status) 1576 { 1577 unsigned long i; 1578 1579 down_read(&mm->mmap_sem); 1580 1581 for (i = 0; i < nr_pages; i++) { 1582 unsigned long addr = (unsigned long)(*pages); 1583 struct vm_area_struct *vma; 1584 struct page *page; 1585 int err = -EFAULT; 1586 1587 vma = find_vma(mm, addr); 1588 if (!vma || addr < vma->vm_start) 1589 goto set_status; 1590 1591 /* FOLL_DUMP to ignore special (like zero) pages */ 1592 page = follow_page(vma, addr, FOLL_DUMP); 1593 1594 err = PTR_ERR(page); 1595 if (IS_ERR(page)) 1596 goto set_status; 1597 1598 err = page ? page_to_nid(page) : -ENOENT; 1599 set_status: 1600 *status = err; 1601 1602 pages++; 1603 status++; 1604 } 1605 1606 up_read(&mm->mmap_sem); 1607 } 1608 1609 /* 1610 * Determine the nodes of a user array of pages and store it in 1611 * a user array of status. 1612 */ 1613 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1614 const void __user * __user *pages, 1615 int __user *status) 1616 { 1617 #define DO_PAGES_STAT_CHUNK_NR 16 1618 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1619 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1620 1621 while (nr_pages) { 1622 unsigned long chunk_nr; 1623 1624 chunk_nr = nr_pages; 1625 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1626 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1627 1628 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1629 break; 1630 1631 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1632 1633 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1634 break; 1635 1636 pages += chunk_nr; 1637 status += chunk_nr; 1638 nr_pages -= chunk_nr; 1639 } 1640 return nr_pages ? -EFAULT : 0; 1641 } 1642 1643 /* 1644 * Move a list of pages in the address space of the currently executing 1645 * process. 1646 */ 1647 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1648 const void __user * __user *, pages, 1649 const int __user *, nodes, 1650 int __user *, status, int, flags) 1651 { 1652 const struct cred *cred = current_cred(), *tcred; 1653 struct task_struct *task; 1654 struct mm_struct *mm; 1655 int err; 1656 nodemask_t task_nodes; 1657 1658 /* Check flags */ 1659 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1660 return -EINVAL; 1661 1662 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1663 return -EPERM; 1664 1665 /* Find the mm_struct */ 1666 rcu_read_lock(); 1667 task = pid ? find_task_by_vpid(pid) : current; 1668 if (!task) { 1669 rcu_read_unlock(); 1670 return -ESRCH; 1671 } 1672 get_task_struct(task); 1673 1674 /* 1675 * Check if this process has the right to modify the specified 1676 * process. The right exists if the process has administrative 1677 * capabilities, superuser privileges or the same 1678 * userid as the target process. 1679 */ 1680 tcred = __task_cred(task); 1681 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1682 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1683 !capable(CAP_SYS_NICE)) { 1684 rcu_read_unlock(); 1685 err = -EPERM; 1686 goto out; 1687 } 1688 rcu_read_unlock(); 1689 1690 err = security_task_movememory(task); 1691 if (err) 1692 goto out; 1693 1694 task_nodes = cpuset_mems_allowed(task); 1695 mm = get_task_mm(task); 1696 put_task_struct(task); 1697 1698 if (!mm) 1699 return -EINVAL; 1700 1701 if (nodes) 1702 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1703 nodes, status, flags); 1704 else 1705 err = do_pages_stat(mm, nr_pages, pages, status); 1706 1707 mmput(mm); 1708 return err; 1709 1710 out: 1711 put_task_struct(task); 1712 return err; 1713 } 1714 1715 #ifdef CONFIG_NUMA_BALANCING 1716 /* 1717 * Returns true if this is a safe migration target node for misplaced NUMA 1718 * pages. Currently it only checks the watermarks which crude 1719 */ 1720 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1721 unsigned long nr_migrate_pages) 1722 { 1723 int z; 1724 1725 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1726 struct zone *zone = pgdat->node_zones + z; 1727 1728 if (!populated_zone(zone)) 1729 continue; 1730 1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1732 if (!zone_watermark_ok(zone, 0, 1733 high_wmark_pages(zone) + 1734 nr_migrate_pages, 1735 0, 0)) 1736 continue; 1737 return true; 1738 } 1739 return false; 1740 } 1741 1742 static struct page *alloc_misplaced_dst_page(struct page *page, 1743 unsigned long data, 1744 int **result) 1745 { 1746 int nid = (int) data; 1747 struct page *newpage; 1748 1749 newpage = __alloc_pages_node(nid, 1750 (GFP_HIGHUSER_MOVABLE | 1751 __GFP_THISNODE | __GFP_NOMEMALLOC | 1752 __GFP_NORETRY | __GFP_NOWARN) & 1753 ~__GFP_RECLAIM, 0); 1754 1755 return newpage; 1756 } 1757 1758 /* 1759 * page migration rate limiting control. 1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1761 * window of time. Default here says do not migrate more than 1280M per second. 1762 */ 1763 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1765 1766 /* Returns true if the node is migrate rate-limited after the update */ 1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1768 unsigned long nr_pages) 1769 { 1770 /* 1771 * Rate-limit the amount of data that is being migrated to a node. 1772 * Optimal placement is no good if the memory bus is saturated and 1773 * all the time is being spent migrating! 1774 */ 1775 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1776 spin_lock(&pgdat->numabalancing_migrate_lock); 1777 pgdat->numabalancing_migrate_nr_pages = 0; 1778 pgdat->numabalancing_migrate_next_window = jiffies + 1779 msecs_to_jiffies(migrate_interval_millisecs); 1780 spin_unlock(&pgdat->numabalancing_migrate_lock); 1781 } 1782 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1783 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1784 nr_pages); 1785 return true; 1786 } 1787 1788 /* 1789 * This is an unlocked non-atomic update so errors are possible. 1790 * The consequences are failing to migrate when we potentiall should 1791 * have which is not severe enough to warrant locking. If it is ever 1792 * a problem, it can be converted to a per-cpu counter. 1793 */ 1794 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1795 return false; 1796 } 1797 1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1799 { 1800 int page_lru; 1801 1802 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1803 1804 /* Avoid migrating to a node that is nearly full */ 1805 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1806 return 0; 1807 1808 if (isolate_lru_page(page)) 1809 return 0; 1810 1811 /* 1812 * migrate_misplaced_transhuge_page() skips page migration's usual 1813 * check on page_count(), so we must do it here, now that the page 1814 * has been isolated: a GUP pin, or any other pin, prevents migration. 1815 * The expected page count is 3: 1 for page's mapcount and 1 for the 1816 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1817 */ 1818 if (PageTransHuge(page) && page_count(page) != 3) { 1819 putback_lru_page(page); 1820 return 0; 1821 } 1822 1823 page_lru = page_is_file_cache(page); 1824 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1825 hpage_nr_pages(page)); 1826 1827 /* 1828 * Isolating the page has taken another reference, so the 1829 * caller's reference can be safely dropped without the page 1830 * disappearing underneath us during migration. 1831 */ 1832 put_page(page); 1833 return 1; 1834 } 1835 1836 bool pmd_trans_migrating(pmd_t pmd) 1837 { 1838 struct page *page = pmd_page(pmd); 1839 return PageLocked(page); 1840 } 1841 1842 /* 1843 * Attempt to migrate a misplaced page to the specified destination 1844 * node. Caller is expected to have an elevated reference count on 1845 * the page that will be dropped by this function before returning. 1846 */ 1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1848 int node) 1849 { 1850 pg_data_t *pgdat = NODE_DATA(node); 1851 int isolated; 1852 int nr_remaining; 1853 LIST_HEAD(migratepages); 1854 1855 /* 1856 * Don't migrate file pages that are mapped in multiple processes 1857 * with execute permissions as they are probably shared libraries. 1858 */ 1859 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1860 (vma->vm_flags & VM_EXEC)) 1861 goto out; 1862 1863 /* 1864 * Rate-limit the amount of data that is being migrated to a node. 1865 * Optimal placement is no good if the memory bus is saturated and 1866 * all the time is being spent migrating! 1867 */ 1868 if (numamigrate_update_ratelimit(pgdat, 1)) 1869 goto out; 1870 1871 isolated = numamigrate_isolate_page(pgdat, page); 1872 if (!isolated) 1873 goto out; 1874 1875 list_add(&page->lru, &migratepages); 1876 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1877 NULL, node, MIGRATE_ASYNC, 1878 MR_NUMA_MISPLACED); 1879 if (nr_remaining) { 1880 if (!list_empty(&migratepages)) { 1881 list_del(&page->lru); 1882 dec_node_page_state(page, NR_ISOLATED_ANON + 1883 page_is_file_cache(page)); 1884 putback_lru_page(page); 1885 } 1886 isolated = 0; 1887 } else 1888 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1889 BUG_ON(!list_empty(&migratepages)); 1890 return isolated; 1891 1892 out: 1893 put_page(page); 1894 return 0; 1895 } 1896 #endif /* CONFIG_NUMA_BALANCING */ 1897 1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1899 /* 1900 * Migrates a THP to a given target node. page must be locked and is unlocked 1901 * before returning. 1902 */ 1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1904 struct vm_area_struct *vma, 1905 pmd_t *pmd, pmd_t entry, 1906 unsigned long address, 1907 struct page *page, int node) 1908 { 1909 spinlock_t *ptl; 1910 pg_data_t *pgdat = NODE_DATA(node); 1911 int isolated = 0; 1912 struct page *new_page = NULL; 1913 int page_lru = page_is_file_cache(page); 1914 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1915 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1916 pmd_t orig_entry; 1917 1918 /* 1919 * Rate-limit the amount of data that is being migrated to a node. 1920 * Optimal placement is no good if the memory bus is saturated and 1921 * all the time is being spent migrating! 1922 */ 1923 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1924 goto out_dropref; 1925 1926 new_page = alloc_pages_node(node, 1927 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1928 HPAGE_PMD_ORDER); 1929 if (!new_page) 1930 goto out_fail; 1931 prep_transhuge_page(new_page); 1932 1933 isolated = numamigrate_isolate_page(pgdat, page); 1934 if (!isolated) { 1935 put_page(new_page); 1936 goto out_fail; 1937 } 1938 /* 1939 * We are not sure a pending tlb flush here is for a huge page 1940 * mapping or not. Hence use the tlb range variant 1941 */ 1942 if (mm_tlb_flush_pending(mm)) 1943 flush_tlb_range(vma, mmun_start, mmun_end); 1944 1945 /* Prepare a page as a migration target */ 1946 __SetPageLocked(new_page); 1947 if (PageSwapBacked(page)) 1948 __SetPageSwapBacked(new_page); 1949 1950 /* anon mapping, we can simply copy page->mapping to the new page: */ 1951 new_page->mapping = page->mapping; 1952 new_page->index = page->index; 1953 migrate_page_copy(new_page, page); 1954 WARN_ON(PageLRU(new_page)); 1955 1956 /* Recheck the target PMD */ 1957 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1958 ptl = pmd_lock(mm, pmd); 1959 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1960 fail_putback: 1961 spin_unlock(ptl); 1962 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1963 1964 /* Reverse changes made by migrate_page_copy() */ 1965 if (TestClearPageActive(new_page)) 1966 SetPageActive(page); 1967 if (TestClearPageUnevictable(new_page)) 1968 SetPageUnevictable(page); 1969 1970 unlock_page(new_page); 1971 put_page(new_page); /* Free it */ 1972 1973 /* Retake the callers reference and putback on LRU */ 1974 get_page(page); 1975 putback_lru_page(page); 1976 mod_node_page_state(page_pgdat(page), 1977 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1978 1979 goto out_unlock; 1980 } 1981 1982 orig_entry = *pmd; 1983 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1984 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1985 1986 /* 1987 * Clear the old entry under pagetable lock and establish the new PTE. 1988 * Any parallel GUP will either observe the old page blocking on the 1989 * page lock, block on the page table lock or observe the new page. 1990 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1991 * guarantee the copy is visible before the pagetable update. 1992 */ 1993 flush_cache_range(vma, mmun_start, mmun_end); 1994 page_add_anon_rmap(new_page, vma, mmun_start, true); 1995 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1996 set_pmd_at(mm, mmun_start, pmd, entry); 1997 update_mmu_cache_pmd(vma, address, &entry); 1998 1999 if (page_count(page) != 2) { 2000 set_pmd_at(mm, mmun_start, pmd, orig_entry); 2001 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2002 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2003 update_mmu_cache_pmd(vma, address, &entry); 2004 page_remove_rmap(new_page, true); 2005 goto fail_putback; 2006 } 2007 2008 mlock_migrate_page(new_page, page); 2009 page_remove_rmap(page, true); 2010 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2011 2012 spin_unlock(ptl); 2013 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2014 2015 /* Take an "isolate" reference and put new page on the LRU. */ 2016 get_page(new_page); 2017 putback_lru_page(new_page); 2018 2019 unlock_page(new_page); 2020 unlock_page(page); 2021 put_page(page); /* Drop the rmap reference */ 2022 put_page(page); /* Drop the LRU isolation reference */ 2023 2024 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2025 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2026 2027 mod_node_page_state(page_pgdat(page), 2028 NR_ISOLATED_ANON + page_lru, 2029 -HPAGE_PMD_NR); 2030 return isolated; 2031 2032 out_fail: 2033 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2034 out_dropref: 2035 ptl = pmd_lock(mm, pmd); 2036 if (pmd_same(*pmd, entry)) { 2037 entry = pmd_modify(entry, vma->vm_page_prot); 2038 set_pmd_at(mm, mmun_start, pmd, entry); 2039 update_mmu_cache_pmd(vma, address, &entry); 2040 } 2041 spin_unlock(ptl); 2042 2043 out_unlock: 2044 unlock_page(page); 2045 put_page(page); 2046 return 0; 2047 } 2048 #endif /* CONFIG_NUMA_BALANCING */ 2049 2050 #endif /* CONFIG_NUMA */ 2051