xref: /openbmc/linux/mm/migrate.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once radix-tree replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	struct zone *oldzone, *newzone;
442 	int dirty;
443 	int expected_count = 1 + extra_count;
444 	void **pslot;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	xa_lock_irq(&mapping->i_pages);
471 
472 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473  					page_index(page));
474 
475 	expected_count += 1 + page_has_private(page);
476 	if (page_count(page) != expected_count ||
477 		radix_tree_deref_slot_protected(pslot,
478 					&mapping->i_pages.xa_lock) != page) {
479 		xa_unlock_irq(&mapping->i_pages);
480 		return -EAGAIN;
481 	}
482 
483 	if (!page_ref_freeze(page, expected_count)) {
484 		xa_unlock_irq(&mapping->i_pages);
485 		return -EAGAIN;
486 	}
487 
488 	/*
489 	 * In the async migration case of moving a page with buffers, lock the
490 	 * buffers using trylock before the mapping is moved. If the mapping
491 	 * was moved, we later failed to lock the buffers and could not move
492 	 * the mapping back due to an elevated page count, we would have to
493 	 * block waiting on other references to be dropped.
494 	 */
495 	if (mode == MIGRATE_ASYNC && head &&
496 			!buffer_migrate_lock_buffers(head, mode)) {
497 		page_ref_unfreeze(page, expected_count);
498 		xa_unlock_irq(&mapping->i_pages);
499 		return -EAGAIN;
500 	}
501 
502 	/*
503 	 * Now we know that no one else is looking at the page:
504 	 * no turning back from here.
505 	 */
506 	newpage->index = page->index;
507 	newpage->mapping = page->mapping;
508 	get_page(newpage);	/* add cache reference */
509 	if (PageSwapBacked(page)) {
510 		__SetPageSwapBacked(newpage);
511 		if (PageSwapCache(page)) {
512 			SetPageSwapCache(newpage);
513 			set_page_private(newpage, page_private(page));
514 		}
515 	} else {
516 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 	}
518 
519 	/* Move dirty while page refs frozen and newpage not yet exposed */
520 	dirty = PageDirty(page);
521 	if (dirty) {
522 		ClearPageDirty(page);
523 		SetPageDirty(newpage);
524 	}
525 
526 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 
528 	/*
529 	 * Drop cache reference from old page by unfreezing
530 	 * to one less reference.
531 	 * We know this isn't the last reference.
532 	 */
533 	page_ref_unfreeze(page, expected_count - 1);
534 
535 	xa_unlock(&mapping->i_pages);
536 	/* Leave irq disabled to prevent preemption while updating stats */
537 
538 	/*
539 	 * If moved to a different zone then also account
540 	 * the page for that zone. Other VM counters will be
541 	 * taken care of when we establish references to the
542 	 * new page and drop references to the old page.
543 	 *
544 	 * Note that anonymous pages are accounted for
545 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
546 	 * are mapped to swap space.
547 	 */
548 	if (newzone != oldzone) {
549 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
550 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
551 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
552 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
553 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
554 		}
555 		if (dirty && mapping_cap_account_dirty(mapping)) {
556 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
557 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
558 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
559 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
560 		}
561 	}
562 	local_irq_enable();
563 
564 	return MIGRATEPAGE_SUCCESS;
565 }
566 EXPORT_SYMBOL(migrate_page_move_mapping);
567 
568 /*
569  * The expected number of remaining references is the same as that
570  * of migrate_page_move_mapping().
571  */
572 int migrate_huge_page_move_mapping(struct address_space *mapping,
573 				   struct page *newpage, struct page *page)
574 {
575 	int expected_count;
576 	void **pslot;
577 
578 	xa_lock_irq(&mapping->i_pages);
579 
580 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
581 
582 	expected_count = 2 + page_has_private(page);
583 	if (page_count(page) != expected_count ||
584 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
585 		xa_unlock_irq(&mapping->i_pages);
586 		return -EAGAIN;
587 	}
588 
589 	if (!page_ref_freeze(page, expected_count)) {
590 		xa_unlock_irq(&mapping->i_pages);
591 		return -EAGAIN;
592 	}
593 
594 	newpage->index = page->index;
595 	newpage->mapping = page->mapping;
596 
597 	get_page(newpage);
598 
599 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
600 
601 	page_ref_unfreeze(page, expected_count - 1);
602 
603 	xa_unlock_irq(&mapping->i_pages);
604 
605 	return MIGRATEPAGE_SUCCESS;
606 }
607 
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614 				int nr_pages)
615 {
616 	int i;
617 	struct page *dst_base = dst;
618 	struct page *src_base = src;
619 
620 	for (i = 0; i < nr_pages; ) {
621 		cond_resched();
622 		copy_highpage(dst, src);
623 
624 		i++;
625 		dst = mem_map_next(dst, dst_base, i);
626 		src = mem_map_next(src, src_base, i);
627 	}
628 }
629 
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632 	int i;
633 	int nr_pages;
634 
635 	if (PageHuge(src)) {
636 		/* hugetlbfs page */
637 		struct hstate *h = page_hstate(src);
638 		nr_pages = pages_per_huge_page(h);
639 
640 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 			__copy_gigantic_page(dst, src, nr_pages);
642 			return;
643 		}
644 	} else {
645 		/* thp page */
646 		BUG_ON(!PageTransHuge(src));
647 		nr_pages = hpage_nr_pages(src);
648 	}
649 
650 	for (i = 0; i < nr_pages; i++) {
651 		cond_resched();
652 		copy_highpage(dst + i, src + i);
653 	}
654 }
655 
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661 	int cpupid;
662 
663 	if (PageError(page))
664 		SetPageError(newpage);
665 	if (PageReferenced(page))
666 		SetPageReferenced(newpage);
667 	if (PageUptodate(page))
668 		SetPageUptodate(newpage);
669 	if (TestClearPageActive(page)) {
670 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
671 		SetPageActive(newpage);
672 	} else if (TestClearPageUnevictable(page))
673 		SetPageUnevictable(newpage);
674 	if (PageChecked(page))
675 		SetPageChecked(newpage);
676 	if (PageMappedToDisk(page))
677 		SetPageMappedToDisk(newpage);
678 
679 	/* Move dirty on pages not done by migrate_page_move_mapping() */
680 	if (PageDirty(page))
681 		SetPageDirty(newpage);
682 
683 	if (page_is_young(page))
684 		set_page_young(newpage);
685 	if (page_is_idle(page))
686 		set_page_idle(newpage);
687 
688 	/*
689 	 * Copy NUMA information to the new page, to prevent over-eager
690 	 * future migrations of this same page.
691 	 */
692 	cpupid = page_cpupid_xchg_last(page, -1);
693 	page_cpupid_xchg_last(newpage, cpupid);
694 
695 	ksm_migrate_page(newpage, page);
696 	/*
697 	 * Please do not reorder this without considering how mm/ksm.c's
698 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 	 */
700 	if (PageSwapCache(page))
701 		ClearPageSwapCache(page);
702 	ClearPagePrivate(page);
703 	set_page_private(page, 0);
704 
705 	/*
706 	 * If any waiters have accumulated on the new page then
707 	 * wake them up.
708 	 */
709 	if (PageWriteback(newpage))
710 		end_page_writeback(newpage);
711 
712 	copy_page_owner(page, newpage);
713 
714 	mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717 
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720 	if (PageHuge(page) || PageTransHuge(page))
721 		copy_huge_page(newpage, page);
722 	else
723 		copy_highpage(newpage, page);
724 
725 	migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728 
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732 
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740 		struct page *newpage, struct page *page,
741 		enum migrate_mode mode)
742 {
743 	int rc;
744 
745 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
746 
747 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748 
749 	if (rc != MIGRATEPAGE_SUCCESS)
750 		return rc;
751 
752 	if (mode != MIGRATE_SYNC_NO_COPY)
753 		migrate_page_copy(newpage, page);
754 	else
755 		migrate_page_states(newpage, page);
756 	return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759 
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767 		struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769 	struct buffer_head *bh, *head;
770 	int rc;
771 
772 	if (!page_has_buffers(page))
773 		return migrate_page(mapping, newpage, page, mode);
774 
775 	head = page_buffers(page);
776 
777 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778 
779 	if (rc != MIGRATEPAGE_SUCCESS)
780 		return rc;
781 
782 	/*
783 	 * In the async case, migrate_page_move_mapping locked the buffers
784 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 	 * need to be locked now
786 	 */
787 	if (mode != MIGRATE_ASYNC)
788 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789 
790 	ClearPagePrivate(page);
791 	set_page_private(newpage, page_private(page));
792 	set_page_private(page, 0);
793 	put_page(page);
794 	get_page(newpage);
795 
796 	bh = head;
797 	do {
798 		set_bh_page(bh, newpage, bh_offset(bh));
799 		bh = bh->b_this_page;
800 
801 	} while (bh != head);
802 
803 	SetPagePrivate(newpage);
804 
805 	if (mode != MIGRATE_SYNC_NO_COPY)
806 		migrate_page_copy(newpage, page);
807 	else
808 		migrate_page_states(newpage, page);
809 
810 	bh = head;
811 	do {
812 		unlock_buffer(bh);
813 		put_bh(bh);
814 		bh = bh->b_this_page;
815 
816 	} while (bh != head);
817 
818 	return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822 
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828 	struct writeback_control wbc = {
829 		.sync_mode = WB_SYNC_NONE,
830 		.nr_to_write = 1,
831 		.range_start = 0,
832 		.range_end = LLONG_MAX,
833 		.for_reclaim = 1
834 	};
835 	int rc;
836 
837 	if (!mapping->a_ops->writepage)
838 		/* No write method for the address space */
839 		return -EINVAL;
840 
841 	if (!clear_page_dirty_for_io(page))
842 		/* Someone else already triggered a write */
843 		return -EAGAIN;
844 
845 	/*
846 	 * A dirty page may imply that the underlying filesystem has
847 	 * the page on some queue. So the page must be clean for
848 	 * migration. Writeout may mean we loose the lock and the
849 	 * page state is no longer what we checked for earlier.
850 	 * At this point we know that the migration attempt cannot
851 	 * be successful.
852 	 */
853 	remove_migration_ptes(page, page, false);
854 
855 	rc = mapping->a_ops->writepage(page, &wbc);
856 
857 	if (rc != AOP_WRITEPAGE_ACTIVATE)
858 		/* unlocked. Relock */
859 		lock_page(page);
860 
861 	return (rc < 0) ? -EIO : -EAGAIN;
862 }
863 
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868 	struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870 	if (PageDirty(page)) {
871 		/* Only writeback pages in full synchronous migration */
872 		switch (mode) {
873 		case MIGRATE_SYNC:
874 		case MIGRATE_SYNC_NO_COPY:
875 			break;
876 		default:
877 			return -EBUSY;
878 		}
879 		return writeout(mapping, page);
880 	}
881 
882 	/*
883 	 * Buffers may be managed in a filesystem specific way.
884 	 * We must have no buffers or drop them.
885 	 */
886 	if (page_has_private(page) &&
887 	    !try_to_release_page(page, GFP_KERNEL))
888 		return -EAGAIN;
889 
890 	return migrate_page(mapping, newpage, page, mode);
891 }
892 
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905 				enum migrate_mode mode)
906 {
907 	struct address_space *mapping;
908 	int rc = -EAGAIN;
909 	bool is_lru = !__PageMovable(page);
910 
911 	VM_BUG_ON_PAGE(!PageLocked(page), page);
912 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913 
914 	mapping = page_mapping(page);
915 
916 	if (likely(is_lru)) {
917 		if (!mapping)
918 			rc = migrate_page(mapping, newpage, page, mode);
919 		else if (mapping->a_ops->migratepage)
920 			/*
921 			 * Most pages have a mapping and most filesystems
922 			 * provide a migratepage callback. Anonymous pages
923 			 * are part of swap space which also has its own
924 			 * migratepage callback. This is the most common path
925 			 * for page migration.
926 			 */
927 			rc = mapping->a_ops->migratepage(mapping, newpage,
928 							page, mode);
929 		else
930 			rc = fallback_migrate_page(mapping, newpage,
931 							page, mode);
932 	} else {
933 		/*
934 		 * In case of non-lru page, it could be released after
935 		 * isolation step. In that case, we shouldn't try migration.
936 		 */
937 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 		if (!PageMovable(page)) {
939 			rc = MIGRATEPAGE_SUCCESS;
940 			__ClearPageIsolated(page);
941 			goto out;
942 		}
943 
944 		rc = mapping->a_ops->migratepage(mapping, newpage,
945 						page, mode);
946 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 			!PageIsolated(page));
948 	}
949 
950 	/*
951 	 * When successful, old pagecache page->mapping must be cleared before
952 	 * page is freed; but stats require that PageAnon be left as PageAnon.
953 	 */
954 	if (rc == MIGRATEPAGE_SUCCESS) {
955 		if (__PageMovable(page)) {
956 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
957 
958 			/*
959 			 * We clear PG_movable under page_lock so any compactor
960 			 * cannot try to migrate this page.
961 			 */
962 			__ClearPageIsolated(page);
963 		}
964 
965 		/*
966 		 * Anonymous and movable page->mapping will be cleard by
967 		 * free_pages_prepare so don't reset it here for keeping
968 		 * the type to work PageAnon, for example.
969 		 */
970 		if (!PageMappingFlags(page))
971 			page->mapping = NULL;
972 	}
973 out:
974 	return rc;
975 }
976 
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978 				int force, enum migrate_mode mode)
979 {
980 	int rc = -EAGAIN;
981 	int page_was_mapped = 0;
982 	struct anon_vma *anon_vma = NULL;
983 	bool is_lru = !__PageMovable(page);
984 
985 	if (!trylock_page(page)) {
986 		if (!force || mode == MIGRATE_ASYNC)
987 			goto out;
988 
989 		/*
990 		 * It's not safe for direct compaction to call lock_page.
991 		 * For example, during page readahead pages are added locked
992 		 * to the LRU. Later, when the IO completes the pages are
993 		 * marked uptodate and unlocked. However, the queueing
994 		 * could be merging multiple pages for one bio (e.g.
995 		 * mpage_readpages). If an allocation happens for the
996 		 * second or third page, the process can end up locking
997 		 * the same page twice and deadlocking. Rather than
998 		 * trying to be clever about what pages can be locked,
999 		 * avoid the use of lock_page for direct compaction
1000 		 * altogether.
1001 		 */
1002 		if (current->flags & PF_MEMALLOC)
1003 			goto out;
1004 
1005 		lock_page(page);
1006 	}
1007 
1008 	if (PageWriteback(page)) {
1009 		/*
1010 		 * Only in the case of a full synchronous migration is it
1011 		 * necessary to wait for PageWriteback. In the async case,
1012 		 * the retry loop is too short and in the sync-light case,
1013 		 * the overhead of stalling is too much
1014 		 */
1015 		switch (mode) {
1016 		case MIGRATE_SYNC:
1017 		case MIGRATE_SYNC_NO_COPY:
1018 			break;
1019 		default:
1020 			rc = -EBUSY;
1021 			goto out_unlock;
1022 		}
1023 		if (!force)
1024 			goto out_unlock;
1025 		wait_on_page_writeback(page);
1026 	}
1027 
1028 	/*
1029 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 	 * we cannot notice that anon_vma is freed while we migrates a page.
1031 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1032 	 * of migration. File cache pages are no problem because of page_lock()
1033 	 * File Caches may use write_page() or lock_page() in migration, then,
1034 	 * just care Anon page here.
1035 	 *
1036 	 * Only page_get_anon_vma() understands the subtleties of
1037 	 * getting a hold on an anon_vma from outside one of its mms.
1038 	 * But if we cannot get anon_vma, then we won't need it anyway,
1039 	 * because that implies that the anon page is no longer mapped
1040 	 * (and cannot be remapped so long as we hold the page lock).
1041 	 */
1042 	if (PageAnon(page) && !PageKsm(page))
1043 		anon_vma = page_get_anon_vma(page);
1044 
1045 	/*
1046 	 * Block others from accessing the new page when we get around to
1047 	 * establishing additional references. We are usually the only one
1048 	 * holding a reference to newpage at this point. We used to have a BUG
1049 	 * here if trylock_page(newpage) fails, but would like to allow for
1050 	 * cases where there might be a race with the previous use of newpage.
1051 	 * This is much like races on refcount of oldpage: just don't BUG().
1052 	 */
1053 	if (unlikely(!trylock_page(newpage)))
1054 		goto out_unlock;
1055 
1056 	if (unlikely(!is_lru)) {
1057 		rc = move_to_new_page(newpage, page, mode);
1058 		goto out_unlock_both;
1059 	}
1060 
1061 	/*
1062 	 * Corner case handling:
1063 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 	 * and treated as swapcache but it has no rmap yet.
1065 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 	 * trigger a BUG.  So handle it here.
1067 	 * 2. An orphaned page (see truncate_complete_page) might have
1068 	 * fs-private metadata. The page can be picked up due to memory
1069 	 * offlining.  Everywhere else except page reclaim, the page is
1070 	 * invisible to the vm, so the page can not be migrated.  So try to
1071 	 * free the metadata, so the page can be freed.
1072 	 */
1073 	if (!page->mapping) {
1074 		VM_BUG_ON_PAGE(PageAnon(page), page);
1075 		if (page_has_private(page)) {
1076 			try_to_free_buffers(page);
1077 			goto out_unlock_both;
1078 		}
1079 	} else if (page_mapped(page)) {
1080 		/* Establish migration ptes */
1081 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082 				page);
1083 		try_to_unmap(page,
1084 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085 		page_was_mapped = 1;
1086 	}
1087 
1088 	if (!page_mapped(page))
1089 		rc = move_to_new_page(newpage, page, mode);
1090 
1091 	if (page_was_mapped)
1092 		remove_migration_ptes(page,
1093 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094 
1095 out_unlock_both:
1096 	unlock_page(newpage);
1097 out_unlock:
1098 	/* Drop an anon_vma reference if we took one */
1099 	if (anon_vma)
1100 		put_anon_vma(anon_vma);
1101 	unlock_page(page);
1102 out:
1103 	/*
1104 	 * If migration is successful, decrease refcount of the newpage
1105 	 * which will not free the page because new page owner increased
1106 	 * refcounter. As well, if it is LRU page, add the page to LRU
1107 	 * list in here.
1108 	 */
1109 	if (rc == MIGRATEPAGE_SUCCESS) {
1110 		if (unlikely(__PageMovable(newpage)))
1111 			put_page(newpage);
1112 		else
1113 			putback_lru_page(newpage);
1114 	}
1115 
1116 	return rc;
1117 }
1118 
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128 
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 				   free_page_t put_new_page,
1135 				   unsigned long private, struct page *page,
1136 				   int force, enum migrate_mode mode,
1137 				   enum migrate_reason reason)
1138 {
1139 	int rc = MIGRATEPAGE_SUCCESS;
1140 	struct page *newpage;
1141 
1142 	if (!thp_migration_supported() && PageTransHuge(page))
1143 		return -ENOMEM;
1144 
1145 	newpage = get_new_page(page, private);
1146 	if (!newpage)
1147 		return -ENOMEM;
1148 
1149 	if (page_count(page) == 1) {
1150 		/* page was freed from under us. So we are done. */
1151 		ClearPageActive(page);
1152 		ClearPageUnevictable(page);
1153 		if (unlikely(__PageMovable(page))) {
1154 			lock_page(page);
1155 			if (!PageMovable(page))
1156 				__ClearPageIsolated(page);
1157 			unlock_page(page);
1158 		}
1159 		if (put_new_page)
1160 			put_new_page(newpage, private);
1161 		else
1162 			put_page(newpage);
1163 		goto out;
1164 	}
1165 
1166 	rc = __unmap_and_move(page, newpage, force, mode);
1167 	if (rc == MIGRATEPAGE_SUCCESS)
1168 		set_page_owner_migrate_reason(newpage, reason);
1169 
1170 out:
1171 	if (rc != -EAGAIN) {
1172 		/*
1173 		 * A page that has been migrated has all references
1174 		 * removed and will be freed. A page that has not been
1175 		 * migrated will have kepts its references and be
1176 		 * restored.
1177 		 */
1178 		list_del(&page->lru);
1179 
1180 		/*
1181 		 * Compaction can migrate also non-LRU pages which are
1182 		 * not accounted to NR_ISOLATED_*. They can be recognized
1183 		 * as __PageMovable
1184 		 */
1185 		if (likely(!__PageMovable(page)))
1186 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1187 					page_is_file_cache(page), -hpage_nr_pages(page));
1188 	}
1189 
1190 	/*
1191 	 * If migration is successful, releases reference grabbed during
1192 	 * isolation. Otherwise, restore the page to right list unless
1193 	 * we want to retry.
1194 	 */
1195 	if (rc == MIGRATEPAGE_SUCCESS) {
1196 		put_page(page);
1197 		if (reason == MR_MEMORY_FAILURE) {
1198 			/*
1199 			 * Set PG_HWPoison on just freed page
1200 			 * intentionally. Although it's rather weird,
1201 			 * it's how HWPoison flag works at the moment.
1202 			 */
1203 			if (!test_set_page_hwpoison(page))
1204 				num_poisoned_pages_inc();
1205 		}
1206 	} else {
1207 		if (rc != -EAGAIN) {
1208 			if (likely(!__PageMovable(page))) {
1209 				putback_lru_page(page);
1210 				goto put_new;
1211 			}
1212 
1213 			lock_page(page);
1214 			if (PageMovable(page))
1215 				putback_movable_page(page);
1216 			else
1217 				__ClearPageIsolated(page);
1218 			unlock_page(page);
1219 			put_page(page);
1220 		}
1221 put_new:
1222 		if (put_new_page)
1223 			put_new_page(newpage, private);
1224 		else
1225 			put_page(newpage);
1226 	}
1227 
1228 	return rc;
1229 }
1230 
1231 /*
1232  * Counterpart of unmap_and_move_page() for hugepage migration.
1233  *
1234  * This function doesn't wait the completion of hugepage I/O
1235  * because there is no race between I/O and migration for hugepage.
1236  * Note that currently hugepage I/O occurs only in direct I/O
1237  * where no lock is held and PG_writeback is irrelevant,
1238  * and writeback status of all subpages are counted in the reference
1239  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240  * under direct I/O, the reference of the head page is 512 and a bit more.)
1241  * This means that when we try to migrate hugepage whose subpages are
1242  * doing direct I/O, some references remain after try_to_unmap() and
1243  * hugepage migration fails without data corruption.
1244  *
1245  * There is also no race when direct I/O is issued on the page under migration,
1246  * because then pte is replaced with migration swap entry and direct I/O code
1247  * will wait in the page fault for migration to complete.
1248  */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250 				free_page_t put_new_page, unsigned long private,
1251 				struct page *hpage, int force,
1252 				enum migrate_mode mode, int reason)
1253 {
1254 	int rc = -EAGAIN;
1255 	int page_was_mapped = 0;
1256 	struct page *new_hpage;
1257 	struct anon_vma *anon_vma = NULL;
1258 
1259 	/*
1260 	 * Movability of hugepages depends on architectures and hugepage size.
1261 	 * This check is necessary because some callers of hugepage migration
1262 	 * like soft offline and memory hotremove don't walk through page
1263 	 * tables or check whether the hugepage is pmd-based or not before
1264 	 * kicking migration.
1265 	 */
1266 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1267 		putback_active_hugepage(hpage);
1268 		return -ENOSYS;
1269 	}
1270 
1271 	new_hpage = get_new_page(hpage, private);
1272 	if (!new_hpage)
1273 		return -ENOMEM;
1274 
1275 	if (!trylock_page(hpage)) {
1276 		if (!force)
1277 			goto out;
1278 		switch (mode) {
1279 		case MIGRATE_SYNC:
1280 		case MIGRATE_SYNC_NO_COPY:
1281 			break;
1282 		default:
1283 			goto out;
1284 		}
1285 		lock_page(hpage);
1286 	}
1287 
1288 	if (PageAnon(hpage))
1289 		anon_vma = page_get_anon_vma(hpage);
1290 
1291 	if (unlikely(!trylock_page(new_hpage)))
1292 		goto put_anon;
1293 
1294 	if (page_mapped(hpage)) {
1295 		try_to_unmap(hpage,
1296 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1297 		page_was_mapped = 1;
1298 	}
1299 
1300 	if (!page_mapped(hpage))
1301 		rc = move_to_new_page(new_hpage, hpage, mode);
1302 
1303 	if (page_was_mapped)
1304 		remove_migration_ptes(hpage,
1305 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1306 
1307 	unlock_page(new_hpage);
1308 
1309 put_anon:
1310 	if (anon_vma)
1311 		put_anon_vma(anon_vma);
1312 
1313 	if (rc == MIGRATEPAGE_SUCCESS) {
1314 		move_hugetlb_state(hpage, new_hpage, reason);
1315 		put_new_page = NULL;
1316 	}
1317 
1318 	unlock_page(hpage);
1319 out:
1320 	if (rc != -EAGAIN)
1321 		putback_active_hugepage(hpage);
1322 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1323 		num_poisoned_pages_inc();
1324 
1325 	/*
1326 	 * If migration was not successful and there's a freeing callback, use
1327 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1328 	 * isolation.
1329 	 */
1330 	if (put_new_page)
1331 		put_new_page(new_hpage, private);
1332 	else
1333 		putback_active_hugepage(new_hpage);
1334 
1335 	return rc;
1336 }
1337 
1338 /*
1339  * migrate_pages - migrate the pages specified in a list, to the free pages
1340  *		   supplied as the target for the page migration
1341  *
1342  * @from:		The list of pages to be migrated.
1343  * @get_new_page:	The function used to allocate free pages to be used
1344  *			as the target of the page migration.
1345  * @put_new_page:	The function used to free target pages if migration
1346  *			fails, or NULL if no special handling is necessary.
1347  * @private:		Private data to be passed on to get_new_page()
1348  * @mode:		The migration mode that specifies the constraints for
1349  *			page migration, if any.
1350  * @reason:		The reason for page migration.
1351  *
1352  * The function returns after 10 attempts or if no pages are movable any more
1353  * because the list has become empty or no retryable pages exist any more.
1354  * The caller should call putback_movable_pages() to return pages to the LRU
1355  * or free list only if ret != 0.
1356  *
1357  * Returns the number of pages that were not migrated, or an error code.
1358  */
1359 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1360 		free_page_t put_new_page, unsigned long private,
1361 		enum migrate_mode mode, int reason)
1362 {
1363 	int retry = 1;
1364 	int nr_failed = 0;
1365 	int nr_succeeded = 0;
1366 	int pass = 0;
1367 	struct page *page;
1368 	struct page *page2;
1369 	int swapwrite = current->flags & PF_SWAPWRITE;
1370 	int rc;
1371 
1372 	if (!swapwrite)
1373 		current->flags |= PF_SWAPWRITE;
1374 
1375 	for(pass = 0; pass < 10 && retry; pass++) {
1376 		retry = 0;
1377 
1378 		list_for_each_entry_safe(page, page2, from, lru) {
1379 retry:
1380 			cond_resched();
1381 
1382 			if (PageHuge(page))
1383 				rc = unmap_and_move_huge_page(get_new_page,
1384 						put_new_page, private, page,
1385 						pass > 2, mode, reason);
1386 			else
1387 				rc = unmap_and_move(get_new_page, put_new_page,
1388 						private, page, pass > 2, mode,
1389 						reason);
1390 
1391 			switch(rc) {
1392 			case -ENOMEM:
1393 				/*
1394 				 * THP migration might be unsupported or the
1395 				 * allocation could've failed so we should
1396 				 * retry on the same page with the THP split
1397 				 * to base pages.
1398 				 *
1399 				 * Head page is retried immediately and tail
1400 				 * pages are added to the tail of the list so
1401 				 * we encounter them after the rest of the list
1402 				 * is processed.
1403 				 */
1404 				if (PageTransHuge(page)) {
1405 					lock_page(page);
1406 					rc = split_huge_page_to_list(page, from);
1407 					unlock_page(page);
1408 					if (!rc) {
1409 						list_safe_reset_next(page, page2, lru);
1410 						goto retry;
1411 					}
1412 				}
1413 				nr_failed++;
1414 				goto out;
1415 			case -EAGAIN:
1416 				retry++;
1417 				break;
1418 			case MIGRATEPAGE_SUCCESS:
1419 				nr_succeeded++;
1420 				break;
1421 			default:
1422 				/*
1423 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1424 				 * unlike -EAGAIN case, the failed page is
1425 				 * removed from migration page list and not
1426 				 * retried in the next outer loop.
1427 				 */
1428 				nr_failed++;
1429 				break;
1430 			}
1431 		}
1432 	}
1433 	nr_failed += retry;
1434 	rc = nr_failed;
1435 out:
1436 	if (nr_succeeded)
1437 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1438 	if (nr_failed)
1439 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1440 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1441 
1442 	if (!swapwrite)
1443 		current->flags &= ~PF_SWAPWRITE;
1444 
1445 	return rc;
1446 }
1447 
1448 #ifdef CONFIG_NUMA
1449 
1450 static int store_status(int __user *status, int start, int value, int nr)
1451 {
1452 	while (nr-- > 0) {
1453 		if (put_user(value, status + start))
1454 			return -EFAULT;
1455 		start++;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int do_move_pages_to_node(struct mm_struct *mm,
1462 		struct list_head *pagelist, int node)
1463 {
1464 	int err;
1465 
1466 	if (list_empty(pagelist))
1467 		return 0;
1468 
1469 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1470 			MIGRATE_SYNC, MR_SYSCALL);
1471 	if (err)
1472 		putback_movable_pages(pagelist);
1473 	return err;
1474 }
1475 
1476 /*
1477  * Resolves the given address to a struct page, isolates it from the LRU and
1478  * puts it to the given pagelist.
1479  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1480  * queued or the page doesn't need to be migrated because it is already on
1481  * the target node
1482  */
1483 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1484 		int node, struct list_head *pagelist, bool migrate_all)
1485 {
1486 	struct vm_area_struct *vma;
1487 	struct page *page;
1488 	unsigned int follflags;
1489 	int err;
1490 
1491 	down_read(&mm->mmap_sem);
1492 	err = -EFAULT;
1493 	vma = find_vma(mm, addr);
1494 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1495 		goto out;
1496 
1497 	/* FOLL_DUMP to ignore special (like zero) pages */
1498 	follflags = FOLL_GET | FOLL_DUMP;
1499 	page = follow_page(vma, addr, follflags);
1500 
1501 	err = PTR_ERR(page);
1502 	if (IS_ERR(page))
1503 		goto out;
1504 
1505 	err = -ENOENT;
1506 	if (!page)
1507 		goto out;
1508 
1509 	err = 0;
1510 	if (page_to_nid(page) == node)
1511 		goto out_putpage;
1512 
1513 	err = -EACCES;
1514 	if (page_mapcount(page) > 1 && !migrate_all)
1515 		goto out_putpage;
1516 
1517 	if (PageHuge(page)) {
1518 		if (PageHead(page)) {
1519 			isolate_huge_page(page, pagelist);
1520 			err = 0;
1521 		}
1522 	} else {
1523 		struct page *head;
1524 
1525 		head = compound_head(page);
1526 		err = isolate_lru_page(head);
1527 		if (err)
1528 			goto out_putpage;
1529 
1530 		err = 0;
1531 		list_add_tail(&head->lru, pagelist);
1532 		mod_node_page_state(page_pgdat(head),
1533 			NR_ISOLATED_ANON + page_is_file_cache(head),
1534 			hpage_nr_pages(head));
1535 	}
1536 out_putpage:
1537 	/*
1538 	 * Either remove the duplicate refcount from
1539 	 * isolate_lru_page() or drop the page ref if it was
1540 	 * not isolated.
1541 	 */
1542 	put_page(page);
1543 out:
1544 	up_read(&mm->mmap_sem);
1545 	return err;
1546 }
1547 
1548 /*
1549  * Migrate an array of page address onto an array of nodes and fill
1550  * the corresponding array of status.
1551  */
1552 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1553 			 unsigned long nr_pages,
1554 			 const void __user * __user *pages,
1555 			 const int __user *nodes,
1556 			 int __user *status, int flags)
1557 {
1558 	int current_node = NUMA_NO_NODE;
1559 	LIST_HEAD(pagelist);
1560 	int start, i;
1561 	int err = 0, err1;
1562 
1563 	migrate_prep();
1564 
1565 	for (i = start = 0; i < nr_pages; i++) {
1566 		const void __user *p;
1567 		unsigned long addr;
1568 		int node;
1569 
1570 		err = -EFAULT;
1571 		if (get_user(p, pages + i))
1572 			goto out_flush;
1573 		if (get_user(node, nodes + i))
1574 			goto out_flush;
1575 		addr = (unsigned long)p;
1576 
1577 		err = -ENODEV;
1578 		if (node < 0 || node >= MAX_NUMNODES)
1579 			goto out_flush;
1580 		if (!node_state(node, N_MEMORY))
1581 			goto out_flush;
1582 
1583 		err = -EACCES;
1584 		if (!node_isset(node, task_nodes))
1585 			goto out_flush;
1586 
1587 		if (current_node == NUMA_NO_NODE) {
1588 			current_node = node;
1589 			start = i;
1590 		} else if (node != current_node) {
1591 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1592 			if (err)
1593 				goto out;
1594 			err = store_status(status, start, current_node, i - start);
1595 			if (err)
1596 				goto out;
1597 			start = i;
1598 			current_node = node;
1599 		}
1600 
1601 		/*
1602 		 * Errors in the page lookup or isolation are not fatal and we simply
1603 		 * report them via status
1604 		 */
1605 		err = add_page_for_migration(mm, addr, current_node,
1606 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1607 		if (!err)
1608 			continue;
1609 
1610 		err = store_status(status, i, err, 1);
1611 		if (err)
1612 			goto out_flush;
1613 
1614 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1615 		if (err)
1616 			goto out;
1617 		if (i > start) {
1618 			err = store_status(status, start, current_node, i - start);
1619 			if (err)
1620 				goto out;
1621 		}
1622 		current_node = NUMA_NO_NODE;
1623 	}
1624 out_flush:
1625 	/* Make sure we do not overwrite the existing error */
1626 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1627 	if (!err1)
1628 		err1 = store_status(status, start, current_node, i - start);
1629 	if (!err)
1630 		err = err1;
1631 out:
1632 	return err;
1633 }
1634 
1635 /*
1636  * Determine the nodes of an array of pages and store it in an array of status.
1637  */
1638 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1639 				const void __user **pages, int *status)
1640 {
1641 	unsigned long i;
1642 
1643 	down_read(&mm->mmap_sem);
1644 
1645 	for (i = 0; i < nr_pages; i++) {
1646 		unsigned long addr = (unsigned long)(*pages);
1647 		struct vm_area_struct *vma;
1648 		struct page *page;
1649 		int err = -EFAULT;
1650 
1651 		vma = find_vma(mm, addr);
1652 		if (!vma || addr < vma->vm_start)
1653 			goto set_status;
1654 
1655 		/* FOLL_DUMP to ignore special (like zero) pages */
1656 		page = follow_page(vma, addr, FOLL_DUMP);
1657 
1658 		err = PTR_ERR(page);
1659 		if (IS_ERR(page))
1660 			goto set_status;
1661 
1662 		err = page ? page_to_nid(page) : -ENOENT;
1663 set_status:
1664 		*status = err;
1665 
1666 		pages++;
1667 		status++;
1668 	}
1669 
1670 	up_read(&mm->mmap_sem);
1671 }
1672 
1673 /*
1674  * Determine the nodes of a user array of pages and store it in
1675  * a user array of status.
1676  */
1677 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1678 			 const void __user * __user *pages,
1679 			 int __user *status)
1680 {
1681 #define DO_PAGES_STAT_CHUNK_NR 16
1682 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1683 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1684 
1685 	while (nr_pages) {
1686 		unsigned long chunk_nr;
1687 
1688 		chunk_nr = nr_pages;
1689 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1690 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1691 
1692 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1693 			break;
1694 
1695 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1696 
1697 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1698 			break;
1699 
1700 		pages += chunk_nr;
1701 		status += chunk_nr;
1702 		nr_pages -= chunk_nr;
1703 	}
1704 	return nr_pages ? -EFAULT : 0;
1705 }
1706 
1707 /*
1708  * Move a list of pages in the address space of the currently executing
1709  * process.
1710  */
1711 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1712 			     const void __user * __user *pages,
1713 			     const int __user *nodes,
1714 			     int __user *status, int flags)
1715 {
1716 	struct task_struct *task;
1717 	struct mm_struct *mm;
1718 	int err;
1719 	nodemask_t task_nodes;
1720 
1721 	/* Check flags */
1722 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1723 		return -EINVAL;
1724 
1725 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1726 		return -EPERM;
1727 
1728 	/* Find the mm_struct */
1729 	rcu_read_lock();
1730 	task = pid ? find_task_by_vpid(pid) : current;
1731 	if (!task) {
1732 		rcu_read_unlock();
1733 		return -ESRCH;
1734 	}
1735 	get_task_struct(task);
1736 
1737 	/*
1738 	 * Check if this process has the right to modify the specified
1739 	 * process. Use the regular "ptrace_may_access()" checks.
1740 	 */
1741 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1742 		rcu_read_unlock();
1743 		err = -EPERM;
1744 		goto out;
1745 	}
1746 	rcu_read_unlock();
1747 
1748  	err = security_task_movememory(task);
1749  	if (err)
1750 		goto out;
1751 
1752 	task_nodes = cpuset_mems_allowed(task);
1753 	mm = get_task_mm(task);
1754 	put_task_struct(task);
1755 
1756 	if (!mm)
1757 		return -EINVAL;
1758 
1759 	if (nodes)
1760 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1761 				    nodes, status, flags);
1762 	else
1763 		err = do_pages_stat(mm, nr_pages, pages, status);
1764 
1765 	mmput(mm);
1766 	return err;
1767 
1768 out:
1769 	put_task_struct(task);
1770 	return err;
1771 }
1772 
1773 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1774 		const void __user * __user *, pages,
1775 		const int __user *, nodes,
1776 		int __user *, status, int, flags)
1777 {
1778 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1779 }
1780 
1781 #ifdef CONFIG_COMPAT
1782 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1783 		       compat_uptr_t __user *, pages32,
1784 		       const int __user *, nodes,
1785 		       int __user *, status,
1786 		       int, flags)
1787 {
1788 	const void __user * __user *pages;
1789 	int i;
1790 
1791 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1792 	for (i = 0; i < nr_pages; i++) {
1793 		compat_uptr_t p;
1794 
1795 		if (get_user(p, pages32 + i) ||
1796 			put_user(compat_ptr(p), pages + i))
1797 			return -EFAULT;
1798 	}
1799 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1800 }
1801 #endif /* CONFIG_COMPAT */
1802 
1803 #ifdef CONFIG_NUMA_BALANCING
1804 /*
1805  * Returns true if this is a safe migration target node for misplaced NUMA
1806  * pages. Currently it only checks the watermarks which crude
1807  */
1808 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1809 				   unsigned long nr_migrate_pages)
1810 {
1811 	int z;
1812 
1813 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1814 		struct zone *zone = pgdat->node_zones + z;
1815 
1816 		if (!populated_zone(zone))
1817 			continue;
1818 
1819 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1820 		if (!zone_watermark_ok(zone, 0,
1821 				       high_wmark_pages(zone) +
1822 				       nr_migrate_pages,
1823 				       0, 0))
1824 			continue;
1825 		return true;
1826 	}
1827 	return false;
1828 }
1829 
1830 static struct page *alloc_misplaced_dst_page(struct page *page,
1831 					   unsigned long data)
1832 {
1833 	int nid = (int) data;
1834 	struct page *newpage;
1835 
1836 	newpage = __alloc_pages_node(nid,
1837 					 (GFP_HIGHUSER_MOVABLE |
1838 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1839 					  __GFP_NORETRY | __GFP_NOWARN) &
1840 					 ~__GFP_RECLAIM, 0);
1841 
1842 	return newpage;
1843 }
1844 
1845 /*
1846  * page migration rate limiting control.
1847  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1848  * window of time. Default here says do not migrate more than 1280M per second.
1849  */
1850 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1851 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1852 
1853 /* Returns true if the node is migrate rate-limited after the update */
1854 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1855 					unsigned long nr_pages)
1856 {
1857 	/*
1858 	 * Rate-limit the amount of data that is being migrated to a node.
1859 	 * Optimal placement is no good if the memory bus is saturated and
1860 	 * all the time is being spent migrating!
1861 	 */
1862 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1863 		spin_lock(&pgdat->numabalancing_migrate_lock);
1864 		pgdat->numabalancing_migrate_nr_pages = 0;
1865 		pgdat->numabalancing_migrate_next_window = jiffies +
1866 			msecs_to_jiffies(migrate_interval_millisecs);
1867 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1868 	}
1869 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1870 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1871 								nr_pages);
1872 		return true;
1873 	}
1874 
1875 	/*
1876 	 * This is an unlocked non-atomic update so errors are possible.
1877 	 * The consequences are failing to migrate when we potentiall should
1878 	 * have which is not severe enough to warrant locking. If it is ever
1879 	 * a problem, it can be converted to a per-cpu counter.
1880 	 */
1881 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1882 	return false;
1883 }
1884 
1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1886 {
1887 	int page_lru;
1888 
1889 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1890 
1891 	/* Avoid migrating to a node that is nearly full */
1892 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1893 		return 0;
1894 
1895 	if (isolate_lru_page(page))
1896 		return 0;
1897 
1898 	/*
1899 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1900 	 * check on page_count(), so we must do it here, now that the page
1901 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1902 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1903 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1904 	 */
1905 	if (PageTransHuge(page) && page_count(page) != 3) {
1906 		putback_lru_page(page);
1907 		return 0;
1908 	}
1909 
1910 	page_lru = page_is_file_cache(page);
1911 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1912 				hpage_nr_pages(page));
1913 
1914 	/*
1915 	 * Isolating the page has taken another reference, so the
1916 	 * caller's reference can be safely dropped without the page
1917 	 * disappearing underneath us during migration.
1918 	 */
1919 	put_page(page);
1920 	return 1;
1921 }
1922 
1923 bool pmd_trans_migrating(pmd_t pmd)
1924 {
1925 	struct page *page = pmd_page(pmd);
1926 	return PageLocked(page);
1927 }
1928 
1929 /*
1930  * Attempt to migrate a misplaced page to the specified destination
1931  * node. Caller is expected to have an elevated reference count on
1932  * the page that will be dropped by this function before returning.
1933  */
1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1935 			   int node)
1936 {
1937 	pg_data_t *pgdat = NODE_DATA(node);
1938 	int isolated;
1939 	int nr_remaining;
1940 	LIST_HEAD(migratepages);
1941 
1942 	/*
1943 	 * Don't migrate file pages that are mapped in multiple processes
1944 	 * with execute permissions as they are probably shared libraries.
1945 	 */
1946 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947 	    (vma->vm_flags & VM_EXEC))
1948 		goto out;
1949 
1950 	/*
1951 	 * Also do not migrate dirty pages as not all filesystems can move
1952 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1953 	 */
1954 	if (page_is_file_cache(page) && PageDirty(page))
1955 		goto out;
1956 
1957 	/*
1958 	 * Rate-limit the amount of data that is being migrated to a node.
1959 	 * Optimal placement is no good if the memory bus is saturated and
1960 	 * all the time is being spent migrating!
1961 	 */
1962 	if (numamigrate_update_ratelimit(pgdat, 1))
1963 		goto out;
1964 
1965 	isolated = numamigrate_isolate_page(pgdat, page);
1966 	if (!isolated)
1967 		goto out;
1968 
1969 	list_add(&page->lru, &migratepages);
1970 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1971 				     NULL, node, MIGRATE_ASYNC,
1972 				     MR_NUMA_MISPLACED);
1973 	if (nr_remaining) {
1974 		if (!list_empty(&migratepages)) {
1975 			list_del(&page->lru);
1976 			dec_node_page_state(page, NR_ISOLATED_ANON +
1977 					page_is_file_cache(page));
1978 			putback_lru_page(page);
1979 		}
1980 		isolated = 0;
1981 	} else
1982 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1983 	BUG_ON(!list_empty(&migratepages));
1984 	return isolated;
1985 
1986 out:
1987 	put_page(page);
1988 	return 0;
1989 }
1990 #endif /* CONFIG_NUMA_BALANCING */
1991 
1992 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1993 /*
1994  * Migrates a THP to a given target node. page must be locked and is unlocked
1995  * before returning.
1996  */
1997 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1998 				struct vm_area_struct *vma,
1999 				pmd_t *pmd, pmd_t entry,
2000 				unsigned long address,
2001 				struct page *page, int node)
2002 {
2003 	spinlock_t *ptl;
2004 	pg_data_t *pgdat = NODE_DATA(node);
2005 	int isolated = 0;
2006 	struct page *new_page = NULL;
2007 	int page_lru = page_is_file_cache(page);
2008 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2009 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2010 
2011 	/*
2012 	 * Rate-limit the amount of data that is being migrated to a node.
2013 	 * Optimal placement is no good if the memory bus is saturated and
2014 	 * all the time is being spent migrating!
2015 	 */
2016 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2017 		goto out_dropref;
2018 
2019 	new_page = alloc_pages_node(node,
2020 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2021 		HPAGE_PMD_ORDER);
2022 	if (!new_page)
2023 		goto out_fail;
2024 	prep_transhuge_page(new_page);
2025 
2026 	isolated = numamigrate_isolate_page(pgdat, page);
2027 	if (!isolated) {
2028 		put_page(new_page);
2029 		goto out_fail;
2030 	}
2031 
2032 	/* Prepare a page as a migration target */
2033 	__SetPageLocked(new_page);
2034 	if (PageSwapBacked(page))
2035 		__SetPageSwapBacked(new_page);
2036 
2037 	/* anon mapping, we can simply copy page->mapping to the new page: */
2038 	new_page->mapping = page->mapping;
2039 	new_page->index = page->index;
2040 	migrate_page_copy(new_page, page);
2041 	WARN_ON(PageLRU(new_page));
2042 
2043 	/* Recheck the target PMD */
2044 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2045 	ptl = pmd_lock(mm, pmd);
2046 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2047 		spin_unlock(ptl);
2048 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2049 
2050 		/* Reverse changes made by migrate_page_copy() */
2051 		if (TestClearPageActive(new_page))
2052 			SetPageActive(page);
2053 		if (TestClearPageUnevictable(new_page))
2054 			SetPageUnevictable(page);
2055 
2056 		unlock_page(new_page);
2057 		put_page(new_page);		/* Free it */
2058 
2059 		/* Retake the callers reference and putback on LRU */
2060 		get_page(page);
2061 		putback_lru_page(page);
2062 		mod_node_page_state(page_pgdat(page),
2063 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2064 
2065 		goto out_unlock;
2066 	}
2067 
2068 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2069 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2070 
2071 	/*
2072 	 * Clear the old entry under pagetable lock and establish the new PTE.
2073 	 * Any parallel GUP will either observe the old page blocking on the
2074 	 * page lock, block on the page table lock or observe the new page.
2075 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2076 	 * guarantee the copy is visible before the pagetable update.
2077 	 */
2078 	flush_cache_range(vma, mmun_start, mmun_end);
2079 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2080 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2081 	set_pmd_at(mm, mmun_start, pmd, entry);
2082 	update_mmu_cache_pmd(vma, address, &entry);
2083 
2084 	page_ref_unfreeze(page, 2);
2085 	mlock_migrate_page(new_page, page);
2086 	page_remove_rmap(page, true);
2087 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2088 
2089 	spin_unlock(ptl);
2090 	/*
2091 	 * No need to double call mmu_notifier->invalidate_range() callback as
2092 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2093 	 */
2094 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2095 
2096 	/* Take an "isolate" reference and put new page on the LRU. */
2097 	get_page(new_page);
2098 	putback_lru_page(new_page);
2099 
2100 	unlock_page(new_page);
2101 	unlock_page(page);
2102 	put_page(page);			/* Drop the rmap reference */
2103 	put_page(page);			/* Drop the LRU isolation reference */
2104 
2105 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2106 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2107 
2108 	mod_node_page_state(page_pgdat(page),
2109 			NR_ISOLATED_ANON + page_lru,
2110 			-HPAGE_PMD_NR);
2111 	return isolated;
2112 
2113 out_fail:
2114 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2115 out_dropref:
2116 	ptl = pmd_lock(mm, pmd);
2117 	if (pmd_same(*pmd, entry)) {
2118 		entry = pmd_modify(entry, vma->vm_page_prot);
2119 		set_pmd_at(mm, mmun_start, pmd, entry);
2120 		update_mmu_cache_pmd(vma, address, &entry);
2121 	}
2122 	spin_unlock(ptl);
2123 
2124 out_unlock:
2125 	unlock_page(page);
2126 	put_page(page);
2127 	return 0;
2128 }
2129 #endif /* CONFIG_NUMA_BALANCING */
2130 
2131 #endif /* CONFIG_NUMA */
2132 
2133 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2134 struct migrate_vma {
2135 	struct vm_area_struct	*vma;
2136 	unsigned long		*dst;
2137 	unsigned long		*src;
2138 	unsigned long		cpages;
2139 	unsigned long		npages;
2140 	unsigned long		start;
2141 	unsigned long		end;
2142 };
2143 
2144 static int migrate_vma_collect_hole(unsigned long start,
2145 				    unsigned long end,
2146 				    struct mm_walk *walk)
2147 {
2148 	struct migrate_vma *migrate = walk->private;
2149 	unsigned long addr;
2150 
2151 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2152 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2153 		migrate->dst[migrate->npages] = 0;
2154 		migrate->npages++;
2155 		migrate->cpages++;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int migrate_vma_collect_skip(unsigned long start,
2162 				    unsigned long end,
2163 				    struct mm_walk *walk)
2164 {
2165 	struct migrate_vma *migrate = walk->private;
2166 	unsigned long addr;
2167 
2168 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2169 		migrate->dst[migrate->npages] = 0;
2170 		migrate->src[migrate->npages++] = 0;
2171 	}
2172 
2173 	return 0;
2174 }
2175 
2176 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2177 				   unsigned long start,
2178 				   unsigned long end,
2179 				   struct mm_walk *walk)
2180 {
2181 	struct migrate_vma *migrate = walk->private;
2182 	struct vm_area_struct *vma = walk->vma;
2183 	struct mm_struct *mm = vma->vm_mm;
2184 	unsigned long addr = start, unmapped = 0;
2185 	spinlock_t *ptl;
2186 	pte_t *ptep;
2187 
2188 again:
2189 	if (pmd_none(*pmdp))
2190 		return migrate_vma_collect_hole(start, end, walk);
2191 
2192 	if (pmd_trans_huge(*pmdp)) {
2193 		struct page *page;
2194 
2195 		ptl = pmd_lock(mm, pmdp);
2196 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2197 			spin_unlock(ptl);
2198 			goto again;
2199 		}
2200 
2201 		page = pmd_page(*pmdp);
2202 		if (is_huge_zero_page(page)) {
2203 			spin_unlock(ptl);
2204 			split_huge_pmd(vma, pmdp, addr);
2205 			if (pmd_trans_unstable(pmdp))
2206 				return migrate_vma_collect_skip(start, end,
2207 								walk);
2208 		} else {
2209 			int ret;
2210 
2211 			get_page(page);
2212 			spin_unlock(ptl);
2213 			if (unlikely(!trylock_page(page)))
2214 				return migrate_vma_collect_skip(start, end,
2215 								walk);
2216 			ret = split_huge_page(page);
2217 			unlock_page(page);
2218 			put_page(page);
2219 			if (ret)
2220 				return migrate_vma_collect_skip(start, end,
2221 								walk);
2222 			if (pmd_none(*pmdp))
2223 				return migrate_vma_collect_hole(start, end,
2224 								walk);
2225 		}
2226 	}
2227 
2228 	if (unlikely(pmd_bad(*pmdp)))
2229 		return migrate_vma_collect_skip(start, end, walk);
2230 
2231 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2232 	arch_enter_lazy_mmu_mode();
2233 
2234 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2235 		unsigned long mpfn, pfn;
2236 		struct page *page;
2237 		swp_entry_t entry;
2238 		pte_t pte;
2239 
2240 		pte = *ptep;
2241 		pfn = pte_pfn(pte);
2242 
2243 		if (pte_none(pte)) {
2244 			mpfn = MIGRATE_PFN_MIGRATE;
2245 			migrate->cpages++;
2246 			pfn = 0;
2247 			goto next;
2248 		}
2249 
2250 		if (!pte_present(pte)) {
2251 			mpfn = pfn = 0;
2252 
2253 			/*
2254 			 * Only care about unaddressable device page special
2255 			 * page table entry. Other special swap entries are not
2256 			 * migratable, and we ignore regular swapped page.
2257 			 */
2258 			entry = pte_to_swp_entry(pte);
2259 			if (!is_device_private_entry(entry))
2260 				goto next;
2261 
2262 			page = device_private_entry_to_page(entry);
2263 			mpfn = migrate_pfn(page_to_pfn(page))|
2264 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2265 			if (is_write_device_private_entry(entry))
2266 				mpfn |= MIGRATE_PFN_WRITE;
2267 		} else {
2268 			if (is_zero_pfn(pfn)) {
2269 				mpfn = MIGRATE_PFN_MIGRATE;
2270 				migrate->cpages++;
2271 				pfn = 0;
2272 				goto next;
2273 			}
2274 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2275 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2276 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2277 		}
2278 
2279 		/* FIXME support THP */
2280 		if (!page || !page->mapping || PageTransCompound(page)) {
2281 			mpfn = pfn = 0;
2282 			goto next;
2283 		}
2284 		pfn = page_to_pfn(page);
2285 
2286 		/*
2287 		 * By getting a reference on the page we pin it and that blocks
2288 		 * any kind of migration. Side effect is that it "freezes" the
2289 		 * pte.
2290 		 *
2291 		 * We drop this reference after isolating the page from the lru
2292 		 * for non device page (device page are not on the lru and thus
2293 		 * can't be dropped from it).
2294 		 */
2295 		get_page(page);
2296 		migrate->cpages++;
2297 
2298 		/*
2299 		 * Optimize for the common case where page is only mapped once
2300 		 * in one process. If we can lock the page, then we can safely
2301 		 * set up a special migration page table entry now.
2302 		 */
2303 		if (trylock_page(page)) {
2304 			pte_t swp_pte;
2305 
2306 			mpfn |= MIGRATE_PFN_LOCKED;
2307 			ptep_get_and_clear(mm, addr, ptep);
2308 
2309 			/* Setup special migration page table entry */
2310 			entry = make_migration_entry(page, mpfn &
2311 						     MIGRATE_PFN_WRITE);
2312 			swp_pte = swp_entry_to_pte(entry);
2313 			if (pte_soft_dirty(pte))
2314 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315 			set_pte_at(mm, addr, ptep, swp_pte);
2316 
2317 			/*
2318 			 * This is like regular unmap: we remove the rmap and
2319 			 * drop page refcount. Page won't be freed, as we took
2320 			 * a reference just above.
2321 			 */
2322 			page_remove_rmap(page, false);
2323 			put_page(page);
2324 
2325 			if (pte_present(pte))
2326 				unmapped++;
2327 		}
2328 
2329 next:
2330 		migrate->dst[migrate->npages] = 0;
2331 		migrate->src[migrate->npages++] = mpfn;
2332 	}
2333 	arch_leave_lazy_mmu_mode();
2334 	pte_unmap_unlock(ptep - 1, ptl);
2335 
2336 	/* Only flush the TLB if we actually modified any entries */
2337 	if (unmapped)
2338 		flush_tlb_range(walk->vma, start, end);
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * migrate_vma_collect() - collect pages over a range of virtual addresses
2345  * @migrate: migrate struct containing all migration information
2346  *
2347  * This will walk the CPU page table. For each virtual address backed by a
2348  * valid page, it updates the src array and takes a reference on the page, in
2349  * order to pin the page until we lock it and unmap it.
2350  */
2351 static void migrate_vma_collect(struct migrate_vma *migrate)
2352 {
2353 	struct mm_walk mm_walk;
2354 
2355 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2356 	mm_walk.pte_entry = NULL;
2357 	mm_walk.pte_hole = migrate_vma_collect_hole;
2358 	mm_walk.hugetlb_entry = NULL;
2359 	mm_walk.test_walk = NULL;
2360 	mm_walk.vma = migrate->vma;
2361 	mm_walk.mm = migrate->vma->vm_mm;
2362 	mm_walk.private = migrate;
2363 
2364 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2365 					    migrate->start,
2366 					    migrate->end);
2367 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2368 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2369 					  migrate->start,
2370 					  migrate->end);
2371 
2372 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2373 }
2374 
2375 /*
2376  * migrate_vma_check_page() - check if page is pinned or not
2377  * @page: struct page to check
2378  *
2379  * Pinned pages cannot be migrated. This is the same test as in
2380  * migrate_page_move_mapping(), except that here we allow migration of a
2381  * ZONE_DEVICE page.
2382  */
2383 static bool migrate_vma_check_page(struct page *page)
2384 {
2385 	/*
2386 	 * One extra ref because caller holds an extra reference, either from
2387 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2388 	 * a device page.
2389 	 */
2390 	int extra = 1;
2391 
2392 	/*
2393 	 * FIXME support THP (transparent huge page), it is bit more complex to
2394 	 * check them than regular pages, because they can be mapped with a pmd
2395 	 * or with a pte (split pte mapping).
2396 	 */
2397 	if (PageCompound(page))
2398 		return false;
2399 
2400 	/* Page from ZONE_DEVICE have one extra reference */
2401 	if (is_zone_device_page(page)) {
2402 		/*
2403 		 * Private page can never be pin as they have no valid pte and
2404 		 * GUP will fail for those. Yet if there is a pending migration
2405 		 * a thread might try to wait on the pte migration entry and
2406 		 * will bump the page reference count. Sadly there is no way to
2407 		 * differentiate a regular pin from migration wait. Hence to
2408 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2409 		 * infinite loop (one stoping migration because the other is
2410 		 * waiting on pte migration entry). We always return true here.
2411 		 *
2412 		 * FIXME proper solution is to rework migration_entry_wait() so
2413 		 * it does not need to take a reference on page.
2414 		 */
2415 		if (is_device_private_page(page))
2416 			return true;
2417 
2418 		/*
2419 		 * Only allow device public page to be migrated and account for
2420 		 * the extra reference count imply by ZONE_DEVICE pages.
2421 		 */
2422 		if (!is_device_public_page(page))
2423 			return false;
2424 		extra++;
2425 	}
2426 
2427 	/* For file back page */
2428 	if (page_mapping(page))
2429 		extra += 1 + page_has_private(page);
2430 
2431 	if ((page_count(page) - extra) > page_mapcount(page))
2432 		return false;
2433 
2434 	return true;
2435 }
2436 
2437 /*
2438  * migrate_vma_prepare() - lock pages and isolate them from the lru
2439  * @migrate: migrate struct containing all migration information
2440  *
2441  * This locks pages that have been collected by migrate_vma_collect(). Once each
2442  * page is locked it is isolated from the lru (for non-device pages). Finally,
2443  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444  * migrated by concurrent kernel threads.
2445  */
2446 static void migrate_vma_prepare(struct migrate_vma *migrate)
2447 {
2448 	const unsigned long npages = migrate->npages;
2449 	const unsigned long start = migrate->start;
2450 	unsigned long addr, i, restore = 0;
2451 	bool allow_drain = true;
2452 
2453 	lru_add_drain();
2454 
2455 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2456 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2457 		bool remap = true;
2458 
2459 		if (!page)
2460 			continue;
2461 
2462 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2463 			/*
2464 			 * Because we are migrating several pages there can be
2465 			 * a deadlock between 2 concurrent migration where each
2466 			 * are waiting on each other page lock.
2467 			 *
2468 			 * Make migrate_vma() a best effort thing and backoff
2469 			 * for any page we can not lock right away.
2470 			 */
2471 			if (!trylock_page(page)) {
2472 				migrate->src[i] = 0;
2473 				migrate->cpages--;
2474 				put_page(page);
2475 				continue;
2476 			}
2477 			remap = false;
2478 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2479 		}
2480 
2481 		/* ZONE_DEVICE pages are not on LRU */
2482 		if (!is_zone_device_page(page)) {
2483 			if (!PageLRU(page) && allow_drain) {
2484 				/* Drain CPU's pagevec */
2485 				lru_add_drain_all();
2486 				allow_drain = false;
2487 			}
2488 
2489 			if (isolate_lru_page(page)) {
2490 				if (remap) {
2491 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2492 					migrate->cpages--;
2493 					restore++;
2494 				} else {
2495 					migrate->src[i] = 0;
2496 					unlock_page(page);
2497 					migrate->cpages--;
2498 					put_page(page);
2499 				}
2500 				continue;
2501 			}
2502 
2503 			/* Drop the reference we took in collect */
2504 			put_page(page);
2505 		}
2506 
2507 		if (!migrate_vma_check_page(page)) {
2508 			if (remap) {
2509 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510 				migrate->cpages--;
2511 				restore++;
2512 
2513 				if (!is_zone_device_page(page)) {
2514 					get_page(page);
2515 					putback_lru_page(page);
2516 				}
2517 			} else {
2518 				migrate->src[i] = 0;
2519 				unlock_page(page);
2520 				migrate->cpages--;
2521 
2522 				if (!is_zone_device_page(page))
2523 					putback_lru_page(page);
2524 				else
2525 					put_page(page);
2526 			}
2527 		}
2528 	}
2529 
2530 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2532 
2533 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2534 			continue;
2535 
2536 		remove_migration_pte(page, migrate->vma, addr, page);
2537 
2538 		migrate->src[i] = 0;
2539 		unlock_page(page);
2540 		put_page(page);
2541 		restore--;
2542 	}
2543 }
2544 
2545 /*
2546  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547  * @migrate: migrate struct containing all migration information
2548  *
2549  * Replace page mapping (CPU page table pte) with a special migration pte entry
2550  * and check again if it has been pinned. Pinned pages are restored because we
2551  * cannot migrate them.
2552  *
2553  * This is the last step before we call the device driver callback to allocate
2554  * destination memory and copy contents of original page over to new page.
2555  */
2556 static void migrate_vma_unmap(struct migrate_vma *migrate)
2557 {
2558 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559 	const unsigned long npages = migrate->npages;
2560 	const unsigned long start = migrate->start;
2561 	unsigned long addr, i, restore = 0;
2562 
2563 	for (i = 0; i < npages; i++) {
2564 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565 
2566 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 			continue;
2568 
2569 		if (page_mapped(page)) {
2570 			try_to_unmap(page, flags);
2571 			if (page_mapped(page))
2572 				goto restore;
2573 		}
2574 
2575 		if (migrate_vma_check_page(page))
2576 			continue;
2577 
2578 restore:
2579 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2580 		migrate->cpages--;
2581 		restore++;
2582 	}
2583 
2584 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2586 
2587 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2588 			continue;
2589 
2590 		remove_migration_ptes(page, page, false);
2591 
2592 		migrate->src[i] = 0;
2593 		unlock_page(page);
2594 		restore--;
2595 
2596 		if (is_zone_device_page(page))
2597 			put_page(page);
2598 		else
2599 			putback_lru_page(page);
2600 	}
2601 }
2602 
2603 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2604 				    unsigned long addr,
2605 				    struct page *page,
2606 				    unsigned long *src,
2607 				    unsigned long *dst)
2608 {
2609 	struct vm_area_struct *vma = migrate->vma;
2610 	struct mm_struct *mm = vma->vm_mm;
2611 	struct mem_cgroup *memcg;
2612 	bool flush = false;
2613 	spinlock_t *ptl;
2614 	pte_t entry;
2615 	pgd_t *pgdp;
2616 	p4d_t *p4dp;
2617 	pud_t *pudp;
2618 	pmd_t *pmdp;
2619 	pte_t *ptep;
2620 
2621 	/* Only allow populating anonymous memory */
2622 	if (!vma_is_anonymous(vma))
2623 		goto abort;
2624 
2625 	pgdp = pgd_offset(mm, addr);
2626 	p4dp = p4d_alloc(mm, pgdp, addr);
2627 	if (!p4dp)
2628 		goto abort;
2629 	pudp = pud_alloc(mm, p4dp, addr);
2630 	if (!pudp)
2631 		goto abort;
2632 	pmdp = pmd_alloc(mm, pudp, addr);
2633 	if (!pmdp)
2634 		goto abort;
2635 
2636 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2637 		goto abort;
2638 
2639 	/*
2640 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2641 	 * pte_offset_map() on pmds where a huge pmd might be created
2642 	 * from a different thread.
2643 	 *
2644 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2645 	 * parallel threads are excluded by other means.
2646 	 *
2647 	 * Here we only have down_read(mmap_sem).
2648 	 */
2649 	if (pte_alloc(mm, pmdp, addr))
2650 		goto abort;
2651 
2652 	/* See the comment in pte_alloc_one_map() */
2653 	if (unlikely(pmd_trans_unstable(pmdp)))
2654 		goto abort;
2655 
2656 	if (unlikely(anon_vma_prepare(vma)))
2657 		goto abort;
2658 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2659 		goto abort;
2660 
2661 	/*
2662 	 * The memory barrier inside __SetPageUptodate makes sure that
2663 	 * preceding stores to the page contents become visible before
2664 	 * the set_pte_at() write.
2665 	 */
2666 	__SetPageUptodate(page);
2667 
2668 	if (is_zone_device_page(page)) {
2669 		if (is_device_private_page(page)) {
2670 			swp_entry_t swp_entry;
2671 
2672 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2673 			entry = swp_entry_to_pte(swp_entry);
2674 		} else if (is_device_public_page(page)) {
2675 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2676 			if (vma->vm_flags & VM_WRITE)
2677 				entry = pte_mkwrite(pte_mkdirty(entry));
2678 			entry = pte_mkdevmap(entry);
2679 		}
2680 	} else {
2681 		entry = mk_pte(page, vma->vm_page_prot);
2682 		if (vma->vm_flags & VM_WRITE)
2683 			entry = pte_mkwrite(pte_mkdirty(entry));
2684 	}
2685 
2686 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2687 
2688 	if (pte_present(*ptep)) {
2689 		unsigned long pfn = pte_pfn(*ptep);
2690 
2691 		if (!is_zero_pfn(pfn)) {
2692 			pte_unmap_unlock(ptep, ptl);
2693 			mem_cgroup_cancel_charge(page, memcg, false);
2694 			goto abort;
2695 		}
2696 		flush = true;
2697 	} else if (!pte_none(*ptep)) {
2698 		pte_unmap_unlock(ptep, ptl);
2699 		mem_cgroup_cancel_charge(page, memcg, false);
2700 		goto abort;
2701 	}
2702 
2703 	/*
2704 	 * Check for usefaultfd but do not deliver the fault. Instead,
2705 	 * just back off.
2706 	 */
2707 	if (userfaultfd_missing(vma)) {
2708 		pte_unmap_unlock(ptep, ptl);
2709 		mem_cgroup_cancel_charge(page, memcg, false);
2710 		goto abort;
2711 	}
2712 
2713 	inc_mm_counter(mm, MM_ANONPAGES);
2714 	page_add_new_anon_rmap(page, vma, addr, false);
2715 	mem_cgroup_commit_charge(page, memcg, false, false);
2716 	if (!is_zone_device_page(page))
2717 		lru_cache_add_active_or_unevictable(page, vma);
2718 	get_page(page);
2719 
2720 	if (flush) {
2721 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2722 		ptep_clear_flush_notify(vma, addr, ptep);
2723 		set_pte_at_notify(mm, addr, ptep, entry);
2724 		update_mmu_cache(vma, addr, ptep);
2725 	} else {
2726 		/* No need to invalidate - it was non-present before */
2727 		set_pte_at(mm, addr, ptep, entry);
2728 		update_mmu_cache(vma, addr, ptep);
2729 	}
2730 
2731 	pte_unmap_unlock(ptep, ptl);
2732 	*src = MIGRATE_PFN_MIGRATE;
2733 	return;
2734 
2735 abort:
2736 	*src &= ~MIGRATE_PFN_MIGRATE;
2737 }
2738 
2739 /*
2740  * migrate_vma_pages() - migrate meta-data from src page to dst page
2741  * @migrate: migrate struct containing all migration information
2742  *
2743  * This migrates struct page meta-data from source struct page to destination
2744  * struct page. This effectively finishes the migration from source page to the
2745  * destination page.
2746  */
2747 static void migrate_vma_pages(struct migrate_vma *migrate)
2748 {
2749 	const unsigned long npages = migrate->npages;
2750 	const unsigned long start = migrate->start;
2751 	struct vm_area_struct *vma = migrate->vma;
2752 	struct mm_struct *mm = vma->vm_mm;
2753 	unsigned long addr, i, mmu_start;
2754 	bool notified = false;
2755 
2756 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2757 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2758 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2759 		struct address_space *mapping;
2760 		int r;
2761 
2762 		if (!newpage) {
2763 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2764 			continue;
2765 		}
2766 
2767 		if (!page) {
2768 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2769 				continue;
2770 			}
2771 			if (!notified) {
2772 				mmu_start = addr;
2773 				notified = true;
2774 				mmu_notifier_invalidate_range_start(mm,
2775 								mmu_start,
2776 								migrate->end);
2777 			}
2778 			migrate_vma_insert_page(migrate, addr, newpage,
2779 						&migrate->src[i],
2780 						&migrate->dst[i]);
2781 			continue;
2782 		}
2783 
2784 		mapping = page_mapping(page);
2785 
2786 		if (is_zone_device_page(newpage)) {
2787 			if (is_device_private_page(newpage)) {
2788 				/*
2789 				 * For now only support private anonymous when
2790 				 * migrating to un-addressable device memory.
2791 				 */
2792 				if (mapping) {
2793 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2794 					continue;
2795 				}
2796 			} else if (!is_device_public_page(newpage)) {
2797 				/*
2798 				 * Other types of ZONE_DEVICE page are not
2799 				 * supported.
2800 				 */
2801 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802 				continue;
2803 			}
2804 		}
2805 
2806 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2807 		if (r != MIGRATEPAGE_SUCCESS)
2808 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2809 	}
2810 
2811 	/*
2812 	 * No need to double call mmu_notifier->invalidate_range() callback as
2813 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2814 	 * did already call it.
2815 	 */
2816 	if (notified)
2817 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2818 						       migrate->end);
2819 }
2820 
2821 /*
2822  * migrate_vma_finalize() - restore CPU page table entry
2823  * @migrate: migrate struct containing all migration information
2824  *
2825  * This replaces the special migration pte entry with either a mapping to the
2826  * new page if migration was successful for that page, or to the original page
2827  * otherwise.
2828  *
2829  * This also unlocks the pages and puts them back on the lru, or drops the extra
2830  * refcount, for device pages.
2831  */
2832 static void migrate_vma_finalize(struct migrate_vma *migrate)
2833 {
2834 	const unsigned long npages = migrate->npages;
2835 	unsigned long i;
2836 
2837 	for (i = 0; i < npages; i++) {
2838 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2839 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2840 
2841 		if (!page) {
2842 			if (newpage) {
2843 				unlock_page(newpage);
2844 				put_page(newpage);
2845 			}
2846 			continue;
2847 		}
2848 
2849 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2850 			if (newpage) {
2851 				unlock_page(newpage);
2852 				put_page(newpage);
2853 			}
2854 			newpage = page;
2855 		}
2856 
2857 		remove_migration_ptes(page, newpage, false);
2858 		unlock_page(page);
2859 		migrate->cpages--;
2860 
2861 		if (is_zone_device_page(page))
2862 			put_page(page);
2863 		else
2864 			putback_lru_page(page);
2865 
2866 		if (newpage != page) {
2867 			unlock_page(newpage);
2868 			if (is_zone_device_page(newpage))
2869 				put_page(newpage);
2870 			else
2871 				putback_lru_page(newpage);
2872 		}
2873 	}
2874 }
2875 
2876 /*
2877  * migrate_vma() - migrate a range of memory inside vma
2878  *
2879  * @ops: migration callback for allocating destination memory and copying
2880  * @vma: virtual memory area containing the range to be migrated
2881  * @start: start address of the range to migrate (inclusive)
2882  * @end: end address of the range to migrate (exclusive)
2883  * @src: array of hmm_pfn_t containing source pfns
2884  * @dst: array of hmm_pfn_t containing destination pfns
2885  * @private: pointer passed back to each of the callback
2886  * Returns: 0 on success, error code otherwise
2887  *
2888  * This function tries to migrate a range of memory virtual address range, using
2889  * callbacks to allocate and copy memory from source to destination. First it
2890  * collects all the pages backing each virtual address in the range, saving this
2891  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2892  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2893  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2894  * in the corresponding src array entry. It then restores any pages that are
2895  * pinned, by remapping and unlocking those pages.
2896  *
2897  * At this point it calls the alloc_and_copy() callback. For documentation on
2898  * what is expected from that callback, see struct migrate_vma_ops comments in
2899  * include/linux/migrate.h
2900  *
2901  * After the alloc_and_copy() callback, this function goes over each entry in
2902  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2903  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2904  * then the function tries to migrate struct page information from the source
2905  * struct page to the destination struct page. If it fails to migrate the struct
2906  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2907  * array.
2908  *
2909  * At this point all successfully migrated pages have an entry in the src
2910  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2911  * array entry with MIGRATE_PFN_VALID flag set.
2912  *
2913  * It then calls the finalize_and_map() callback. See comments for "struct
2914  * migrate_vma_ops", in include/linux/migrate.h for details about
2915  * finalize_and_map() behavior.
2916  *
2917  * After the finalize_and_map() callback, for successfully migrated pages, this
2918  * function updates the CPU page table to point to new pages, otherwise it
2919  * restores the CPU page table to point to the original source pages.
2920  *
2921  * Function returns 0 after the above steps, even if no pages were migrated
2922  * (The function only returns an error if any of the arguments are invalid.)
2923  *
2924  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2925  * unsigned long entries.
2926  */
2927 int migrate_vma(const struct migrate_vma_ops *ops,
2928 		struct vm_area_struct *vma,
2929 		unsigned long start,
2930 		unsigned long end,
2931 		unsigned long *src,
2932 		unsigned long *dst,
2933 		void *private)
2934 {
2935 	struct migrate_vma migrate;
2936 
2937 	/* Sanity check the arguments */
2938 	start &= PAGE_MASK;
2939 	end &= PAGE_MASK;
2940 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2941 		return -EINVAL;
2942 	if (start < vma->vm_start || start >= vma->vm_end)
2943 		return -EINVAL;
2944 	if (end <= vma->vm_start || end > vma->vm_end)
2945 		return -EINVAL;
2946 	if (!ops || !src || !dst || start >= end)
2947 		return -EINVAL;
2948 
2949 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2950 	migrate.src = src;
2951 	migrate.dst = dst;
2952 	migrate.start = start;
2953 	migrate.npages = 0;
2954 	migrate.cpages = 0;
2955 	migrate.end = end;
2956 	migrate.vma = vma;
2957 
2958 	/* Collect, and try to unmap source pages */
2959 	migrate_vma_collect(&migrate);
2960 	if (!migrate.cpages)
2961 		return 0;
2962 
2963 	/* Lock and isolate page */
2964 	migrate_vma_prepare(&migrate);
2965 	if (!migrate.cpages)
2966 		return 0;
2967 
2968 	/* Unmap pages */
2969 	migrate_vma_unmap(&migrate);
2970 	if (!migrate.cpages)
2971 		return 0;
2972 
2973 	/*
2974 	 * At this point pages are locked and unmapped, and thus they have
2975 	 * stable content and can safely be copied to destination memory that
2976 	 * is allocated by the callback.
2977 	 *
2978 	 * Note that migration can fail in migrate_vma_struct_page() for each
2979 	 * individual page.
2980 	 */
2981 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2982 
2983 	/* This does the real migration of struct page */
2984 	migrate_vma_pages(&migrate);
2985 
2986 	ops->finalize_and_map(vma, src, dst, start, end, private);
2987 
2988 	/* Unlock and remap pages */
2989 	migrate_vma_finalize(&migrate);
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL(migrate_vma);
2994 #endif /* defined(MIGRATE_VMA_HELPER) */
2995