1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 /* No need to invalidate - it was non-present before */ 279 update_mmu_cache(vma, pvmw.address, pvmw.pte); 280 } 281 282 return true; 283 } 284 285 /* 286 * Get rid of all migration entries and replace them by 287 * references to the indicated page. 288 */ 289 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 290 { 291 struct rmap_walk_control rwc = { 292 .rmap_one = remove_migration_pte, 293 .arg = old, 294 }; 295 296 if (locked) 297 rmap_walk_locked(new, &rwc); 298 else 299 rmap_walk(new, &rwc); 300 } 301 302 /* 303 * Something used the pte of a page under migration. We need to 304 * get to the page and wait until migration is finished. 305 * When we return from this function the fault will be retried. 306 */ 307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 308 spinlock_t *ptl) 309 { 310 pte_t pte; 311 swp_entry_t entry; 312 struct page *page; 313 314 spin_lock(ptl); 315 pte = *ptep; 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 page = migration_entry_to_page(entry); 324 325 /* 326 * Once radix-tree replacement of page migration started, page_count 327 * *must* be zero. And, we don't want to call wait_on_page_locked() 328 * against a page without get_page(). 329 * So, we use get_page_unless_zero(), here. Even failed, page fault 330 * will occur again. 331 */ 332 if (!get_page_unless_zero(page)) 333 goto out; 334 pte_unmap_unlock(ptep, ptl); 335 wait_on_page_locked(page); 336 put_page(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 wait_on_page_locked(page); 371 put_page(page); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 #ifdef CONFIG_BLOCK 379 /* Returns true if all buffers are successfully locked */ 380 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 381 enum migrate_mode mode) 382 { 383 struct buffer_head *bh = head; 384 385 /* Simple case, sync compaction */ 386 if (mode != MIGRATE_ASYNC) { 387 do { 388 get_bh(bh); 389 lock_buffer(bh); 390 bh = bh->b_this_page; 391 392 } while (bh != head); 393 394 return true; 395 } 396 397 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 398 do { 399 get_bh(bh); 400 if (!trylock_buffer(bh)) { 401 /* 402 * We failed to lock the buffer and cannot stall in 403 * async migration. Release the taken locks 404 */ 405 struct buffer_head *failed_bh = bh; 406 put_bh(failed_bh); 407 bh = head; 408 while (bh != failed_bh) { 409 unlock_buffer(bh); 410 put_bh(bh); 411 bh = bh->b_this_page; 412 } 413 return false; 414 } 415 416 bh = bh->b_this_page; 417 } while (bh != head); 418 return true; 419 } 420 #else 421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 422 enum migrate_mode mode) 423 { 424 return true; 425 } 426 #endif /* CONFIG_BLOCK */ 427 428 /* 429 * Replace the page in the mapping. 430 * 431 * The number of remaining references must be: 432 * 1 for anonymous pages without a mapping 433 * 2 for pages with a mapping 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 435 */ 436 int migrate_page_move_mapping(struct address_space *mapping, 437 struct page *newpage, struct page *page, 438 struct buffer_head *head, enum migrate_mode mode, 439 int extra_count) 440 { 441 struct zone *oldzone, *newzone; 442 int dirty; 443 int expected_count = 1 + extra_count; 444 void **pslot; 445 446 /* 447 * Device public or private pages have an extra refcount as they are 448 * ZONE_DEVICE pages. 449 */ 450 expected_count += is_device_private_page(page); 451 expected_count += is_device_public_page(page); 452 453 if (!mapping) { 454 /* Anonymous page without mapping */ 455 if (page_count(page) != expected_count) 456 return -EAGAIN; 457 458 /* No turning back from here */ 459 newpage->index = page->index; 460 newpage->mapping = page->mapping; 461 if (PageSwapBacked(page)) 462 __SetPageSwapBacked(newpage); 463 464 return MIGRATEPAGE_SUCCESS; 465 } 466 467 oldzone = page_zone(page); 468 newzone = page_zone(newpage); 469 470 xa_lock_irq(&mapping->i_pages); 471 472 pslot = radix_tree_lookup_slot(&mapping->i_pages, 473 page_index(page)); 474 475 expected_count += 1 + page_has_private(page); 476 if (page_count(page) != expected_count || 477 radix_tree_deref_slot_protected(pslot, 478 &mapping->i_pages.xa_lock) != page) { 479 xa_unlock_irq(&mapping->i_pages); 480 return -EAGAIN; 481 } 482 483 if (!page_ref_freeze(page, expected_count)) { 484 xa_unlock_irq(&mapping->i_pages); 485 return -EAGAIN; 486 } 487 488 /* 489 * In the async migration case of moving a page with buffers, lock the 490 * buffers using trylock before the mapping is moved. If the mapping 491 * was moved, we later failed to lock the buffers and could not move 492 * the mapping back due to an elevated page count, we would have to 493 * block waiting on other references to be dropped. 494 */ 495 if (mode == MIGRATE_ASYNC && head && 496 !buffer_migrate_lock_buffers(head, mode)) { 497 page_ref_unfreeze(page, expected_count); 498 xa_unlock_irq(&mapping->i_pages); 499 return -EAGAIN; 500 } 501 502 /* 503 * Now we know that no one else is looking at the page: 504 * no turning back from here. 505 */ 506 newpage->index = page->index; 507 newpage->mapping = page->mapping; 508 get_page(newpage); /* add cache reference */ 509 if (PageSwapBacked(page)) { 510 __SetPageSwapBacked(newpage); 511 if (PageSwapCache(page)) { 512 SetPageSwapCache(newpage); 513 set_page_private(newpage, page_private(page)); 514 } 515 } else { 516 VM_BUG_ON_PAGE(PageSwapCache(page), page); 517 } 518 519 /* Move dirty while page refs frozen and newpage not yet exposed */ 520 dirty = PageDirty(page); 521 if (dirty) { 522 ClearPageDirty(page); 523 SetPageDirty(newpage); 524 } 525 526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 527 528 /* 529 * Drop cache reference from old page by unfreezing 530 * to one less reference. 531 * We know this isn't the last reference. 532 */ 533 page_ref_unfreeze(page, expected_count - 1); 534 535 xa_unlock(&mapping->i_pages); 536 /* Leave irq disabled to prevent preemption while updating stats */ 537 538 /* 539 * If moved to a different zone then also account 540 * the page for that zone. Other VM counters will be 541 * taken care of when we establish references to the 542 * new page and drop references to the old page. 543 * 544 * Note that anonymous pages are accounted for 545 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 546 * are mapped to swap space. 547 */ 548 if (newzone != oldzone) { 549 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 550 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 551 if (PageSwapBacked(page) && !PageSwapCache(page)) { 552 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 553 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 554 } 555 if (dirty && mapping_cap_account_dirty(mapping)) { 556 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 557 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 558 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 559 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 560 } 561 } 562 local_irq_enable(); 563 564 return MIGRATEPAGE_SUCCESS; 565 } 566 EXPORT_SYMBOL(migrate_page_move_mapping); 567 568 /* 569 * The expected number of remaining references is the same as that 570 * of migrate_page_move_mapping(). 571 */ 572 int migrate_huge_page_move_mapping(struct address_space *mapping, 573 struct page *newpage, struct page *page) 574 { 575 int expected_count; 576 void **pslot; 577 578 xa_lock_irq(&mapping->i_pages); 579 580 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page)); 581 582 expected_count = 2 + page_has_private(page); 583 if (page_count(page) != expected_count || 584 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) { 585 xa_unlock_irq(&mapping->i_pages); 586 return -EAGAIN; 587 } 588 589 if (!page_ref_freeze(page, expected_count)) { 590 xa_unlock_irq(&mapping->i_pages); 591 return -EAGAIN; 592 } 593 594 newpage->index = page->index; 595 newpage->mapping = page->mapping; 596 597 get_page(newpage); 598 599 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 600 601 page_ref_unfreeze(page, expected_count - 1); 602 603 xa_unlock_irq(&mapping->i_pages); 604 605 return MIGRATEPAGE_SUCCESS; 606 } 607 608 /* 609 * Gigantic pages are so large that we do not guarantee that page++ pointer 610 * arithmetic will work across the entire page. We need something more 611 * specialized. 612 */ 613 static void __copy_gigantic_page(struct page *dst, struct page *src, 614 int nr_pages) 615 { 616 int i; 617 struct page *dst_base = dst; 618 struct page *src_base = src; 619 620 for (i = 0; i < nr_pages; ) { 621 cond_resched(); 622 copy_highpage(dst, src); 623 624 i++; 625 dst = mem_map_next(dst, dst_base, i); 626 src = mem_map_next(src, src_base, i); 627 } 628 } 629 630 static void copy_huge_page(struct page *dst, struct page *src) 631 { 632 int i; 633 int nr_pages; 634 635 if (PageHuge(src)) { 636 /* hugetlbfs page */ 637 struct hstate *h = page_hstate(src); 638 nr_pages = pages_per_huge_page(h); 639 640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 641 __copy_gigantic_page(dst, src, nr_pages); 642 return; 643 } 644 } else { 645 /* thp page */ 646 BUG_ON(!PageTransHuge(src)); 647 nr_pages = hpage_nr_pages(src); 648 } 649 650 for (i = 0; i < nr_pages; i++) { 651 cond_resched(); 652 copy_highpage(dst + i, src + i); 653 } 654 } 655 656 /* 657 * Copy the page to its new location 658 */ 659 void migrate_page_states(struct page *newpage, struct page *page) 660 { 661 int cpupid; 662 663 if (PageError(page)) 664 SetPageError(newpage); 665 if (PageReferenced(page)) 666 SetPageReferenced(newpage); 667 if (PageUptodate(page)) 668 SetPageUptodate(newpage); 669 if (TestClearPageActive(page)) { 670 VM_BUG_ON_PAGE(PageUnevictable(page), page); 671 SetPageActive(newpage); 672 } else if (TestClearPageUnevictable(page)) 673 SetPageUnevictable(newpage); 674 if (PageChecked(page)) 675 SetPageChecked(newpage); 676 if (PageMappedToDisk(page)) 677 SetPageMappedToDisk(newpage); 678 679 /* Move dirty on pages not done by migrate_page_move_mapping() */ 680 if (PageDirty(page)) 681 SetPageDirty(newpage); 682 683 if (page_is_young(page)) 684 set_page_young(newpage); 685 if (page_is_idle(page)) 686 set_page_idle(newpage); 687 688 /* 689 * Copy NUMA information to the new page, to prevent over-eager 690 * future migrations of this same page. 691 */ 692 cpupid = page_cpupid_xchg_last(page, -1); 693 page_cpupid_xchg_last(newpage, cpupid); 694 695 ksm_migrate_page(newpage, page); 696 /* 697 * Please do not reorder this without considering how mm/ksm.c's 698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 699 */ 700 if (PageSwapCache(page)) 701 ClearPageSwapCache(page); 702 ClearPagePrivate(page); 703 set_page_private(page, 0); 704 705 /* 706 * If any waiters have accumulated on the new page then 707 * wake them up. 708 */ 709 if (PageWriteback(newpage)) 710 end_page_writeback(newpage); 711 712 copy_page_owner(page, newpage); 713 714 mem_cgroup_migrate(page, newpage); 715 } 716 EXPORT_SYMBOL(migrate_page_states); 717 718 void migrate_page_copy(struct page *newpage, struct page *page) 719 { 720 if (PageHuge(page) || PageTransHuge(page)) 721 copy_huge_page(newpage, page); 722 else 723 copy_highpage(newpage, page); 724 725 migrate_page_states(newpage, page); 726 } 727 EXPORT_SYMBOL(migrate_page_copy); 728 729 /************************************************************ 730 * Migration functions 731 ***********************************************************/ 732 733 /* 734 * Common logic to directly migrate a single LRU page suitable for 735 * pages that do not use PagePrivate/PagePrivate2. 736 * 737 * Pages are locked upon entry and exit. 738 */ 739 int migrate_page(struct address_space *mapping, 740 struct page *newpage, struct page *page, 741 enum migrate_mode mode) 742 { 743 int rc; 744 745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 746 747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 748 749 if (rc != MIGRATEPAGE_SUCCESS) 750 return rc; 751 752 if (mode != MIGRATE_SYNC_NO_COPY) 753 migrate_page_copy(newpage, page); 754 else 755 migrate_page_states(newpage, page); 756 return MIGRATEPAGE_SUCCESS; 757 } 758 EXPORT_SYMBOL(migrate_page); 759 760 #ifdef CONFIG_BLOCK 761 /* 762 * Migration function for pages with buffers. This function can only be used 763 * if the underlying filesystem guarantees that no other references to "page" 764 * exist. 765 */ 766 int buffer_migrate_page(struct address_space *mapping, 767 struct page *newpage, struct page *page, enum migrate_mode mode) 768 { 769 struct buffer_head *bh, *head; 770 int rc; 771 772 if (!page_has_buffers(page)) 773 return migrate_page(mapping, newpage, page, mode); 774 775 head = page_buffers(page); 776 777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 778 779 if (rc != MIGRATEPAGE_SUCCESS) 780 return rc; 781 782 /* 783 * In the async case, migrate_page_move_mapping locked the buffers 784 * with an IRQ-safe spinlock held. In the sync case, the buffers 785 * need to be locked now 786 */ 787 if (mode != MIGRATE_ASYNC) 788 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 789 790 ClearPagePrivate(page); 791 set_page_private(newpage, page_private(page)); 792 set_page_private(page, 0); 793 put_page(page); 794 get_page(newpage); 795 796 bh = head; 797 do { 798 set_bh_page(bh, newpage, bh_offset(bh)); 799 bh = bh->b_this_page; 800 801 } while (bh != head); 802 803 SetPagePrivate(newpage); 804 805 if (mode != MIGRATE_SYNC_NO_COPY) 806 migrate_page_copy(newpage, page); 807 else 808 migrate_page_states(newpage, page); 809 810 bh = head; 811 do { 812 unlock_buffer(bh); 813 put_bh(bh); 814 bh = bh->b_this_page; 815 816 } while (bh != head); 817 818 return MIGRATEPAGE_SUCCESS; 819 } 820 EXPORT_SYMBOL(buffer_migrate_page); 821 #endif 822 823 /* 824 * Writeback a page to clean the dirty state 825 */ 826 static int writeout(struct address_space *mapping, struct page *page) 827 { 828 struct writeback_control wbc = { 829 .sync_mode = WB_SYNC_NONE, 830 .nr_to_write = 1, 831 .range_start = 0, 832 .range_end = LLONG_MAX, 833 .for_reclaim = 1 834 }; 835 int rc; 836 837 if (!mapping->a_ops->writepage) 838 /* No write method for the address space */ 839 return -EINVAL; 840 841 if (!clear_page_dirty_for_io(page)) 842 /* Someone else already triggered a write */ 843 return -EAGAIN; 844 845 /* 846 * A dirty page may imply that the underlying filesystem has 847 * the page on some queue. So the page must be clean for 848 * migration. Writeout may mean we loose the lock and the 849 * page state is no longer what we checked for earlier. 850 * At this point we know that the migration attempt cannot 851 * be successful. 852 */ 853 remove_migration_ptes(page, page, false); 854 855 rc = mapping->a_ops->writepage(page, &wbc); 856 857 if (rc != AOP_WRITEPAGE_ACTIVATE) 858 /* unlocked. Relock */ 859 lock_page(page); 860 861 return (rc < 0) ? -EIO : -EAGAIN; 862 } 863 864 /* 865 * Default handling if a filesystem does not provide a migration function. 866 */ 867 static int fallback_migrate_page(struct address_space *mapping, 868 struct page *newpage, struct page *page, enum migrate_mode mode) 869 { 870 if (PageDirty(page)) { 871 /* Only writeback pages in full synchronous migration */ 872 switch (mode) { 873 case MIGRATE_SYNC: 874 case MIGRATE_SYNC_NO_COPY: 875 break; 876 default: 877 return -EBUSY; 878 } 879 return writeout(mapping, page); 880 } 881 882 /* 883 * Buffers may be managed in a filesystem specific way. 884 * We must have no buffers or drop them. 885 */ 886 if (page_has_private(page) && 887 !try_to_release_page(page, GFP_KERNEL)) 888 return -EAGAIN; 889 890 return migrate_page(mapping, newpage, page, mode); 891 } 892 893 /* 894 * Move a page to a newly allocated page 895 * The page is locked and all ptes have been successfully removed. 896 * 897 * The new page will have replaced the old page if this function 898 * is successful. 899 * 900 * Return value: 901 * < 0 - error code 902 * MIGRATEPAGE_SUCCESS - success 903 */ 904 static int move_to_new_page(struct page *newpage, struct page *page, 905 enum migrate_mode mode) 906 { 907 struct address_space *mapping; 908 int rc = -EAGAIN; 909 bool is_lru = !__PageMovable(page); 910 911 VM_BUG_ON_PAGE(!PageLocked(page), page); 912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 913 914 mapping = page_mapping(page); 915 916 if (likely(is_lru)) { 917 if (!mapping) 918 rc = migrate_page(mapping, newpage, page, mode); 919 else if (mapping->a_ops->migratepage) 920 /* 921 * Most pages have a mapping and most filesystems 922 * provide a migratepage callback. Anonymous pages 923 * are part of swap space which also has its own 924 * migratepage callback. This is the most common path 925 * for page migration. 926 */ 927 rc = mapping->a_ops->migratepage(mapping, newpage, 928 page, mode); 929 else 930 rc = fallback_migrate_page(mapping, newpage, 931 page, mode); 932 } else { 933 /* 934 * In case of non-lru page, it could be released after 935 * isolation step. In that case, we shouldn't try migration. 936 */ 937 VM_BUG_ON_PAGE(!PageIsolated(page), page); 938 if (!PageMovable(page)) { 939 rc = MIGRATEPAGE_SUCCESS; 940 __ClearPageIsolated(page); 941 goto out; 942 } 943 944 rc = mapping->a_ops->migratepage(mapping, newpage, 945 page, mode); 946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 947 !PageIsolated(page)); 948 } 949 950 /* 951 * When successful, old pagecache page->mapping must be cleared before 952 * page is freed; but stats require that PageAnon be left as PageAnon. 953 */ 954 if (rc == MIGRATEPAGE_SUCCESS) { 955 if (__PageMovable(page)) { 956 VM_BUG_ON_PAGE(!PageIsolated(page), page); 957 958 /* 959 * We clear PG_movable under page_lock so any compactor 960 * cannot try to migrate this page. 961 */ 962 __ClearPageIsolated(page); 963 } 964 965 /* 966 * Anonymous and movable page->mapping will be cleard by 967 * free_pages_prepare so don't reset it here for keeping 968 * the type to work PageAnon, for example. 969 */ 970 if (!PageMappingFlags(page)) 971 page->mapping = NULL; 972 } 973 out: 974 return rc; 975 } 976 977 static int __unmap_and_move(struct page *page, struct page *newpage, 978 int force, enum migrate_mode mode) 979 { 980 int rc = -EAGAIN; 981 int page_was_mapped = 0; 982 struct anon_vma *anon_vma = NULL; 983 bool is_lru = !__PageMovable(page); 984 985 if (!trylock_page(page)) { 986 if (!force || mode == MIGRATE_ASYNC) 987 goto out; 988 989 /* 990 * It's not safe for direct compaction to call lock_page. 991 * For example, during page readahead pages are added locked 992 * to the LRU. Later, when the IO completes the pages are 993 * marked uptodate and unlocked. However, the queueing 994 * could be merging multiple pages for one bio (e.g. 995 * mpage_readpages). If an allocation happens for the 996 * second or third page, the process can end up locking 997 * the same page twice and deadlocking. Rather than 998 * trying to be clever about what pages can be locked, 999 * avoid the use of lock_page for direct compaction 1000 * altogether. 1001 */ 1002 if (current->flags & PF_MEMALLOC) 1003 goto out; 1004 1005 lock_page(page); 1006 } 1007 1008 if (PageWriteback(page)) { 1009 /* 1010 * Only in the case of a full synchronous migration is it 1011 * necessary to wait for PageWriteback. In the async case, 1012 * the retry loop is too short and in the sync-light case, 1013 * the overhead of stalling is too much 1014 */ 1015 switch (mode) { 1016 case MIGRATE_SYNC: 1017 case MIGRATE_SYNC_NO_COPY: 1018 break; 1019 default: 1020 rc = -EBUSY; 1021 goto out_unlock; 1022 } 1023 if (!force) 1024 goto out_unlock; 1025 wait_on_page_writeback(page); 1026 } 1027 1028 /* 1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1030 * we cannot notice that anon_vma is freed while we migrates a page. 1031 * This get_anon_vma() delays freeing anon_vma pointer until the end 1032 * of migration. File cache pages are no problem because of page_lock() 1033 * File Caches may use write_page() or lock_page() in migration, then, 1034 * just care Anon page here. 1035 * 1036 * Only page_get_anon_vma() understands the subtleties of 1037 * getting a hold on an anon_vma from outside one of its mms. 1038 * But if we cannot get anon_vma, then we won't need it anyway, 1039 * because that implies that the anon page is no longer mapped 1040 * (and cannot be remapped so long as we hold the page lock). 1041 */ 1042 if (PageAnon(page) && !PageKsm(page)) 1043 anon_vma = page_get_anon_vma(page); 1044 1045 /* 1046 * Block others from accessing the new page when we get around to 1047 * establishing additional references. We are usually the only one 1048 * holding a reference to newpage at this point. We used to have a BUG 1049 * here if trylock_page(newpage) fails, but would like to allow for 1050 * cases where there might be a race with the previous use of newpage. 1051 * This is much like races on refcount of oldpage: just don't BUG(). 1052 */ 1053 if (unlikely(!trylock_page(newpage))) 1054 goto out_unlock; 1055 1056 if (unlikely(!is_lru)) { 1057 rc = move_to_new_page(newpage, page, mode); 1058 goto out_unlock_both; 1059 } 1060 1061 /* 1062 * Corner case handling: 1063 * 1. When a new swap-cache page is read into, it is added to the LRU 1064 * and treated as swapcache but it has no rmap yet. 1065 * Calling try_to_unmap() against a page->mapping==NULL page will 1066 * trigger a BUG. So handle it here. 1067 * 2. An orphaned page (see truncate_complete_page) might have 1068 * fs-private metadata. The page can be picked up due to memory 1069 * offlining. Everywhere else except page reclaim, the page is 1070 * invisible to the vm, so the page can not be migrated. So try to 1071 * free the metadata, so the page can be freed. 1072 */ 1073 if (!page->mapping) { 1074 VM_BUG_ON_PAGE(PageAnon(page), page); 1075 if (page_has_private(page)) { 1076 try_to_free_buffers(page); 1077 goto out_unlock_both; 1078 } 1079 } else if (page_mapped(page)) { 1080 /* Establish migration ptes */ 1081 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1082 page); 1083 try_to_unmap(page, 1084 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1085 page_was_mapped = 1; 1086 } 1087 1088 if (!page_mapped(page)) 1089 rc = move_to_new_page(newpage, page, mode); 1090 1091 if (page_was_mapped) 1092 remove_migration_ptes(page, 1093 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1094 1095 out_unlock_both: 1096 unlock_page(newpage); 1097 out_unlock: 1098 /* Drop an anon_vma reference if we took one */ 1099 if (anon_vma) 1100 put_anon_vma(anon_vma); 1101 unlock_page(page); 1102 out: 1103 /* 1104 * If migration is successful, decrease refcount of the newpage 1105 * which will not free the page because new page owner increased 1106 * refcounter. As well, if it is LRU page, add the page to LRU 1107 * list in here. 1108 */ 1109 if (rc == MIGRATEPAGE_SUCCESS) { 1110 if (unlikely(__PageMovable(newpage))) 1111 put_page(newpage); 1112 else 1113 putback_lru_page(newpage); 1114 } 1115 1116 return rc; 1117 } 1118 1119 /* 1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1121 * around it. 1122 */ 1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1124 #define ICE_noinline noinline 1125 #else 1126 #define ICE_noinline 1127 #endif 1128 1129 /* 1130 * Obtain the lock on page, remove all ptes and migrate the page 1131 * to the newly allocated page in newpage. 1132 */ 1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1134 free_page_t put_new_page, 1135 unsigned long private, struct page *page, 1136 int force, enum migrate_mode mode, 1137 enum migrate_reason reason) 1138 { 1139 int rc = MIGRATEPAGE_SUCCESS; 1140 struct page *newpage; 1141 1142 if (!thp_migration_supported() && PageTransHuge(page)) 1143 return -ENOMEM; 1144 1145 newpage = get_new_page(page, private); 1146 if (!newpage) 1147 return -ENOMEM; 1148 1149 if (page_count(page) == 1) { 1150 /* page was freed from under us. So we are done. */ 1151 ClearPageActive(page); 1152 ClearPageUnevictable(page); 1153 if (unlikely(__PageMovable(page))) { 1154 lock_page(page); 1155 if (!PageMovable(page)) 1156 __ClearPageIsolated(page); 1157 unlock_page(page); 1158 } 1159 if (put_new_page) 1160 put_new_page(newpage, private); 1161 else 1162 put_page(newpage); 1163 goto out; 1164 } 1165 1166 rc = __unmap_and_move(page, newpage, force, mode); 1167 if (rc == MIGRATEPAGE_SUCCESS) 1168 set_page_owner_migrate_reason(newpage, reason); 1169 1170 out: 1171 if (rc != -EAGAIN) { 1172 /* 1173 * A page that has been migrated has all references 1174 * removed and will be freed. A page that has not been 1175 * migrated will have kepts its references and be 1176 * restored. 1177 */ 1178 list_del(&page->lru); 1179 1180 /* 1181 * Compaction can migrate also non-LRU pages which are 1182 * not accounted to NR_ISOLATED_*. They can be recognized 1183 * as __PageMovable 1184 */ 1185 if (likely(!__PageMovable(page))) 1186 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1187 page_is_file_cache(page), -hpage_nr_pages(page)); 1188 } 1189 1190 /* 1191 * If migration is successful, releases reference grabbed during 1192 * isolation. Otherwise, restore the page to right list unless 1193 * we want to retry. 1194 */ 1195 if (rc == MIGRATEPAGE_SUCCESS) { 1196 put_page(page); 1197 if (reason == MR_MEMORY_FAILURE) { 1198 /* 1199 * Set PG_HWPoison on just freed page 1200 * intentionally. Although it's rather weird, 1201 * it's how HWPoison flag works at the moment. 1202 */ 1203 if (!test_set_page_hwpoison(page)) 1204 num_poisoned_pages_inc(); 1205 } 1206 } else { 1207 if (rc != -EAGAIN) { 1208 if (likely(!__PageMovable(page))) { 1209 putback_lru_page(page); 1210 goto put_new; 1211 } 1212 1213 lock_page(page); 1214 if (PageMovable(page)) 1215 putback_movable_page(page); 1216 else 1217 __ClearPageIsolated(page); 1218 unlock_page(page); 1219 put_page(page); 1220 } 1221 put_new: 1222 if (put_new_page) 1223 put_new_page(newpage, private); 1224 else 1225 put_page(newpage); 1226 } 1227 1228 return rc; 1229 } 1230 1231 /* 1232 * Counterpart of unmap_and_move_page() for hugepage migration. 1233 * 1234 * This function doesn't wait the completion of hugepage I/O 1235 * because there is no race between I/O and migration for hugepage. 1236 * Note that currently hugepage I/O occurs only in direct I/O 1237 * where no lock is held and PG_writeback is irrelevant, 1238 * and writeback status of all subpages are counted in the reference 1239 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1240 * under direct I/O, the reference of the head page is 512 and a bit more.) 1241 * This means that when we try to migrate hugepage whose subpages are 1242 * doing direct I/O, some references remain after try_to_unmap() and 1243 * hugepage migration fails without data corruption. 1244 * 1245 * There is also no race when direct I/O is issued on the page under migration, 1246 * because then pte is replaced with migration swap entry and direct I/O code 1247 * will wait in the page fault for migration to complete. 1248 */ 1249 static int unmap_and_move_huge_page(new_page_t get_new_page, 1250 free_page_t put_new_page, unsigned long private, 1251 struct page *hpage, int force, 1252 enum migrate_mode mode, int reason) 1253 { 1254 int rc = -EAGAIN; 1255 int page_was_mapped = 0; 1256 struct page *new_hpage; 1257 struct anon_vma *anon_vma = NULL; 1258 1259 /* 1260 * Movability of hugepages depends on architectures and hugepage size. 1261 * This check is necessary because some callers of hugepage migration 1262 * like soft offline and memory hotremove don't walk through page 1263 * tables or check whether the hugepage is pmd-based or not before 1264 * kicking migration. 1265 */ 1266 if (!hugepage_migration_supported(page_hstate(hpage))) { 1267 putback_active_hugepage(hpage); 1268 return -ENOSYS; 1269 } 1270 1271 new_hpage = get_new_page(hpage, private); 1272 if (!new_hpage) 1273 return -ENOMEM; 1274 1275 if (!trylock_page(hpage)) { 1276 if (!force) 1277 goto out; 1278 switch (mode) { 1279 case MIGRATE_SYNC: 1280 case MIGRATE_SYNC_NO_COPY: 1281 break; 1282 default: 1283 goto out; 1284 } 1285 lock_page(hpage); 1286 } 1287 1288 if (PageAnon(hpage)) 1289 anon_vma = page_get_anon_vma(hpage); 1290 1291 if (unlikely(!trylock_page(new_hpage))) 1292 goto put_anon; 1293 1294 if (page_mapped(hpage)) { 1295 try_to_unmap(hpage, 1296 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1297 page_was_mapped = 1; 1298 } 1299 1300 if (!page_mapped(hpage)) 1301 rc = move_to_new_page(new_hpage, hpage, mode); 1302 1303 if (page_was_mapped) 1304 remove_migration_ptes(hpage, 1305 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1306 1307 unlock_page(new_hpage); 1308 1309 put_anon: 1310 if (anon_vma) 1311 put_anon_vma(anon_vma); 1312 1313 if (rc == MIGRATEPAGE_SUCCESS) { 1314 move_hugetlb_state(hpage, new_hpage, reason); 1315 put_new_page = NULL; 1316 } 1317 1318 unlock_page(hpage); 1319 out: 1320 if (rc != -EAGAIN) 1321 putback_active_hugepage(hpage); 1322 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1323 num_poisoned_pages_inc(); 1324 1325 /* 1326 * If migration was not successful and there's a freeing callback, use 1327 * it. Otherwise, put_page() will drop the reference grabbed during 1328 * isolation. 1329 */ 1330 if (put_new_page) 1331 put_new_page(new_hpage, private); 1332 else 1333 putback_active_hugepage(new_hpage); 1334 1335 return rc; 1336 } 1337 1338 /* 1339 * migrate_pages - migrate the pages specified in a list, to the free pages 1340 * supplied as the target for the page migration 1341 * 1342 * @from: The list of pages to be migrated. 1343 * @get_new_page: The function used to allocate free pages to be used 1344 * as the target of the page migration. 1345 * @put_new_page: The function used to free target pages if migration 1346 * fails, or NULL if no special handling is necessary. 1347 * @private: Private data to be passed on to get_new_page() 1348 * @mode: The migration mode that specifies the constraints for 1349 * page migration, if any. 1350 * @reason: The reason for page migration. 1351 * 1352 * The function returns after 10 attempts or if no pages are movable any more 1353 * because the list has become empty or no retryable pages exist any more. 1354 * The caller should call putback_movable_pages() to return pages to the LRU 1355 * or free list only if ret != 0. 1356 * 1357 * Returns the number of pages that were not migrated, or an error code. 1358 */ 1359 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1360 free_page_t put_new_page, unsigned long private, 1361 enum migrate_mode mode, int reason) 1362 { 1363 int retry = 1; 1364 int nr_failed = 0; 1365 int nr_succeeded = 0; 1366 int pass = 0; 1367 struct page *page; 1368 struct page *page2; 1369 int swapwrite = current->flags & PF_SWAPWRITE; 1370 int rc; 1371 1372 if (!swapwrite) 1373 current->flags |= PF_SWAPWRITE; 1374 1375 for(pass = 0; pass < 10 && retry; pass++) { 1376 retry = 0; 1377 1378 list_for_each_entry_safe(page, page2, from, lru) { 1379 retry: 1380 cond_resched(); 1381 1382 if (PageHuge(page)) 1383 rc = unmap_and_move_huge_page(get_new_page, 1384 put_new_page, private, page, 1385 pass > 2, mode, reason); 1386 else 1387 rc = unmap_and_move(get_new_page, put_new_page, 1388 private, page, pass > 2, mode, 1389 reason); 1390 1391 switch(rc) { 1392 case -ENOMEM: 1393 /* 1394 * THP migration might be unsupported or the 1395 * allocation could've failed so we should 1396 * retry on the same page with the THP split 1397 * to base pages. 1398 * 1399 * Head page is retried immediately and tail 1400 * pages are added to the tail of the list so 1401 * we encounter them after the rest of the list 1402 * is processed. 1403 */ 1404 if (PageTransHuge(page)) { 1405 lock_page(page); 1406 rc = split_huge_page_to_list(page, from); 1407 unlock_page(page); 1408 if (!rc) { 1409 list_safe_reset_next(page, page2, lru); 1410 goto retry; 1411 } 1412 } 1413 nr_failed++; 1414 goto out; 1415 case -EAGAIN: 1416 retry++; 1417 break; 1418 case MIGRATEPAGE_SUCCESS: 1419 nr_succeeded++; 1420 break; 1421 default: 1422 /* 1423 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1424 * unlike -EAGAIN case, the failed page is 1425 * removed from migration page list and not 1426 * retried in the next outer loop. 1427 */ 1428 nr_failed++; 1429 break; 1430 } 1431 } 1432 } 1433 nr_failed += retry; 1434 rc = nr_failed; 1435 out: 1436 if (nr_succeeded) 1437 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1438 if (nr_failed) 1439 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1440 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1441 1442 if (!swapwrite) 1443 current->flags &= ~PF_SWAPWRITE; 1444 1445 return rc; 1446 } 1447 1448 #ifdef CONFIG_NUMA 1449 1450 static int store_status(int __user *status, int start, int value, int nr) 1451 { 1452 while (nr-- > 0) { 1453 if (put_user(value, status + start)) 1454 return -EFAULT; 1455 start++; 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int do_move_pages_to_node(struct mm_struct *mm, 1462 struct list_head *pagelist, int node) 1463 { 1464 int err; 1465 1466 if (list_empty(pagelist)) 1467 return 0; 1468 1469 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1470 MIGRATE_SYNC, MR_SYSCALL); 1471 if (err) 1472 putback_movable_pages(pagelist); 1473 return err; 1474 } 1475 1476 /* 1477 * Resolves the given address to a struct page, isolates it from the LRU and 1478 * puts it to the given pagelist. 1479 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1480 * queued or the page doesn't need to be migrated because it is already on 1481 * the target node 1482 */ 1483 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1484 int node, struct list_head *pagelist, bool migrate_all) 1485 { 1486 struct vm_area_struct *vma; 1487 struct page *page; 1488 unsigned int follflags; 1489 int err; 1490 1491 down_read(&mm->mmap_sem); 1492 err = -EFAULT; 1493 vma = find_vma(mm, addr); 1494 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1495 goto out; 1496 1497 /* FOLL_DUMP to ignore special (like zero) pages */ 1498 follflags = FOLL_GET | FOLL_DUMP; 1499 page = follow_page(vma, addr, follflags); 1500 1501 err = PTR_ERR(page); 1502 if (IS_ERR(page)) 1503 goto out; 1504 1505 err = -ENOENT; 1506 if (!page) 1507 goto out; 1508 1509 err = 0; 1510 if (page_to_nid(page) == node) 1511 goto out_putpage; 1512 1513 err = -EACCES; 1514 if (page_mapcount(page) > 1 && !migrate_all) 1515 goto out_putpage; 1516 1517 if (PageHuge(page)) { 1518 if (PageHead(page)) { 1519 isolate_huge_page(page, pagelist); 1520 err = 0; 1521 } 1522 } else { 1523 struct page *head; 1524 1525 head = compound_head(page); 1526 err = isolate_lru_page(head); 1527 if (err) 1528 goto out_putpage; 1529 1530 err = 0; 1531 list_add_tail(&head->lru, pagelist); 1532 mod_node_page_state(page_pgdat(head), 1533 NR_ISOLATED_ANON + page_is_file_cache(head), 1534 hpage_nr_pages(head)); 1535 } 1536 out_putpage: 1537 /* 1538 * Either remove the duplicate refcount from 1539 * isolate_lru_page() or drop the page ref if it was 1540 * not isolated. 1541 */ 1542 put_page(page); 1543 out: 1544 up_read(&mm->mmap_sem); 1545 return err; 1546 } 1547 1548 /* 1549 * Migrate an array of page address onto an array of nodes and fill 1550 * the corresponding array of status. 1551 */ 1552 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1553 unsigned long nr_pages, 1554 const void __user * __user *pages, 1555 const int __user *nodes, 1556 int __user *status, int flags) 1557 { 1558 int current_node = NUMA_NO_NODE; 1559 LIST_HEAD(pagelist); 1560 int start, i; 1561 int err = 0, err1; 1562 1563 migrate_prep(); 1564 1565 for (i = start = 0; i < nr_pages; i++) { 1566 const void __user *p; 1567 unsigned long addr; 1568 int node; 1569 1570 err = -EFAULT; 1571 if (get_user(p, pages + i)) 1572 goto out_flush; 1573 if (get_user(node, nodes + i)) 1574 goto out_flush; 1575 addr = (unsigned long)p; 1576 1577 err = -ENODEV; 1578 if (node < 0 || node >= MAX_NUMNODES) 1579 goto out_flush; 1580 if (!node_state(node, N_MEMORY)) 1581 goto out_flush; 1582 1583 err = -EACCES; 1584 if (!node_isset(node, task_nodes)) 1585 goto out_flush; 1586 1587 if (current_node == NUMA_NO_NODE) { 1588 current_node = node; 1589 start = i; 1590 } else if (node != current_node) { 1591 err = do_move_pages_to_node(mm, &pagelist, current_node); 1592 if (err) 1593 goto out; 1594 err = store_status(status, start, current_node, i - start); 1595 if (err) 1596 goto out; 1597 start = i; 1598 current_node = node; 1599 } 1600 1601 /* 1602 * Errors in the page lookup or isolation are not fatal and we simply 1603 * report them via status 1604 */ 1605 err = add_page_for_migration(mm, addr, current_node, 1606 &pagelist, flags & MPOL_MF_MOVE_ALL); 1607 if (!err) 1608 continue; 1609 1610 err = store_status(status, i, err, 1); 1611 if (err) 1612 goto out_flush; 1613 1614 err = do_move_pages_to_node(mm, &pagelist, current_node); 1615 if (err) 1616 goto out; 1617 if (i > start) { 1618 err = store_status(status, start, current_node, i - start); 1619 if (err) 1620 goto out; 1621 } 1622 current_node = NUMA_NO_NODE; 1623 } 1624 out_flush: 1625 /* Make sure we do not overwrite the existing error */ 1626 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1627 if (!err1) 1628 err1 = store_status(status, start, current_node, i - start); 1629 if (!err) 1630 err = err1; 1631 out: 1632 return err; 1633 } 1634 1635 /* 1636 * Determine the nodes of an array of pages and store it in an array of status. 1637 */ 1638 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1639 const void __user **pages, int *status) 1640 { 1641 unsigned long i; 1642 1643 down_read(&mm->mmap_sem); 1644 1645 for (i = 0; i < nr_pages; i++) { 1646 unsigned long addr = (unsigned long)(*pages); 1647 struct vm_area_struct *vma; 1648 struct page *page; 1649 int err = -EFAULT; 1650 1651 vma = find_vma(mm, addr); 1652 if (!vma || addr < vma->vm_start) 1653 goto set_status; 1654 1655 /* FOLL_DUMP to ignore special (like zero) pages */ 1656 page = follow_page(vma, addr, FOLL_DUMP); 1657 1658 err = PTR_ERR(page); 1659 if (IS_ERR(page)) 1660 goto set_status; 1661 1662 err = page ? page_to_nid(page) : -ENOENT; 1663 set_status: 1664 *status = err; 1665 1666 pages++; 1667 status++; 1668 } 1669 1670 up_read(&mm->mmap_sem); 1671 } 1672 1673 /* 1674 * Determine the nodes of a user array of pages and store it in 1675 * a user array of status. 1676 */ 1677 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1678 const void __user * __user *pages, 1679 int __user *status) 1680 { 1681 #define DO_PAGES_STAT_CHUNK_NR 16 1682 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1683 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1684 1685 while (nr_pages) { 1686 unsigned long chunk_nr; 1687 1688 chunk_nr = nr_pages; 1689 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1690 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1691 1692 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1693 break; 1694 1695 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1696 1697 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1698 break; 1699 1700 pages += chunk_nr; 1701 status += chunk_nr; 1702 nr_pages -= chunk_nr; 1703 } 1704 return nr_pages ? -EFAULT : 0; 1705 } 1706 1707 /* 1708 * Move a list of pages in the address space of the currently executing 1709 * process. 1710 */ 1711 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1712 const void __user * __user *pages, 1713 const int __user *nodes, 1714 int __user *status, int flags) 1715 { 1716 struct task_struct *task; 1717 struct mm_struct *mm; 1718 int err; 1719 nodemask_t task_nodes; 1720 1721 /* Check flags */ 1722 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1723 return -EINVAL; 1724 1725 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1726 return -EPERM; 1727 1728 /* Find the mm_struct */ 1729 rcu_read_lock(); 1730 task = pid ? find_task_by_vpid(pid) : current; 1731 if (!task) { 1732 rcu_read_unlock(); 1733 return -ESRCH; 1734 } 1735 get_task_struct(task); 1736 1737 /* 1738 * Check if this process has the right to modify the specified 1739 * process. Use the regular "ptrace_may_access()" checks. 1740 */ 1741 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1742 rcu_read_unlock(); 1743 err = -EPERM; 1744 goto out; 1745 } 1746 rcu_read_unlock(); 1747 1748 err = security_task_movememory(task); 1749 if (err) 1750 goto out; 1751 1752 task_nodes = cpuset_mems_allowed(task); 1753 mm = get_task_mm(task); 1754 put_task_struct(task); 1755 1756 if (!mm) 1757 return -EINVAL; 1758 1759 if (nodes) 1760 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1761 nodes, status, flags); 1762 else 1763 err = do_pages_stat(mm, nr_pages, pages, status); 1764 1765 mmput(mm); 1766 return err; 1767 1768 out: 1769 put_task_struct(task); 1770 return err; 1771 } 1772 1773 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1774 const void __user * __user *, pages, 1775 const int __user *, nodes, 1776 int __user *, status, int, flags) 1777 { 1778 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1779 } 1780 1781 #ifdef CONFIG_COMPAT 1782 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1783 compat_uptr_t __user *, pages32, 1784 const int __user *, nodes, 1785 int __user *, status, 1786 int, flags) 1787 { 1788 const void __user * __user *pages; 1789 int i; 1790 1791 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1792 for (i = 0; i < nr_pages; i++) { 1793 compat_uptr_t p; 1794 1795 if (get_user(p, pages32 + i) || 1796 put_user(compat_ptr(p), pages + i)) 1797 return -EFAULT; 1798 } 1799 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1800 } 1801 #endif /* CONFIG_COMPAT */ 1802 1803 #ifdef CONFIG_NUMA_BALANCING 1804 /* 1805 * Returns true if this is a safe migration target node for misplaced NUMA 1806 * pages. Currently it only checks the watermarks which crude 1807 */ 1808 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1809 unsigned long nr_migrate_pages) 1810 { 1811 int z; 1812 1813 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1814 struct zone *zone = pgdat->node_zones + z; 1815 1816 if (!populated_zone(zone)) 1817 continue; 1818 1819 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1820 if (!zone_watermark_ok(zone, 0, 1821 high_wmark_pages(zone) + 1822 nr_migrate_pages, 1823 0, 0)) 1824 continue; 1825 return true; 1826 } 1827 return false; 1828 } 1829 1830 static struct page *alloc_misplaced_dst_page(struct page *page, 1831 unsigned long data) 1832 { 1833 int nid = (int) data; 1834 struct page *newpage; 1835 1836 newpage = __alloc_pages_node(nid, 1837 (GFP_HIGHUSER_MOVABLE | 1838 __GFP_THISNODE | __GFP_NOMEMALLOC | 1839 __GFP_NORETRY | __GFP_NOWARN) & 1840 ~__GFP_RECLAIM, 0); 1841 1842 return newpage; 1843 } 1844 1845 /* 1846 * page migration rate limiting control. 1847 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1848 * window of time. Default here says do not migrate more than 1280M per second. 1849 */ 1850 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1851 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1852 1853 /* Returns true if the node is migrate rate-limited after the update */ 1854 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1855 unsigned long nr_pages) 1856 { 1857 /* 1858 * Rate-limit the amount of data that is being migrated to a node. 1859 * Optimal placement is no good if the memory bus is saturated and 1860 * all the time is being spent migrating! 1861 */ 1862 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1863 spin_lock(&pgdat->numabalancing_migrate_lock); 1864 pgdat->numabalancing_migrate_nr_pages = 0; 1865 pgdat->numabalancing_migrate_next_window = jiffies + 1866 msecs_to_jiffies(migrate_interval_millisecs); 1867 spin_unlock(&pgdat->numabalancing_migrate_lock); 1868 } 1869 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1870 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1871 nr_pages); 1872 return true; 1873 } 1874 1875 /* 1876 * This is an unlocked non-atomic update so errors are possible. 1877 * The consequences are failing to migrate when we potentiall should 1878 * have which is not severe enough to warrant locking. If it is ever 1879 * a problem, it can be converted to a per-cpu counter. 1880 */ 1881 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1882 return false; 1883 } 1884 1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1886 { 1887 int page_lru; 1888 1889 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1890 1891 /* Avoid migrating to a node that is nearly full */ 1892 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1893 return 0; 1894 1895 if (isolate_lru_page(page)) 1896 return 0; 1897 1898 /* 1899 * migrate_misplaced_transhuge_page() skips page migration's usual 1900 * check on page_count(), so we must do it here, now that the page 1901 * has been isolated: a GUP pin, or any other pin, prevents migration. 1902 * The expected page count is 3: 1 for page's mapcount and 1 for the 1903 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1904 */ 1905 if (PageTransHuge(page) && page_count(page) != 3) { 1906 putback_lru_page(page); 1907 return 0; 1908 } 1909 1910 page_lru = page_is_file_cache(page); 1911 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1912 hpage_nr_pages(page)); 1913 1914 /* 1915 * Isolating the page has taken another reference, so the 1916 * caller's reference can be safely dropped without the page 1917 * disappearing underneath us during migration. 1918 */ 1919 put_page(page); 1920 return 1; 1921 } 1922 1923 bool pmd_trans_migrating(pmd_t pmd) 1924 { 1925 struct page *page = pmd_page(pmd); 1926 return PageLocked(page); 1927 } 1928 1929 /* 1930 * Attempt to migrate a misplaced page to the specified destination 1931 * node. Caller is expected to have an elevated reference count on 1932 * the page that will be dropped by this function before returning. 1933 */ 1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1935 int node) 1936 { 1937 pg_data_t *pgdat = NODE_DATA(node); 1938 int isolated; 1939 int nr_remaining; 1940 LIST_HEAD(migratepages); 1941 1942 /* 1943 * Don't migrate file pages that are mapped in multiple processes 1944 * with execute permissions as they are probably shared libraries. 1945 */ 1946 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1947 (vma->vm_flags & VM_EXEC)) 1948 goto out; 1949 1950 /* 1951 * Also do not migrate dirty pages as not all filesystems can move 1952 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1953 */ 1954 if (page_is_file_cache(page) && PageDirty(page)) 1955 goto out; 1956 1957 /* 1958 * Rate-limit the amount of data that is being migrated to a node. 1959 * Optimal placement is no good if the memory bus is saturated and 1960 * all the time is being spent migrating! 1961 */ 1962 if (numamigrate_update_ratelimit(pgdat, 1)) 1963 goto out; 1964 1965 isolated = numamigrate_isolate_page(pgdat, page); 1966 if (!isolated) 1967 goto out; 1968 1969 list_add(&page->lru, &migratepages); 1970 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1971 NULL, node, MIGRATE_ASYNC, 1972 MR_NUMA_MISPLACED); 1973 if (nr_remaining) { 1974 if (!list_empty(&migratepages)) { 1975 list_del(&page->lru); 1976 dec_node_page_state(page, NR_ISOLATED_ANON + 1977 page_is_file_cache(page)); 1978 putback_lru_page(page); 1979 } 1980 isolated = 0; 1981 } else 1982 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1983 BUG_ON(!list_empty(&migratepages)); 1984 return isolated; 1985 1986 out: 1987 put_page(page); 1988 return 0; 1989 } 1990 #endif /* CONFIG_NUMA_BALANCING */ 1991 1992 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1993 /* 1994 * Migrates a THP to a given target node. page must be locked and is unlocked 1995 * before returning. 1996 */ 1997 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1998 struct vm_area_struct *vma, 1999 pmd_t *pmd, pmd_t entry, 2000 unsigned long address, 2001 struct page *page, int node) 2002 { 2003 spinlock_t *ptl; 2004 pg_data_t *pgdat = NODE_DATA(node); 2005 int isolated = 0; 2006 struct page *new_page = NULL; 2007 int page_lru = page_is_file_cache(page); 2008 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2009 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2010 2011 /* 2012 * Rate-limit the amount of data that is being migrated to a node. 2013 * Optimal placement is no good if the memory bus is saturated and 2014 * all the time is being spent migrating! 2015 */ 2016 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2017 goto out_dropref; 2018 2019 new_page = alloc_pages_node(node, 2020 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2021 HPAGE_PMD_ORDER); 2022 if (!new_page) 2023 goto out_fail; 2024 prep_transhuge_page(new_page); 2025 2026 isolated = numamigrate_isolate_page(pgdat, page); 2027 if (!isolated) { 2028 put_page(new_page); 2029 goto out_fail; 2030 } 2031 2032 /* Prepare a page as a migration target */ 2033 __SetPageLocked(new_page); 2034 if (PageSwapBacked(page)) 2035 __SetPageSwapBacked(new_page); 2036 2037 /* anon mapping, we can simply copy page->mapping to the new page: */ 2038 new_page->mapping = page->mapping; 2039 new_page->index = page->index; 2040 migrate_page_copy(new_page, page); 2041 WARN_ON(PageLRU(new_page)); 2042 2043 /* Recheck the target PMD */ 2044 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2045 ptl = pmd_lock(mm, pmd); 2046 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2047 spin_unlock(ptl); 2048 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2049 2050 /* Reverse changes made by migrate_page_copy() */ 2051 if (TestClearPageActive(new_page)) 2052 SetPageActive(page); 2053 if (TestClearPageUnevictable(new_page)) 2054 SetPageUnevictable(page); 2055 2056 unlock_page(new_page); 2057 put_page(new_page); /* Free it */ 2058 2059 /* Retake the callers reference and putback on LRU */ 2060 get_page(page); 2061 putback_lru_page(page); 2062 mod_node_page_state(page_pgdat(page), 2063 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2064 2065 goto out_unlock; 2066 } 2067 2068 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2069 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2070 2071 /* 2072 * Clear the old entry under pagetable lock and establish the new PTE. 2073 * Any parallel GUP will either observe the old page blocking on the 2074 * page lock, block on the page table lock or observe the new page. 2075 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2076 * guarantee the copy is visible before the pagetable update. 2077 */ 2078 flush_cache_range(vma, mmun_start, mmun_end); 2079 page_add_anon_rmap(new_page, vma, mmun_start, true); 2080 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2081 set_pmd_at(mm, mmun_start, pmd, entry); 2082 update_mmu_cache_pmd(vma, address, &entry); 2083 2084 page_ref_unfreeze(page, 2); 2085 mlock_migrate_page(new_page, page); 2086 page_remove_rmap(page, true); 2087 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2088 2089 spin_unlock(ptl); 2090 /* 2091 * No need to double call mmu_notifier->invalidate_range() callback as 2092 * the above pmdp_huge_clear_flush_notify() did already call it. 2093 */ 2094 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2095 2096 /* Take an "isolate" reference and put new page on the LRU. */ 2097 get_page(new_page); 2098 putback_lru_page(new_page); 2099 2100 unlock_page(new_page); 2101 unlock_page(page); 2102 put_page(page); /* Drop the rmap reference */ 2103 put_page(page); /* Drop the LRU isolation reference */ 2104 2105 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2106 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2107 2108 mod_node_page_state(page_pgdat(page), 2109 NR_ISOLATED_ANON + page_lru, 2110 -HPAGE_PMD_NR); 2111 return isolated; 2112 2113 out_fail: 2114 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2115 out_dropref: 2116 ptl = pmd_lock(mm, pmd); 2117 if (pmd_same(*pmd, entry)) { 2118 entry = pmd_modify(entry, vma->vm_page_prot); 2119 set_pmd_at(mm, mmun_start, pmd, entry); 2120 update_mmu_cache_pmd(vma, address, &entry); 2121 } 2122 spin_unlock(ptl); 2123 2124 out_unlock: 2125 unlock_page(page); 2126 put_page(page); 2127 return 0; 2128 } 2129 #endif /* CONFIG_NUMA_BALANCING */ 2130 2131 #endif /* CONFIG_NUMA */ 2132 2133 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2134 struct migrate_vma { 2135 struct vm_area_struct *vma; 2136 unsigned long *dst; 2137 unsigned long *src; 2138 unsigned long cpages; 2139 unsigned long npages; 2140 unsigned long start; 2141 unsigned long end; 2142 }; 2143 2144 static int migrate_vma_collect_hole(unsigned long start, 2145 unsigned long end, 2146 struct mm_walk *walk) 2147 { 2148 struct migrate_vma *migrate = walk->private; 2149 unsigned long addr; 2150 2151 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2152 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2153 migrate->dst[migrate->npages] = 0; 2154 migrate->npages++; 2155 migrate->cpages++; 2156 } 2157 2158 return 0; 2159 } 2160 2161 static int migrate_vma_collect_skip(unsigned long start, 2162 unsigned long end, 2163 struct mm_walk *walk) 2164 { 2165 struct migrate_vma *migrate = walk->private; 2166 unsigned long addr; 2167 2168 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2169 migrate->dst[migrate->npages] = 0; 2170 migrate->src[migrate->npages++] = 0; 2171 } 2172 2173 return 0; 2174 } 2175 2176 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2177 unsigned long start, 2178 unsigned long end, 2179 struct mm_walk *walk) 2180 { 2181 struct migrate_vma *migrate = walk->private; 2182 struct vm_area_struct *vma = walk->vma; 2183 struct mm_struct *mm = vma->vm_mm; 2184 unsigned long addr = start, unmapped = 0; 2185 spinlock_t *ptl; 2186 pte_t *ptep; 2187 2188 again: 2189 if (pmd_none(*pmdp)) 2190 return migrate_vma_collect_hole(start, end, walk); 2191 2192 if (pmd_trans_huge(*pmdp)) { 2193 struct page *page; 2194 2195 ptl = pmd_lock(mm, pmdp); 2196 if (unlikely(!pmd_trans_huge(*pmdp))) { 2197 spin_unlock(ptl); 2198 goto again; 2199 } 2200 2201 page = pmd_page(*pmdp); 2202 if (is_huge_zero_page(page)) { 2203 spin_unlock(ptl); 2204 split_huge_pmd(vma, pmdp, addr); 2205 if (pmd_trans_unstable(pmdp)) 2206 return migrate_vma_collect_skip(start, end, 2207 walk); 2208 } else { 2209 int ret; 2210 2211 get_page(page); 2212 spin_unlock(ptl); 2213 if (unlikely(!trylock_page(page))) 2214 return migrate_vma_collect_skip(start, end, 2215 walk); 2216 ret = split_huge_page(page); 2217 unlock_page(page); 2218 put_page(page); 2219 if (ret) 2220 return migrate_vma_collect_skip(start, end, 2221 walk); 2222 if (pmd_none(*pmdp)) 2223 return migrate_vma_collect_hole(start, end, 2224 walk); 2225 } 2226 } 2227 2228 if (unlikely(pmd_bad(*pmdp))) 2229 return migrate_vma_collect_skip(start, end, walk); 2230 2231 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2232 arch_enter_lazy_mmu_mode(); 2233 2234 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2235 unsigned long mpfn, pfn; 2236 struct page *page; 2237 swp_entry_t entry; 2238 pte_t pte; 2239 2240 pte = *ptep; 2241 pfn = pte_pfn(pte); 2242 2243 if (pte_none(pte)) { 2244 mpfn = MIGRATE_PFN_MIGRATE; 2245 migrate->cpages++; 2246 pfn = 0; 2247 goto next; 2248 } 2249 2250 if (!pte_present(pte)) { 2251 mpfn = pfn = 0; 2252 2253 /* 2254 * Only care about unaddressable device page special 2255 * page table entry. Other special swap entries are not 2256 * migratable, and we ignore regular swapped page. 2257 */ 2258 entry = pte_to_swp_entry(pte); 2259 if (!is_device_private_entry(entry)) 2260 goto next; 2261 2262 page = device_private_entry_to_page(entry); 2263 mpfn = migrate_pfn(page_to_pfn(page))| 2264 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2265 if (is_write_device_private_entry(entry)) 2266 mpfn |= MIGRATE_PFN_WRITE; 2267 } else { 2268 if (is_zero_pfn(pfn)) { 2269 mpfn = MIGRATE_PFN_MIGRATE; 2270 migrate->cpages++; 2271 pfn = 0; 2272 goto next; 2273 } 2274 page = _vm_normal_page(migrate->vma, addr, pte, true); 2275 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2276 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2277 } 2278 2279 /* FIXME support THP */ 2280 if (!page || !page->mapping || PageTransCompound(page)) { 2281 mpfn = pfn = 0; 2282 goto next; 2283 } 2284 pfn = page_to_pfn(page); 2285 2286 /* 2287 * By getting a reference on the page we pin it and that blocks 2288 * any kind of migration. Side effect is that it "freezes" the 2289 * pte. 2290 * 2291 * We drop this reference after isolating the page from the lru 2292 * for non device page (device page are not on the lru and thus 2293 * can't be dropped from it). 2294 */ 2295 get_page(page); 2296 migrate->cpages++; 2297 2298 /* 2299 * Optimize for the common case where page is only mapped once 2300 * in one process. If we can lock the page, then we can safely 2301 * set up a special migration page table entry now. 2302 */ 2303 if (trylock_page(page)) { 2304 pte_t swp_pte; 2305 2306 mpfn |= MIGRATE_PFN_LOCKED; 2307 ptep_get_and_clear(mm, addr, ptep); 2308 2309 /* Setup special migration page table entry */ 2310 entry = make_migration_entry(page, mpfn & 2311 MIGRATE_PFN_WRITE); 2312 swp_pte = swp_entry_to_pte(entry); 2313 if (pte_soft_dirty(pte)) 2314 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2315 set_pte_at(mm, addr, ptep, swp_pte); 2316 2317 /* 2318 * This is like regular unmap: we remove the rmap and 2319 * drop page refcount. Page won't be freed, as we took 2320 * a reference just above. 2321 */ 2322 page_remove_rmap(page, false); 2323 put_page(page); 2324 2325 if (pte_present(pte)) 2326 unmapped++; 2327 } 2328 2329 next: 2330 migrate->dst[migrate->npages] = 0; 2331 migrate->src[migrate->npages++] = mpfn; 2332 } 2333 arch_leave_lazy_mmu_mode(); 2334 pte_unmap_unlock(ptep - 1, ptl); 2335 2336 /* Only flush the TLB if we actually modified any entries */ 2337 if (unmapped) 2338 flush_tlb_range(walk->vma, start, end); 2339 2340 return 0; 2341 } 2342 2343 /* 2344 * migrate_vma_collect() - collect pages over a range of virtual addresses 2345 * @migrate: migrate struct containing all migration information 2346 * 2347 * This will walk the CPU page table. For each virtual address backed by a 2348 * valid page, it updates the src array and takes a reference on the page, in 2349 * order to pin the page until we lock it and unmap it. 2350 */ 2351 static void migrate_vma_collect(struct migrate_vma *migrate) 2352 { 2353 struct mm_walk mm_walk; 2354 2355 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2356 mm_walk.pte_entry = NULL; 2357 mm_walk.pte_hole = migrate_vma_collect_hole; 2358 mm_walk.hugetlb_entry = NULL; 2359 mm_walk.test_walk = NULL; 2360 mm_walk.vma = migrate->vma; 2361 mm_walk.mm = migrate->vma->vm_mm; 2362 mm_walk.private = migrate; 2363 2364 mmu_notifier_invalidate_range_start(mm_walk.mm, 2365 migrate->start, 2366 migrate->end); 2367 walk_page_range(migrate->start, migrate->end, &mm_walk); 2368 mmu_notifier_invalidate_range_end(mm_walk.mm, 2369 migrate->start, 2370 migrate->end); 2371 2372 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2373 } 2374 2375 /* 2376 * migrate_vma_check_page() - check if page is pinned or not 2377 * @page: struct page to check 2378 * 2379 * Pinned pages cannot be migrated. This is the same test as in 2380 * migrate_page_move_mapping(), except that here we allow migration of a 2381 * ZONE_DEVICE page. 2382 */ 2383 static bool migrate_vma_check_page(struct page *page) 2384 { 2385 /* 2386 * One extra ref because caller holds an extra reference, either from 2387 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2388 * a device page. 2389 */ 2390 int extra = 1; 2391 2392 /* 2393 * FIXME support THP (transparent huge page), it is bit more complex to 2394 * check them than regular pages, because they can be mapped with a pmd 2395 * or with a pte (split pte mapping). 2396 */ 2397 if (PageCompound(page)) 2398 return false; 2399 2400 /* Page from ZONE_DEVICE have one extra reference */ 2401 if (is_zone_device_page(page)) { 2402 /* 2403 * Private page can never be pin as they have no valid pte and 2404 * GUP will fail for those. Yet if there is a pending migration 2405 * a thread might try to wait on the pte migration entry and 2406 * will bump the page reference count. Sadly there is no way to 2407 * differentiate a regular pin from migration wait. Hence to 2408 * avoid 2 racing thread trying to migrate back to CPU to enter 2409 * infinite loop (one stoping migration because the other is 2410 * waiting on pte migration entry). We always return true here. 2411 * 2412 * FIXME proper solution is to rework migration_entry_wait() so 2413 * it does not need to take a reference on page. 2414 */ 2415 if (is_device_private_page(page)) 2416 return true; 2417 2418 /* 2419 * Only allow device public page to be migrated and account for 2420 * the extra reference count imply by ZONE_DEVICE pages. 2421 */ 2422 if (!is_device_public_page(page)) 2423 return false; 2424 extra++; 2425 } 2426 2427 /* For file back page */ 2428 if (page_mapping(page)) 2429 extra += 1 + page_has_private(page); 2430 2431 if ((page_count(page) - extra) > page_mapcount(page)) 2432 return false; 2433 2434 return true; 2435 } 2436 2437 /* 2438 * migrate_vma_prepare() - lock pages and isolate them from the lru 2439 * @migrate: migrate struct containing all migration information 2440 * 2441 * This locks pages that have been collected by migrate_vma_collect(). Once each 2442 * page is locked it is isolated from the lru (for non-device pages). Finally, 2443 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2444 * migrated by concurrent kernel threads. 2445 */ 2446 static void migrate_vma_prepare(struct migrate_vma *migrate) 2447 { 2448 const unsigned long npages = migrate->npages; 2449 const unsigned long start = migrate->start; 2450 unsigned long addr, i, restore = 0; 2451 bool allow_drain = true; 2452 2453 lru_add_drain(); 2454 2455 for (i = 0; (i < npages) && migrate->cpages; i++) { 2456 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2457 bool remap = true; 2458 2459 if (!page) 2460 continue; 2461 2462 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2463 /* 2464 * Because we are migrating several pages there can be 2465 * a deadlock between 2 concurrent migration where each 2466 * are waiting on each other page lock. 2467 * 2468 * Make migrate_vma() a best effort thing and backoff 2469 * for any page we can not lock right away. 2470 */ 2471 if (!trylock_page(page)) { 2472 migrate->src[i] = 0; 2473 migrate->cpages--; 2474 put_page(page); 2475 continue; 2476 } 2477 remap = false; 2478 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2479 } 2480 2481 /* ZONE_DEVICE pages are not on LRU */ 2482 if (!is_zone_device_page(page)) { 2483 if (!PageLRU(page) && allow_drain) { 2484 /* Drain CPU's pagevec */ 2485 lru_add_drain_all(); 2486 allow_drain = false; 2487 } 2488 2489 if (isolate_lru_page(page)) { 2490 if (remap) { 2491 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2492 migrate->cpages--; 2493 restore++; 2494 } else { 2495 migrate->src[i] = 0; 2496 unlock_page(page); 2497 migrate->cpages--; 2498 put_page(page); 2499 } 2500 continue; 2501 } 2502 2503 /* Drop the reference we took in collect */ 2504 put_page(page); 2505 } 2506 2507 if (!migrate_vma_check_page(page)) { 2508 if (remap) { 2509 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2510 migrate->cpages--; 2511 restore++; 2512 2513 if (!is_zone_device_page(page)) { 2514 get_page(page); 2515 putback_lru_page(page); 2516 } 2517 } else { 2518 migrate->src[i] = 0; 2519 unlock_page(page); 2520 migrate->cpages--; 2521 2522 if (!is_zone_device_page(page)) 2523 putback_lru_page(page); 2524 else 2525 put_page(page); 2526 } 2527 } 2528 } 2529 2530 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2531 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2532 2533 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2534 continue; 2535 2536 remove_migration_pte(page, migrate->vma, addr, page); 2537 2538 migrate->src[i] = 0; 2539 unlock_page(page); 2540 put_page(page); 2541 restore--; 2542 } 2543 } 2544 2545 /* 2546 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2547 * @migrate: migrate struct containing all migration information 2548 * 2549 * Replace page mapping (CPU page table pte) with a special migration pte entry 2550 * and check again if it has been pinned. Pinned pages are restored because we 2551 * cannot migrate them. 2552 * 2553 * This is the last step before we call the device driver callback to allocate 2554 * destination memory and copy contents of original page over to new page. 2555 */ 2556 static void migrate_vma_unmap(struct migrate_vma *migrate) 2557 { 2558 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2559 const unsigned long npages = migrate->npages; 2560 const unsigned long start = migrate->start; 2561 unsigned long addr, i, restore = 0; 2562 2563 for (i = 0; i < npages; i++) { 2564 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2565 2566 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2567 continue; 2568 2569 if (page_mapped(page)) { 2570 try_to_unmap(page, flags); 2571 if (page_mapped(page)) 2572 goto restore; 2573 } 2574 2575 if (migrate_vma_check_page(page)) 2576 continue; 2577 2578 restore: 2579 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2580 migrate->cpages--; 2581 restore++; 2582 } 2583 2584 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2585 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2586 2587 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2588 continue; 2589 2590 remove_migration_ptes(page, page, false); 2591 2592 migrate->src[i] = 0; 2593 unlock_page(page); 2594 restore--; 2595 2596 if (is_zone_device_page(page)) 2597 put_page(page); 2598 else 2599 putback_lru_page(page); 2600 } 2601 } 2602 2603 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2604 unsigned long addr, 2605 struct page *page, 2606 unsigned long *src, 2607 unsigned long *dst) 2608 { 2609 struct vm_area_struct *vma = migrate->vma; 2610 struct mm_struct *mm = vma->vm_mm; 2611 struct mem_cgroup *memcg; 2612 bool flush = false; 2613 spinlock_t *ptl; 2614 pte_t entry; 2615 pgd_t *pgdp; 2616 p4d_t *p4dp; 2617 pud_t *pudp; 2618 pmd_t *pmdp; 2619 pte_t *ptep; 2620 2621 /* Only allow populating anonymous memory */ 2622 if (!vma_is_anonymous(vma)) 2623 goto abort; 2624 2625 pgdp = pgd_offset(mm, addr); 2626 p4dp = p4d_alloc(mm, pgdp, addr); 2627 if (!p4dp) 2628 goto abort; 2629 pudp = pud_alloc(mm, p4dp, addr); 2630 if (!pudp) 2631 goto abort; 2632 pmdp = pmd_alloc(mm, pudp, addr); 2633 if (!pmdp) 2634 goto abort; 2635 2636 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2637 goto abort; 2638 2639 /* 2640 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2641 * pte_offset_map() on pmds where a huge pmd might be created 2642 * from a different thread. 2643 * 2644 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2645 * parallel threads are excluded by other means. 2646 * 2647 * Here we only have down_read(mmap_sem). 2648 */ 2649 if (pte_alloc(mm, pmdp, addr)) 2650 goto abort; 2651 2652 /* See the comment in pte_alloc_one_map() */ 2653 if (unlikely(pmd_trans_unstable(pmdp))) 2654 goto abort; 2655 2656 if (unlikely(anon_vma_prepare(vma))) 2657 goto abort; 2658 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2659 goto abort; 2660 2661 /* 2662 * The memory barrier inside __SetPageUptodate makes sure that 2663 * preceding stores to the page contents become visible before 2664 * the set_pte_at() write. 2665 */ 2666 __SetPageUptodate(page); 2667 2668 if (is_zone_device_page(page)) { 2669 if (is_device_private_page(page)) { 2670 swp_entry_t swp_entry; 2671 2672 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2673 entry = swp_entry_to_pte(swp_entry); 2674 } else if (is_device_public_page(page)) { 2675 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2676 if (vma->vm_flags & VM_WRITE) 2677 entry = pte_mkwrite(pte_mkdirty(entry)); 2678 entry = pte_mkdevmap(entry); 2679 } 2680 } else { 2681 entry = mk_pte(page, vma->vm_page_prot); 2682 if (vma->vm_flags & VM_WRITE) 2683 entry = pte_mkwrite(pte_mkdirty(entry)); 2684 } 2685 2686 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2687 2688 if (pte_present(*ptep)) { 2689 unsigned long pfn = pte_pfn(*ptep); 2690 2691 if (!is_zero_pfn(pfn)) { 2692 pte_unmap_unlock(ptep, ptl); 2693 mem_cgroup_cancel_charge(page, memcg, false); 2694 goto abort; 2695 } 2696 flush = true; 2697 } else if (!pte_none(*ptep)) { 2698 pte_unmap_unlock(ptep, ptl); 2699 mem_cgroup_cancel_charge(page, memcg, false); 2700 goto abort; 2701 } 2702 2703 /* 2704 * Check for usefaultfd but do not deliver the fault. Instead, 2705 * just back off. 2706 */ 2707 if (userfaultfd_missing(vma)) { 2708 pte_unmap_unlock(ptep, ptl); 2709 mem_cgroup_cancel_charge(page, memcg, false); 2710 goto abort; 2711 } 2712 2713 inc_mm_counter(mm, MM_ANONPAGES); 2714 page_add_new_anon_rmap(page, vma, addr, false); 2715 mem_cgroup_commit_charge(page, memcg, false, false); 2716 if (!is_zone_device_page(page)) 2717 lru_cache_add_active_or_unevictable(page, vma); 2718 get_page(page); 2719 2720 if (flush) { 2721 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2722 ptep_clear_flush_notify(vma, addr, ptep); 2723 set_pte_at_notify(mm, addr, ptep, entry); 2724 update_mmu_cache(vma, addr, ptep); 2725 } else { 2726 /* No need to invalidate - it was non-present before */ 2727 set_pte_at(mm, addr, ptep, entry); 2728 update_mmu_cache(vma, addr, ptep); 2729 } 2730 2731 pte_unmap_unlock(ptep, ptl); 2732 *src = MIGRATE_PFN_MIGRATE; 2733 return; 2734 2735 abort: 2736 *src &= ~MIGRATE_PFN_MIGRATE; 2737 } 2738 2739 /* 2740 * migrate_vma_pages() - migrate meta-data from src page to dst page 2741 * @migrate: migrate struct containing all migration information 2742 * 2743 * This migrates struct page meta-data from source struct page to destination 2744 * struct page. This effectively finishes the migration from source page to the 2745 * destination page. 2746 */ 2747 static void migrate_vma_pages(struct migrate_vma *migrate) 2748 { 2749 const unsigned long npages = migrate->npages; 2750 const unsigned long start = migrate->start; 2751 struct vm_area_struct *vma = migrate->vma; 2752 struct mm_struct *mm = vma->vm_mm; 2753 unsigned long addr, i, mmu_start; 2754 bool notified = false; 2755 2756 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2757 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2758 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2759 struct address_space *mapping; 2760 int r; 2761 2762 if (!newpage) { 2763 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2764 continue; 2765 } 2766 2767 if (!page) { 2768 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2769 continue; 2770 } 2771 if (!notified) { 2772 mmu_start = addr; 2773 notified = true; 2774 mmu_notifier_invalidate_range_start(mm, 2775 mmu_start, 2776 migrate->end); 2777 } 2778 migrate_vma_insert_page(migrate, addr, newpage, 2779 &migrate->src[i], 2780 &migrate->dst[i]); 2781 continue; 2782 } 2783 2784 mapping = page_mapping(page); 2785 2786 if (is_zone_device_page(newpage)) { 2787 if (is_device_private_page(newpage)) { 2788 /* 2789 * For now only support private anonymous when 2790 * migrating to un-addressable device memory. 2791 */ 2792 if (mapping) { 2793 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2794 continue; 2795 } 2796 } else if (!is_device_public_page(newpage)) { 2797 /* 2798 * Other types of ZONE_DEVICE page are not 2799 * supported. 2800 */ 2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2802 continue; 2803 } 2804 } 2805 2806 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2807 if (r != MIGRATEPAGE_SUCCESS) 2808 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2809 } 2810 2811 /* 2812 * No need to double call mmu_notifier->invalidate_range() callback as 2813 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2814 * did already call it. 2815 */ 2816 if (notified) 2817 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2818 migrate->end); 2819 } 2820 2821 /* 2822 * migrate_vma_finalize() - restore CPU page table entry 2823 * @migrate: migrate struct containing all migration information 2824 * 2825 * This replaces the special migration pte entry with either a mapping to the 2826 * new page if migration was successful for that page, or to the original page 2827 * otherwise. 2828 * 2829 * This also unlocks the pages and puts them back on the lru, or drops the extra 2830 * refcount, for device pages. 2831 */ 2832 static void migrate_vma_finalize(struct migrate_vma *migrate) 2833 { 2834 const unsigned long npages = migrate->npages; 2835 unsigned long i; 2836 2837 for (i = 0; i < npages; i++) { 2838 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2839 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2840 2841 if (!page) { 2842 if (newpage) { 2843 unlock_page(newpage); 2844 put_page(newpage); 2845 } 2846 continue; 2847 } 2848 2849 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2850 if (newpage) { 2851 unlock_page(newpage); 2852 put_page(newpage); 2853 } 2854 newpage = page; 2855 } 2856 2857 remove_migration_ptes(page, newpage, false); 2858 unlock_page(page); 2859 migrate->cpages--; 2860 2861 if (is_zone_device_page(page)) 2862 put_page(page); 2863 else 2864 putback_lru_page(page); 2865 2866 if (newpage != page) { 2867 unlock_page(newpage); 2868 if (is_zone_device_page(newpage)) 2869 put_page(newpage); 2870 else 2871 putback_lru_page(newpage); 2872 } 2873 } 2874 } 2875 2876 /* 2877 * migrate_vma() - migrate a range of memory inside vma 2878 * 2879 * @ops: migration callback for allocating destination memory and copying 2880 * @vma: virtual memory area containing the range to be migrated 2881 * @start: start address of the range to migrate (inclusive) 2882 * @end: end address of the range to migrate (exclusive) 2883 * @src: array of hmm_pfn_t containing source pfns 2884 * @dst: array of hmm_pfn_t containing destination pfns 2885 * @private: pointer passed back to each of the callback 2886 * Returns: 0 on success, error code otherwise 2887 * 2888 * This function tries to migrate a range of memory virtual address range, using 2889 * callbacks to allocate and copy memory from source to destination. First it 2890 * collects all the pages backing each virtual address in the range, saving this 2891 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2892 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2893 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2894 * in the corresponding src array entry. It then restores any pages that are 2895 * pinned, by remapping and unlocking those pages. 2896 * 2897 * At this point it calls the alloc_and_copy() callback. For documentation on 2898 * what is expected from that callback, see struct migrate_vma_ops comments in 2899 * include/linux/migrate.h 2900 * 2901 * After the alloc_and_copy() callback, this function goes over each entry in 2902 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2903 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2904 * then the function tries to migrate struct page information from the source 2905 * struct page to the destination struct page. If it fails to migrate the struct 2906 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2907 * array. 2908 * 2909 * At this point all successfully migrated pages have an entry in the src 2910 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2911 * array entry with MIGRATE_PFN_VALID flag set. 2912 * 2913 * It then calls the finalize_and_map() callback. See comments for "struct 2914 * migrate_vma_ops", in include/linux/migrate.h for details about 2915 * finalize_and_map() behavior. 2916 * 2917 * After the finalize_and_map() callback, for successfully migrated pages, this 2918 * function updates the CPU page table to point to new pages, otherwise it 2919 * restores the CPU page table to point to the original source pages. 2920 * 2921 * Function returns 0 after the above steps, even if no pages were migrated 2922 * (The function only returns an error if any of the arguments are invalid.) 2923 * 2924 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2925 * unsigned long entries. 2926 */ 2927 int migrate_vma(const struct migrate_vma_ops *ops, 2928 struct vm_area_struct *vma, 2929 unsigned long start, 2930 unsigned long end, 2931 unsigned long *src, 2932 unsigned long *dst, 2933 void *private) 2934 { 2935 struct migrate_vma migrate; 2936 2937 /* Sanity check the arguments */ 2938 start &= PAGE_MASK; 2939 end &= PAGE_MASK; 2940 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) 2941 return -EINVAL; 2942 if (start < vma->vm_start || start >= vma->vm_end) 2943 return -EINVAL; 2944 if (end <= vma->vm_start || end > vma->vm_end) 2945 return -EINVAL; 2946 if (!ops || !src || !dst || start >= end) 2947 return -EINVAL; 2948 2949 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2950 migrate.src = src; 2951 migrate.dst = dst; 2952 migrate.start = start; 2953 migrate.npages = 0; 2954 migrate.cpages = 0; 2955 migrate.end = end; 2956 migrate.vma = vma; 2957 2958 /* Collect, and try to unmap source pages */ 2959 migrate_vma_collect(&migrate); 2960 if (!migrate.cpages) 2961 return 0; 2962 2963 /* Lock and isolate page */ 2964 migrate_vma_prepare(&migrate); 2965 if (!migrate.cpages) 2966 return 0; 2967 2968 /* Unmap pages */ 2969 migrate_vma_unmap(&migrate); 2970 if (!migrate.cpages) 2971 return 0; 2972 2973 /* 2974 * At this point pages are locked and unmapped, and thus they have 2975 * stable content and can safely be copied to destination memory that 2976 * is allocated by the callback. 2977 * 2978 * Note that migration can fail in migrate_vma_struct_page() for each 2979 * individual page. 2980 */ 2981 ops->alloc_and_copy(vma, src, dst, start, end, private); 2982 2983 /* This does the real migration of struct page */ 2984 migrate_vma_pages(&migrate); 2985 2986 ops->finalize_and_map(vma, src, dst, start, end, private); 2987 2988 /* Unlock and remap pages */ 2989 migrate_vma_finalize(&migrate); 2990 2991 return 0; 2992 } 2993 EXPORT_SYMBOL(migrate_vma); 2994 #endif /* defined(MIGRATE_VMA_HELPER) */ 2995