xref: /openbmc/linux/mm/migrate.c (revision 22246614)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 
34 #include "internal.h"
35 
36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 
38 /*
39  * Isolate one page from the LRU lists. If successful put it onto
40  * the indicated list with elevated page count.
41  *
42  * Result:
43  *  -EBUSY: page not on LRU list
44  *  0: page removed from LRU list and added to the specified list.
45  */
46 int isolate_lru_page(struct page *page, struct list_head *pagelist)
47 {
48 	int ret = -EBUSY;
49 
50 	if (PageLRU(page)) {
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irq(&zone->lru_lock);
54 		if (PageLRU(page) && get_page_unless_zero(page)) {
55 			ret = 0;
56 			ClearPageLRU(page);
57 			if (PageActive(page))
58 				del_page_from_active_list(zone, page);
59 			else
60 				del_page_from_inactive_list(zone, page);
61 			list_add_tail(&page->lru, pagelist);
62 		}
63 		spin_unlock_irq(&zone->lru_lock);
64 	}
65 	return ret;
66 }
67 
68 /*
69  * migrate_prep() needs to be called before we start compiling a list of pages
70  * to be migrated using isolate_lru_page().
71  */
72 int migrate_prep(void)
73 {
74 	/*
75 	 * Clear the LRU lists so pages can be isolated.
76 	 * Note that pages may be moved off the LRU after we have
77 	 * drained them. Those pages will fail to migrate like other
78 	 * pages that may be busy.
79 	 */
80 	lru_add_drain_all();
81 
82 	return 0;
83 }
84 
85 static inline void move_to_lru(struct page *page)
86 {
87 	if (PageActive(page)) {
88 		/*
89 		 * lru_cache_add_active checks that
90 		 * the PG_active bit is off.
91 		 */
92 		ClearPageActive(page);
93 		lru_cache_add_active(page);
94 	} else {
95 		lru_cache_add(page);
96 	}
97 	put_page(page);
98 }
99 
100 /*
101  * Add isolated pages on the list back to the LRU.
102  *
103  * returns the number of pages put back.
104  */
105 int putback_lru_pages(struct list_head *l)
106 {
107 	struct page *page;
108 	struct page *page2;
109 	int count = 0;
110 
111 	list_for_each_entry_safe(page, page2, l, lru) {
112 		list_del(&page->lru);
113 		move_to_lru(page);
114 		count++;
115 	}
116 	return count;
117 }
118 
119 /*
120  * Restore a potential migration pte to a working pte entry
121  */
122 static void remove_migration_pte(struct vm_area_struct *vma,
123 		struct page *old, struct page *new)
124 {
125 	struct mm_struct *mm = vma->vm_mm;
126 	swp_entry_t entry;
127  	pgd_t *pgd;
128  	pud_t *pud;
129  	pmd_t *pmd;
130 	pte_t *ptep, pte;
131  	spinlock_t *ptl;
132 	unsigned long addr = page_address_in_vma(new, vma);
133 
134 	if (addr == -EFAULT)
135 		return;
136 
137  	pgd = pgd_offset(mm, addr);
138 	if (!pgd_present(*pgd))
139                 return;
140 
141 	pud = pud_offset(pgd, addr);
142 	if (!pud_present(*pud))
143                 return;
144 
145 	pmd = pmd_offset(pud, addr);
146 	if (!pmd_present(*pmd))
147 		return;
148 
149 	ptep = pte_offset_map(pmd, addr);
150 
151 	if (!is_swap_pte(*ptep)) {
152 		pte_unmap(ptep);
153  		return;
154  	}
155 
156  	ptl = pte_lockptr(mm, pmd);
157  	spin_lock(ptl);
158 	pte = *ptep;
159 	if (!is_swap_pte(pte))
160 		goto out;
161 
162 	entry = pte_to_swp_entry(pte);
163 
164 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
165 		goto out;
166 
167 	/*
168 	 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
169 	 * Failure is not an option here: we're now expected to remove every
170 	 * migration pte, and will cause crashes otherwise.  Normally this
171 	 * is not an issue: mem_cgroup_prepare_migration bumped up the old
172 	 * page_cgroup count for safety, that's now attached to the new page,
173 	 * so this charge should just be another incrementation of the count,
174 	 * to keep in balance with rmap.c's mem_cgroup_uncharging.  But if
175 	 * there's been a force_empty, those reference counts may no longer
176 	 * be reliable, and this charge can actually fail: oh well, we don't
177 	 * make the situation any worse by proceeding as if it had succeeded.
178 	 */
179 	mem_cgroup_charge(new, mm, GFP_ATOMIC);
180 
181 	get_page(new);
182 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
183 	if (is_write_migration_entry(entry))
184 		pte = pte_mkwrite(pte);
185 	flush_cache_page(vma, addr, pte_pfn(pte));
186 	set_pte_at(mm, addr, ptep, pte);
187 
188 	if (PageAnon(new))
189 		page_add_anon_rmap(new, vma, addr);
190 	else
191 		page_add_file_rmap(new);
192 
193 	/* No need to invalidate - it was non-present before */
194 	update_mmu_cache(vma, addr, pte);
195 
196 out:
197 	pte_unmap_unlock(ptep, ptl);
198 }
199 
200 /*
201  * Note that remove_file_migration_ptes will only work on regular mappings,
202  * Nonlinear mappings do not use migration entries.
203  */
204 static void remove_file_migration_ptes(struct page *old, struct page *new)
205 {
206 	struct vm_area_struct *vma;
207 	struct address_space *mapping = page_mapping(new);
208 	struct prio_tree_iter iter;
209 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
210 
211 	if (!mapping)
212 		return;
213 
214 	spin_lock(&mapping->i_mmap_lock);
215 
216 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
217 		remove_migration_pte(vma, old, new);
218 
219 	spin_unlock(&mapping->i_mmap_lock);
220 }
221 
222 /*
223  * Must hold mmap_sem lock on at least one of the vmas containing
224  * the page so that the anon_vma cannot vanish.
225  */
226 static void remove_anon_migration_ptes(struct page *old, struct page *new)
227 {
228 	struct anon_vma *anon_vma;
229 	struct vm_area_struct *vma;
230 	unsigned long mapping;
231 
232 	mapping = (unsigned long)new->mapping;
233 
234 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
235 		return;
236 
237 	/*
238 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
239 	 */
240 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
241 	spin_lock(&anon_vma->lock);
242 
243 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
244 		remove_migration_pte(vma, old, new);
245 
246 	spin_unlock(&anon_vma->lock);
247 }
248 
249 /*
250  * Get rid of all migration entries and replace them by
251  * references to the indicated page.
252  */
253 static void remove_migration_ptes(struct page *old, struct page *new)
254 {
255 	if (PageAnon(new))
256 		remove_anon_migration_ptes(old, new);
257 	else
258 		remove_file_migration_ptes(old, new);
259 }
260 
261 /*
262  * Something used the pte of a page under migration. We need to
263  * get to the page and wait until migration is finished.
264  * When we return from this function the fault will be retried.
265  *
266  * This function is called from do_swap_page().
267  */
268 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
269 				unsigned long address)
270 {
271 	pte_t *ptep, pte;
272 	spinlock_t *ptl;
273 	swp_entry_t entry;
274 	struct page *page;
275 
276 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
277 	pte = *ptep;
278 	if (!is_swap_pte(pte))
279 		goto out;
280 
281 	entry = pte_to_swp_entry(pte);
282 	if (!is_migration_entry(entry))
283 		goto out;
284 
285 	page = migration_entry_to_page(entry);
286 
287 	get_page(page);
288 	pte_unmap_unlock(ptep, ptl);
289 	wait_on_page_locked(page);
290 	put_page(page);
291 	return;
292 out:
293 	pte_unmap_unlock(ptep, ptl);
294 }
295 
296 /*
297  * Replace the page in the mapping.
298  *
299  * The number of remaining references must be:
300  * 1 for anonymous pages without a mapping
301  * 2 for pages with a mapping
302  * 3 for pages with a mapping and PagePrivate set.
303  */
304 static int migrate_page_move_mapping(struct address_space *mapping,
305 		struct page *newpage, struct page *page)
306 {
307 	void **pslot;
308 
309 	if (!mapping) {
310 		/* Anonymous page without mapping */
311 		if (page_count(page) != 1)
312 			return -EAGAIN;
313 		return 0;
314 	}
315 
316 	write_lock_irq(&mapping->tree_lock);
317 
318 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319  					page_index(page));
320 
321 	if (page_count(page) != 2 + !!PagePrivate(page) ||
322 			(struct page *)radix_tree_deref_slot(pslot) != page) {
323 		write_unlock_irq(&mapping->tree_lock);
324 		return -EAGAIN;
325 	}
326 
327 	/*
328 	 * Now we know that no one else is looking at the page.
329 	 */
330 	get_page(newpage);	/* add cache reference */
331 #ifdef CONFIG_SWAP
332 	if (PageSwapCache(page)) {
333 		SetPageSwapCache(newpage);
334 		set_page_private(newpage, page_private(page));
335 	}
336 #endif
337 
338 	radix_tree_replace_slot(pslot, newpage);
339 
340 	/*
341 	 * Drop cache reference from old page.
342 	 * We know this isn't the last reference.
343 	 */
344 	__put_page(page);
345 
346 	/*
347 	 * If moved to a different zone then also account
348 	 * the page for that zone. Other VM counters will be
349 	 * taken care of when we establish references to the
350 	 * new page and drop references to the old page.
351 	 *
352 	 * Note that anonymous pages are accounted for
353 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
354 	 * are mapped to swap space.
355 	 */
356 	__dec_zone_page_state(page, NR_FILE_PAGES);
357 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
358 
359 	write_unlock_irq(&mapping->tree_lock);
360 
361 	return 0;
362 }
363 
364 /*
365  * Copy the page to its new location
366  */
367 static void migrate_page_copy(struct page *newpage, struct page *page)
368 {
369 	copy_highpage(newpage, page);
370 
371 	if (PageError(page))
372 		SetPageError(newpage);
373 	if (PageReferenced(page))
374 		SetPageReferenced(newpage);
375 	if (PageUptodate(page))
376 		SetPageUptodate(newpage);
377 	if (PageActive(page))
378 		SetPageActive(newpage);
379 	if (PageChecked(page))
380 		SetPageChecked(newpage);
381 	if (PageMappedToDisk(page))
382 		SetPageMappedToDisk(newpage);
383 
384 	if (PageDirty(page)) {
385 		clear_page_dirty_for_io(page);
386 		/*
387 		 * Want to mark the page and the radix tree as dirty, and
388 		 * redo the accounting that clear_page_dirty_for_io undid,
389 		 * but we can't use set_page_dirty because that function
390 		 * is actually a signal that all of the page has become dirty.
391 		 * Wheras only part of our page may be dirty.
392 		 */
393 		__set_page_dirty_nobuffers(newpage);
394  	}
395 
396 #ifdef CONFIG_SWAP
397 	ClearPageSwapCache(page);
398 #endif
399 	ClearPageActive(page);
400 	ClearPagePrivate(page);
401 	set_page_private(page, 0);
402 	page->mapping = NULL;
403 
404 	/*
405 	 * If any waiters have accumulated on the new page then
406 	 * wake them up.
407 	 */
408 	if (PageWriteback(newpage))
409 		end_page_writeback(newpage);
410 }
411 
412 /************************************************************
413  *                    Migration functions
414  ***********************************************************/
415 
416 /* Always fail migration. Used for mappings that are not movable */
417 int fail_migrate_page(struct address_space *mapping,
418 			struct page *newpage, struct page *page)
419 {
420 	return -EIO;
421 }
422 EXPORT_SYMBOL(fail_migrate_page);
423 
424 /*
425  * Common logic to directly migrate a single page suitable for
426  * pages that do not use PagePrivate.
427  *
428  * Pages are locked upon entry and exit.
429  */
430 int migrate_page(struct address_space *mapping,
431 		struct page *newpage, struct page *page)
432 {
433 	int rc;
434 
435 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
436 
437 	rc = migrate_page_move_mapping(mapping, newpage, page);
438 
439 	if (rc)
440 		return rc;
441 
442 	migrate_page_copy(newpage, page);
443 	return 0;
444 }
445 EXPORT_SYMBOL(migrate_page);
446 
447 #ifdef CONFIG_BLOCK
448 /*
449  * Migration function for pages with buffers. This function can only be used
450  * if the underlying filesystem guarantees that no other references to "page"
451  * exist.
452  */
453 int buffer_migrate_page(struct address_space *mapping,
454 		struct page *newpage, struct page *page)
455 {
456 	struct buffer_head *bh, *head;
457 	int rc;
458 
459 	if (!page_has_buffers(page))
460 		return migrate_page(mapping, newpage, page);
461 
462 	head = page_buffers(page);
463 
464 	rc = migrate_page_move_mapping(mapping, newpage, page);
465 
466 	if (rc)
467 		return rc;
468 
469 	bh = head;
470 	do {
471 		get_bh(bh);
472 		lock_buffer(bh);
473 		bh = bh->b_this_page;
474 
475 	} while (bh != head);
476 
477 	ClearPagePrivate(page);
478 	set_page_private(newpage, page_private(page));
479 	set_page_private(page, 0);
480 	put_page(page);
481 	get_page(newpage);
482 
483 	bh = head;
484 	do {
485 		set_bh_page(bh, newpage, bh_offset(bh));
486 		bh = bh->b_this_page;
487 
488 	} while (bh != head);
489 
490 	SetPagePrivate(newpage);
491 
492 	migrate_page_copy(newpage, page);
493 
494 	bh = head;
495 	do {
496 		unlock_buffer(bh);
497  		put_bh(bh);
498 		bh = bh->b_this_page;
499 
500 	} while (bh != head);
501 
502 	return 0;
503 }
504 EXPORT_SYMBOL(buffer_migrate_page);
505 #endif
506 
507 /*
508  * Writeback a page to clean the dirty state
509  */
510 static int writeout(struct address_space *mapping, struct page *page)
511 {
512 	struct writeback_control wbc = {
513 		.sync_mode = WB_SYNC_NONE,
514 		.nr_to_write = 1,
515 		.range_start = 0,
516 		.range_end = LLONG_MAX,
517 		.nonblocking = 1,
518 		.for_reclaim = 1
519 	};
520 	int rc;
521 
522 	if (!mapping->a_ops->writepage)
523 		/* No write method for the address space */
524 		return -EINVAL;
525 
526 	if (!clear_page_dirty_for_io(page))
527 		/* Someone else already triggered a write */
528 		return -EAGAIN;
529 
530 	/*
531 	 * A dirty page may imply that the underlying filesystem has
532 	 * the page on some queue. So the page must be clean for
533 	 * migration. Writeout may mean we loose the lock and the
534 	 * page state is no longer what we checked for earlier.
535 	 * At this point we know that the migration attempt cannot
536 	 * be successful.
537 	 */
538 	remove_migration_ptes(page, page);
539 
540 	rc = mapping->a_ops->writepage(page, &wbc);
541 	if (rc < 0)
542 		/* I/O Error writing */
543 		return -EIO;
544 
545 	if (rc != AOP_WRITEPAGE_ACTIVATE)
546 		/* unlocked. Relock */
547 		lock_page(page);
548 
549 	return -EAGAIN;
550 }
551 
552 /*
553  * Default handling if a filesystem does not provide a migration function.
554  */
555 static int fallback_migrate_page(struct address_space *mapping,
556 	struct page *newpage, struct page *page)
557 {
558 	if (PageDirty(page))
559 		return writeout(mapping, page);
560 
561 	/*
562 	 * Buffers may be managed in a filesystem specific way.
563 	 * We must have no buffers or drop them.
564 	 */
565 	if (PagePrivate(page) &&
566 	    !try_to_release_page(page, GFP_KERNEL))
567 		return -EAGAIN;
568 
569 	return migrate_page(mapping, newpage, page);
570 }
571 
572 /*
573  * Move a page to a newly allocated page
574  * The page is locked and all ptes have been successfully removed.
575  *
576  * The new page will have replaced the old page if this function
577  * is successful.
578  */
579 static int move_to_new_page(struct page *newpage, struct page *page)
580 {
581 	struct address_space *mapping;
582 	int rc;
583 
584 	/*
585 	 * Block others from accessing the page when we get around to
586 	 * establishing additional references. We are the only one
587 	 * holding a reference to the new page at this point.
588 	 */
589 	if (TestSetPageLocked(newpage))
590 		BUG();
591 
592 	/* Prepare mapping for the new page.*/
593 	newpage->index = page->index;
594 	newpage->mapping = page->mapping;
595 
596 	mapping = page_mapping(page);
597 	if (!mapping)
598 		rc = migrate_page(mapping, newpage, page);
599 	else if (mapping->a_ops->migratepage)
600 		/*
601 		 * Most pages have a mapping and most filesystems
602 		 * should provide a migration function. Anonymous
603 		 * pages are part of swap space which also has its
604 		 * own migration function. This is the most common
605 		 * path for page migration.
606 		 */
607 		rc = mapping->a_ops->migratepage(mapping,
608 						newpage, page);
609 	else
610 		rc = fallback_migrate_page(mapping, newpage, page);
611 
612 	if (!rc) {
613 		mem_cgroup_page_migration(page, newpage);
614 		remove_migration_ptes(page, newpage);
615 	} else
616 		newpage->mapping = NULL;
617 
618 	unlock_page(newpage);
619 
620 	return rc;
621 }
622 
623 /*
624  * Obtain the lock on page, remove all ptes and migrate the page
625  * to the newly allocated page in newpage.
626  */
627 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
628 			struct page *page, int force)
629 {
630 	int rc = 0;
631 	int *result = NULL;
632 	struct page *newpage = get_new_page(page, private, &result);
633 	int rcu_locked = 0;
634 	int charge = 0;
635 
636 	if (!newpage)
637 		return -ENOMEM;
638 
639 	if (page_count(page) == 1)
640 		/* page was freed from under us. So we are done. */
641 		goto move_newpage;
642 
643 	rc = -EAGAIN;
644 	if (TestSetPageLocked(page)) {
645 		if (!force)
646 			goto move_newpage;
647 		lock_page(page);
648 	}
649 
650 	if (PageWriteback(page)) {
651 		if (!force)
652 			goto unlock;
653 		wait_on_page_writeback(page);
654 	}
655 	/*
656 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
657 	 * we cannot notice that anon_vma is freed while we migrates a page.
658 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
659 	 * of migration. File cache pages are no problem because of page_lock()
660 	 * File Caches may use write_page() or lock_page() in migration, then,
661 	 * just care Anon page here.
662 	 */
663 	if (PageAnon(page)) {
664 		rcu_read_lock();
665 		rcu_locked = 1;
666 	}
667 
668 	/*
669 	 * Corner case handling:
670 	 * 1. When a new swap-cache page is read into, it is added to the LRU
671 	 * and treated as swapcache but it has no rmap yet.
672 	 * Calling try_to_unmap() against a page->mapping==NULL page will
673 	 * trigger a BUG.  So handle it here.
674 	 * 2. An orphaned page (see truncate_complete_page) might have
675 	 * fs-private metadata. The page can be picked up due to memory
676 	 * offlining.  Everywhere else except page reclaim, the page is
677 	 * invisible to the vm, so the page can not be migrated.  So try to
678 	 * free the metadata, so the page can be freed.
679 	 */
680 	if (!page->mapping) {
681 		if (!PageAnon(page) && PagePrivate(page)) {
682 			/*
683 			 * Go direct to try_to_free_buffers() here because
684 			 * a) that's what try_to_release_page() would do anyway
685 			 * b) we may be under rcu_read_lock() here, so we can't
686 			 *    use GFP_KERNEL which is what try_to_release_page()
687 			 *    needs to be effective.
688 			 */
689 			try_to_free_buffers(page);
690 		}
691 		goto rcu_unlock;
692 	}
693 
694 	charge = mem_cgroup_prepare_migration(page);
695 	/* Establish migration ptes or remove ptes */
696 	try_to_unmap(page, 1);
697 
698 	if (!page_mapped(page))
699 		rc = move_to_new_page(newpage, page);
700 
701 	if (rc) {
702 		remove_migration_ptes(page, page);
703 		if (charge)
704 			mem_cgroup_end_migration(page);
705 	} else if (charge)
706  		mem_cgroup_end_migration(newpage);
707 rcu_unlock:
708 	if (rcu_locked)
709 		rcu_read_unlock();
710 
711 unlock:
712 
713 	unlock_page(page);
714 
715 	if (rc != -EAGAIN) {
716  		/*
717  		 * A page that has been migrated has all references
718  		 * removed and will be freed. A page that has not been
719  		 * migrated will have kepts its references and be
720  		 * restored.
721  		 */
722  		list_del(&page->lru);
723  		move_to_lru(page);
724 	}
725 
726 move_newpage:
727 	/*
728 	 * Move the new page to the LRU. If migration was not successful
729 	 * then this will free the page.
730 	 */
731 	move_to_lru(newpage);
732 	if (result) {
733 		if (rc)
734 			*result = rc;
735 		else
736 			*result = page_to_nid(newpage);
737 	}
738 	return rc;
739 }
740 
741 /*
742  * migrate_pages
743  *
744  * The function takes one list of pages to migrate and a function
745  * that determines from the page to be migrated and the private data
746  * the target of the move and allocates the page.
747  *
748  * The function returns after 10 attempts or if no pages
749  * are movable anymore because to has become empty
750  * or no retryable pages exist anymore. All pages will be
751  * returned to the LRU or freed.
752  *
753  * Return: Number of pages not migrated or error code.
754  */
755 int migrate_pages(struct list_head *from,
756 		new_page_t get_new_page, unsigned long private)
757 {
758 	int retry = 1;
759 	int nr_failed = 0;
760 	int pass = 0;
761 	struct page *page;
762 	struct page *page2;
763 	int swapwrite = current->flags & PF_SWAPWRITE;
764 	int rc;
765 
766 	if (!swapwrite)
767 		current->flags |= PF_SWAPWRITE;
768 
769 	for(pass = 0; pass < 10 && retry; pass++) {
770 		retry = 0;
771 
772 		list_for_each_entry_safe(page, page2, from, lru) {
773 			cond_resched();
774 
775 			rc = unmap_and_move(get_new_page, private,
776 						page, pass > 2);
777 
778 			switch(rc) {
779 			case -ENOMEM:
780 				goto out;
781 			case -EAGAIN:
782 				retry++;
783 				break;
784 			case 0:
785 				break;
786 			default:
787 				/* Permanent failure */
788 				nr_failed++;
789 				break;
790 			}
791 		}
792 	}
793 	rc = 0;
794 out:
795 	if (!swapwrite)
796 		current->flags &= ~PF_SWAPWRITE;
797 
798 	putback_lru_pages(from);
799 
800 	if (rc)
801 		return rc;
802 
803 	return nr_failed + retry;
804 }
805 
806 #ifdef CONFIG_NUMA
807 /*
808  * Move a list of individual pages
809  */
810 struct page_to_node {
811 	unsigned long addr;
812 	struct page *page;
813 	int node;
814 	int status;
815 };
816 
817 static struct page *new_page_node(struct page *p, unsigned long private,
818 		int **result)
819 {
820 	struct page_to_node *pm = (struct page_to_node *)private;
821 
822 	while (pm->node != MAX_NUMNODES && pm->page != p)
823 		pm++;
824 
825 	if (pm->node == MAX_NUMNODES)
826 		return NULL;
827 
828 	*result = &pm->status;
829 
830 	return alloc_pages_node(pm->node,
831 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
832 }
833 
834 /*
835  * Move a set of pages as indicated in the pm array. The addr
836  * field must be set to the virtual address of the page to be moved
837  * and the node number must contain a valid target node.
838  */
839 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
840 				int migrate_all)
841 {
842 	int err;
843 	struct page_to_node *pp;
844 	LIST_HEAD(pagelist);
845 
846 	down_read(&mm->mmap_sem);
847 
848 	/*
849 	 * Build a list of pages to migrate
850 	 */
851 	migrate_prep();
852 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
853 		struct vm_area_struct *vma;
854 		struct page *page;
855 
856 		/*
857 		 * A valid page pointer that will not match any of the
858 		 * pages that will be moved.
859 		 */
860 		pp->page = ZERO_PAGE(0);
861 
862 		err = -EFAULT;
863 		vma = find_vma(mm, pp->addr);
864 		if (!vma || !vma_migratable(vma))
865 			goto set_status;
866 
867 		page = follow_page(vma, pp->addr, FOLL_GET);
868 		err = -ENOENT;
869 		if (!page)
870 			goto set_status;
871 
872 		if (PageReserved(page))		/* Check for zero page */
873 			goto put_and_set;
874 
875 		pp->page = page;
876 		err = page_to_nid(page);
877 
878 		if (err == pp->node)
879 			/*
880 			 * Node already in the right place
881 			 */
882 			goto put_and_set;
883 
884 		err = -EACCES;
885 		if (page_mapcount(page) > 1 &&
886 				!migrate_all)
887 			goto put_and_set;
888 
889 		err = isolate_lru_page(page, &pagelist);
890 put_and_set:
891 		/*
892 		 * Either remove the duplicate refcount from
893 		 * isolate_lru_page() or drop the page ref if it was
894 		 * not isolated.
895 		 */
896 		put_page(page);
897 set_status:
898 		pp->status = err;
899 	}
900 
901 	if (!list_empty(&pagelist))
902 		err = migrate_pages(&pagelist, new_page_node,
903 				(unsigned long)pm);
904 	else
905 		err = -ENOENT;
906 
907 	up_read(&mm->mmap_sem);
908 	return err;
909 }
910 
911 /*
912  * Determine the nodes of a list of pages. The addr in the pm array
913  * must have been set to the virtual address of which we want to determine
914  * the node number.
915  */
916 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
917 {
918 	down_read(&mm->mmap_sem);
919 
920 	for ( ; pm->node != MAX_NUMNODES; pm++) {
921 		struct vm_area_struct *vma;
922 		struct page *page;
923 		int err;
924 
925 		err = -EFAULT;
926 		vma = find_vma(mm, pm->addr);
927 		if (!vma)
928 			goto set_status;
929 
930 		page = follow_page(vma, pm->addr, 0);
931 		err = -ENOENT;
932 		/* Use PageReserved to check for zero page */
933 		if (!page || PageReserved(page))
934 			goto set_status;
935 
936 		err = page_to_nid(page);
937 set_status:
938 		pm->status = err;
939 	}
940 
941 	up_read(&mm->mmap_sem);
942 	return 0;
943 }
944 
945 /*
946  * Move a list of pages in the address space of the currently executing
947  * process.
948  */
949 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
950 			const void __user * __user *pages,
951 			const int __user *nodes,
952 			int __user *status, int flags)
953 {
954 	int err = 0;
955 	int i;
956 	struct task_struct *task;
957 	nodemask_t task_nodes;
958 	struct mm_struct *mm;
959 	struct page_to_node *pm = NULL;
960 
961 	/* Check flags */
962 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
963 		return -EINVAL;
964 
965 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
966 		return -EPERM;
967 
968 	/* Find the mm_struct */
969 	read_lock(&tasklist_lock);
970 	task = pid ? find_task_by_vpid(pid) : current;
971 	if (!task) {
972 		read_unlock(&tasklist_lock);
973 		return -ESRCH;
974 	}
975 	mm = get_task_mm(task);
976 	read_unlock(&tasklist_lock);
977 
978 	if (!mm)
979 		return -EINVAL;
980 
981 	/*
982 	 * Check if this process has the right to modify the specified
983 	 * process. The right exists if the process has administrative
984 	 * capabilities, superuser privileges or the same
985 	 * userid as the target process.
986 	 */
987 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
988 	    (current->uid != task->suid) && (current->uid != task->uid) &&
989 	    !capable(CAP_SYS_NICE)) {
990 		err = -EPERM;
991 		goto out2;
992 	}
993 
994  	err = security_task_movememory(task);
995  	if (err)
996  		goto out2;
997 
998 
999 	task_nodes = cpuset_mems_allowed(task);
1000 
1001 	/* Limit nr_pages so that the multiplication may not overflow */
1002 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1003 		err = -E2BIG;
1004 		goto out2;
1005 	}
1006 
1007 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1008 	if (!pm) {
1009 		err = -ENOMEM;
1010 		goto out2;
1011 	}
1012 
1013 	/*
1014 	 * Get parameters from user space and initialize the pm
1015 	 * array. Return various errors if the user did something wrong.
1016 	 */
1017 	for (i = 0; i < nr_pages; i++) {
1018 		const void __user *p;
1019 
1020 		err = -EFAULT;
1021 		if (get_user(p, pages + i))
1022 			goto out;
1023 
1024 		pm[i].addr = (unsigned long)p;
1025 		if (nodes) {
1026 			int node;
1027 
1028 			if (get_user(node, nodes + i))
1029 				goto out;
1030 
1031 			err = -ENODEV;
1032 			if (!node_state(node, N_HIGH_MEMORY))
1033 				goto out;
1034 
1035 			err = -EACCES;
1036 			if (!node_isset(node, task_nodes))
1037 				goto out;
1038 
1039 			pm[i].node = node;
1040 		} else
1041 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
1042 	}
1043 	/* End marker */
1044 	pm[nr_pages].node = MAX_NUMNODES;
1045 
1046 	if (nodes)
1047 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1048 	else
1049 		err = do_pages_stat(mm, pm);
1050 
1051 	if (err >= 0)
1052 		/* Return status information */
1053 		for (i = 0; i < nr_pages; i++)
1054 			if (put_user(pm[i].status, status + i))
1055 				err = -EFAULT;
1056 
1057 out:
1058 	vfree(pm);
1059 out2:
1060 	mmput(mm);
1061 	return err;
1062 }
1063 #endif
1064 
1065 /*
1066  * Call migration functions in the vma_ops that may prepare
1067  * memory in a vm for migration. migration functions may perform
1068  * the migration for vmas that do not have an underlying page struct.
1069  */
1070 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1071 	const nodemask_t *from, unsigned long flags)
1072 {
1073  	struct vm_area_struct *vma;
1074  	int err = 0;
1075 
1076  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1077  		if (vma->vm_ops && vma->vm_ops->migrate) {
1078  			err = vma->vm_ops->migrate(vma, to, from, flags);
1079  			if (err)
1080  				break;
1081  		}
1082  	}
1083  	return err;
1084 }
1085