1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 if (pmd_trans_huge(*pmd)) 124 goto out; 125 126 ptep = pte_offset_map(pmd, addr); 127 128 /* 129 * Peek to check is_swap_pte() before taking ptlock? No, we 130 * can race mremap's move_ptes(), which skips anon_vma lock. 131 */ 132 133 ptl = pte_lockptr(mm, pmd); 134 } 135 136 spin_lock(ptl); 137 pte = *ptep; 138 if (!is_swap_pte(pte)) 139 goto unlock; 140 141 entry = pte_to_swp_entry(pte); 142 143 if (!is_migration_entry(entry) || 144 migration_entry_to_page(entry) != old) 145 goto unlock; 146 147 get_page(new); 148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 149 if (pte_swp_soft_dirty(*ptep)) 150 pte = pte_mksoft_dirty(pte); 151 if (is_write_migration_entry(entry)) 152 pte = pte_mkwrite(pte); 153 #ifdef CONFIG_HUGETLB_PAGE 154 if (PageHuge(new)) { 155 pte = pte_mkhuge(pte); 156 pte = arch_make_huge_pte(pte, vma, new, 0); 157 } 158 #endif 159 flush_dcache_page(new); 160 set_pte_at(mm, addr, ptep, pte); 161 162 if (PageHuge(new)) { 163 if (PageAnon(new)) 164 hugepage_add_anon_rmap(new, vma, addr); 165 else 166 page_dup_rmap(new); 167 } else if (PageAnon(new)) 168 page_add_anon_rmap(new, vma, addr); 169 else 170 page_add_file_rmap(new); 171 172 /* No need to invalidate - it was non-present before */ 173 update_mmu_cache(vma, addr, ptep); 174 unlock: 175 pte_unmap_unlock(ptep, ptl); 176 out: 177 return SWAP_AGAIN; 178 } 179 180 /* 181 * Congratulations to trinity for discovering this bug. 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then 184 * replace the specified range by file ptes throughout (maybe populated after). 185 * If page migration finds a page within that range, while it's still located 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem: 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped. 188 * But if the migrating page is in a part of the vma outside the range to be 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to 190 * deal with it. Fortunately, this part of the vma is of course still linear, 191 * so we just need to use linear location on the nonlinear list. 192 */ 193 static int remove_linear_migration_ptes_from_nonlinear(struct page *page, 194 struct address_space *mapping, void *arg) 195 { 196 struct vm_area_struct *vma; 197 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */ 198 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 199 unsigned long addr; 200 201 list_for_each_entry(vma, 202 &mapping->i_mmap_nonlinear, shared.nonlinear) { 203 204 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 205 if (addr >= vma->vm_start && addr < vma->vm_end) 206 remove_migration_pte(page, vma, addr, arg); 207 } 208 return SWAP_AGAIN; 209 } 210 211 /* 212 * Get rid of all migration entries and replace them by 213 * references to the indicated page. 214 */ 215 static void remove_migration_ptes(struct page *old, struct page *new) 216 { 217 struct rmap_walk_control rwc = { 218 .rmap_one = remove_migration_pte, 219 .arg = old, 220 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear, 221 }; 222 223 rmap_walk(new, &rwc); 224 } 225 226 /* 227 * Something used the pte of a page under migration. We need to 228 * get to the page and wait until migration is finished. 229 * When we return from this function the fault will be retried. 230 */ 231 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 232 spinlock_t *ptl) 233 { 234 pte_t pte; 235 swp_entry_t entry; 236 struct page *page; 237 238 spin_lock(ptl); 239 pte = *ptep; 240 if (!is_swap_pte(pte)) 241 goto out; 242 243 entry = pte_to_swp_entry(pte); 244 if (!is_migration_entry(entry)) 245 goto out; 246 247 page = migration_entry_to_page(entry); 248 249 /* 250 * Once radix-tree replacement of page migration started, page_count 251 * *must* be zero. And, we don't want to call wait_on_page_locked() 252 * against a page without get_page(). 253 * So, we use get_page_unless_zero(), here. Even failed, page fault 254 * will occur again. 255 */ 256 if (!get_page_unless_zero(page)) 257 goto out; 258 pte_unmap_unlock(ptep, ptl); 259 wait_on_page_locked(page); 260 put_page(page); 261 return; 262 out: 263 pte_unmap_unlock(ptep, ptl); 264 } 265 266 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 267 unsigned long address) 268 { 269 spinlock_t *ptl = pte_lockptr(mm, pmd); 270 pte_t *ptep = pte_offset_map(pmd, address); 271 __migration_entry_wait(mm, ptep, ptl); 272 } 273 274 void migration_entry_wait_huge(struct vm_area_struct *vma, 275 struct mm_struct *mm, pte_t *pte) 276 { 277 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 278 __migration_entry_wait(mm, pte, ptl); 279 } 280 281 #ifdef CONFIG_BLOCK 282 /* Returns true if all buffers are successfully locked */ 283 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 284 enum migrate_mode mode) 285 { 286 struct buffer_head *bh = head; 287 288 /* Simple case, sync compaction */ 289 if (mode != MIGRATE_ASYNC) { 290 do { 291 get_bh(bh); 292 lock_buffer(bh); 293 bh = bh->b_this_page; 294 295 } while (bh != head); 296 297 return true; 298 } 299 300 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 301 do { 302 get_bh(bh); 303 if (!trylock_buffer(bh)) { 304 /* 305 * We failed to lock the buffer and cannot stall in 306 * async migration. Release the taken locks 307 */ 308 struct buffer_head *failed_bh = bh; 309 put_bh(failed_bh); 310 bh = head; 311 while (bh != failed_bh) { 312 unlock_buffer(bh); 313 put_bh(bh); 314 bh = bh->b_this_page; 315 } 316 return false; 317 } 318 319 bh = bh->b_this_page; 320 } while (bh != head); 321 return true; 322 } 323 #else 324 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 325 enum migrate_mode mode) 326 { 327 return true; 328 } 329 #endif /* CONFIG_BLOCK */ 330 331 /* 332 * Replace the page in the mapping. 333 * 334 * The number of remaining references must be: 335 * 1 for anonymous pages without a mapping 336 * 2 for pages with a mapping 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 338 */ 339 int migrate_page_move_mapping(struct address_space *mapping, 340 struct page *newpage, struct page *page, 341 struct buffer_head *head, enum migrate_mode mode, 342 int extra_count) 343 { 344 int expected_count = 1 + extra_count; 345 void **pslot; 346 347 if (!mapping) { 348 /* Anonymous page without mapping */ 349 if (page_count(page) != expected_count) 350 return -EAGAIN; 351 return MIGRATEPAGE_SUCCESS; 352 } 353 354 spin_lock_irq(&mapping->tree_lock); 355 356 pslot = radix_tree_lookup_slot(&mapping->page_tree, 357 page_index(page)); 358 359 expected_count += 1 + page_has_private(page); 360 if (page_count(page) != expected_count || 361 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 362 spin_unlock_irq(&mapping->tree_lock); 363 return -EAGAIN; 364 } 365 366 if (!page_freeze_refs(page, expected_count)) { 367 spin_unlock_irq(&mapping->tree_lock); 368 return -EAGAIN; 369 } 370 371 /* 372 * In the async migration case of moving a page with buffers, lock the 373 * buffers using trylock before the mapping is moved. If the mapping 374 * was moved, we later failed to lock the buffers and could not move 375 * the mapping back due to an elevated page count, we would have to 376 * block waiting on other references to be dropped. 377 */ 378 if (mode == MIGRATE_ASYNC && head && 379 !buffer_migrate_lock_buffers(head, mode)) { 380 page_unfreeze_refs(page, expected_count); 381 spin_unlock_irq(&mapping->tree_lock); 382 return -EAGAIN; 383 } 384 385 /* 386 * Now we know that no one else is looking at the page. 387 */ 388 get_page(newpage); /* add cache reference */ 389 if (PageSwapCache(page)) { 390 SetPageSwapCache(newpage); 391 set_page_private(newpage, page_private(page)); 392 } 393 394 radix_tree_replace_slot(pslot, newpage); 395 396 /* 397 * Drop cache reference from old page by unfreezing 398 * to one less reference. 399 * We know this isn't the last reference. 400 */ 401 page_unfreeze_refs(page, expected_count - 1); 402 403 /* 404 * If moved to a different zone then also account 405 * the page for that zone. Other VM counters will be 406 * taken care of when we establish references to the 407 * new page and drop references to the old page. 408 * 409 * Note that anonymous pages are accounted for 410 * via NR_FILE_PAGES and NR_ANON_PAGES if they 411 * are mapped to swap space. 412 */ 413 __dec_zone_page_state(page, NR_FILE_PAGES); 414 __inc_zone_page_state(newpage, NR_FILE_PAGES); 415 if (!PageSwapCache(page) && PageSwapBacked(page)) { 416 __dec_zone_page_state(page, NR_SHMEM); 417 __inc_zone_page_state(newpage, NR_SHMEM); 418 } 419 spin_unlock_irq(&mapping->tree_lock); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 /* 425 * The expected number of remaining references is the same as that 426 * of migrate_page_move_mapping(). 427 */ 428 int migrate_huge_page_move_mapping(struct address_space *mapping, 429 struct page *newpage, struct page *page) 430 { 431 int expected_count; 432 void **pslot; 433 434 if (!mapping) { 435 if (page_count(page) != 1) 436 return -EAGAIN; 437 return MIGRATEPAGE_SUCCESS; 438 } 439 440 spin_lock_irq(&mapping->tree_lock); 441 442 pslot = radix_tree_lookup_slot(&mapping->page_tree, 443 page_index(page)); 444 445 expected_count = 2 + page_has_private(page); 446 if (page_count(page) != expected_count || 447 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 448 spin_unlock_irq(&mapping->tree_lock); 449 return -EAGAIN; 450 } 451 452 if (!page_freeze_refs(page, expected_count)) { 453 spin_unlock_irq(&mapping->tree_lock); 454 return -EAGAIN; 455 } 456 457 get_page(newpage); 458 459 radix_tree_replace_slot(pslot, newpage); 460 461 page_unfreeze_refs(page, expected_count - 1); 462 463 spin_unlock_irq(&mapping->tree_lock); 464 return MIGRATEPAGE_SUCCESS; 465 } 466 467 /* 468 * Gigantic pages are so large that we do not guarantee that page++ pointer 469 * arithmetic will work across the entire page. We need something more 470 * specialized. 471 */ 472 static void __copy_gigantic_page(struct page *dst, struct page *src, 473 int nr_pages) 474 { 475 int i; 476 struct page *dst_base = dst; 477 struct page *src_base = src; 478 479 for (i = 0; i < nr_pages; ) { 480 cond_resched(); 481 copy_highpage(dst, src); 482 483 i++; 484 dst = mem_map_next(dst, dst_base, i); 485 src = mem_map_next(src, src_base, i); 486 } 487 } 488 489 static void copy_huge_page(struct page *dst, struct page *src) 490 { 491 int i; 492 int nr_pages; 493 494 if (PageHuge(src)) { 495 /* hugetlbfs page */ 496 struct hstate *h = page_hstate(src); 497 nr_pages = pages_per_huge_page(h); 498 499 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 500 __copy_gigantic_page(dst, src, nr_pages); 501 return; 502 } 503 } else { 504 /* thp page */ 505 BUG_ON(!PageTransHuge(src)); 506 nr_pages = hpage_nr_pages(src); 507 } 508 509 for (i = 0; i < nr_pages; i++) { 510 cond_resched(); 511 copy_highpage(dst + i, src + i); 512 } 513 } 514 515 /* 516 * Copy the page to its new location 517 */ 518 void migrate_page_copy(struct page *newpage, struct page *page) 519 { 520 int cpupid; 521 522 if (PageHuge(page) || PageTransHuge(page)) 523 copy_huge_page(newpage, page); 524 else 525 copy_highpage(newpage, page); 526 527 if (PageError(page)) 528 SetPageError(newpage); 529 if (PageReferenced(page)) 530 SetPageReferenced(newpage); 531 if (PageUptodate(page)) 532 SetPageUptodate(newpage); 533 if (TestClearPageActive(page)) { 534 VM_BUG_ON_PAGE(PageUnevictable(page), page); 535 SetPageActive(newpage); 536 } else if (TestClearPageUnevictable(page)) 537 SetPageUnevictable(newpage); 538 if (PageChecked(page)) 539 SetPageChecked(newpage); 540 if (PageMappedToDisk(page)) 541 SetPageMappedToDisk(newpage); 542 543 if (PageDirty(page)) { 544 clear_page_dirty_for_io(page); 545 /* 546 * Want to mark the page and the radix tree as dirty, and 547 * redo the accounting that clear_page_dirty_for_io undid, 548 * but we can't use set_page_dirty because that function 549 * is actually a signal that all of the page has become dirty. 550 * Whereas only part of our page may be dirty. 551 */ 552 if (PageSwapBacked(page)) 553 SetPageDirty(newpage); 554 else 555 __set_page_dirty_nobuffers(newpage); 556 } 557 558 /* 559 * Copy NUMA information to the new page, to prevent over-eager 560 * future migrations of this same page. 561 */ 562 cpupid = page_cpupid_xchg_last(page, -1); 563 page_cpupid_xchg_last(newpage, cpupid); 564 565 mlock_migrate_page(newpage, page); 566 ksm_migrate_page(newpage, page); 567 /* 568 * Please do not reorder this without considering how mm/ksm.c's 569 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 570 */ 571 ClearPageSwapCache(page); 572 ClearPagePrivate(page); 573 set_page_private(page, 0); 574 575 /* 576 * If any waiters have accumulated on the new page then 577 * wake them up. 578 */ 579 if (PageWriteback(newpage)) 580 end_page_writeback(newpage); 581 } 582 583 /************************************************************ 584 * Migration functions 585 ***********************************************************/ 586 587 /* 588 * Common logic to directly migrate a single page suitable for 589 * pages that do not use PagePrivate/PagePrivate2. 590 * 591 * Pages are locked upon entry and exit. 592 */ 593 int migrate_page(struct address_space *mapping, 594 struct page *newpage, struct page *page, 595 enum migrate_mode mode) 596 { 597 int rc; 598 599 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 600 601 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 602 603 if (rc != MIGRATEPAGE_SUCCESS) 604 return rc; 605 606 migrate_page_copy(newpage, page); 607 return MIGRATEPAGE_SUCCESS; 608 } 609 EXPORT_SYMBOL(migrate_page); 610 611 #ifdef CONFIG_BLOCK 612 /* 613 * Migration function for pages with buffers. This function can only be used 614 * if the underlying filesystem guarantees that no other references to "page" 615 * exist. 616 */ 617 int buffer_migrate_page(struct address_space *mapping, 618 struct page *newpage, struct page *page, enum migrate_mode mode) 619 { 620 struct buffer_head *bh, *head; 621 int rc; 622 623 if (!page_has_buffers(page)) 624 return migrate_page(mapping, newpage, page, mode); 625 626 head = page_buffers(page); 627 628 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 629 630 if (rc != MIGRATEPAGE_SUCCESS) 631 return rc; 632 633 /* 634 * In the async case, migrate_page_move_mapping locked the buffers 635 * with an IRQ-safe spinlock held. In the sync case, the buffers 636 * need to be locked now 637 */ 638 if (mode != MIGRATE_ASYNC) 639 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 640 641 ClearPagePrivate(page); 642 set_page_private(newpage, page_private(page)); 643 set_page_private(page, 0); 644 put_page(page); 645 get_page(newpage); 646 647 bh = head; 648 do { 649 set_bh_page(bh, newpage, bh_offset(bh)); 650 bh = bh->b_this_page; 651 652 } while (bh != head); 653 654 SetPagePrivate(newpage); 655 656 migrate_page_copy(newpage, page); 657 658 bh = head; 659 do { 660 unlock_buffer(bh); 661 put_bh(bh); 662 bh = bh->b_this_page; 663 664 } while (bh != head); 665 666 return MIGRATEPAGE_SUCCESS; 667 } 668 EXPORT_SYMBOL(buffer_migrate_page); 669 #endif 670 671 /* 672 * Writeback a page to clean the dirty state 673 */ 674 static int writeout(struct address_space *mapping, struct page *page) 675 { 676 struct writeback_control wbc = { 677 .sync_mode = WB_SYNC_NONE, 678 .nr_to_write = 1, 679 .range_start = 0, 680 .range_end = LLONG_MAX, 681 .for_reclaim = 1 682 }; 683 int rc; 684 685 if (!mapping->a_ops->writepage) 686 /* No write method for the address space */ 687 return -EINVAL; 688 689 if (!clear_page_dirty_for_io(page)) 690 /* Someone else already triggered a write */ 691 return -EAGAIN; 692 693 /* 694 * A dirty page may imply that the underlying filesystem has 695 * the page on some queue. So the page must be clean for 696 * migration. Writeout may mean we loose the lock and the 697 * page state is no longer what we checked for earlier. 698 * At this point we know that the migration attempt cannot 699 * be successful. 700 */ 701 remove_migration_ptes(page, page); 702 703 rc = mapping->a_ops->writepage(page, &wbc); 704 705 if (rc != AOP_WRITEPAGE_ACTIVATE) 706 /* unlocked. Relock */ 707 lock_page(page); 708 709 return (rc < 0) ? -EIO : -EAGAIN; 710 } 711 712 /* 713 * Default handling if a filesystem does not provide a migration function. 714 */ 715 static int fallback_migrate_page(struct address_space *mapping, 716 struct page *newpage, struct page *page, enum migrate_mode mode) 717 { 718 if (PageDirty(page)) { 719 /* Only writeback pages in full synchronous migration */ 720 if (mode != MIGRATE_SYNC) 721 return -EBUSY; 722 return writeout(mapping, page); 723 } 724 725 /* 726 * Buffers may be managed in a filesystem specific way. 727 * We must have no buffers or drop them. 728 */ 729 if (page_has_private(page) && 730 !try_to_release_page(page, GFP_KERNEL)) 731 return -EAGAIN; 732 733 return migrate_page(mapping, newpage, page, mode); 734 } 735 736 /* 737 * Move a page to a newly allocated page 738 * The page is locked and all ptes have been successfully removed. 739 * 740 * The new page will have replaced the old page if this function 741 * is successful. 742 * 743 * Return value: 744 * < 0 - error code 745 * MIGRATEPAGE_SUCCESS - success 746 */ 747 static int move_to_new_page(struct page *newpage, struct page *page, 748 int remap_swapcache, enum migrate_mode mode) 749 { 750 struct address_space *mapping; 751 int rc; 752 753 /* 754 * Block others from accessing the page when we get around to 755 * establishing additional references. We are the only one 756 * holding a reference to the new page at this point. 757 */ 758 if (!trylock_page(newpage)) 759 BUG(); 760 761 /* Prepare mapping for the new page.*/ 762 newpage->index = page->index; 763 newpage->mapping = page->mapping; 764 if (PageSwapBacked(page)) 765 SetPageSwapBacked(newpage); 766 767 mapping = page_mapping(page); 768 if (!mapping) 769 rc = migrate_page(mapping, newpage, page, mode); 770 else if (mapping->a_ops->migratepage) 771 /* 772 * Most pages have a mapping and most filesystems provide a 773 * migratepage callback. Anonymous pages are part of swap 774 * space which also has its own migratepage callback. This 775 * is the most common path for page migration. 776 */ 777 rc = mapping->a_ops->migratepage(mapping, 778 newpage, page, mode); 779 else 780 rc = fallback_migrate_page(mapping, newpage, page, mode); 781 782 if (rc != MIGRATEPAGE_SUCCESS) { 783 newpage->mapping = NULL; 784 } else { 785 if (remap_swapcache) 786 remove_migration_ptes(page, newpage); 787 page->mapping = NULL; 788 } 789 790 unlock_page(newpage); 791 792 return rc; 793 } 794 795 static int __unmap_and_move(struct page *page, struct page *newpage, 796 int force, enum migrate_mode mode) 797 { 798 int rc = -EAGAIN; 799 int remap_swapcache = 1; 800 struct mem_cgroup *mem; 801 struct anon_vma *anon_vma = NULL; 802 803 if (!trylock_page(page)) { 804 if (!force || mode == MIGRATE_ASYNC) 805 goto out; 806 807 /* 808 * It's not safe for direct compaction to call lock_page. 809 * For example, during page readahead pages are added locked 810 * to the LRU. Later, when the IO completes the pages are 811 * marked uptodate and unlocked. However, the queueing 812 * could be merging multiple pages for one bio (e.g. 813 * mpage_readpages). If an allocation happens for the 814 * second or third page, the process can end up locking 815 * the same page twice and deadlocking. Rather than 816 * trying to be clever about what pages can be locked, 817 * avoid the use of lock_page for direct compaction 818 * altogether. 819 */ 820 if (current->flags & PF_MEMALLOC) 821 goto out; 822 823 lock_page(page); 824 } 825 826 /* charge against new page */ 827 mem_cgroup_prepare_migration(page, newpage, &mem); 828 829 if (PageWriteback(page)) { 830 /* 831 * Only in the case of a full synchronous migration is it 832 * necessary to wait for PageWriteback. In the async case, 833 * the retry loop is too short and in the sync-light case, 834 * the overhead of stalling is too much 835 */ 836 if (mode != MIGRATE_SYNC) { 837 rc = -EBUSY; 838 goto uncharge; 839 } 840 if (!force) 841 goto uncharge; 842 wait_on_page_writeback(page); 843 } 844 /* 845 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 846 * we cannot notice that anon_vma is freed while we migrates a page. 847 * This get_anon_vma() delays freeing anon_vma pointer until the end 848 * of migration. File cache pages are no problem because of page_lock() 849 * File Caches may use write_page() or lock_page() in migration, then, 850 * just care Anon page here. 851 */ 852 if (PageAnon(page) && !PageKsm(page)) { 853 /* 854 * Only page_lock_anon_vma_read() understands the subtleties of 855 * getting a hold on an anon_vma from outside one of its mms. 856 */ 857 anon_vma = page_get_anon_vma(page); 858 if (anon_vma) { 859 /* 860 * Anon page 861 */ 862 } else if (PageSwapCache(page)) { 863 /* 864 * We cannot be sure that the anon_vma of an unmapped 865 * swapcache page is safe to use because we don't 866 * know in advance if the VMA that this page belonged 867 * to still exists. If the VMA and others sharing the 868 * data have been freed, then the anon_vma could 869 * already be invalid. 870 * 871 * To avoid this possibility, swapcache pages get 872 * migrated but are not remapped when migration 873 * completes 874 */ 875 remap_swapcache = 0; 876 } else { 877 goto uncharge; 878 } 879 } 880 881 if (unlikely(balloon_page_movable(page))) { 882 /* 883 * A ballooned page does not need any special attention from 884 * physical to virtual reverse mapping procedures. 885 * Skip any attempt to unmap PTEs or to remap swap cache, 886 * in order to avoid burning cycles at rmap level, and perform 887 * the page migration right away (proteced by page lock). 888 */ 889 rc = balloon_page_migrate(newpage, page, mode); 890 goto uncharge; 891 } 892 893 /* 894 * Corner case handling: 895 * 1. When a new swap-cache page is read into, it is added to the LRU 896 * and treated as swapcache but it has no rmap yet. 897 * Calling try_to_unmap() against a page->mapping==NULL page will 898 * trigger a BUG. So handle it here. 899 * 2. An orphaned page (see truncate_complete_page) might have 900 * fs-private metadata. The page can be picked up due to memory 901 * offlining. Everywhere else except page reclaim, the page is 902 * invisible to the vm, so the page can not be migrated. So try to 903 * free the metadata, so the page can be freed. 904 */ 905 if (!page->mapping) { 906 VM_BUG_ON_PAGE(PageAnon(page), page); 907 if (page_has_private(page)) { 908 try_to_free_buffers(page); 909 goto uncharge; 910 } 911 goto skip_unmap; 912 } 913 914 /* Establish migration ptes or remove ptes */ 915 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 916 917 skip_unmap: 918 if (!page_mapped(page)) 919 rc = move_to_new_page(newpage, page, remap_swapcache, mode); 920 921 if (rc && remap_swapcache) 922 remove_migration_ptes(page, page); 923 924 /* Drop an anon_vma reference if we took one */ 925 if (anon_vma) 926 put_anon_vma(anon_vma); 927 928 uncharge: 929 mem_cgroup_end_migration(mem, page, newpage, 930 (rc == MIGRATEPAGE_SUCCESS || 931 rc == MIGRATEPAGE_BALLOON_SUCCESS)); 932 unlock_page(page); 933 out: 934 return rc; 935 } 936 937 /* 938 * Obtain the lock on page, remove all ptes and migrate the page 939 * to the newly allocated page in newpage. 940 */ 941 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page, 942 unsigned long private, struct page *page, int force, 943 enum migrate_mode mode) 944 { 945 int rc = 0; 946 int *result = NULL; 947 struct page *newpage = get_new_page(page, private, &result); 948 949 if (!newpage) 950 return -ENOMEM; 951 952 if (page_count(page) == 1) { 953 /* page was freed from under us. So we are done. */ 954 goto out; 955 } 956 957 if (unlikely(PageTransHuge(page))) 958 if (unlikely(split_huge_page(page))) 959 goto out; 960 961 rc = __unmap_and_move(page, newpage, force, mode); 962 963 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) { 964 /* 965 * A ballooned page has been migrated already. 966 * Now, it's the time to wrap-up counters, 967 * handle the page back to Buddy and return. 968 */ 969 dec_zone_page_state(page, NR_ISOLATED_ANON + 970 page_is_file_cache(page)); 971 balloon_page_free(page); 972 return MIGRATEPAGE_SUCCESS; 973 } 974 out: 975 if (rc != -EAGAIN) { 976 /* 977 * A page that has been migrated has all references 978 * removed and will be freed. A page that has not been 979 * migrated will have kepts its references and be 980 * restored. 981 */ 982 list_del(&page->lru); 983 dec_zone_page_state(page, NR_ISOLATED_ANON + 984 page_is_file_cache(page)); 985 putback_lru_page(page); 986 } 987 988 /* 989 * If migration was not successful and there's a freeing callback, use 990 * it. Otherwise, putback_lru_page() will drop the reference grabbed 991 * during isolation. 992 */ 993 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 994 put_new_page(newpage, private); 995 else 996 putback_lru_page(newpage); 997 998 if (result) { 999 if (rc) 1000 *result = rc; 1001 else 1002 *result = page_to_nid(newpage); 1003 } 1004 return rc; 1005 } 1006 1007 /* 1008 * Counterpart of unmap_and_move_page() for hugepage migration. 1009 * 1010 * This function doesn't wait the completion of hugepage I/O 1011 * because there is no race between I/O and migration for hugepage. 1012 * Note that currently hugepage I/O occurs only in direct I/O 1013 * where no lock is held and PG_writeback is irrelevant, 1014 * and writeback status of all subpages are counted in the reference 1015 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1016 * under direct I/O, the reference of the head page is 512 and a bit more.) 1017 * This means that when we try to migrate hugepage whose subpages are 1018 * doing direct I/O, some references remain after try_to_unmap() and 1019 * hugepage migration fails without data corruption. 1020 * 1021 * There is also no race when direct I/O is issued on the page under migration, 1022 * because then pte is replaced with migration swap entry and direct I/O code 1023 * will wait in the page fault for migration to complete. 1024 */ 1025 static int unmap_and_move_huge_page(new_page_t get_new_page, 1026 free_page_t put_new_page, unsigned long private, 1027 struct page *hpage, int force, 1028 enum migrate_mode mode) 1029 { 1030 int rc = 0; 1031 int *result = NULL; 1032 struct page *new_hpage; 1033 struct anon_vma *anon_vma = NULL; 1034 1035 /* 1036 * Movability of hugepages depends on architectures and hugepage size. 1037 * This check is necessary because some callers of hugepage migration 1038 * like soft offline and memory hotremove don't walk through page 1039 * tables or check whether the hugepage is pmd-based or not before 1040 * kicking migration. 1041 */ 1042 if (!hugepage_migration_supported(page_hstate(hpage))) { 1043 putback_active_hugepage(hpage); 1044 return -ENOSYS; 1045 } 1046 1047 new_hpage = get_new_page(hpage, private, &result); 1048 if (!new_hpage) 1049 return -ENOMEM; 1050 1051 rc = -EAGAIN; 1052 1053 if (!trylock_page(hpage)) { 1054 if (!force || mode != MIGRATE_SYNC) 1055 goto out; 1056 lock_page(hpage); 1057 } 1058 1059 if (PageAnon(hpage)) 1060 anon_vma = page_get_anon_vma(hpage); 1061 1062 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1063 1064 if (!page_mapped(hpage)) 1065 rc = move_to_new_page(new_hpage, hpage, 1, mode); 1066 1067 if (rc != MIGRATEPAGE_SUCCESS) 1068 remove_migration_ptes(hpage, hpage); 1069 1070 if (anon_vma) 1071 put_anon_vma(anon_vma); 1072 1073 if (rc == MIGRATEPAGE_SUCCESS) 1074 hugetlb_cgroup_migrate(hpage, new_hpage); 1075 1076 unlock_page(hpage); 1077 out: 1078 if (rc != -EAGAIN) 1079 putback_active_hugepage(hpage); 1080 1081 /* 1082 * If migration was not successful and there's a freeing callback, use 1083 * it. Otherwise, put_page() will drop the reference grabbed during 1084 * isolation. 1085 */ 1086 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1087 put_new_page(new_hpage, private); 1088 else 1089 put_page(new_hpage); 1090 1091 if (result) { 1092 if (rc) 1093 *result = rc; 1094 else 1095 *result = page_to_nid(new_hpage); 1096 } 1097 return rc; 1098 } 1099 1100 /* 1101 * migrate_pages - migrate the pages specified in a list, to the free pages 1102 * supplied as the target for the page migration 1103 * 1104 * @from: The list of pages to be migrated. 1105 * @get_new_page: The function used to allocate free pages to be used 1106 * as the target of the page migration. 1107 * @put_new_page: The function used to free target pages if migration 1108 * fails, or NULL if no special handling is necessary. 1109 * @private: Private data to be passed on to get_new_page() 1110 * @mode: The migration mode that specifies the constraints for 1111 * page migration, if any. 1112 * @reason: The reason for page migration. 1113 * 1114 * The function returns after 10 attempts or if no pages are movable any more 1115 * because the list has become empty or no retryable pages exist any more. 1116 * The caller should call putback_lru_pages() to return pages to the LRU 1117 * or free list only if ret != 0. 1118 * 1119 * Returns the number of pages that were not migrated, or an error code. 1120 */ 1121 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1122 free_page_t put_new_page, unsigned long private, 1123 enum migrate_mode mode, int reason) 1124 { 1125 int retry = 1; 1126 int nr_failed = 0; 1127 int nr_succeeded = 0; 1128 int pass = 0; 1129 struct page *page; 1130 struct page *page2; 1131 int swapwrite = current->flags & PF_SWAPWRITE; 1132 int rc; 1133 1134 if (!swapwrite) 1135 current->flags |= PF_SWAPWRITE; 1136 1137 for(pass = 0; pass < 10 && retry; pass++) { 1138 retry = 0; 1139 1140 list_for_each_entry_safe(page, page2, from, lru) { 1141 cond_resched(); 1142 1143 if (PageHuge(page)) 1144 rc = unmap_and_move_huge_page(get_new_page, 1145 put_new_page, private, page, 1146 pass > 2, mode); 1147 else 1148 rc = unmap_and_move(get_new_page, put_new_page, 1149 private, page, pass > 2, mode); 1150 1151 switch(rc) { 1152 case -ENOMEM: 1153 goto out; 1154 case -EAGAIN: 1155 retry++; 1156 break; 1157 case MIGRATEPAGE_SUCCESS: 1158 nr_succeeded++; 1159 break; 1160 default: 1161 /* 1162 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1163 * unlike -EAGAIN case, the failed page is 1164 * removed from migration page list and not 1165 * retried in the next outer loop. 1166 */ 1167 nr_failed++; 1168 break; 1169 } 1170 } 1171 } 1172 rc = nr_failed + retry; 1173 out: 1174 if (nr_succeeded) 1175 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1176 if (nr_failed) 1177 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1178 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1179 1180 if (!swapwrite) 1181 current->flags &= ~PF_SWAPWRITE; 1182 1183 return rc; 1184 } 1185 1186 #ifdef CONFIG_NUMA 1187 /* 1188 * Move a list of individual pages 1189 */ 1190 struct page_to_node { 1191 unsigned long addr; 1192 struct page *page; 1193 int node; 1194 int status; 1195 }; 1196 1197 static struct page *new_page_node(struct page *p, unsigned long private, 1198 int **result) 1199 { 1200 struct page_to_node *pm = (struct page_to_node *)private; 1201 1202 while (pm->node != MAX_NUMNODES && pm->page != p) 1203 pm++; 1204 1205 if (pm->node == MAX_NUMNODES) 1206 return NULL; 1207 1208 *result = &pm->status; 1209 1210 if (PageHuge(p)) 1211 return alloc_huge_page_node(page_hstate(compound_head(p)), 1212 pm->node); 1213 else 1214 return alloc_pages_exact_node(pm->node, 1215 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1216 } 1217 1218 /* 1219 * Move a set of pages as indicated in the pm array. The addr 1220 * field must be set to the virtual address of the page to be moved 1221 * and the node number must contain a valid target node. 1222 * The pm array ends with node = MAX_NUMNODES. 1223 */ 1224 static int do_move_page_to_node_array(struct mm_struct *mm, 1225 struct page_to_node *pm, 1226 int migrate_all) 1227 { 1228 int err; 1229 struct page_to_node *pp; 1230 LIST_HEAD(pagelist); 1231 1232 down_read(&mm->mmap_sem); 1233 1234 /* 1235 * Build a list of pages to migrate 1236 */ 1237 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1238 struct vm_area_struct *vma; 1239 struct page *page; 1240 1241 err = -EFAULT; 1242 vma = find_vma(mm, pp->addr); 1243 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1244 goto set_status; 1245 1246 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1247 1248 err = PTR_ERR(page); 1249 if (IS_ERR(page)) 1250 goto set_status; 1251 1252 err = -ENOENT; 1253 if (!page) 1254 goto set_status; 1255 1256 /* Use PageReserved to check for zero page */ 1257 if (PageReserved(page)) 1258 goto put_and_set; 1259 1260 pp->page = page; 1261 err = page_to_nid(page); 1262 1263 if (err == pp->node) 1264 /* 1265 * Node already in the right place 1266 */ 1267 goto put_and_set; 1268 1269 err = -EACCES; 1270 if (page_mapcount(page) > 1 && 1271 !migrate_all) 1272 goto put_and_set; 1273 1274 if (PageHuge(page)) { 1275 isolate_huge_page(page, &pagelist); 1276 goto put_and_set; 1277 } 1278 1279 err = isolate_lru_page(page); 1280 if (!err) { 1281 list_add_tail(&page->lru, &pagelist); 1282 inc_zone_page_state(page, NR_ISOLATED_ANON + 1283 page_is_file_cache(page)); 1284 } 1285 put_and_set: 1286 /* 1287 * Either remove the duplicate refcount from 1288 * isolate_lru_page() or drop the page ref if it was 1289 * not isolated. 1290 */ 1291 put_page(page); 1292 set_status: 1293 pp->status = err; 1294 } 1295 1296 err = 0; 1297 if (!list_empty(&pagelist)) { 1298 err = migrate_pages(&pagelist, new_page_node, NULL, 1299 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1300 if (err) 1301 putback_movable_pages(&pagelist); 1302 } 1303 1304 up_read(&mm->mmap_sem); 1305 return err; 1306 } 1307 1308 /* 1309 * Migrate an array of page address onto an array of nodes and fill 1310 * the corresponding array of status. 1311 */ 1312 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1313 unsigned long nr_pages, 1314 const void __user * __user *pages, 1315 const int __user *nodes, 1316 int __user *status, int flags) 1317 { 1318 struct page_to_node *pm; 1319 unsigned long chunk_nr_pages; 1320 unsigned long chunk_start; 1321 int err; 1322 1323 err = -ENOMEM; 1324 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1325 if (!pm) 1326 goto out; 1327 1328 migrate_prep(); 1329 1330 /* 1331 * Store a chunk of page_to_node array in a page, 1332 * but keep the last one as a marker 1333 */ 1334 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1335 1336 for (chunk_start = 0; 1337 chunk_start < nr_pages; 1338 chunk_start += chunk_nr_pages) { 1339 int j; 1340 1341 if (chunk_start + chunk_nr_pages > nr_pages) 1342 chunk_nr_pages = nr_pages - chunk_start; 1343 1344 /* fill the chunk pm with addrs and nodes from user-space */ 1345 for (j = 0; j < chunk_nr_pages; j++) { 1346 const void __user *p; 1347 int node; 1348 1349 err = -EFAULT; 1350 if (get_user(p, pages + j + chunk_start)) 1351 goto out_pm; 1352 pm[j].addr = (unsigned long) p; 1353 1354 if (get_user(node, nodes + j + chunk_start)) 1355 goto out_pm; 1356 1357 err = -ENODEV; 1358 if (node < 0 || node >= MAX_NUMNODES) 1359 goto out_pm; 1360 1361 if (!node_state(node, N_MEMORY)) 1362 goto out_pm; 1363 1364 err = -EACCES; 1365 if (!node_isset(node, task_nodes)) 1366 goto out_pm; 1367 1368 pm[j].node = node; 1369 } 1370 1371 /* End marker for this chunk */ 1372 pm[chunk_nr_pages].node = MAX_NUMNODES; 1373 1374 /* Migrate this chunk */ 1375 err = do_move_page_to_node_array(mm, pm, 1376 flags & MPOL_MF_MOVE_ALL); 1377 if (err < 0) 1378 goto out_pm; 1379 1380 /* Return status information */ 1381 for (j = 0; j < chunk_nr_pages; j++) 1382 if (put_user(pm[j].status, status + j + chunk_start)) { 1383 err = -EFAULT; 1384 goto out_pm; 1385 } 1386 } 1387 err = 0; 1388 1389 out_pm: 1390 free_page((unsigned long)pm); 1391 out: 1392 return err; 1393 } 1394 1395 /* 1396 * Determine the nodes of an array of pages and store it in an array of status. 1397 */ 1398 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1399 const void __user **pages, int *status) 1400 { 1401 unsigned long i; 1402 1403 down_read(&mm->mmap_sem); 1404 1405 for (i = 0; i < nr_pages; i++) { 1406 unsigned long addr = (unsigned long)(*pages); 1407 struct vm_area_struct *vma; 1408 struct page *page; 1409 int err = -EFAULT; 1410 1411 vma = find_vma(mm, addr); 1412 if (!vma || addr < vma->vm_start) 1413 goto set_status; 1414 1415 page = follow_page(vma, addr, 0); 1416 1417 err = PTR_ERR(page); 1418 if (IS_ERR(page)) 1419 goto set_status; 1420 1421 err = -ENOENT; 1422 /* Use PageReserved to check for zero page */ 1423 if (!page || PageReserved(page)) 1424 goto set_status; 1425 1426 err = page_to_nid(page); 1427 set_status: 1428 *status = err; 1429 1430 pages++; 1431 status++; 1432 } 1433 1434 up_read(&mm->mmap_sem); 1435 } 1436 1437 /* 1438 * Determine the nodes of a user array of pages and store it in 1439 * a user array of status. 1440 */ 1441 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1442 const void __user * __user *pages, 1443 int __user *status) 1444 { 1445 #define DO_PAGES_STAT_CHUNK_NR 16 1446 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1447 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1448 1449 while (nr_pages) { 1450 unsigned long chunk_nr; 1451 1452 chunk_nr = nr_pages; 1453 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1454 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1455 1456 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1457 break; 1458 1459 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1460 1461 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1462 break; 1463 1464 pages += chunk_nr; 1465 status += chunk_nr; 1466 nr_pages -= chunk_nr; 1467 } 1468 return nr_pages ? -EFAULT : 0; 1469 } 1470 1471 /* 1472 * Move a list of pages in the address space of the currently executing 1473 * process. 1474 */ 1475 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1476 const void __user * __user *, pages, 1477 const int __user *, nodes, 1478 int __user *, status, int, flags) 1479 { 1480 const struct cred *cred = current_cred(), *tcred; 1481 struct task_struct *task; 1482 struct mm_struct *mm; 1483 int err; 1484 nodemask_t task_nodes; 1485 1486 /* Check flags */ 1487 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1488 return -EINVAL; 1489 1490 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1491 return -EPERM; 1492 1493 /* Find the mm_struct */ 1494 rcu_read_lock(); 1495 task = pid ? find_task_by_vpid(pid) : current; 1496 if (!task) { 1497 rcu_read_unlock(); 1498 return -ESRCH; 1499 } 1500 get_task_struct(task); 1501 1502 /* 1503 * Check if this process has the right to modify the specified 1504 * process. The right exists if the process has administrative 1505 * capabilities, superuser privileges or the same 1506 * userid as the target process. 1507 */ 1508 tcred = __task_cred(task); 1509 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1510 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1511 !capable(CAP_SYS_NICE)) { 1512 rcu_read_unlock(); 1513 err = -EPERM; 1514 goto out; 1515 } 1516 rcu_read_unlock(); 1517 1518 err = security_task_movememory(task); 1519 if (err) 1520 goto out; 1521 1522 task_nodes = cpuset_mems_allowed(task); 1523 mm = get_task_mm(task); 1524 put_task_struct(task); 1525 1526 if (!mm) 1527 return -EINVAL; 1528 1529 if (nodes) 1530 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1531 nodes, status, flags); 1532 else 1533 err = do_pages_stat(mm, nr_pages, pages, status); 1534 1535 mmput(mm); 1536 return err; 1537 1538 out: 1539 put_task_struct(task); 1540 return err; 1541 } 1542 1543 /* 1544 * Call migration functions in the vma_ops that may prepare 1545 * memory in a vm for migration. migration functions may perform 1546 * the migration for vmas that do not have an underlying page struct. 1547 */ 1548 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1549 const nodemask_t *from, unsigned long flags) 1550 { 1551 struct vm_area_struct *vma; 1552 int err = 0; 1553 1554 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1555 if (vma->vm_ops && vma->vm_ops->migrate) { 1556 err = vma->vm_ops->migrate(vma, to, from, flags); 1557 if (err) 1558 break; 1559 } 1560 } 1561 return err; 1562 } 1563 1564 #ifdef CONFIG_NUMA_BALANCING 1565 /* 1566 * Returns true if this is a safe migration target node for misplaced NUMA 1567 * pages. Currently it only checks the watermarks which crude 1568 */ 1569 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1570 unsigned long nr_migrate_pages) 1571 { 1572 int z; 1573 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1574 struct zone *zone = pgdat->node_zones + z; 1575 1576 if (!populated_zone(zone)) 1577 continue; 1578 1579 if (!zone_reclaimable(zone)) 1580 continue; 1581 1582 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1583 if (!zone_watermark_ok(zone, 0, 1584 high_wmark_pages(zone) + 1585 nr_migrate_pages, 1586 0, 0)) 1587 continue; 1588 return true; 1589 } 1590 return false; 1591 } 1592 1593 static struct page *alloc_misplaced_dst_page(struct page *page, 1594 unsigned long data, 1595 int **result) 1596 { 1597 int nid = (int) data; 1598 struct page *newpage; 1599 1600 newpage = alloc_pages_exact_node(nid, 1601 (GFP_HIGHUSER_MOVABLE | 1602 __GFP_THISNODE | __GFP_NOMEMALLOC | 1603 __GFP_NORETRY | __GFP_NOWARN) & 1604 ~GFP_IOFS, 0); 1605 1606 return newpage; 1607 } 1608 1609 /* 1610 * page migration rate limiting control. 1611 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1612 * window of time. Default here says do not migrate more than 1280M per second. 1613 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1614 * as it is faults that reset the window, pte updates will happen unconditionally 1615 * if there has not been a fault since @pteupdate_interval_millisecs after the 1616 * throttle window closed. 1617 */ 1618 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1619 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1620 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1621 1622 /* Returns true if NUMA migration is currently rate limited */ 1623 bool migrate_ratelimited(int node) 1624 { 1625 pg_data_t *pgdat = NODE_DATA(node); 1626 1627 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1628 msecs_to_jiffies(pteupdate_interval_millisecs))) 1629 return false; 1630 1631 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1632 return false; 1633 1634 return true; 1635 } 1636 1637 /* Returns true if the node is migrate rate-limited after the update */ 1638 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1639 unsigned long nr_pages) 1640 { 1641 /* 1642 * Rate-limit the amount of data that is being migrated to a node. 1643 * Optimal placement is no good if the memory bus is saturated and 1644 * all the time is being spent migrating! 1645 */ 1646 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1647 spin_lock(&pgdat->numabalancing_migrate_lock); 1648 pgdat->numabalancing_migrate_nr_pages = 0; 1649 pgdat->numabalancing_migrate_next_window = jiffies + 1650 msecs_to_jiffies(migrate_interval_millisecs); 1651 spin_unlock(&pgdat->numabalancing_migrate_lock); 1652 } 1653 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1654 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1655 nr_pages); 1656 return true; 1657 } 1658 1659 /* 1660 * This is an unlocked non-atomic update so errors are possible. 1661 * The consequences are failing to migrate when we potentiall should 1662 * have which is not severe enough to warrant locking. If it is ever 1663 * a problem, it can be converted to a per-cpu counter. 1664 */ 1665 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1666 return false; 1667 } 1668 1669 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1670 { 1671 int page_lru; 1672 1673 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1674 1675 /* Avoid migrating to a node that is nearly full */ 1676 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1677 return 0; 1678 1679 if (isolate_lru_page(page)) 1680 return 0; 1681 1682 /* 1683 * migrate_misplaced_transhuge_page() skips page migration's usual 1684 * check on page_count(), so we must do it here, now that the page 1685 * has been isolated: a GUP pin, or any other pin, prevents migration. 1686 * The expected page count is 3: 1 for page's mapcount and 1 for the 1687 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1688 */ 1689 if (PageTransHuge(page) && page_count(page) != 3) { 1690 putback_lru_page(page); 1691 return 0; 1692 } 1693 1694 page_lru = page_is_file_cache(page); 1695 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1696 hpage_nr_pages(page)); 1697 1698 /* 1699 * Isolating the page has taken another reference, so the 1700 * caller's reference can be safely dropped without the page 1701 * disappearing underneath us during migration. 1702 */ 1703 put_page(page); 1704 return 1; 1705 } 1706 1707 bool pmd_trans_migrating(pmd_t pmd) 1708 { 1709 struct page *page = pmd_page(pmd); 1710 return PageLocked(page); 1711 } 1712 1713 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd) 1714 { 1715 struct page *page = pmd_page(*pmd); 1716 wait_on_page_locked(page); 1717 } 1718 1719 /* 1720 * Attempt to migrate a misplaced page to the specified destination 1721 * node. Caller is expected to have an elevated reference count on 1722 * the page that will be dropped by this function before returning. 1723 */ 1724 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1725 int node) 1726 { 1727 pg_data_t *pgdat = NODE_DATA(node); 1728 int isolated; 1729 int nr_remaining; 1730 LIST_HEAD(migratepages); 1731 1732 /* 1733 * Don't migrate file pages that are mapped in multiple processes 1734 * with execute permissions as they are probably shared libraries. 1735 */ 1736 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1737 (vma->vm_flags & VM_EXEC)) 1738 goto out; 1739 1740 /* 1741 * Rate-limit the amount of data that is being migrated to a node. 1742 * Optimal placement is no good if the memory bus is saturated and 1743 * all the time is being spent migrating! 1744 */ 1745 if (numamigrate_update_ratelimit(pgdat, 1)) 1746 goto out; 1747 1748 isolated = numamigrate_isolate_page(pgdat, page); 1749 if (!isolated) 1750 goto out; 1751 1752 list_add(&page->lru, &migratepages); 1753 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1754 NULL, node, MIGRATE_ASYNC, 1755 MR_NUMA_MISPLACED); 1756 if (nr_remaining) { 1757 if (!list_empty(&migratepages)) { 1758 list_del(&page->lru); 1759 dec_zone_page_state(page, NR_ISOLATED_ANON + 1760 page_is_file_cache(page)); 1761 putback_lru_page(page); 1762 } 1763 isolated = 0; 1764 } else 1765 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1766 BUG_ON(!list_empty(&migratepages)); 1767 return isolated; 1768 1769 out: 1770 put_page(page); 1771 return 0; 1772 } 1773 #endif /* CONFIG_NUMA_BALANCING */ 1774 1775 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1776 /* 1777 * Migrates a THP to a given target node. page must be locked and is unlocked 1778 * before returning. 1779 */ 1780 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1781 struct vm_area_struct *vma, 1782 pmd_t *pmd, pmd_t entry, 1783 unsigned long address, 1784 struct page *page, int node) 1785 { 1786 spinlock_t *ptl; 1787 pg_data_t *pgdat = NODE_DATA(node); 1788 int isolated = 0; 1789 struct page *new_page = NULL; 1790 struct mem_cgroup *memcg = NULL; 1791 int page_lru = page_is_file_cache(page); 1792 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1793 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1794 pmd_t orig_entry; 1795 1796 /* 1797 * Rate-limit the amount of data that is being migrated to a node. 1798 * Optimal placement is no good if the memory bus is saturated and 1799 * all the time is being spent migrating! 1800 */ 1801 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1802 goto out_dropref; 1803 1804 new_page = alloc_pages_node(node, 1805 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1806 HPAGE_PMD_ORDER); 1807 if (!new_page) 1808 goto out_fail; 1809 1810 isolated = numamigrate_isolate_page(pgdat, page); 1811 if (!isolated) { 1812 put_page(new_page); 1813 goto out_fail; 1814 } 1815 1816 if (mm_tlb_flush_pending(mm)) 1817 flush_tlb_range(vma, mmun_start, mmun_end); 1818 1819 /* Prepare a page as a migration target */ 1820 __set_page_locked(new_page); 1821 SetPageSwapBacked(new_page); 1822 1823 /* anon mapping, we can simply copy page->mapping to the new page: */ 1824 new_page->mapping = page->mapping; 1825 new_page->index = page->index; 1826 migrate_page_copy(new_page, page); 1827 WARN_ON(PageLRU(new_page)); 1828 1829 /* Recheck the target PMD */ 1830 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1831 ptl = pmd_lock(mm, pmd); 1832 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1833 fail_putback: 1834 spin_unlock(ptl); 1835 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1836 1837 /* Reverse changes made by migrate_page_copy() */ 1838 if (TestClearPageActive(new_page)) 1839 SetPageActive(page); 1840 if (TestClearPageUnevictable(new_page)) 1841 SetPageUnevictable(page); 1842 mlock_migrate_page(page, new_page); 1843 1844 unlock_page(new_page); 1845 put_page(new_page); /* Free it */ 1846 1847 /* Retake the callers reference and putback on LRU */ 1848 get_page(page); 1849 putback_lru_page(page); 1850 mod_zone_page_state(page_zone(page), 1851 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1852 1853 goto out_unlock; 1854 } 1855 1856 /* 1857 * Traditional migration needs to prepare the memcg charge 1858 * transaction early to prevent the old page from being 1859 * uncharged when installing migration entries. Here we can 1860 * save the potential rollback and start the charge transfer 1861 * only when migration is already known to end successfully. 1862 */ 1863 mem_cgroup_prepare_migration(page, new_page, &memcg); 1864 1865 orig_entry = *pmd; 1866 entry = mk_pmd(new_page, vma->vm_page_prot); 1867 entry = pmd_mkhuge(entry); 1868 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1869 1870 /* 1871 * Clear the old entry under pagetable lock and establish the new PTE. 1872 * Any parallel GUP will either observe the old page blocking on the 1873 * page lock, block on the page table lock or observe the new page. 1874 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1875 * guarantee the copy is visible before the pagetable update. 1876 */ 1877 flush_cache_range(vma, mmun_start, mmun_end); 1878 page_add_anon_rmap(new_page, vma, mmun_start); 1879 pmdp_clear_flush(vma, mmun_start, pmd); 1880 set_pmd_at(mm, mmun_start, pmd, entry); 1881 flush_tlb_range(vma, mmun_start, mmun_end); 1882 update_mmu_cache_pmd(vma, address, &entry); 1883 1884 if (page_count(page) != 2) { 1885 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1886 flush_tlb_range(vma, mmun_start, mmun_end); 1887 update_mmu_cache_pmd(vma, address, &entry); 1888 page_remove_rmap(new_page); 1889 goto fail_putback; 1890 } 1891 1892 page_remove_rmap(page); 1893 1894 /* 1895 * Finish the charge transaction under the page table lock to 1896 * prevent split_huge_page() from dividing up the charge 1897 * before it's fully transferred to the new page. 1898 */ 1899 mem_cgroup_end_migration(memcg, page, new_page, true); 1900 spin_unlock(ptl); 1901 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1902 1903 /* Take an "isolate" reference and put new page on the LRU. */ 1904 get_page(new_page); 1905 putback_lru_page(new_page); 1906 1907 unlock_page(new_page); 1908 unlock_page(page); 1909 put_page(page); /* Drop the rmap reference */ 1910 put_page(page); /* Drop the LRU isolation reference */ 1911 1912 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1913 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1914 1915 mod_zone_page_state(page_zone(page), 1916 NR_ISOLATED_ANON + page_lru, 1917 -HPAGE_PMD_NR); 1918 return isolated; 1919 1920 out_fail: 1921 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1922 out_dropref: 1923 ptl = pmd_lock(mm, pmd); 1924 if (pmd_same(*pmd, entry)) { 1925 entry = pmd_mknonnuma(entry); 1926 set_pmd_at(mm, mmun_start, pmd, entry); 1927 update_mmu_cache_pmd(vma, address, &entry); 1928 } 1929 spin_unlock(ptl); 1930 1931 out_unlock: 1932 unlock_page(page); 1933 put_page(page); 1934 return 0; 1935 } 1936 #endif /* CONFIG_NUMA_BALANCING */ 1937 1938 #endif /* CONFIG_NUMA */ 1939