xref: /openbmc/linux/mm/migrate.c (revision 1de9e46c)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		list_del(&page->lru);
104 		dec_zone_page_state(page, NR_ISOLATED_ANON +
105 				page_is_file_cache(page));
106 		if (unlikely(balloon_page_movable(page)))
107 			balloon_page_putback(page);
108 		else
109 			putback_lru_page(page);
110 	}
111 }
112 
113 /*
114  * Restore a potential migration pte to a working pte entry
115  */
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 				 unsigned long addr, void *old)
118 {
119 	struct mm_struct *mm = vma->vm_mm;
120 	swp_entry_t entry;
121  	pmd_t *pmd;
122 	pte_t *ptep, pte;
123  	spinlock_t *ptl;
124 
125 	if (unlikely(PageHuge(new))) {
126 		ptep = huge_pte_offset(mm, addr);
127 		if (!ptep)
128 			goto out;
129 		ptl = &mm->page_table_lock;
130 	} else {
131 		pmd = mm_find_pmd(mm, addr);
132 		if (!pmd)
133 			goto out;
134 		if (pmd_trans_huge(*pmd))
135 			goto out;
136 
137 		ptep = pte_offset_map(pmd, addr);
138 
139 		/*
140 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
141 		 * can race mremap's move_ptes(), which skips anon_vma lock.
142 		 */
143 
144 		ptl = pte_lockptr(mm, pmd);
145 	}
146 
147  	spin_lock(ptl);
148 	pte = *ptep;
149 	if (!is_swap_pte(pte))
150 		goto unlock;
151 
152 	entry = pte_to_swp_entry(pte);
153 
154 	if (!is_migration_entry(entry) ||
155 	    migration_entry_to_page(entry) != old)
156 		goto unlock;
157 
158 	get_page(new);
159 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 	if (is_write_migration_entry(entry))
161 		pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
163 	if (PageHuge(new)) {
164 		pte = pte_mkhuge(pte);
165 		pte = arch_make_huge_pte(pte, vma, new, 0);
166 	}
167 #endif
168 	flush_cache_page(vma, addr, pte_pfn(pte));
169 	set_pte_at(mm, addr, ptep, pte);
170 
171 	if (PageHuge(new)) {
172 		if (PageAnon(new))
173 			hugepage_add_anon_rmap(new, vma, addr);
174 		else
175 			page_dup_rmap(new);
176 	} else if (PageAnon(new))
177 		page_add_anon_rmap(new, vma, addr);
178 	else
179 		page_add_file_rmap(new);
180 
181 	/* No need to invalidate - it was non-present before */
182 	update_mmu_cache(vma, addr, ptep);
183 unlock:
184 	pte_unmap_unlock(ptep, ptl);
185 out:
186 	return SWAP_AGAIN;
187 }
188 
189 /*
190  * Get rid of all migration entries and replace them by
191  * references to the indicated page.
192  */
193 static void remove_migration_ptes(struct page *old, struct page *new)
194 {
195 	rmap_walk(new, remove_migration_pte, old);
196 }
197 
198 /*
199  * Something used the pte of a page under migration. We need to
200  * get to the page and wait until migration is finished.
201  * When we return from this function the fault will be retried.
202  */
203 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
204 				unsigned long address)
205 {
206 	pte_t *ptep, pte;
207 	spinlock_t *ptl;
208 	swp_entry_t entry;
209 	struct page *page;
210 
211 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
212 	pte = *ptep;
213 	if (!is_swap_pte(pte))
214 		goto out;
215 
216 	entry = pte_to_swp_entry(pte);
217 	if (!is_migration_entry(entry))
218 		goto out;
219 
220 	page = migration_entry_to_page(entry);
221 
222 	/*
223 	 * Once radix-tree replacement of page migration started, page_count
224 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 	 * against a page without get_page().
226 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 	 * will occur again.
228 	 */
229 	if (!get_page_unless_zero(page))
230 		goto out;
231 	pte_unmap_unlock(ptep, ptl);
232 	wait_on_page_locked(page);
233 	put_page(page);
234 	return;
235 out:
236 	pte_unmap_unlock(ptep, ptl);
237 }
238 
239 #ifdef CONFIG_BLOCK
240 /* Returns true if all buffers are successfully locked */
241 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
242 							enum migrate_mode mode)
243 {
244 	struct buffer_head *bh = head;
245 
246 	/* Simple case, sync compaction */
247 	if (mode != MIGRATE_ASYNC) {
248 		do {
249 			get_bh(bh);
250 			lock_buffer(bh);
251 			bh = bh->b_this_page;
252 
253 		} while (bh != head);
254 
255 		return true;
256 	}
257 
258 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
259 	do {
260 		get_bh(bh);
261 		if (!trylock_buffer(bh)) {
262 			/*
263 			 * We failed to lock the buffer and cannot stall in
264 			 * async migration. Release the taken locks
265 			 */
266 			struct buffer_head *failed_bh = bh;
267 			put_bh(failed_bh);
268 			bh = head;
269 			while (bh != failed_bh) {
270 				unlock_buffer(bh);
271 				put_bh(bh);
272 				bh = bh->b_this_page;
273 			}
274 			return false;
275 		}
276 
277 		bh = bh->b_this_page;
278 	} while (bh != head);
279 	return true;
280 }
281 #else
282 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
283 							enum migrate_mode mode)
284 {
285 	return true;
286 }
287 #endif /* CONFIG_BLOCK */
288 
289 /*
290  * Replace the page in the mapping.
291  *
292  * The number of remaining references must be:
293  * 1 for anonymous pages without a mapping
294  * 2 for pages with a mapping
295  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
296  */
297 static int migrate_page_move_mapping(struct address_space *mapping,
298 		struct page *newpage, struct page *page,
299 		struct buffer_head *head, enum migrate_mode mode)
300 {
301 	int expected_count = 0;
302 	void **pslot;
303 
304 	if (!mapping) {
305 		/* Anonymous page without mapping */
306 		if (page_count(page) != 1)
307 			return -EAGAIN;
308 		return MIGRATEPAGE_SUCCESS;
309 	}
310 
311 	spin_lock_irq(&mapping->tree_lock);
312 
313 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
314  					page_index(page));
315 
316 	expected_count = 2 + page_has_private(page);
317 	if (page_count(page) != expected_count ||
318 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
319 		spin_unlock_irq(&mapping->tree_lock);
320 		return -EAGAIN;
321 	}
322 
323 	if (!page_freeze_refs(page, expected_count)) {
324 		spin_unlock_irq(&mapping->tree_lock);
325 		return -EAGAIN;
326 	}
327 
328 	/*
329 	 * In the async migration case of moving a page with buffers, lock the
330 	 * buffers using trylock before the mapping is moved. If the mapping
331 	 * was moved, we later failed to lock the buffers and could not move
332 	 * the mapping back due to an elevated page count, we would have to
333 	 * block waiting on other references to be dropped.
334 	 */
335 	if (mode == MIGRATE_ASYNC && head &&
336 			!buffer_migrate_lock_buffers(head, mode)) {
337 		page_unfreeze_refs(page, expected_count);
338 		spin_unlock_irq(&mapping->tree_lock);
339 		return -EAGAIN;
340 	}
341 
342 	/*
343 	 * Now we know that no one else is looking at the page.
344 	 */
345 	get_page(newpage);	/* add cache reference */
346 	if (PageSwapCache(page)) {
347 		SetPageSwapCache(newpage);
348 		set_page_private(newpage, page_private(page));
349 	}
350 
351 	radix_tree_replace_slot(pslot, newpage);
352 
353 	/*
354 	 * Drop cache reference from old page by unfreezing
355 	 * to one less reference.
356 	 * We know this isn't the last reference.
357 	 */
358 	page_unfreeze_refs(page, expected_count - 1);
359 
360 	/*
361 	 * If moved to a different zone then also account
362 	 * the page for that zone. Other VM counters will be
363 	 * taken care of when we establish references to the
364 	 * new page and drop references to the old page.
365 	 *
366 	 * Note that anonymous pages are accounted for
367 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 	 * are mapped to swap space.
369 	 */
370 	__dec_zone_page_state(page, NR_FILE_PAGES);
371 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
372 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
373 		__dec_zone_page_state(page, NR_SHMEM);
374 		__inc_zone_page_state(newpage, NR_SHMEM);
375 	}
376 	spin_unlock_irq(&mapping->tree_lock);
377 
378 	return MIGRATEPAGE_SUCCESS;
379 }
380 
381 /*
382  * The expected number of remaining references is the same as that
383  * of migrate_page_move_mapping().
384  */
385 int migrate_huge_page_move_mapping(struct address_space *mapping,
386 				   struct page *newpage, struct page *page)
387 {
388 	int expected_count;
389 	void **pslot;
390 
391 	if (!mapping) {
392 		if (page_count(page) != 1)
393 			return -EAGAIN;
394 		return MIGRATEPAGE_SUCCESS;
395 	}
396 
397 	spin_lock_irq(&mapping->tree_lock);
398 
399 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
400 					page_index(page));
401 
402 	expected_count = 2 + page_has_private(page);
403 	if (page_count(page) != expected_count ||
404 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
405 		spin_unlock_irq(&mapping->tree_lock);
406 		return -EAGAIN;
407 	}
408 
409 	if (!page_freeze_refs(page, expected_count)) {
410 		spin_unlock_irq(&mapping->tree_lock);
411 		return -EAGAIN;
412 	}
413 
414 	get_page(newpage);
415 
416 	radix_tree_replace_slot(pslot, newpage);
417 
418 	page_unfreeze_refs(page, expected_count - 1);
419 
420 	spin_unlock_irq(&mapping->tree_lock);
421 	return MIGRATEPAGE_SUCCESS;
422 }
423 
424 /*
425  * Copy the page to its new location
426  */
427 void migrate_page_copy(struct page *newpage, struct page *page)
428 {
429 	if (PageHuge(page) || PageTransHuge(page))
430 		copy_huge_page(newpage, page);
431 	else
432 		copy_highpage(newpage, page);
433 
434 	if (PageError(page))
435 		SetPageError(newpage);
436 	if (PageReferenced(page))
437 		SetPageReferenced(newpage);
438 	if (PageUptodate(page))
439 		SetPageUptodate(newpage);
440 	if (TestClearPageActive(page)) {
441 		VM_BUG_ON(PageUnevictable(page));
442 		SetPageActive(newpage);
443 	} else if (TestClearPageUnevictable(page))
444 		SetPageUnevictable(newpage);
445 	if (PageChecked(page))
446 		SetPageChecked(newpage);
447 	if (PageMappedToDisk(page))
448 		SetPageMappedToDisk(newpage);
449 
450 	if (PageDirty(page)) {
451 		clear_page_dirty_for_io(page);
452 		/*
453 		 * Want to mark the page and the radix tree as dirty, and
454 		 * redo the accounting that clear_page_dirty_for_io undid,
455 		 * but we can't use set_page_dirty because that function
456 		 * is actually a signal that all of the page has become dirty.
457 		 * Whereas only part of our page may be dirty.
458 		 */
459 		if (PageSwapBacked(page))
460 			SetPageDirty(newpage);
461 		else
462 			__set_page_dirty_nobuffers(newpage);
463  	}
464 
465 	mlock_migrate_page(newpage, page);
466 	ksm_migrate_page(newpage, page);
467 
468 	ClearPageSwapCache(page);
469 	ClearPagePrivate(page);
470 	set_page_private(page, 0);
471 
472 	/*
473 	 * If any waiters have accumulated on the new page then
474 	 * wake them up.
475 	 */
476 	if (PageWriteback(newpage))
477 		end_page_writeback(newpage);
478 }
479 
480 /************************************************************
481  *                    Migration functions
482  ***********************************************************/
483 
484 /* Always fail migration. Used for mappings that are not movable */
485 int fail_migrate_page(struct address_space *mapping,
486 			struct page *newpage, struct page *page)
487 {
488 	return -EIO;
489 }
490 EXPORT_SYMBOL(fail_migrate_page);
491 
492 /*
493  * Common logic to directly migrate a single page suitable for
494  * pages that do not use PagePrivate/PagePrivate2.
495  *
496  * Pages are locked upon entry and exit.
497  */
498 int migrate_page(struct address_space *mapping,
499 		struct page *newpage, struct page *page,
500 		enum migrate_mode mode)
501 {
502 	int rc;
503 
504 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
505 
506 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
507 
508 	if (rc != MIGRATEPAGE_SUCCESS)
509 		return rc;
510 
511 	migrate_page_copy(newpage, page);
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL(migrate_page);
515 
516 #ifdef CONFIG_BLOCK
517 /*
518  * Migration function for pages with buffers. This function can only be used
519  * if the underlying filesystem guarantees that no other references to "page"
520  * exist.
521  */
522 int buffer_migrate_page(struct address_space *mapping,
523 		struct page *newpage, struct page *page, enum migrate_mode mode)
524 {
525 	struct buffer_head *bh, *head;
526 	int rc;
527 
528 	if (!page_has_buffers(page))
529 		return migrate_page(mapping, newpage, page, mode);
530 
531 	head = page_buffers(page);
532 
533 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
534 
535 	if (rc != MIGRATEPAGE_SUCCESS)
536 		return rc;
537 
538 	/*
539 	 * In the async case, migrate_page_move_mapping locked the buffers
540 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
541 	 * need to be locked now
542 	 */
543 	if (mode != MIGRATE_ASYNC)
544 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
545 
546 	ClearPagePrivate(page);
547 	set_page_private(newpage, page_private(page));
548 	set_page_private(page, 0);
549 	put_page(page);
550 	get_page(newpage);
551 
552 	bh = head;
553 	do {
554 		set_bh_page(bh, newpage, bh_offset(bh));
555 		bh = bh->b_this_page;
556 
557 	} while (bh != head);
558 
559 	SetPagePrivate(newpage);
560 
561 	migrate_page_copy(newpage, page);
562 
563 	bh = head;
564 	do {
565 		unlock_buffer(bh);
566  		put_bh(bh);
567 		bh = bh->b_this_page;
568 
569 	} while (bh != head);
570 
571 	return MIGRATEPAGE_SUCCESS;
572 }
573 EXPORT_SYMBOL(buffer_migrate_page);
574 #endif
575 
576 /*
577  * Writeback a page to clean the dirty state
578  */
579 static int writeout(struct address_space *mapping, struct page *page)
580 {
581 	struct writeback_control wbc = {
582 		.sync_mode = WB_SYNC_NONE,
583 		.nr_to_write = 1,
584 		.range_start = 0,
585 		.range_end = LLONG_MAX,
586 		.for_reclaim = 1
587 	};
588 	int rc;
589 
590 	if (!mapping->a_ops->writepage)
591 		/* No write method for the address space */
592 		return -EINVAL;
593 
594 	if (!clear_page_dirty_for_io(page))
595 		/* Someone else already triggered a write */
596 		return -EAGAIN;
597 
598 	/*
599 	 * A dirty page may imply that the underlying filesystem has
600 	 * the page on some queue. So the page must be clean for
601 	 * migration. Writeout may mean we loose the lock and the
602 	 * page state is no longer what we checked for earlier.
603 	 * At this point we know that the migration attempt cannot
604 	 * be successful.
605 	 */
606 	remove_migration_ptes(page, page);
607 
608 	rc = mapping->a_ops->writepage(page, &wbc);
609 
610 	if (rc != AOP_WRITEPAGE_ACTIVATE)
611 		/* unlocked. Relock */
612 		lock_page(page);
613 
614 	return (rc < 0) ? -EIO : -EAGAIN;
615 }
616 
617 /*
618  * Default handling if a filesystem does not provide a migration function.
619  */
620 static int fallback_migrate_page(struct address_space *mapping,
621 	struct page *newpage, struct page *page, enum migrate_mode mode)
622 {
623 	if (PageDirty(page)) {
624 		/* Only writeback pages in full synchronous migration */
625 		if (mode != MIGRATE_SYNC)
626 			return -EBUSY;
627 		return writeout(mapping, page);
628 	}
629 
630 	/*
631 	 * Buffers may be managed in a filesystem specific way.
632 	 * We must have no buffers or drop them.
633 	 */
634 	if (page_has_private(page) &&
635 	    !try_to_release_page(page, GFP_KERNEL))
636 		return -EAGAIN;
637 
638 	return migrate_page(mapping, newpage, page, mode);
639 }
640 
641 /*
642  * Move a page to a newly allocated page
643  * The page is locked and all ptes have been successfully removed.
644  *
645  * The new page will have replaced the old page if this function
646  * is successful.
647  *
648  * Return value:
649  *   < 0 - error code
650  *  MIGRATEPAGE_SUCCESS - success
651  */
652 static int move_to_new_page(struct page *newpage, struct page *page,
653 				int remap_swapcache, enum migrate_mode mode)
654 {
655 	struct address_space *mapping;
656 	int rc;
657 
658 	/*
659 	 * Block others from accessing the page when we get around to
660 	 * establishing additional references. We are the only one
661 	 * holding a reference to the new page at this point.
662 	 */
663 	if (!trylock_page(newpage))
664 		BUG();
665 
666 	/* Prepare mapping for the new page.*/
667 	newpage->index = page->index;
668 	newpage->mapping = page->mapping;
669 	if (PageSwapBacked(page))
670 		SetPageSwapBacked(newpage);
671 
672 	mapping = page_mapping(page);
673 	if (!mapping)
674 		rc = migrate_page(mapping, newpage, page, mode);
675 	else if (mapping->a_ops->migratepage)
676 		/*
677 		 * Most pages have a mapping and most filesystems provide a
678 		 * migratepage callback. Anonymous pages are part of swap
679 		 * space which also has its own migratepage callback. This
680 		 * is the most common path for page migration.
681 		 */
682 		rc = mapping->a_ops->migratepage(mapping,
683 						newpage, page, mode);
684 	else
685 		rc = fallback_migrate_page(mapping, newpage, page, mode);
686 
687 	if (rc != MIGRATEPAGE_SUCCESS) {
688 		newpage->mapping = NULL;
689 	} else {
690 		if (remap_swapcache)
691 			remove_migration_ptes(page, newpage);
692 		page->mapping = NULL;
693 	}
694 
695 	unlock_page(newpage);
696 
697 	return rc;
698 }
699 
700 static int __unmap_and_move(struct page *page, struct page *newpage,
701 			int force, bool offlining, enum migrate_mode mode)
702 {
703 	int rc = -EAGAIN;
704 	int remap_swapcache = 1;
705 	struct mem_cgroup *mem;
706 	struct anon_vma *anon_vma = NULL;
707 
708 	if (!trylock_page(page)) {
709 		if (!force || mode == MIGRATE_ASYNC)
710 			goto out;
711 
712 		/*
713 		 * It's not safe for direct compaction to call lock_page.
714 		 * For example, during page readahead pages are added locked
715 		 * to the LRU. Later, when the IO completes the pages are
716 		 * marked uptodate and unlocked. However, the queueing
717 		 * could be merging multiple pages for one bio (e.g.
718 		 * mpage_readpages). If an allocation happens for the
719 		 * second or third page, the process can end up locking
720 		 * the same page twice and deadlocking. Rather than
721 		 * trying to be clever about what pages can be locked,
722 		 * avoid the use of lock_page for direct compaction
723 		 * altogether.
724 		 */
725 		if (current->flags & PF_MEMALLOC)
726 			goto out;
727 
728 		lock_page(page);
729 	}
730 
731 	/*
732 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
733 	 * and can safely migrate a KSM page.  The other cases have skipped
734 	 * PageKsm along with PageReserved - but it is only now when we have
735 	 * the page lock that we can be certain it will not go KSM beneath us
736 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
737 	 * its pagecount raised, but only here do we take the page lock which
738 	 * serializes that).
739 	 */
740 	if (PageKsm(page) && !offlining) {
741 		rc = -EBUSY;
742 		goto unlock;
743 	}
744 
745 	/* charge against new page */
746 	mem_cgroup_prepare_migration(page, newpage, &mem);
747 
748 	if (PageWriteback(page)) {
749 		/*
750 		 * Only in the case of a full syncronous migration is it
751 		 * necessary to wait for PageWriteback. In the async case,
752 		 * the retry loop is too short and in the sync-light case,
753 		 * the overhead of stalling is too much
754 		 */
755 		if (mode != MIGRATE_SYNC) {
756 			rc = -EBUSY;
757 			goto uncharge;
758 		}
759 		if (!force)
760 			goto uncharge;
761 		wait_on_page_writeback(page);
762 	}
763 	/*
764 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
765 	 * we cannot notice that anon_vma is freed while we migrates a page.
766 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
767 	 * of migration. File cache pages are no problem because of page_lock()
768 	 * File Caches may use write_page() or lock_page() in migration, then,
769 	 * just care Anon page here.
770 	 */
771 	if (PageAnon(page)) {
772 		/*
773 		 * Only page_lock_anon_vma_read() understands the subtleties of
774 		 * getting a hold on an anon_vma from outside one of its mms.
775 		 */
776 		anon_vma = page_get_anon_vma(page);
777 		if (anon_vma) {
778 			/*
779 			 * Anon page
780 			 */
781 		} else if (PageSwapCache(page)) {
782 			/*
783 			 * We cannot be sure that the anon_vma of an unmapped
784 			 * swapcache page is safe to use because we don't
785 			 * know in advance if the VMA that this page belonged
786 			 * to still exists. If the VMA and others sharing the
787 			 * data have been freed, then the anon_vma could
788 			 * already be invalid.
789 			 *
790 			 * To avoid this possibility, swapcache pages get
791 			 * migrated but are not remapped when migration
792 			 * completes
793 			 */
794 			remap_swapcache = 0;
795 		} else {
796 			goto uncharge;
797 		}
798 	}
799 
800 	if (unlikely(balloon_page_movable(page))) {
801 		/*
802 		 * A ballooned page does not need any special attention from
803 		 * physical to virtual reverse mapping procedures.
804 		 * Skip any attempt to unmap PTEs or to remap swap cache,
805 		 * in order to avoid burning cycles at rmap level, and perform
806 		 * the page migration right away (proteced by page lock).
807 		 */
808 		rc = balloon_page_migrate(newpage, page, mode);
809 		goto uncharge;
810 	}
811 
812 	/*
813 	 * Corner case handling:
814 	 * 1. When a new swap-cache page is read into, it is added to the LRU
815 	 * and treated as swapcache but it has no rmap yet.
816 	 * Calling try_to_unmap() against a page->mapping==NULL page will
817 	 * trigger a BUG.  So handle it here.
818 	 * 2. An orphaned page (see truncate_complete_page) might have
819 	 * fs-private metadata. The page can be picked up due to memory
820 	 * offlining.  Everywhere else except page reclaim, the page is
821 	 * invisible to the vm, so the page can not be migrated.  So try to
822 	 * free the metadata, so the page can be freed.
823 	 */
824 	if (!page->mapping) {
825 		VM_BUG_ON(PageAnon(page));
826 		if (page_has_private(page)) {
827 			try_to_free_buffers(page);
828 			goto uncharge;
829 		}
830 		goto skip_unmap;
831 	}
832 
833 	/* Establish migration ptes or remove ptes */
834 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
835 
836 skip_unmap:
837 	if (!page_mapped(page))
838 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
839 
840 	if (rc && remap_swapcache)
841 		remove_migration_ptes(page, page);
842 
843 	/* Drop an anon_vma reference if we took one */
844 	if (anon_vma)
845 		put_anon_vma(anon_vma);
846 
847 uncharge:
848 	mem_cgroup_end_migration(mem, page, newpage,
849 				 (rc == MIGRATEPAGE_SUCCESS ||
850 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
851 unlock:
852 	unlock_page(page);
853 out:
854 	return rc;
855 }
856 
857 /*
858  * Obtain the lock on page, remove all ptes and migrate the page
859  * to the newly allocated page in newpage.
860  */
861 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
862 			struct page *page, int force, bool offlining,
863 			enum migrate_mode mode)
864 {
865 	int rc = 0;
866 	int *result = NULL;
867 	struct page *newpage = get_new_page(page, private, &result);
868 
869 	if (!newpage)
870 		return -ENOMEM;
871 
872 	if (page_count(page) == 1) {
873 		/* page was freed from under us. So we are done. */
874 		goto out;
875 	}
876 
877 	if (unlikely(PageTransHuge(page)))
878 		if (unlikely(split_huge_page(page)))
879 			goto out;
880 
881 	rc = __unmap_and_move(page, newpage, force, offlining, mode);
882 
883 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
884 		/*
885 		 * A ballooned page has been migrated already.
886 		 * Now, it's the time to wrap-up counters,
887 		 * handle the page back to Buddy and return.
888 		 */
889 		dec_zone_page_state(page, NR_ISOLATED_ANON +
890 				    page_is_file_cache(page));
891 		balloon_page_free(page);
892 		return MIGRATEPAGE_SUCCESS;
893 	}
894 out:
895 	if (rc != -EAGAIN) {
896 		/*
897 		 * A page that has been migrated has all references
898 		 * removed and will be freed. A page that has not been
899 		 * migrated will have kepts its references and be
900 		 * restored.
901 		 */
902 		list_del(&page->lru);
903 		dec_zone_page_state(page, NR_ISOLATED_ANON +
904 				page_is_file_cache(page));
905 		putback_lru_page(page);
906 	}
907 	/*
908 	 * Move the new page to the LRU. If migration was not successful
909 	 * then this will free the page.
910 	 */
911 	putback_lru_page(newpage);
912 	if (result) {
913 		if (rc)
914 			*result = rc;
915 		else
916 			*result = page_to_nid(newpage);
917 	}
918 	return rc;
919 }
920 
921 /*
922  * Counterpart of unmap_and_move_page() for hugepage migration.
923  *
924  * This function doesn't wait the completion of hugepage I/O
925  * because there is no race between I/O and migration for hugepage.
926  * Note that currently hugepage I/O occurs only in direct I/O
927  * where no lock is held and PG_writeback is irrelevant,
928  * and writeback status of all subpages are counted in the reference
929  * count of the head page (i.e. if all subpages of a 2MB hugepage are
930  * under direct I/O, the reference of the head page is 512 and a bit more.)
931  * This means that when we try to migrate hugepage whose subpages are
932  * doing direct I/O, some references remain after try_to_unmap() and
933  * hugepage migration fails without data corruption.
934  *
935  * There is also no race when direct I/O is issued on the page under migration,
936  * because then pte is replaced with migration swap entry and direct I/O code
937  * will wait in the page fault for migration to complete.
938  */
939 static int unmap_and_move_huge_page(new_page_t get_new_page,
940 				unsigned long private, struct page *hpage,
941 				int force, bool offlining,
942 				enum migrate_mode mode)
943 {
944 	int rc = 0;
945 	int *result = NULL;
946 	struct page *new_hpage = get_new_page(hpage, private, &result);
947 	struct anon_vma *anon_vma = NULL;
948 
949 	if (!new_hpage)
950 		return -ENOMEM;
951 
952 	rc = -EAGAIN;
953 
954 	if (!trylock_page(hpage)) {
955 		if (!force || mode != MIGRATE_SYNC)
956 			goto out;
957 		lock_page(hpage);
958 	}
959 
960 	if (PageAnon(hpage))
961 		anon_vma = page_get_anon_vma(hpage);
962 
963 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
964 
965 	if (!page_mapped(hpage))
966 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
967 
968 	if (rc)
969 		remove_migration_ptes(hpage, hpage);
970 
971 	if (anon_vma)
972 		put_anon_vma(anon_vma);
973 
974 	if (!rc)
975 		hugetlb_cgroup_migrate(hpage, new_hpage);
976 
977 	unlock_page(hpage);
978 out:
979 	put_page(new_hpage);
980 	if (result) {
981 		if (rc)
982 			*result = rc;
983 		else
984 			*result = page_to_nid(new_hpage);
985 	}
986 	return rc;
987 }
988 
989 /*
990  * migrate_pages
991  *
992  * The function takes one list of pages to migrate and a function
993  * that determines from the page to be migrated and the private data
994  * the target of the move and allocates the page.
995  *
996  * The function returns after 10 attempts or if no pages
997  * are movable anymore because to has become empty
998  * or no retryable pages exist anymore.
999  * Caller should call putback_lru_pages to return pages to the LRU
1000  * or free list only if ret != 0.
1001  *
1002  * Return: Number of pages not migrated or error code.
1003  */
1004 int migrate_pages(struct list_head *from,
1005 		new_page_t get_new_page, unsigned long private, bool offlining,
1006 		enum migrate_mode mode, int reason)
1007 {
1008 	int retry = 1;
1009 	int nr_failed = 0;
1010 	int nr_succeeded = 0;
1011 	int pass = 0;
1012 	struct page *page;
1013 	struct page *page2;
1014 	int swapwrite = current->flags & PF_SWAPWRITE;
1015 	int rc;
1016 
1017 	if (!swapwrite)
1018 		current->flags |= PF_SWAPWRITE;
1019 
1020 	for(pass = 0; pass < 10 && retry; pass++) {
1021 		retry = 0;
1022 
1023 		list_for_each_entry_safe(page, page2, from, lru) {
1024 			cond_resched();
1025 
1026 			rc = unmap_and_move(get_new_page, private,
1027 						page, pass > 2, offlining,
1028 						mode);
1029 
1030 			switch(rc) {
1031 			case -ENOMEM:
1032 				goto out;
1033 			case -EAGAIN:
1034 				retry++;
1035 				break;
1036 			case MIGRATEPAGE_SUCCESS:
1037 				nr_succeeded++;
1038 				break;
1039 			default:
1040 				/* Permanent failure */
1041 				nr_failed++;
1042 				break;
1043 			}
1044 		}
1045 	}
1046 	rc = nr_failed + retry;
1047 out:
1048 	if (nr_succeeded)
1049 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1050 	if (nr_failed)
1051 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1052 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1053 
1054 	if (!swapwrite)
1055 		current->flags &= ~PF_SWAPWRITE;
1056 
1057 	return rc;
1058 }
1059 
1060 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1061 		      unsigned long private, bool offlining,
1062 		      enum migrate_mode mode)
1063 {
1064 	int pass, rc;
1065 
1066 	for (pass = 0; pass < 10; pass++) {
1067 		rc = unmap_and_move_huge_page(get_new_page,
1068 					      private, hpage, pass > 2, offlining,
1069 					      mode);
1070 		switch (rc) {
1071 		case -ENOMEM:
1072 			goto out;
1073 		case -EAGAIN:
1074 			/* try again */
1075 			cond_resched();
1076 			break;
1077 		case MIGRATEPAGE_SUCCESS:
1078 			goto out;
1079 		default:
1080 			rc = -EIO;
1081 			goto out;
1082 		}
1083 	}
1084 out:
1085 	return rc;
1086 }
1087 
1088 #ifdef CONFIG_NUMA
1089 /*
1090  * Move a list of individual pages
1091  */
1092 struct page_to_node {
1093 	unsigned long addr;
1094 	struct page *page;
1095 	int node;
1096 	int status;
1097 };
1098 
1099 static struct page *new_page_node(struct page *p, unsigned long private,
1100 		int **result)
1101 {
1102 	struct page_to_node *pm = (struct page_to_node *)private;
1103 
1104 	while (pm->node != MAX_NUMNODES && pm->page != p)
1105 		pm++;
1106 
1107 	if (pm->node == MAX_NUMNODES)
1108 		return NULL;
1109 
1110 	*result = &pm->status;
1111 
1112 	return alloc_pages_exact_node(pm->node,
1113 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1114 }
1115 
1116 /*
1117  * Move a set of pages as indicated in the pm array. The addr
1118  * field must be set to the virtual address of the page to be moved
1119  * and the node number must contain a valid target node.
1120  * The pm array ends with node = MAX_NUMNODES.
1121  */
1122 static int do_move_page_to_node_array(struct mm_struct *mm,
1123 				      struct page_to_node *pm,
1124 				      int migrate_all)
1125 {
1126 	int err;
1127 	struct page_to_node *pp;
1128 	LIST_HEAD(pagelist);
1129 
1130 	down_read(&mm->mmap_sem);
1131 
1132 	/*
1133 	 * Build a list of pages to migrate
1134 	 */
1135 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1136 		struct vm_area_struct *vma;
1137 		struct page *page;
1138 
1139 		err = -EFAULT;
1140 		vma = find_vma(mm, pp->addr);
1141 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1142 			goto set_status;
1143 
1144 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1145 
1146 		err = PTR_ERR(page);
1147 		if (IS_ERR(page))
1148 			goto set_status;
1149 
1150 		err = -ENOENT;
1151 		if (!page)
1152 			goto set_status;
1153 
1154 		/* Use PageReserved to check for zero page */
1155 		if (PageReserved(page) || PageKsm(page))
1156 			goto put_and_set;
1157 
1158 		pp->page = page;
1159 		err = page_to_nid(page);
1160 
1161 		if (err == pp->node)
1162 			/*
1163 			 * Node already in the right place
1164 			 */
1165 			goto put_and_set;
1166 
1167 		err = -EACCES;
1168 		if (page_mapcount(page) > 1 &&
1169 				!migrate_all)
1170 			goto put_and_set;
1171 
1172 		err = isolate_lru_page(page);
1173 		if (!err) {
1174 			list_add_tail(&page->lru, &pagelist);
1175 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1176 					    page_is_file_cache(page));
1177 		}
1178 put_and_set:
1179 		/*
1180 		 * Either remove the duplicate refcount from
1181 		 * isolate_lru_page() or drop the page ref if it was
1182 		 * not isolated.
1183 		 */
1184 		put_page(page);
1185 set_status:
1186 		pp->status = err;
1187 	}
1188 
1189 	err = 0;
1190 	if (!list_empty(&pagelist)) {
1191 		err = migrate_pages(&pagelist, new_page_node,
1192 				(unsigned long)pm, 0, MIGRATE_SYNC,
1193 				MR_SYSCALL);
1194 		if (err)
1195 			putback_lru_pages(&pagelist);
1196 	}
1197 
1198 	up_read(&mm->mmap_sem);
1199 	return err;
1200 }
1201 
1202 /*
1203  * Migrate an array of page address onto an array of nodes and fill
1204  * the corresponding array of status.
1205  */
1206 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1207 			 unsigned long nr_pages,
1208 			 const void __user * __user *pages,
1209 			 const int __user *nodes,
1210 			 int __user *status, int flags)
1211 {
1212 	struct page_to_node *pm;
1213 	unsigned long chunk_nr_pages;
1214 	unsigned long chunk_start;
1215 	int err;
1216 
1217 	err = -ENOMEM;
1218 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1219 	if (!pm)
1220 		goto out;
1221 
1222 	migrate_prep();
1223 
1224 	/*
1225 	 * Store a chunk of page_to_node array in a page,
1226 	 * but keep the last one as a marker
1227 	 */
1228 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1229 
1230 	for (chunk_start = 0;
1231 	     chunk_start < nr_pages;
1232 	     chunk_start += chunk_nr_pages) {
1233 		int j;
1234 
1235 		if (chunk_start + chunk_nr_pages > nr_pages)
1236 			chunk_nr_pages = nr_pages - chunk_start;
1237 
1238 		/* fill the chunk pm with addrs and nodes from user-space */
1239 		for (j = 0; j < chunk_nr_pages; j++) {
1240 			const void __user *p;
1241 			int node;
1242 
1243 			err = -EFAULT;
1244 			if (get_user(p, pages + j + chunk_start))
1245 				goto out_pm;
1246 			pm[j].addr = (unsigned long) p;
1247 
1248 			if (get_user(node, nodes + j + chunk_start))
1249 				goto out_pm;
1250 
1251 			err = -ENODEV;
1252 			if (node < 0 || node >= MAX_NUMNODES)
1253 				goto out_pm;
1254 
1255 			if (!node_state(node, N_MEMORY))
1256 				goto out_pm;
1257 
1258 			err = -EACCES;
1259 			if (!node_isset(node, task_nodes))
1260 				goto out_pm;
1261 
1262 			pm[j].node = node;
1263 		}
1264 
1265 		/* End marker for this chunk */
1266 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1267 
1268 		/* Migrate this chunk */
1269 		err = do_move_page_to_node_array(mm, pm,
1270 						 flags & MPOL_MF_MOVE_ALL);
1271 		if (err < 0)
1272 			goto out_pm;
1273 
1274 		/* Return status information */
1275 		for (j = 0; j < chunk_nr_pages; j++)
1276 			if (put_user(pm[j].status, status + j + chunk_start)) {
1277 				err = -EFAULT;
1278 				goto out_pm;
1279 			}
1280 	}
1281 	err = 0;
1282 
1283 out_pm:
1284 	free_page((unsigned long)pm);
1285 out:
1286 	return err;
1287 }
1288 
1289 /*
1290  * Determine the nodes of an array of pages and store it in an array of status.
1291  */
1292 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1293 				const void __user **pages, int *status)
1294 {
1295 	unsigned long i;
1296 
1297 	down_read(&mm->mmap_sem);
1298 
1299 	for (i = 0; i < nr_pages; i++) {
1300 		unsigned long addr = (unsigned long)(*pages);
1301 		struct vm_area_struct *vma;
1302 		struct page *page;
1303 		int err = -EFAULT;
1304 
1305 		vma = find_vma(mm, addr);
1306 		if (!vma || addr < vma->vm_start)
1307 			goto set_status;
1308 
1309 		page = follow_page(vma, addr, 0);
1310 
1311 		err = PTR_ERR(page);
1312 		if (IS_ERR(page))
1313 			goto set_status;
1314 
1315 		err = -ENOENT;
1316 		/* Use PageReserved to check for zero page */
1317 		if (!page || PageReserved(page) || PageKsm(page))
1318 			goto set_status;
1319 
1320 		err = page_to_nid(page);
1321 set_status:
1322 		*status = err;
1323 
1324 		pages++;
1325 		status++;
1326 	}
1327 
1328 	up_read(&mm->mmap_sem);
1329 }
1330 
1331 /*
1332  * Determine the nodes of a user array of pages and store it in
1333  * a user array of status.
1334  */
1335 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1336 			 const void __user * __user *pages,
1337 			 int __user *status)
1338 {
1339 #define DO_PAGES_STAT_CHUNK_NR 16
1340 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1341 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1342 
1343 	while (nr_pages) {
1344 		unsigned long chunk_nr;
1345 
1346 		chunk_nr = nr_pages;
1347 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1348 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1349 
1350 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1351 			break;
1352 
1353 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1354 
1355 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1356 			break;
1357 
1358 		pages += chunk_nr;
1359 		status += chunk_nr;
1360 		nr_pages -= chunk_nr;
1361 	}
1362 	return nr_pages ? -EFAULT : 0;
1363 }
1364 
1365 /*
1366  * Move a list of pages in the address space of the currently executing
1367  * process.
1368  */
1369 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1370 		const void __user * __user *, pages,
1371 		const int __user *, nodes,
1372 		int __user *, status, int, flags)
1373 {
1374 	const struct cred *cred = current_cred(), *tcred;
1375 	struct task_struct *task;
1376 	struct mm_struct *mm;
1377 	int err;
1378 	nodemask_t task_nodes;
1379 
1380 	/* Check flags */
1381 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1382 		return -EINVAL;
1383 
1384 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1385 		return -EPERM;
1386 
1387 	/* Find the mm_struct */
1388 	rcu_read_lock();
1389 	task = pid ? find_task_by_vpid(pid) : current;
1390 	if (!task) {
1391 		rcu_read_unlock();
1392 		return -ESRCH;
1393 	}
1394 	get_task_struct(task);
1395 
1396 	/*
1397 	 * Check if this process has the right to modify the specified
1398 	 * process. The right exists if the process has administrative
1399 	 * capabilities, superuser privileges or the same
1400 	 * userid as the target process.
1401 	 */
1402 	tcred = __task_cred(task);
1403 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1404 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1405 	    !capable(CAP_SYS_NICE)) {
1406 		rcu_read_unlock();
1407 		err = -EPERM;
1408 		goto out;
1409 	}
1410 	rcu_read_unlock();
1411 
1412  	err = security_task_movememory(task);
1413  	if (err)
1414 		goto out;
1415 
1416 	task_nodes = cpuset_mems_allowed(task);
1417 	mm = get_task_mm(task);
1418 	put_task_struct(task);
1419 
1420 	if (!mm)
1421 		return -EINVAL;
1422 
1423 	if (nodes)
1424 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1425 				    nodes, status, flags);
1426 	else
1427 		err = do_pages_stat(mm, nr_pages, pages, status);
1428 
1429 	mmput(mm);
1430 	return err;
1431 
1432 out:
1433 	put_task_struct(task);
1434 	return err;
1435 }
1436 
1437 /*
1438  * Call migration functions in the vma_ops that may prepare
1439  * memory in a vm for migration. migration functions may perform
1440  * the migration for vmas that do not have an underlying page struct.
1441  */
1442 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1443 	const nodemask_t *from, unsigned long flags)
1444 {
1445  	struct vm_area_struct *vma;
1446  	int err = 0;
1447 
1448 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1449  		if (vma->vm_ops && vma->vm_ops->migrate) {
1450  			err = vma->vm_ops->migrate(vma, to, from, flags);
1451  			if (err)
1452  				break;
1453  		}
1454  	}
1455  	return err;
1456 }
1457 
1458 #ifdef CONFIG_NUMA_BALANCING
1459 /*
1460  * Returns true if this is a safe migration target node for misplaced NUMA
1461  * pages. Currently it only checks the watermarks which crude
1462  */
1463 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1464 				   int nr_migrate_pages)
1465 {
1466 	int z;
1467 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1468 		struct zone *zone = pgdat->node_zones + z;
1469 
1470 		if (!populated_zone(zone))
1471 			continue;
1472 
1473 		if (zone->all_unreclaimable)
1474 			continue;
1475 
1476 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1477 		if (!zone_watermark_ok(zone, 0,
1478 				       high_wmark_pages(zone) +
1479 				       nr_migrate_pages,
1480 				       0, 0))
1481 			continue;
1482 		return true;
1483 	}
1484 	return false;
1485 }
1486 
1487 static struct page *alloc_misplaced_dst_page(struct page *page,
1488 					   unsigned long data,
1489 					   int **result)
1490 {
1491 	int nid = (int) data;
1492 	struct page *newpage;
1493 
1494 	newpage = alloc_pages_exact_node(nid,
1495 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1496 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1497 					  __GFP_NOWARN) &
1498 					 ~GFP_IOFS, 0);
1499 	if (newpage)
1500 		page_xchg_last_nid(newpage, page_last_nid(page));
1501 
1502 	return newpage;
1503 }
1504 
1505 /*
1506  * page migration rate limiting control.
1507  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1508  * window of time. Default here says do not migrate more than 1280M per second.
1509  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1510  * as it is faults that reset the window, pte updates will happen unconditionally
1511  * if there has not been a fault since @pteupdate_interval_millisecs after the
1512  * throttle window closed.
1513  */
1514 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1515 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1516 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1517 
1518 /* Returns true if NUMA migration is currently rate limited */
1519 bool migrate_ratelimited(int node)
1520 {
1521 	pg_data_t *pgdat = NODE_DATA(node);
1522 
1523 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1524 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1525 		return false;
1526 
1527 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1528 		return false;
1529 
1530 	return true;
1531 }
1532 
1533 /* Returns true if the node is migrate rate-limited after the update */
1534 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1535 {
1536 	bool rate_limited = false;
1537 
1538 	/*
1539 	 * Rate-limit the amount of data that is being migrated to a node.
1540 	 * Optimal placement is no good if the memory bus is saturated and
1541 	 * all the time is being spent migrating!
1542 	 */
1543 	spin_lock(&pgdat->numabalancing_migrate_lock);
1544 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1545 		pgdat->numabalancing_migrate_nr_pages = 0;
1546 		pgdat->numabalancing_migrate_next_window = jiffies +
1547 			msecs_to_jiffies(migrate_interval_millisecs);
1548 	}
1549 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1550 		rate_limited = true;
1551 	else
1552 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1553 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1554 
1555 	return rate_limited;
1556 }
1557 
1558 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1559 {
1560 	int ret = 0;
1561 
1562 	/* Avoid migrating to a node that is nearly full */
1563 	if (migrate_balanced_pgdat(pgdat, 1)) {
1564 		int page_lru;
1565 
1566 		if (isolate_lru_page(page)) {
1567 			put_page(page);
1568 			return 0;
1569 		}
1570 
1571 		/* Page is isolated */
1572 		ret = 1;
1573 		page_lru = page_is_file_cache(page);
1574 		if (!PageTransHuge(page))
1575 			inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru);
1576 		else
1577 			mod_zone_page_state(page_zone(page),
1578 					NR_ISOLATED_ANON + page_lru,
1579 					HPAGE_PMD_NR);
1580 	}
1581 
1582 	/*
1583 	 * Page is either isolated or there is not enough space on the target
1584 	 * node. If isolated, then it has taken a reference count and the
1585 	 * callers reference can be safely dropped without the page
1586 	 * disappearing underneath us during migration. Otherwise the page is
1587 	 * not to be migrated but the callers reference should still be
1588 	 * dropped so it does not leak.
1589 	 */
1590 	put_page(page);
1591 
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Attempt to migrate a misplaced page to the specified destination
1597  * node. Caller is expected to have an elevated reference count on
1598  * the page that will be dropped by this function before returning.
1599  */
1600 int migrate_misplaced_page(struct page *page, int node)
1601 {
1602 	pg_data_t *pgdat = NODE_DATA(node);
1603 	int isolated = 0;
1604 	int nr_remaining;
1605 	LIST_HEAD(migratepages);
1606 
1607 	/*
1608 	 * Don't migrate pages that are mapped in multiple processes.
1609 	 * TODO: Handle false sharing detection instead of this hammer
1610 	 */
1611 	if (page_mapcount(page) != 1) {
1612 		put_page(page);
1613 		goto out;
1614 	}
1615 
1616 	/*
1617 	 * Rate-limit the amount of data that is being migrated to a node.
1618 	 * Optimal placement is no good if the memory bus is saturated and
1619 	 * all the time is being spent migrating!
1620 	 */
1621 	if (numamigrate_update_ratelimit(pgdat, 1)) {
1622 		put_page(page);
1623 		goto out;
1624 	}
1625 
1626 	isolated = numamigrate_isolate_page(pgdat, page);
1627 	if (!isolated)
1628 		goto out;
1629 
1630 	list_add(&page->lru, &migratepages);
1631 	nr_remaining = migrate_pages(&migratepages,
1632 			alloc_misplaced_dst_page,
1633 			node, false, MIGRATE_ASYNC,
1634 			MR_NUMA_MISPLACED);
1635 	if (nr_remaining) {
1636 		putback_lru_pages(&migratepages);
1637 		isolated = 0;
1638 	} else
1639 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1640 	BUG_ON(!list_empty(&migratepages));
1641 out:
1642 	return isolated;
1643 }
1644 #endif /* CONFIG_NUMA_BALANCING */
1645 
1646 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1647 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 				struct vm_area_struct *vma,
1649 				pmd_t *pmd, pmd_t entry,
1650 				unsigned long address,
1651 				struct page *page, int node)
1652 {
1653 	unsigned long haddr = address & HPAGE_PMD_MASK;
1654 	pg_data_t *pgdat = NODE_DATA(node);
1655 	int isolated = 0;
1656 	struct page *new_page = NULL;
1657 	struct mem_cgroup *memcg = NULL;
1658 	int page_lru = page_is_file_cache(page);
1659 
1660 	/*
1661 	 * Don't migrate pages that are mapped in multiple processes.
1662 	 * TODO: Handle false sharing detection instead of this hammer
1663 	 */
1664 	if (page_mapcount(page) != 1)
1665 		goto out_dropref;
1666 
1667 	/*
1668 	 * Rate-limit the amount of data that is being migrated to a node.
1669 	 * Optimal placement is no good if the memory bus is saturated and
1670 	 * all the time is being spent migrating!
1671 	 */
1672 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1673 		goto out_dropref;
1674 
1675 	new_page = alloc_pages_node(node,
1676 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1677 	if (!new_page) {
1678 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1679 		goto out_dropref;
1680 	}
1681 	page_xchg_last_nid(new_page, page_last_nid(page));
1682 
1683 	isolated = numamigrate_isolate_page(pgdat, page);
1684 
1685 	/*
1686 	 * Failing to isolate or a GUP pin prevents migration. The expected
1687 	 * page count is 2. 1 for anonymous pages without a mapping and 1
1688 	 * for the callers pin. If the page was isolated, the page will
1689 	 * need to be put back on the LRU.
1690 	 */
1691 	if (!isolated || page_count(page) != 2) {
1692 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1693 		put_page(new_page);
1694 		if (isolated) {
1695 			putback_lru_page(page);
1696 			isolated = 0;
1697 			goto out;
1698 		}
1699 		goto out_keep_locked;
1700 	}
1701 
1702 	/* Prepare a page as a migration target */
1703 	__set_page_locked(new_page);
1704 	SetPageSwapBacked(new_page);
1705 
1706 	/* anon mapping, we can simply copy page->mapping to the new page: */
1707 	new_page->mapping = page->mapping;
1708 	new_page->index = page->index;
1709 	migrate_page_copy(new_page, page);
1710 	WARN_ON(PageLRU(new_page));
1711 
1712 	/* Recheck the target PMD */
1713 	spin_lock(&mm->page_table_lock);
1714 	if (unlikely(!pmd_same(*pmd, entry))) {
1715 		spin_unlock(&mm->page_table_lock);
1716 
1717 		/* Reverse changes made by migrate_page_copy() */
1718 		if (TestClearPageActive(new_page))
1719 			SetPageActive(page);
1720 		if (TestClearPageUnevictable(new_page))
1721 			SetPageUnevictable(page);
1722 		mlock_migrate_page(page, new_page);
1723 
1724 		unlock_page(new_page);
1725 		put_page(new_page);		/* Free it */
1726 
1727 		unlock_page(page);
1728 		putback_lru_page(page);
1729 
1730 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1731 		goto out;
1732 	}
1733 
1734 	/*
1735 	 * Traditional migration needs to prepare the memcg charge
1736 	 * transaction early to prevent the old page from being
1737 	 * uncharged when installing migration entries.  Here we can
1738 	 * save the potential rollback and start the charge transfer
1739 	 * only when migration is already known to end successfully.
1740 	 */
1741 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1742 
1743 	entry = mk_pmd(new_page, vma->vm_page_prot);
1744 	entry = pmd_mknonnuma(entry);
1745 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1746 	entry = pmd_mkhuge(entry);
1747 
1748 	page_add_new_anon_rmap(new_page, vma, haddr);
1749 
1750 	set_pmd_at(mm, haddr, pmd, entry);
1751 	update_mmu_cache_pmd(vma, address, &entry);
1752 	page_remove_rmap(page);
1753 	/*
1754 	 * Finish the charge transaction under the page table lock to
1755 	 * prevent split_huge_page() from dividing up the charge
1756 	 * before it's fully transferred to the new page.
1757 	 */
1758 	mem_cgroup_end_migration(memcg, page, new_page, true);
1759 	spin_unlock(&mm->page_table_lock);
1760 
1761 	unlock_page(new_page);
1762 	unlock_page(page);
1763 	put_page(page);			/* Drop the rmap reference */
1764 	put_page(page);			/* Drop the LRU isolation reference */
1765 
1766 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1767 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1768 
1769 out:
1770 	mod_zone_page_state(page_zone(page),
1771 			NR_ISOLATED_ANON + page_lru,
1772 			-HPAGE_PMD_NR);
1773 	return isolated;
1774 
1775 out_dropref:
1776 	put_page(page);
1777 out_keep_locked:
1778 	return 0;
1779 }
1780 #endif /* CONFIG_NUMA_BALANCING */
1781 
1782 #endif /* CONFIG_NUMA */
1783