xref: /openbmc/linux/mm/migrate.c (revision 1d8b85cc)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/buffer_head.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/rmap.h>
23 #include <linux/topology.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/swapops.h>
27 
28 #include "internal.h"
29 
30 /* The maximum number of pages to take off the LRU for migration */
31 #define MIGRATE_CHUNK_SIZE 256
32 
33 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
34 
35 /*
36  * Isolate one page from the LRU lists. If successful put it onto
37  * the indicated list with elevated page count.
38  *
39  * Result:
40  *  -EBUSY: page not on LRU list
41  *  0: page removed from LRU list and added to the specified list.
42  */
43 int isolate_lru_page(struct page *page, struct list_head *pagelist)
44 {
45 	int ret = -EBUSY;
46 
47 	if (PageLRU(page)) {
48 		struct zone *zone = page_zone(page);
49 
50 		spin_lock_irq(&zone->lru_lock);
51 		if (PageLRU(page)) {
52 			ret = 0;
53 			get_page(page);
54 			ClearPageLRU(page);
55 			if (PageActive(page))
56 				del_page_from_active_list(zone, page);
57 			else
58 				del_page_from_inactive_list(zone, page);
59 			list_add_tail(&page->lru, pagelist);
60 		}
61 		spin_unlock_irq(&zone->lru_lock);
62 	}
63 	return ret;
64 }
65 
66 /*
67  * migrate_prep() needs to be called after we have compiled the list of pages
68  * to be migrated using isolate_lru_page() but before we begin a series of calls
69  * to migrate_pages().
70  */
71 int migrate_prep(void)
72 {
73 	/* Must have swap device for migration */
74 	if (nr_swap_pages <= 0)
75 		return -ENODEV;
76 
77 	/*
78 	 * Clear the LRU lists so pages can be isolated.
79 	 * Note that pages may be moved off the LRU after we have
80 	 * drained them. Those pages will fail to migrate like other
81 	 * pages that may be busy.
82 	 */
83 	lru_add_drain_all();
84 
85 	return 0;
86 }
87 
88 static inline void move_to_lru(struct page *page)
89 {
90 	list_del(&page->lru);
91 	if (PageActive(page)) {
92 		/*
93 		 * lru_cache_add_active checks that
94 		 * the PG_active bit is off.
95 		 */
96 		ClearPageActive(page);
97 		lru_cache_add_active(page);
98 	} else {
99 		lru_cache_add(page);
100 	}
101 	put_page(page);
102 }
103 
104 /*
105  * Add isolated pages on the list back to the LRU.
106  *
107  * returns the number of pages put back.
108  */
109 int putback_lru_pages(struct list_head *l)
110 {
111 	struct page *page;
112 	struct page *page2;
113 	int count = 0;
114 
115 	list_for_each_entry_safe(page, page2, l, lru) {
116 		move_to_lru(page);
117 		count++;
118 	}
119 	return count;
120 }
121 
122 /*
123  * swapout a single page
124  * page is locked upon entry, unlocked on exit
125  */
126 static int swap_page(struct page *page)
127 {
128 	struct address_space *mapping = page_mapping(page);
129 
130 	if (page_mapped(page) && mapping)
131 		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
132 			goto unlock_retry;
133 
134 	if (PageDirty(page)) {
135 		/* Page is dirty, try to write it out here */
136 		switch(pageout(page, mapping)) {
137 		case PAGE_KEEP:
138 		case PAGE_ACTIVATE:
139 			goto unlock_retry;
140 
141 		case PAGE_SUCCESS:
142 			goto retry;
143 
144 		case PAGE_CLEAN:
145 			; /* try to free the page below */
146 		}
147 	}
148 
149 	if (PagePrivate(page)) {
150 		if (!try_to_release_page(page, GFP_KERNEL) ||
151 		    (!mapping && page_count(page) == 1))
152 			goto unlock_retry;
153 	}
154 
155 	if (remove_mapping(mapping, page)) {
156 		/* Success */
157 		unlock_page(page);
158 		return 0;
159 	}
160 
161 unlock_retry:
162 	unlock_page(page);
163 
164 retry:
165 	return -EAGAIN;
166 }
167 
168 /*
169  * Remove references for a page and establish the new page with the correct
170  * basic settings to be able to stop accesses to the page.
171  */
172 int migrate_page_remove_references(struct page *newpage,
173 				struct page *page, int nr_refs)
174 {
175 	struct address_space *mapping = page_mapping(page);
176 	struct page **radix_pointer;
177 
178 	/*
179 	 * Avoid doing any of the following work if the page count
180 	 * indicates that the page is in use or truncate has removed
181 	 * the page.
182 	 */
183 	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
184 		return -EAGAIN;
185 
186 	/*
187 	 * Establish swap ptes for anonymous pages or destroy pte
188 	 * maps for files.
189 	 *
190 	 * In order to reestablish file backed mappings the fault handlers
191 	 * will take the radix tree_lock which may then be used to stop
192   	 * processses from accessing this page until the new page is ready.
193 	 *
194 	 * A process accessing via a swap pte (an anonymous page) will take a
195 	 * page_lock on the old page which will block the process until the
196 	 * migration attempt is complete. At that time the PageSwapCache bit
197 	 * will be examined. If the page was migrated then the PageSwapCache
198 	 * bit will be clear and the operation to retrieve the page will be
199 	 * retried which will find the new page in the radix tree. Then a new
200 	 * direct mapping may be generated based on the radix tree contents.
201 	 *
202 	 * If the page was not migrated then the PageSwapCache bit
203 	 * is still set and the operation may continue.
204 	 */
205 	if (try_to_unmap(page, 1) == SWAP_FAIL)
206 		/* A vma has VM_LOCKED set -> permanent failure */
207 		return -EPERM;
208 
209 	/*
210 	 * Give up if we were unable to remove all mappings.
211 	 */
212 	if (page_mapcount(page))
213 		return -EAGAIN;
214 
215 	write_lock_irq(&mapping->tree_lock);
216 
217 	radix_pointer = (struct page **)radix_tree_lookup_slot(
218 						&mapping->page_tree,
219 						page_index(page));
220 
221 	if (!page_mapping(page) || page_count(page) != nr_refs ||
222 			*radix_pointer != page) {
223 		write_unlock_irq(&mapping->tree_lock);
224 		return -EAGAIN;
225 	}
226 
227 	/*
228 	 * Now we know that no one else is looking at the page.
229 	 *
230 	 * Certain minimal information about a page must be available
231 	 * in order for other subsystems to properly handle the page if they
232 	 * find it through the radix tree update before we are finished
233 	 * copying the page.
234 	 */
235 	get_page(newpage);
236 	newpage->index = page->index;
237 	newpage->mapping = page->mapping;
238 	if (PageSwapCache(page)) {
239 		SetPageSwapCache(newpage);
240 		set_page_private(newpage, page_private(page));
241 	}
242 
243 	*radix_pointer = newpage;
244 	__put_page(page);
245 	write_unlock_irq(&mapping->tree_lock);
246 
247 	return 0;
248 }
249 EXPORT_SYMBOL(migrate_page_remove_references);
250 
251 /*
252  * Copy the page to its new location
253  */
254 void migrate_page_copy(struct page *newpage, struct page *page)
255 {
256 	copy_highpage(newpage, page);
257 
258 	if (PageError(page))
259 		SetPageError(newpage);
260 	if (PageReferenced(page))
261 		SetPageReferenced(newpage);
262 	if (PageUptodate(page))
263 		SetPageUptodate(newpage);
264 	if (PageActive(page))
265 		SetPageActive(newpage);
266 	if (PageChecked(page))
267 		SetPageChecked(newpage);
268 	if (PageMappedToDisk(page))
269 		SetPageMappedToDisk(newpage);
270 
271 	if (PageDirty(page)) {
272 		clear_page_dirty_for_io(page);
273 		set_page_dirty(newpage);
274  	}
275 
276 	ClearPageSwapCache(page);
277 	ClearPageActive(page);
278 	ClearPagePrivate(page);
279 	set_page_private(page, 0);
280 	page->mapping = NULL;
281 
282 	/*
283 	 * If any waiters have accumulated on the new page then
284 	 * wake them up.
285 	 */
286 	if (PageWriteback(newpage))
287 		end_page_writeback(newpage);
288 }
289 EXPORT_SYMBOL(migrate_page_copy);
290 
291 /************************************************************
292  *                    Migration functions
293  ***********************************************************/
294 
295 /* Always fail migration. Used for mappings that are not movable */
296 int fail_migrate_page(struct page *newpage, struct page *page)
297 {
298 	return -EIO;
299 }
300 EXPORT_SYMBOL(fail_migrate_page);
301 
302 /*
303  * Common logic to directly migrate a single page suitable for
304  * pages that do not use PagePrivate.
305  *
306  * Pages are locked upon entry and exit.
307  */
308 int migrate_page(struct page *newpage, struct page *page)
309 {
310 	int rc;
311 
312 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
313 
314 	rc = migrate_page_remove_references(newpage, page, 2);
315 
316 	if (rc)
317 		return rc;
318 
319 	migrate_page_copy(newpage, page);
320 
321 	/*
322 	 * Remove auxiliary swap entries and replace
323 	 * them with real ptes.
324 	 *
325 	 * Note that a real pte entry will allow processes that are not
326 	 * waiting on the page lock to use the new page via the page tables
327 	 * before the new page is unlocked.
328 	 */
329 	remove_from_swap(newpage);
330 	return 0;
331 }
332 EXPORT_SYMBOL(migrate_page);
333 
334 /*
335  * Migration function for pages with buffers. This function can only be used
336  * if the underlying filesystem guarantees that no other references to "page"
337  * exist.
338  */
339 int buffer_migrate_page(struct page *newpage, struct page *page)
340 {
341 	struct address_space *mapping = page->mapping;
342 	struct buffer_head *bh, *head;
343 	int rc;
344 
345 	if (!mapping)
346 		return -EAGAIN;
347 
348 	if (!page_has_buffers(page))
349 		return migrate_page(newpage, page);
350 
351 	head = page_buffers(page);
352 
353 	rc = migrate_page_remove_references(newpage, page, 3);
354 
355 	if (rc)
356 		return rc;
357 
358 	bh = head;
359 	do {
360 		get_bh(bh);
361 		lock_buffer(bh);
362 		bh = bh->b_this_page;
363 
364 	} while (bh != head);
365 
366 	ClearPagePrivate(page);
367 	set_page_private(newpage, page_private(page));
368 	set_page_private(page, 0);
369 	put_page(page);
370 	get_page(newpage);
371 
372 	bh = head;
373 	do {
374 		set_bh_page(bh, newpage, bh_offset(bh));
375 		bh = bh->b_this_page;
376 
377 	} while (bh != head);
378 
379 	SetPagePrivate(newpage);
380 
381 	migrate_page_copy(newpage, page);
382 
383 	bh = head;
384 	do {
385 		unlock_buffer(bh);
386  		put_bh(bh);
387 		bh = bh->b_this_page;
388 
389 	} while (bh != head);
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL(buffer_migrate_page);
394 
395 /*
396  * migrate_pages
397  *
398  * Two lists are passed to this function. The first list
399  * contains the pages isolated from the LRU to be migrated.
400  * The second list contains new pages that the pages isolated
401  * can be moved to. If the second list is NULL then all
402  * pages are swapped out.
403  *
404  * The function returns after 10 attempts or if no pages
405  * are movable anymore because to has become empty
406  * or no retryable pages exist anymore.
407  *
408  * Return: Number of pages not migrated when "to" ran empty.
409  */
410 int migrate_pages(struct list_head *from, struct list_head *to,
411 		  struct list_head *moved, struct list_head *failed)
412 {
413 	int retry;
414 	int nr_failed = 0;
415 	int pass = 0;
416 	struct page *page;
417 	struct page *page2;
418 	int swapwrite = current->flags & PF_SWAPWRITE;
419 	int rc;
420 
421 	if (!swapwrite)
422 		current->flags |= PF_SWAPWRITE;
423 
424 redo:
425 	retry = 0;
426 
427 	list_for_each_entry_safe(page, page2, from, lru) {
428 		struct page *newpage = NULL;
429 		struct address_space *mapping;
430 
431 		cond_resched();
432 
433 		rc = 0;
434 		if (page_count(page) == 1)
435 			/* page was freed from under us. So we are done. */
436 			goto next;
437 
438 		if (to && list_empty(to))
439 			break;
440 
441 		/*
442 		 * Skip locked pages during the first two passes to give the
443 		 * functions holding the lock time to release the page. Later we
444 		 * use lock_page() to have a higher chance of acquiring the
445 		 * lock.
446 		 */
447 		rc = -EAGAIN;
448 		if (pass > 2)
449 			lock_page(page);
450 		else
451 			if (TestSetPageLocked(page))
452 				goto next;
453 
454 		/*
455 		 * Only wait on writeback if we have already done a pass where
456 		 * we we may have triggered writeouts for lots of pages.
457 		 */
458 		if (pass > 0) {
459 			wait_on_page_writeback(page);
460 		} else {
461 			if (PageWriteback(page))
462 				goto unlock_page;
463 		}
464 
465 		/*
466 		 * Anonymous pages must have swap cache references otherwise
467 		 * the information contained in the page maps cannot be
468 		 * preserved.
469 		 */
470 		if (PageAnon(page) && !PageSwapCache(page)) {
471 			if (!add_to_swap(page, GFP_KERNEL)) {
472 				rc = -ENOMEM;
473 				goto unlock_page;
474 			}
475 		}
476 
477 		if (!to) {
478 			rc = swap_page(page);
479 			goto next;
480 		}
481 
482 		newpage = lru_to_page(to);
483 		lock_page(newpage);
484 
485 		/*
486 		 * Pages are properly locked and writeback is complete.
487 		 * Try to migrate the page.
488 		 */
489 		mapping = page_mapping(page);
490 		if (!mapping)
491 			goto unlock_both;
492 
493 		if (mapping->a_ops->migratepage) {
494 			/*
495 			 * Most pages have a mapping and most filesystems
496 			 * should provide a migration function. Anonymous
497 			 * pages are part of swap space which also has its
498 			 * own migration function. This is the most common
499 			 * path for page migration.
500 			 */
501 			rc = mapping->a_ops->migratepage(newpage, page);
502 			goto unlock_both;
503                 }
504 
505 		/* Make sure the dirty bit is up to date */
506 		if (try_to_unmap(page, 1) == SWAP_FAIL) {
507 			rc = -EPERM;
508 			goto unlock_both;
509 		}
510 
511 		if (page_mapcount(page)) {
512 			rc = -EAGAIN;
513 			goto unlock_both;
514 		}
515 
516 		/*
517 		 * Default handling if a filesystem does not provide
518 		 * a migration function. We can only migrate clean
519 		 * pages so try to write out any dirty pages first.
520 		 */
521 		if (PageDirty(page)) {
522 			switch (pageout(page, mapping)) {
523 			case PAGE_KEEP:
524 			case PAGE_ACTIVATE:
525 				goto unlock_both;
526 
527 			case PAGE_SUCCESS:
528 				unlock_page(newpage);
529 				goto next;
530 
531 			case PAGE_CLEAN:
532 				; /* try to migrate the page below */
533 			}
534                 }
535 
536 		/*
537 		 * Buffers are managed in a filesystem specific way.
538 		 * We must have no buffers or drop them.
539 		 */
540 		if (!page_has_buffers(page) ||
541 		    try_to_release_page(page, GFP_KERNEL)) {
542 			rc = migrate_page(newpage, page);
543 			goto unlock_both;
544 		}
545 
546 		/*
547 		 * On early passes with mapped pages simply
548 		 * retry. There may be a lock held for some
549 		 * buffers that may go away. Later
550 		 * swap them out.
551 		 */
552 		if (pass > 4) {
553 			/*
554 			 * Persistently unable to drop buffers..... As a
555 			 * measure of last resort we fall back to
556 			 * swap_page().
557 			 */
558 			unlock_page(newpage);
559 			newpage = NULL;
560 			rc = swap_page(page);
561 			goto next;
562 		}
563 
564 unlock_both:
565 		unlock_page(newpage);
566 
567 unlock_page:
568 		unlock_page(page);
569 
570 next:
571 		if (rc == -EAGAIN) {
572 			retry++;
573 		} else if (rc) {
574 			/* Permanent failure */
575 			list_move(&page->lru, failed);
576 			nr_failed++;
577 		} else {
578 			if (newpage) {
579 				/* Successful migration. Return page to LRU */
580 				move_to_lru(newpage);
581 			}
582 			list_move(&page->lru, moved);
583 		}
584 	}
585 	if (retry && pass++ < 10)
586 		goto redo;
587 
588 	if (!swapwrite)
589 		current->flags &= ~PF_SWAPWRITE;
590 
591 	return nr_failed + retry;
592 }
593 
594 /*
595  * Migrate the list 'pagelist' of pages to a certain destination.
596  *
597  * Specify destination with either non-NULL vma or dest_node >= 0
598  * Return the number of pages not migrated or error code
599  */
600 int migrate_pages_to(struct list_head *pagelist,
601 			struct vm_area_struct *vma, int dest)
602 {
603 	LIST_HEAD(newlist);
604 	LIST_HEAD(moved);
605 	LIST_HEAD(failed);
606 	int err = 0;
607 	unsigned long offset = 0;
608 	int nr_pages;
609 	struct page *page;
610 	struct list_head *p;
611 
612 redo:
613 	nr_pages = 0;
614 	list_for_each(p, pagelist) {
615 		if (vma) {
616 			/*
617 			 * The address passed to alloc_page_vma is used to
618 			 * generate the proper interleave behavior. We fake
619 			 * the address here by an increasing offset in order
620 			 * to get the proper distribution of pages.
621 			 *
622 			 * No decision has been made as to which page
623 			 * a certain old page is moved to so we cannot
624 			 * specify the correct address.
625 			 */
626 			page = alloc_page_vma(GFP_HIGHUSER, vma,
627 					offset + vma->vm_start);
628 			offset += PAGE_SIZE;
629 		}
630 		else
631 			page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
632 
633 		if (!page) {
634 			err = -ENOMEM;
635 			goto out;
636 		}
637 		list_add_tail(&page->lru, &newlist);
638 		nr_pages++;
639 		if (nr_pages > MIGRATE_CHUNK_SIZE)
640 			break;
641 	}
642 	err = migrate_pages(pagelist, &newlist, &moved, &failed);
643 
644 	putback_lru_pages(&moved);	/* Call release pages instead ?? */
645 
646 	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
647 		goto redo;
648 out:
649 	/* Return leftover allocated pages */
650 	while (!list_empty(&newlist)) {
651 		page = list_entry(newlist.next, struct page, lru);
652 		list_del(&page->lru);
653 		__free_page(page);
654 	}
655 	list_splice(&failed, pagelist);
656 	if (err < 0)
657 		return err;
658 
659 	/* Calculate number of leftover pages */
660 	nr_pages = 0;
661 	list_for_each(p, pagelist)
662 		nr_pages++;
663 	return nr_pages;
664 }
665