xref: /openbmc/linux/mm/migrate.c (revision 161f4089)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		if (unlikely(PageHuge(page))) {
104 			putback_active_hugepage(page);
105 			continue;
106 		}
107 		list_del(&page->lru);
108 		dec_zone_page_state(page, NR_ISOLATED_ANON +
109 				page_is_file_cache(page));
110 		if (unlikely(isolated_balloon_page(page)))
111 			balloon_page_putback(page);
112 		else
113 			putback_lru_page(page);
114 	}
115 }
116 
117 /*
118  * Restore a potential migration pte to a working pte entry
119  */
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 				 unsigned long addr, void *old)
122 {
123 	struct mm_struct *mm = vma->vm_mm;
124 	swp_entry_t entry;
125  	pmd_t *pmd;
126 	pte_t *ptep, pte;
127  	spinlock_t *ptl;
128 
129 	if (unlikely(PageHuge(new))) {
130 		ptep = huge_pte_offset(mm, addr);
131 		if (!ptep)
132 			goto out;
133 		ptl = &mm->page_table_lock;
134 	} else {
135 		pmd = mm_find_pmd(mm, addr);
136 		if (!pmd)
137 			goto out;
138 		if (pmd_trans_huge(*pmd))
139 			goto out;
140 
141 		ptep = pte_offset_map(pmd, addr);
142 
143 		/*
144 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
145 		 * can race mremap's move_ptes(), which skips anon_vma lock.
146 		 */
147 
148 		ptl = pte_lockptr(mm, pmd);
149 	}
150 
151  	spin_lock(ptl);
152 	pte = *ptep;
153 	if (!is_swap_pte(pte))
154 		goto unlock;
155 
156 	entry = pte_to_swp_entry(pte);
157 
158 	if (!is_migration_entry(entry) ||
159 	    migration_entry_to_page(entry) != old)
160 		goto unlock;
161 
162 	get_page(new);
163 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 	if (pte_swp_soft_dirty(*ptep))
165 		pte = pte_mksoft_dirty(pte);
166 	if (is_write_migration_entry(entry))
167 		pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 	if (PageHuge(new)) {
170 		pte = pte_mkhuge(pte);
171 		pte = arch_make_huge_pte(pte, vma, new, 0);
172 	}
173 #endif
174 	flush_dcache_page(new);
175 	set_pte_at(mm, addr, ptep, pte);
176 
177 	if (PageHuge(new)) {
178 		if (PageAnon(new))
179 			hugepage_add_anon_rmap(new, vma, addr);
180 		else
181 			page_dup_rmap(new);
182 	} else if (PageAnon(new))
183 		page_add_anon_rmap(new, vma, addr);
184 	else
185 		page_add_file_rmap(new);
186 
187 	/* No need to invalidate - it was non-present before */
188 	update_mmu_cache(vma, addr, ptep);
189 unlock:
190 	pte_unmap_unlock(ptep, ptl);
191 out:
192 	return SWAP_AGAIN;
193 }
194 
195 /*
196  * Get rid of all migration entries and replace them by
197  * references to the indicated page.
198  */
199 static void remove_migration_ptes(struct page *old, struct page *new)
200 {
201 	rmap_walk(new, remove_migration_pte, old);
202 }
203 
204 /*
205  * Something used the pte of a page under migration. We need to
206  * get to the page and wait until migration is finished.
207  * When we return from this function the fault will be retried.
208  */
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 				spinlock_t *ptl)
211 {
212 	pte_t pte;
213 	swp_entry_t entry;
214 	struct page *page;
215 
216 	spin_lock(ptl);
217 	pte = *ptep;
218 	if (!is_swap_pte(pte))
219 		goto out;
220 
221 	entry = pte_to_swp_entry(pte);
222 	if (!is_migration_entry(entry))
223 		goto out;
224 
225 	page = migration_entry_to_page(entry);
226 
227 	/*
228 	 * Once radix-tree replacement of page migration started, page_count
229 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 	 * against a page without get_page().
231 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 	 * will occur again.
233 	 */
234 	if (!get_page_unless_zero(page))
235 		goto out;
236 	pte_unmap_unlock(ptep, ptl);
237 	wait_on_page_locked(page);
238 	put_page(page);
239 	return;
240 out:
241 	pte_unmap_unlock(ptep, ptl);
242 }
243 
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 				unsigned long address)
246 {
247 	spinlock_t *ptl = pte_lockptr(mm, pmd);
248 	pte_t *ptep = pte_offset_map(pmd, address);
249 	__migration_entry_wait(mm, ptep, ptl);
250 }
251 
252 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
253 {
254 	spinlock_t *ptl = &(mm)->page_table_lock;
255 	__migration_entry_wait(mm, pte, ptl);
256 }
257 
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 							enum migrate_mode mode)
262 {
263 	struct buffer_head *bh = head;
264 
265 	/* Simple case, sync compaction */
266 	if (mode != MIGRATE_ASYNC) {
267 		do {
268 			get_bh(bh);
269 			lock_buffer(bh);
270 			bh = bh->b_this_page;
271 
272 		} while (bh != head);
273 
274 		return true;
275 	}
276 
277 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
278 	do {
279 		get_bh(bh);
280 		if (!trylock_buffer(bh)) {
281 			/*
282 			 * We failed to lock the buffer and cannot stall in
283 			 * async migration. Release the taken locks
284 			 */
285 			struct buffer_head *failed_bh = bh;
286 			put_bh(failed_bh);
287 			bh = head;
288 			while (bh != failed_bh) {
289 				unlock_buffer(bh);
290 				put_bh(bh);
291 				bh = bh->b_this_page;
292 			}
293 			return false;
294 		}
295 
296 		bh = bh->b_this_page;
297 	} while (bh != head);
298 	return true;
299 }
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 							enum migrate_mode mode)
303 {
304 	return true;
305 }
306 #endif /* CONFIG_BLOCK */
307 
308 /*
309  * Replace the page in the mapping.
310  *
311  * The number of remaining references must be:
312  * 1 for anonymous pages without a mapping
313  * 2 for pages with a mapping
314  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315  */
316 int migrate_page_move_mapping(struct address_space *mapping,
317 		struct page *newpage, struct page *page,
318 		struct buffer_head *head, enum migrate_mode mode)
319 {
320 	int expected_count = 0;
321 	void **pslot;
322 
323 	if (!mapping) {
324 		/* Anonymous page without mapping */
325 		if (page_count(page) != 1)
326 			return -EAGAIN;
327 		return MIGRATEPAGE_SUCCESS;
328 	}
329 
330 	spin_lock_irq(&mapping->tree_lock);
331 
332 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
333  					page_index(page));
334 
335 	expected_count = 2 + page_has_private(page);
336 	if (page_count(page) != expected_count ||
337 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
338 		spin_unlock_irq(&mapping->tree_lock);
339 		return -EAGAIN;
340 	}
341 
342 	if (!page_freeze_refs(page, expected_count)) {
343 		spin_unlock_irq(&mapping->tree_lock);
344 		return -EAGAIN;
345 	}
346 
347 	/*
348 	 * In the async migration case of moving a page with buffers, lock the
349 	 * buffers using trylock before the mapping is moved. If the mapping
350 	 * was moved, we later failed to lock the buffers and could not move
351 	 * the mapping back due to an elevated page count, we would have to
352 	 * block waiting on other references to be dropped.
353 	 */
354 	if (mode == MIGRATE_ASYNC && head &&
355 			!buffer_migrate_lock_buffers(head, mode)) {
356 		page_unfreeze_refs(page, expected_count);
357 		spin_unlock_irq(&mapping->tree_lock);
358 		return -EAGAIN;
359 	}
360 
361 	/*
362 	 * Now we know that no one else is looking at the page.
363 	 */
364 	get_page(newpage);	/* add cache reference */
365 	if (PageSwapCache(page)) {
366 		SetPageSwapCache(newpage);
367 		set_page_private(newpage, page_private(page));
368 	}
369 
370 	radix_tree_replace_slot(pslot, newpage);
371 
372 	/*
373 	 * Drop cache reference from old page by unfreezing
374 	 * to one less reference.
375 	 * We know this isn't the last reference.
376 	 */
377 	page_unfreeze_refs(page, expected_count - 1);
378 
379 	/*
380 	 * If moved to a different zone then also account
381 	 * the page for that zone. Other VM counters will be
382 	 * taken care of when we establish references to the
383 	 * new page and drop references to the old page.
384 	 *
385 	 * Note that anonymous pages are accounted for
386 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
387 	 * are mapped to swap space.
388 	 */
389 	__dec_zone_page_state(page, NR_FILE_PAGES);
390 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
391 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
392 		__dec_zone_page_state(page, NR_SHMEM);
393 		__inc_zone_page_state(newpage, NR_SHMEM);
394 	}
395 	spin_unlock_irq(&mapping->tree_lock);
396 
397 	return MIGRATEPAGE_SUCCESS;
398 }
399 
400 /*
401  * The expected number of remaining references is the same as that
402  * of migrate_page_move_mapping().
403  */
404 int migrate_huge_page_move_mapping(struct address_space *mapping,
405 				   struct page *newpage, struct page *page)
406 {
407 	int expected_count;
408 	void **pslot;
409 
410 	if (!mapping) {
411 		if (page_count(page) != 1)
412 			return -EAGAIN;
413 		return MIGRATEPAGE_SUCCESS;
414 	}
415 
416 	spin_lock_irq(&mapping->tree_lock);
417 
418 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
419 					page_index(page));
420 
421 	expected_count = 2 + page_has_private(page);
422 	if (page_count(page) != expected_count ||
423 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424 		spin_unlock_irq(&mapping->tree_lock);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_freeze_refs(page, expected_count)) {
429 		spin_unlock_irq(&mapping->tree_lock);
430 		return -EAGAIN;
431 	}
432 
433 	get_page(newpage);
434 
435 	radix_tree_replace_slot(pslot, newpage);
436 
437 	page_unfreeze_refs(page, expected_count - 1);
438 
439 	spin_unlock_irq(&mapping->tree_lock);
440 	return MIGRATEPAGE_SUCCESS;
441 }
442 
443 /*
444  * Copy the page to its new location
445  */
446 void migrate_page_copy(struct page *newpage, struct page *page)
447 {
448 	int cpupid;
449 
450 	if (PageHuge(page) || PageTransHuge(page))
451 		copy_huge_page(newpage, page);
452 	else
453 		copy_highpage(newpage, page);
454 
455 	if (PageError(page))
456 		SetPageError(newpage);
457 	if (PageReferenced(page))
458 		SetPageReferenced(newpage);
459 	if (PageUptodate(page))
460 		SetPageUptodate(newpage);
461 	if (TestClearPageActive(page)) {
462 		VM_BUG_ON(PageUnevictable(page));
463 		SetPageActive(newpage);
464 	} else if (TestClearPageUnevictable(page))
465 		SetPageUnevictable(newpage);
466 	if (PageChecked(page))
467 		SetPageChecked(newpage);
468 	if (PageMappedToDisk(page))
469 		SetPageMappedToDisk(newpage);
470 
471 	if (PageDirty(page)) {
472 		clear_page_dirty_for_io(page);
473 		/*
474 		 * Want to mark the page and the radix tree as dirty, and
475 		 * redo the accounting that clear_page_dirty_for_io undid,
476 		 * but we can't use set_page_dirty because that function
477 		 * is actually a signal that all of the page has become dirty.
478 		 * Whereas only part of our page may be dirty.
479 		 */
480 		if (PageSwapBacked(page))
481 			SetPageDirty(newpage);
482 		else
483 			__set_page_dirty_nobuffers(newpage);
484  	}
485 
486 	/*
487 	 * Copy NUMA information to the new page, to prevent over-eager
488 	 * future migrations of this same page.
489 	 */
490 	cpupid = page_cpupid_xchg_last(page, -1);
491 	page_cpupid_xchg_last(newpage, cpupid);
492 
493 	mlock_migrate_page(newpage, page);
494 	ksm_migrate_page(newpage, page);
495 	/*
496 	 * Please do not reorder this without considering how mm/ksm.c's
497 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
498 	 */
499 	ClearPageSwapCache(page);
500 	ClearPagePrivate(page);
501 	set_page_private(page, 0);
502 
503 	/*
504 	 * If any waiters have accumulated on the new page then
505 	 * wake them up.
506 	 */
507 	if (PageWriteback(newpage))
508 		end_page_writeback(newpage);
509 }
510 
511 /************************************************************
512  *                    Migration functions
513  ***********************************************************/
514 
515 /* Always fail migration. Used for mappings that are not movable */
516 int fail_migrate_page(struct address_space *mapping,
517 			struct page *newpage, struct page *page)
518 {
519 	return -EIO;
520 }
521 EXPORT_SYMBOL(fail_migrate_page);
522 
523 /*
524  * Common logic to directly migrate a single page suitable for
525  * pages that do not use PagePrivate/PagePrivate2.
526  *
527  * Pages are locked upon entry and exit.
528  */
529 int migrate_page(struct address_space *mapping,
530 		struct page *newpage, struct page *page,
531 		enum migrate_mode mode)
532 {
533 	int rc;
534 
535 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
536 
537 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
538 
539 	if (rc != MIGRATEPAGE_SUCCESS)
540 		return rc;
541 
542 	migrate_page_copy(newpage, page);
543 	return MIGRATEPAGE_SUCCESS;
544 }
545 EXPORT_SYMBOL(migrate_page);
546 
547 #ifdef CONFIG_BLOCK
548 /*
549  * Migration function for pages with buffers. This function can only be used
550  * if the underlying filesystem guarantees that no other references to "page"
551  * exist.
552  */
553 int buffer_migrate_page(struct address_space *mapping,
554 		struct page *newpage, struct page *page, enum migrate_mode mode)
555 {
556 	struct buffer_head *bh, *head;
557 	int rc;
558 
559 	if (!page_has_buffers(page))
560 		return migrate_page(mapping, newpage, page, mode);
561 
562 	head = page_buffers(page);
563 
564 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
565 
566 	if (rc != MIGRATEPAGE_SUCCESS)
567 		return rc;
568 
569 	/*
570 	 * In the async case, migrate_page_move_mapping locked the buffers
571 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
572 	 * need to be locked now
573 	 */
574 	if (mode != MIGRATE_ASYNC)
575 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
576 
577 	ClearPagePrivate(page);
578 	set_page_private(newpage, page_private(page));
579 	set_page_private(page, 0);
580 	put_page(page);
581 	get_page(newpage);
582 
583 	bh = head;
584 	do {
585 		set_bh_page(bh, newpage, bh_offset(bh));
586 		bh = bh->b_this_page;
587 
588 	} while (bh != head);
589 
590 	SetPagePrivate(newpage);
591 
592 	migrate_page_copy(newpage, page);
593 
594 	bh = head;
595 	do {
596 		unlock_buffer(bh);
597  		put_bh(bh);
598 		bh = bh->b_this_page;
599 
600 	} while (bh != head);
601 
602 	return MIGRATEPAGE_SUCCESS;
603 }
604 EXPORT_SYMBOL(buffer_migrate_page);
605 #endif
606 
607 /*
608  * Writeback a page to clean the dirty state
609  */
610 static int writeout(struct address_space *mapping, struct page *page)
611 {
612 	struct writeback_control wbc = {
613 		.sync_mode = WB_SYNC_NONE,
614 		.nr_to_write = 1,
615 		.range_start = 0,
616 		.range_end = LLONG_MAX,
617 		.for_reclaim = 1
618 	};
619 	int rc;
620 
621 	if (!mapping->a_ops->writepage)
622 		/* No write method for the address space */
623 		return -EINVAL;
624 
625 	if (!clear_page_dirty_for_io(page))
626 		/* Someone else already triggered a write */
627 		return -EAGAIN;
628 
629 	/*
630 	 * A dirty page may imply that the underlying filesystem has
631 	 * the page on some queue. So the page must be clean for
632 	 * migration. Writeout may mean we loose the lock and the
633 	 * page state is no longer what we checked for earlier.
634 	 * At this point we know that the migration attempt cannot
635 	 * be successful.
636 	 */
637 	remove_migration_ptes(page, page);
638 
639 	rc = mapping->a_ops->writepage(page, &wbc);
640 
641 	if (rc != AOP_WRITEPAGE_ACTIVATE)
642 		/* unlocked. Relock */
643 		lock_page(page);
644 
645 	return (rc < 0) ? -EIO : -EAGAIN;
646 }
647 
648 /*
649  * Default handling if a filesystem does not provide a migration function.
650  */
651 static int fallback_migrate_page(struct address_space *mapping,
652 	struct page *newpage, struct page *page, enum migrate_mode mode)
653 {
654 	if (PageDirty(page)) {
655 		/* Only writeback pages in full synchronous migration */
656 		if (mode != MIGRATE_SYNC)
657 			return -EBUSY;
658 		return writeout(mapping, page);
659 	}
660 
661 	/*
662 	 * Buffers may be managed in a filesystem specific way.
663 	 * We must have no buffers or drop them.
664 	 */
665 	if (page_has_private(page) &&
666 	    !try_to_release_page(page, GFP_KERNEL))
667 		return -EAGAIN;
668 
669 	return migrate_page(mapping, newpage, page, mode);
670 }
671 
672 /*
673  * Move a page to a newly allocated page
674  * The page is locked and all ptes have been successfully removed.
675  *
676  * The new page will have replaced the old page if this function
677  * is successful.
678  *
679  * Return value:
680  *   < 0 - error code
681  *  MIGRATEPAGE_SUCCESS - success
682  */
683 static int move_to_new_page(struct page *newpage, struct page *page,
684 				int remap_swapcache, enum migrate_mode mode)
685 {
686 	struct address_space *mapping;
687 	int rc;
688 
689 	/*
690 	 * Block others from accessing the page when we get around to
691 	 * establishing additional references. We are the only one
692 	 * holding a reference to the new page at this point.
693 	 */
694 	if (!trylock_page(newpage))
695 		BUG();
696 
697 	/* Prepare mapping for the new page.*/
698 	newpage->index = page->index;
699 	newpage->mapping = page->mapping;
700 	if (PageSwapBacked(page))
701 		SetPageSwapBacked(newpage);
702 
703 	mapping = page_mapping(page);
704 	if (!mapping)
705 		rc = migrate_page(mapping, newpage, page, mode);
706 	else if (mapping->a_ops->migratepage)
707 		/*
708 		 * Most pages have a mapping and most filesystems provide a
709 		 * migratepage callback. Anonymous pages are part of swap
710 		 * space which also has its own migratepage callback. This
711 		 * is the most common path for page migration.
712 		 */
713 		rc = mapping->a_ops->migratepage(mapping,
714 						newpage, page, mode);
715 	else
716 		rc = fallback_migrate_page(mapping, newpage, page, mode);
717 
718 	if (rc != MIGRATEPAGE_SUCCESS) {
719 		newpage->mapping = NULL;
720 	} else {
721 		if (remap_swapcache)
722 			remove_migration_ptes(page, newpage);
723 		page->mapping = NULL;
724 	}
725 
726 	unlock_page(newpage);
727 
728 	return rc;
729 }
730 
731 static int __unmap_and_move(struct page *page, struct page *newpage,
732 				int force, enum migrate_mode mode)
733 {
734 	int rc = -EAGAIN;
735 	int remap_swapcache = 1;
736 	struct mem_cgroup *mem;
737 	struct anon_vma *anon_vma = NULL;
738 
739 	if (!trylock_page(page)) {
740 		if (!force || mode == MIGRATE_ASYNC)
741 			goto out;
742 
743 		/*
744 		 * It's not safe for direct compaction to call lock_page.
745 		 * For example, during page readahead pages are added locked
746 		 * to the LRU. Later, when the IO completes the pages are
747 		 * marked uptodate and unlocked. However, the queueing
748 		 * could be merging multiple pages for one bio (e.g.
749 		 * mpage_readpages). If an allocation happens for the
750 		 * second or third page, the process can end up locking
751 		 * the same page twice and deadlocking. Rather than
752 		 * trying to be clever about what pages can be locked,
753 		 * avoid the use of lock_page for direct compaction
754 		 * altogether.
755 		 */
756 		if (current->flags & PF_MEMALLOC)
757 			goto out;
758 
759 		lock_page(page);
760 	}
761 
762 	/* charge against new page */
763 	mem_cgroup_prepare_migration(page, newpage, &mem);
764 
765 	if (PageWriteback(page)) {
766 		/*
767 		 * Only in the case of a full synchronous migration is it
768 		 * necessary to wait for PageWriteback. In the async case,
769 		 * the retry loop is too short and in the sync-light case,
770 		 * the overhead of stalling is too much
771 		 */
772 		if (mode != MIGRATE_SYNC) {
773 			rc = -EBUSY;
774 			goto uncharge;
775 		}
776 		if (!force)
777 			goto uncharge;
778 		wait_on_page_writeback(page);
779 	}
780 	/*
781 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
782 	 * we cannot notice that anon_vma is freed while we migrates a page.
783 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
784 	 * of migration. File cache pages are no problem because of page_lock()
785 	 * File Caches may use write_page() or lock_page() in migration, then,
786 	 * just care Anon page here.
787 	 */
788 	if (PageAnon(page) && !PageKsm(page)) {
789 		/*
790 		 * Only page_lock_anon_vma_read() understands the subtleties of
791 		 * getting a hold on an anon_vma from outside one of its mms.
792 		 */
793 		anon_vma = page_get_anon_vma(page);
794 		if (anon_vma) {
795 			/*
796 			 * Anon page
797 			 */
798 		} else if (PageSwapCache(page)) {
799 			/*
800 			 * We cannot be sure that the anon_vma of an unmapped
801 			 * swapcache page is safe to use because we don't
802 			 * know in advance if the VMA that this page belonged
803 			 * to still exists. If the VMA and others sharing the
804 			 * data have been freed, then the anon_vma could
805 			 * already be invalid.
806 			 *
807 			 * To avoid this possibility, swapcache pages get
808 			 * migrated but are not remapped when migration
809 			 * completes
810 			 */
811 			remap_swapcache = 0;
812 		} else {
813 			goto uncharge;
814 		}
815 	}
816 
817 	if (unlikely(balloon_page_movable(page))) {
818 		/*
819 		 * A ballooned page does not need any special attention from
820 		 * physical to virtual reverse mapping procedures.
821 		 * Skip any attempt to unmap PTEs or to remap swap cache,
822 		 * in order to avoid burning cycles at rmap level, and perform
823 		 * the page migration right away (proteced by page lock).
824 		 */
825 		rc = balloon_page_migrate(newpage, page, mode);
826 		goto uncharge;
827 	}
828 
829 	/*
830 	 * Corner case handling:
831 	 * 1. When a new swap-cache page is read into, it is added to the LRU
832 	 * and treated as swapcache but it has no rmap yet.
833 	 * Calling try_to_unmap() against a page->mapping==NULL page will
834 	 * trigger a BUG.  So handle it here.
835 	 * 2. An orphaned page (see truncate_complete_page) might have
836 	 * fs-private metadata. The page can be picked up due to memory
837 	 * offlining.  Everywhere else except page reclaim, the page is
838 	 * invisible to the vm, so the page can not be migrated.  So try to
839 	 * free the metadata, so the page can be freed.
840 	 */
841 	if (!page->mapping) {
842 		VM_BUG_ON(PageAnon(page));
843 		if (page_has_private(page)) {
844 			try_to_free_buffers(page);
845 			goto uncharge;
846 		}
847 		goto skip_unmap;
848 	}
849 
850 	/* Establish migration ptes or remove ptes */
851 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
852 
853 skip_unmap:
854 	if (!page_mapped(page))
855 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
856 
857 	if (rc && remap_swapcache)
858 		remove_migration_ptes(page, page);
859 
860 	/* Drop an anon_vma reference if we took one */
861 	if (anon_vma)
862 		put_anon_vma(anon_vma);
863 
864 uncharge:
865 	mem_cgroup_end_migration(mem, page, newpage,
866 				 (rc == MIGRATEPAGE_SUCCESS ||
867 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
868 	unlock_page(page);
869 out:
870 	return rc;
871 }
872 
873 /*
874  * Obtain the lock on page, remove all ptes and migrate the page
875  * to the newly allocated page in newpage.
876  */
877 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
878 			struct page *page, int force, enum migrate_mode mode)
879 {
880 	int rc = 0;
881 	int *result = NULL;
882 	struct page *newpage = get_new_page(page, private, &result);
883 
884 	if (!newpage)
885 		return -ENOMEM;
886 
887 	if (page_count(page) == 1) {
888 		/* page was freed from under us. So we are done. */
889 		goto out;
890 	}
891 
892 	if (unlikely(PageTransHuge(page)))
893 		if (unlikely(split_huge_page(page)))
894 			goto out;
895 
896 	rc = __unmap_and_move(page, newpage, force, mode);
897 
898 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
899 		/*
900 		 * A ballooned page has been migrated already.
901 		 * Now, it's the time to wrap-up counters,
902 		 * handle the page back to Buddy and return.
903 		 */
904 		dec_zone_page_state(page, NR_ISOLATED_ANON +
905 				    page_is_file_cache(page));
906 		balloon_page_free(page);
907 		return MIGRATEPAGE_SUCCESS;
908 	}
909 out:
910 	if (rc != -EAGAIN) {
911 		/*
912 		 * A page that has been migrated has all references
913 		 * removed and will be freed. A page that has not been
914 		 * migrated will have kepts its references and be
915 		 * restored.
916 		 */
917 		list_del(&page->lru);
918 		dec_zone_page_state(page, NR_ISOLATED_ANON +
919 				page_is_file_cache(page));
920 		putback_lru_page(page);
921 	}
922 	/*
923 	 * Move the new page to the LRU. If migration was not successful
924 	 * then this will free the page.
925 	 */
926 	putback_lru_page(newpage);
927 	if (result) {
928 		if (rc)
929 			*result = rc;
930 		else
931 			*result = page_to_nid(newpage);
932 	}
933 	return rc;
934 }
935 
936 /*
937  * Counterpart of unmap_and_move_page() for hugepage migration.
938  *
939  * This function doesn't wait the completion of hugepage I/O
940  * because there is no race between I/O and migration for hugepage.
941  * Note that currently hugepage I/O occurs only in direct I/O
942  * where no lock is held and PG_writeback is irrelevant,
943  * and writeback status of all subpages are counted in the reference
944  * count of the head page (i.e. if all subpages of a 2MB hugepage are
945  * under direct I/O, the reference of the head page is 512 and a bit more.)
946  * This means that when we try to migrate hugepage whose subpages are
947  * doing direct I/O, some references remain after try_to_unmap() and
948  * hugepage migration fails without data corruption.
949  *
950  * There is also no race when direct I/O is issued on the page under migration,
951  * because then pte is replaced with migration swap entry and direct I/O code
952  * will wait in the page fault for migration to complete.
953  */
954 static int unmap_and_move_huge_page(new_page_t get_new_page,
955 				unsigned long private, struct page *hpage,
956 				int force, enum migrate_mode mode)
957 {
958 	int rc = 0;
959 	int *result = NULL;
960 	struct page *new_hpage = get_new_page(hpage, private, &result);
961 	struct anon_vma *anon_vma = NULL;
962 
963 	/*
964 	 * Movability of hugepages depends on architectures and hugepage size.
965 	 * This check is necessary because some callers of hugepage migration
966 	 * like soft offline and memory hotremove don't walk through page
967 	 * tables or check whether the hugepage is pmd-based or not before
968 	 * kicking migration.
969 	 */
970 	if (!hugepage_migration_support(page_hstate(hpage)))
971 		return -ENOSYS;
972 
973 	if (!new_hpage)
974 		return -ENOMEM;
975 
976 	rc = -EAGAIN;
977 
978 	if (!trylock_page(hpage)) {
979 		if (!force || mode != MIGRATE_SYNC)
980 			goto out;
981 		lock_page(hpage);
982 	}
983 
984 	if (PageAnon(hpage))
985 		anon_vma = page_get_anon_vma(hpage);
986 
987 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
988 
989 	if (!page_mapped(hpage))
990 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
991 
992 	if (rc)
993 		remove_migration_ptes(hpage, hpage);
994 
995 	if (anon_vma)
996 		put_anon_vma(anon_vma);
997 
998 	if (!rc)
999 		hugetlb_cgroup_migrate(hpage, new_hpage);
1000 
1001 	unlock_page(hpage);
1002 out:
1003 	if (rc != -EAGAIN)
1004 		putback_active_hugepage(hpage);
1005 	put_page(new_hpage);
1006 	if (result) {
1007 		if (rc)
1008 			*result = rc;
1009 		else
1010 			*result = page_to_nid(new_hpage);
1011 	}
1012 	return rc;
1013 }
1014 
1015 /*
1016  * migrate_pages - migrate the pages specified in a list, to the free pages
1017  *		   supplied as the target for the page migration
1018  *
1019  * @from:		The list of pages to be migrated.
1020  * @get_new_page:	The function used to allocate free pages to be used
1021  *			as the target of the page migration.
1022  * @private:		Private data to be passed on to get_new_page()
1023  * @mode:		The migration mode that specifies the constraints for
1024  *			page migration, if any.
1025  * @reason:		The reason for page migration.
1026  *
1027  * The function returns after 10 attempts or if no pages are movable any more
1028  * because the list has become empty or no retryable pages exist any more.
1029  * The caller should call putback_lru_pages() to return pages to the LRU
1030  * or free list only if ret != 0.
1031  *
1032  * Returns the number of pages that were not migrated, or an error code.
1033  */
1034 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1035 		unsigned long private, enum migrate_mode mode, int reason)
1036 {
1037 	int retry = 1;
1038 	int nr_failed = 0;
1039 	int nr_succeeded = 0;
1040 	int pass = 0;
1041 	struct page *page;
1042 	struct page *page2;
1043 	int swapwrite = current->flags & PF_SWAPWRITE;
1044 	int rc;
1045 
1046 	if (!swapwrite)
1047 		current->flags |= PF_SWAPWRITE;
1048 
1049 	for(pass = 0; pass < 10 && retry; pass++) {
1050 		retry = 0;
1051 
1052 		list_for_each_entry_safe(page, page2, from, lru) {
1053 			cond_resched();
1054 
1055 			if (PageHuge(page))
1056 				rc = unmap_and_move_huge_page(get_new_page,
1057 						private, page, pass > 2, mode);
1058 			else
1059 				rc = unmap_and_move(get_new_page, private,
1060 						page, pass > 2, mode);
1061 
1062 			switch(rc) {
1063 			case -ENOMEM:
1064 				goto out;
1065 			case -EAGAIN:
1066 				retry++;
1067 				break;
1068 			case MIGRATEPAGE_SUCCESS:
1069 				nr_succeeded++;
1070 				break;
1071 			default:
1072 				/* Permanent failure */
1073 				nr_failed++;
1074 				break;
1075 			}
1076 		}
1077 	}
1078 	rc = nr_failed + retry;
1079 out:
1080 	if (nr_succeeded)
1081 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1082 	if (nr_failed)
1083 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1084 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1085 
1086 	if (!swapwrite)
1087 		current->flags &= ~PF_SWAPWRITE;
1088 
1089 	return rc;
1090 }
1091 
1092 #ifdef CONFIG_NUMA
1093 /*
1094  * Move a list of individual pages
1095  */
1096 struct page_to_node {
1097 	unsigned long addr;
1098 	struct page *page;
1099 	int node;
1100 	int status;
1101 };
1102 
1103 static struct page *new_page_node(struct page *p, unsigned long private,
1104 		int **result)
1105 {
1106 	struct page_to_node *pm = (struct page_to_node *)private;
1107 
1108 	while (pm->node != MAX_NUMNODES && pm->page != p)
1109 		pm++;
1110 
1111 	if (pm->node == MAX_NUMNODES)
1112 		return NULL;
1113 
1114 	*result = &pm->status;
1115 
1116 	if (PageHuge(p))
1117 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1118 					pm->node);
1119 	else
1120 		return alloc_pages_exact_node(pm->node,
1121 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1122 }
1123 
1124 /*
1125  * Move a set of pages as indicated in the pm array. The addr
1126  * field must be set to the virtual address of the page to be moved
1127  * and the node number must contain a valid target node.
1128  * The pm array ends with node = MAX_NUMNODES.
1129  */
1130 static int do_move_page_to_node_array(struct mm_struct *mm,
1131 				      struct page_to_node *pm,
1132 				      int migrate_all)
1133 {
1134 	int err;
1135 	struct page_to_node *pp;
1136 	LIST_HEAD(pagelist);
1137 
1138 	down_read(&mm->mmap_sem);
1139 
1140 	/*
1141 	 * Build a list of pages to migrate
1142 	 */
1143 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1144 		struct vm_area_struct *vma;
1145 		struct page *page;
1146 
1147 		err = -EFAULT;
1148 		vma = find_vma(mm, pp->addr);
1149 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1150 			goto set_status;
1151 
1152 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1153 
1154 		err = PTR_ERR(page);
1155 		if (IS_ERR(page))
1156 			goto set_status;
1157 
1158 		err = -ENOENT;
1159 		if (!page)
1160 			goto set_status;
1161 
1162 		/* Use PageReserved to check for zero page */
1163 		if (PageReserved(page))
1164 			goto put_and_set;
1165 
1166 		pp->page = page;
1167 		err = page_to_nid(page);
1168 
1169 		if (err == pp->node)
1170 			/*
1171 			 * Node already in the right place
1172 			 */
1173 			goto put_and_set;
1174 
1175 		err = -EACCES;
1176 		if (page_mapcount(page) > 1 &&
1177 				!migrate_all)
1178 			goto put_and_set;
1179 
1180 		if (PageHuge(page)) {
1181 			isolate_huge_page(page, &pagelist);
1182 			goto put_and_set;
1183 		}
1184 
1185 		err = isolate_lru_page(page);
1186 		if (!err) {
1187 			list_add_tail(&page->lru, &pagelist);
1188 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1189 					    page_is_file_cache(page));
1190 		}
1191 put_and_set:
1192 		/*
1193 		 * Either remove the duplicate refcount from
1194 		 * isolate_lru_page() or drop the page ref if it was
1195 		 * not isolated.
1196 		 */
1197 		put_page(page);
1198 set_status:
1199 		pp->status = err;
1200 	}
1201 
1202 	err = 0;
1203 	if (!list_empty(&pagelist)) {
1204 		err = migrate_pages(&pagelist, new_page_node,
1205 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1206 		if (err)
1207 			putback_movable_pages(&pagelist);
1208 	}
1209 
1210 	up_read(&mm->mmap_sem);
1211 	return err;
1212 }
1213 
1214 /*
1215  * Migrate an array of page address onto an array of nodes and fill
1216  * the corresponding array of status.
1217  */
1218 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1219 			 unsigned long nr_pages,
1220 			 const void __user * __user *pages,
1221 			 const int __user *nodes,
1222 			 int __user *status, int flags)
1223 {
1224 	struct page_to_node *pm;
1225 	unsigned long chunk_nr_pages;
1226 	unsigned long chunk_start;
1227 	int err;
1228 
1229 	err = -ENOMEM;
1230 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1231 	if (!pm)
1232 		goto out;
1233 
1234 	migrate_prep();
1235 
1236 	/*
1237 	 * Store a chunk of page_to_node array in a page,
1238 	 * but keep the last one as a marker
1239 	 */
1240 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1241 
1242 	for (chunk_start = 0;
1243 	     chunk_start < nr_pages;
1244 	     chunk_start += chunk_nr_pages) {
1245 		int j;
1246 
1247 		if (chunk_start + chunk_nr_pages > nr_pages)
1248 			chunk_nr_pages = nr_pages - chunk_start;
1249 
1250 		/* fill the chunk pm with addrs and nodes from user-space */
1251 		for (j = 0; j < chunk_nr_pages; j++) {
1252 			const void __user *p;
1253 			int node;
1254 
1255 			err = -EFAULT;
1256 			if (get_user(p, pages + j + chunk_start))
1257 				goto out_pm;
1258 			pm[j].addr = (unsigned long) p;
1259 
1260 			if (get_user(node, nodes + j + chunk_start))
1261 				goto out_pm;
1262 
1263 			err = -ENODEV;
1264 			if (node < 0 || node >= MAX_NUMNODES)
1265 				goto out_pm;
1266 
1267 			if (!node_state(node, N_MEMORY))
1268 				goto out_pm;
1269 
1270 			err = -EACCES;
1271 			if (!node_isset(node, task_nodes))
1272 				goto out_pm;
1273 
1274 			pm[j].node = node;
1275 		}
1276 
1277 		/* End marker for this chunk */
1278 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1279 
1280 		/* Migrate this chunk */
1281 		err = do_move_page_to_node_array(mm, pm,
1282 						 flags & MPOL_MF_MOVE_ALL);
1283 		if (err < 0)
1284 			goto out_pm;
1285 
1286 		/* Return status information */
1287 		for (j = 0; j < chunk_nr_pages; j++)
1288 			if (put_user(pm[j].status, status + j + chunk_start)) {
1289 				err = -EFAULT;
1290 				goto out_pm;
1291 			}
1292 	}
1293 	err = 0;
1294 
1295 out_pm:
1296 	free_page((unsigned long)pm);
1297 out:
1298 	return err;
1299 }
1300 
1301 /*
1302  * Determine the nodes of an array of pages and store it in an array of status.
1303  */
1304 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1305 				const void __user **pages, int *status)
1306 {
1307 	unsigned long i;
1308 
1309 	down_read(&mm->mmap_sem);
1310 
1311 	for (i = 0; i < nr_pages; i++) {
1312 		unsigned long addr = (unsigned long)(*pages);
1313 		struct vm_area_struct *vma;
1314 		struct page *page;
1315 		int err = -EFAULT;
1316 
1317 		vma = find_vma(mm, addr);
1318 		if (!vma || addr < vma->vm_start)
1319 			goto set_status;
1320 
1321 		page = follow_page(vma, addr, 0);
1322 
1323 		err = PTR_ERR(page);
1324 		if (IS_ERR(page))
1325 			goto set_status;
1326 
1327 		err = -ENOENT;
1328 		/* Use PageReserved to check for zero page */
1329 		if (!page || PageReserved(page))
1330 			goto set_status;
1331 
1332 		err = page_to_nid(page);
1333 set_status:
1334 		*status = err;
1335 
1336 		pages++;
1337 		status++;
1338 	}
1339 
1340 	up_read(&mm->mmap_sem);
1341 }
1342 
1343 /*
1344  * Determine the nodes of a user array of pages and store it in
1345  * a user array of status.
1346  */
1347 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1348 			 const void __user * __user *pages,
1349 			 int __user *status)
1350 {
1351 #define DO_PAGES_STAT_CHUNK_NR 16
1352 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1353 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1354 
1355 	while (nr_pages) {
1356 		unsigned long chunk_nr;
1357 
1358 		chunk_nr = nr_pages;
1359 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1360 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1361 
1362 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1363 			break;
1364 
1365 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1366 
1367 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1368 			break;
1369 
1370 		pages += chunk_nr;
1371 		status += chunk_nr;
1372 		nr_pages -= chunk_nr;
1373 	}
1374 	return nr_pages ? -EFAULT : 0;
1375 }
1376 
1377 /*
1378  * Move a list of pages in the address space of the currently executing
1379  * process.
1380  */
1381 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1382 		const void __user * __user *, pages,
1383 		const int __user *, nodes,
1384 		int __user *, status, int, flags)
1385 {
1386 	const struct cred *cred = current_cred(), *tcred;
1387 	struct task_struct *task;
1388 	struct mm_struct *mm;
1389 	int err;
1390 	nodemask_t task_nodes;
1391 
1392 	/* Check flags */
1393 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1394 		return -EINVAL;
1395 
1396 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1397 		return -EPERM;
1398 
1399 	/* Find the mm_struct */
1400 	rcu_read_lock();
1401 	task = pid ? find_task_by_vpid(pid) : current;
1402 	if (!task) {
1403 		rcu_read_unlock();
1404 		return -ESRCH;
1405 	}
1406 	get_task_struct(task);
1407 
1408 	/*
1409 	 * Check if this process has the right to modify the specified
1410 	 * process. The right exists if the process has administrative
1411 	 * capabilities, superuser privileges or the same
1412 	 * userid as the target process.
1413 	 */
1414 	tcred = __task_cred(task);
1415 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1416 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1417 	    !capable(CAP_SYS_NICE)) {
1418 		rcu_read_unlock();
1419 		err = -EPERM;
1420 		goto out;
1421 	}
1422 	rcu_read_unlock();
1423 
1424  	err = security_task_movememory(task);
1425  	if (err)
1426 		goto out;
1427 
1428 	task_nodes = cpuset_mems_allowed(task);
1429 	mm = get_task_mm(task);
1430 	put_task_struct(task);
1431 
1432 	if (!mm)
1433 		return -EINVAL;
1434 
1435 	if (nodes)
1436 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1437 				    nodes, status, flags);
1438 	else
1439 		err = do_pages_stat(mm, nr_pages, pages, status);
1440 
1441 	mmput(mm);
1442 	return err;
1443 
1444 out:
1445 	put_task_struct(task);
1446 	return err;
1447 }
1448 
1449 /*
1450  * Call migration functions in the vma_ops that may prepare
1451  * memory in a vm for migration. migration functions may perform
1452  * the migration for vmas that do not have an underlying page struct.
1453  */
1454 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1455 	const nodemask_t *from, unsigned long flags)
1456 {
1457  	struct vm_area_struct *vma;
1458  	int err = 0;
1459 
1460 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1461  		if (vma->vm_ops && vma->vm_ops->migrate) {
1462  			err = vma->vm_ops->migrate(vma, to, from, flags);
1463  			if (err)
1464  				break;
1465  		}
1466  	}
1467  	return err;
1468 }
1469 
1470 #ifdef CONFIG_NUMA_BALANCING
1471 /*
1472  * Returns true if this is a safe migration target node for misplaced NUMA
1473  * pages. Currently it only checks the watermarks which crude
1474  */
1475 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1476 				   unsigned long nr_migrate_pages)
1477 {
1478 	int z;
1479 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1480 		struct zone *zone = pgdat->node_zones + z;
1481 
1482 		if (!populated_zone(zone))
1483 			continue;
1484 
1485 		if (!zone_reclaimable(zone))
1486 			continue;
1487 
1488 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1489 		if (!zone_watermark_ok(zone, 0,
1490 				       high_wmark_pages(zone) +
1491 				       nr_migrate_pages,
1492 				       0, 0))
1493 			continue;
1494 		return true;
1495 	}
1496 	return false;
1497 }
1498 
1499 static struct page *alloc_misplaced_dst_page(struct page *page,
1500 					   unsigned long data,
1501 					   int **result)
1502 {
1503 	int nid = (int) data;
1504 	struct page *newpage;
1505 
1506 	newpage = alloc_pages_exact_node(nid,
1507 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1508 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1509 					  __GFP_NOWARN) &
1510 					 ~GFP_IOFS, 0);
1511 	if (newpage)
1512 		page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1513 
1514 	return newpage;
1515 }
1516 
1517 /*
1518  * page migration rate limiting control.
1519  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1520  * window of time. Default here says do not migrate more than 1280M per second.
1521  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1522  * as it is faults that reset the window, pte updates will happen unconditionally
1523  * if there has not been a fault since @pteupdate_interval_millisecs after the
1524  * throttle window closed.
1525  */
1526 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1527 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1528 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1529 
1530 /* Returns true if NUMA migration is currently rate limited */
1531 bool migrate_ratelimited(int node)
1532 {
1533 	pg_data_t *pgdat = NODE_DATA(node);
1534 
1535 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1536 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1537 		return false;
1538 
1539 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1540 		return false;
1541 
1542 	return true;
1543 }
1544 
1545 /* Returns true if the node is migrate rate-limited after the update */
1546 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1547 {
1548 	bool rate_limited = false;
1549 
1550 	/*
1551 	 * Rate-limit the amount of data that is being migrated to a node.
1552 	 * Optimal placement is no good if the memory bus is saturated and
1553 	 * all the time is being spent migrating!
1554 	 */
1555 	spin_lock(&pgdat->numabalancing_migrate_lock);
1556 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1557 		pgdat->numabalancing_migrate_nr_pages = 0;
1558 		pgdat->numabalancing_migrate_next_window = jiffies +
1559 			msecs_to_jiffies(migrate_interval_millisecs);
1560 	}
1561 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1562 		rate_limited = true;
1563 	else
1564 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1565 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1566 
1567 	return rate_limited;
1568 }
1569 
1570 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1571 {
1572 	int page_lru;
1573 
1574 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1575 
1576 	/* Avoid migrating to a node that is nearly full */
1577 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1578 		return 0;
1579 
1580 	if (isolate_lru_page(page))
1581 		return 0;
1582 
1583 	/*
1584 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1585 	 * check on page_count(), so we must do it here, now that the page
1586 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1587 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1588 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1589 	 */
1590 	if (PageTransHuge(page) && page_count(page) != 3) {
1591 		putback_lru_page(page);
1592 		return 0;
1593 	}
1594 
1595 	page_lru = page_is_file_cache(page);
1596 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1597 				hpage_nr_pages(page));
1598 
1599 	/*
1600 	 * Isolating the page has taken another reference, so the
1601 	 * caller's reference can be safely dropped without the page
1602 	 * disappearing underneath us during migration.
1603 	 */
1604 	put_page(page);
1605 	return 1;
1606 }
1607 
1608 /*
1609  * Attempt to migrate a misplaced page to the specified destination
1610  * node. Caller is expected to have an elevated reference count on
1611  * the page that will be dropped by this function before returning.
1612  */
1613 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1614 			   int node)
1615 {
1616 	pg_data_t *pgdat = NODE_DATA(node);
1617 	int isolated;
1618 	int nr_remaining;
1619 	LIST_HEAD(migratepages);
1620 
1621 	/*
1622 	 * Don't migrate file pages that are mapped in multiple processes
1623 	 * with execute permissions as they are probably shared libraries.
1624 	 */
1625 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1626 	    (vma->vm_flags & VM_EXEC))
1627 		goto out;
1628 
1629 	/*
1630 	 * Rate-limit the amount of data that is being migrated to a node.
1631 	 * Optimal placement is no good if the memory bus is saturated and
1632 	 * all the time is being spent migrating!
1633 	 */
1634 	if (numamigrate_update_ratelimit(pgdat, 1))
1635 		goto out;
1636 
1637 	isolated = numamigrate_isolate_page(pgdat, page);
1638 	if (!isolated)
1639 		goto out;
1640 
1641 	list_add(&page->lru, &migratepages);
1642 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1643 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1644 	if (nr_remaining) {
1645 		putback_lru_pages(&migratepages);
1646 		isolated = 0;
1647 	} else
1648 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1649 	BUG_ON(!list_empty(&migratepages));
1650 	return isolated;
1651 
1652 out:
1653 	put_page(page);
1654 	return 0;
1655 }
1656 #endif /* CONFIG_NUMA_BALANCING */
1657 
1658 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1659 /*
1660  * Migrates a THP to a given target node. page must be locked and is unlocked
1661  * before returning.
1662  */
1663 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1664 				struct vm_area_struct *vma,
1665 				pmd_t *pmd, pmd_t entry,
1666 				unsigned long address,
1667 				struct page *page, int node)
1668 {
1669 	unsigned long haddr = address & HPAGE_PMD_MASK;
1670 	pg_data_t *pgdat = NODE_DATA(node);
1671 	int isolated = 0;
1672 	struct page *new_page = NULL;
1673 	struct mem_cgroup *memcg = NULL;
1674 	int page_lru = page_is_file_cache(page);
1675 
1676 	/*
1677 	 * Rate-limit the amount of data that is being migrated to a node.
1678 	 * Optimal placement is no good if the memory bus is saturated and
1679 	 * all the time is being spent migrating!
1680 	 */
1681 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1682 		goto out_dropref;
1683 
1684 	new_page = alloc_pages_node(node,
1685 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1686 	if (!new_page)
1687 		goto out_fail;
1688 
1689 	page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1690 
1691 	isolated = numamigrate_isolate_page(pgdat, page);
1692 	if (!isolated) {
1693 		put_page(new_page);
1694 		goto out_fail;
1695 	}
1696 
1697 	/* Prepare a page as a migration target */
1698 	__set_page_locked(new_page);
1699 	SetPageSwapBacked(new_page);
1700 
1701 	/* anon mapping, we can simply copy page->mapping to the new page: */
1702 	new_page->mapping = page->mapping;
1703 	new_page->index = page->index;
1704 	migrate_page_copy(new_page, page);
1705 	WARN_ON(PageLRU(new_page));
1706 
1707 	/* Recheck the target PMD */
1708 	spin_lock(&mm->page_table_lock);
1709 	if (unlikely(!pmd_same(*pmd, entry))) {
1710 		spin_unlock(&mm->page_table_lock);
1711 
1712 		/* Reverse changes made by migrate_page_copy() */
1713 		if (TestClearPageActive(new_page))
1714 			SetPageActive(page);
1715 		if (TestClearPageUnevictable(new_page))
1716 			SetPageUnevictable(page);
1717 		mlock_migrate_page(page, new_page);
1718 
1719 		unlock_page(new_page);
1720 		put_page(new_page);		/* Free it */
1721 
1722 		/* Retake the callers reference and putback on LRU */
1723 		get_page(page);
1724 		putback_lru_page(page);
1725 		mod_zone_page_state(page_zone(page),
1726 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1727 		goto out_fail;
1728 	}
1729 
1730 	/*
1731 	 * Traditional migration needs to prepare the memcg charge
1732 	 * transaction early to prevent the old page from being
1733 	 * uncharged when installing migration entries.  Here we can
1734 	 * save the potential rollback and start the charge transfer
1735 	 * only when migration is already known to end successfully.
1736 	 */
1737 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1738 
1739 	entry = mk_pmd(new_page, vma->vm_page_prot);
1740 	entry = pmd_mknonnuma(entry);
1741 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1742 	entry = pmd_mkhuge(entry);
1743 
1744 	pmdp_clear_flush(vma, haddr, pmd);
1745 	set_pmd_at(mm, haddr, pmd, entry);
1746 	page_add_new_anon_rmap(new_page, vma, haddr);
1747 	update_mmu_cache_pmd(vma, address, &entry);
1748 	page_remove_rmap(page);
1749 	/*
1750 	 * Finish the charge transaction under the page table lock to
1751 	 * prevent split_huge_page() from dividing up the charge
1752 	 * before it's fully transferred to the new page.
1753 	 */
1754 	mem_cgroup_end_migration(memcg, page, new_page, true);
1755 	spin_unlock(&mm->page_table_lock);
1756 
1757 	unlock_page(new_page);
1758 	unlock_page(page);
1759 	put_page(page);			/* Drop the rmap reference */
1760 	put_page(page);			/* Drop the LRU isolation reference */
1761 
1762 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1763 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1764 
1765 	mod_zone_page_state(page_zone(page),
1766 			NR_ISOLATED_ANON + page_lru,
1767 			-HPAGE_PMD_NR);
1768 	return isolated;
1769 
1770 out_fail:
1771 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1772 out_dropref:
1773 	entry = pmd_mknonnuma(entry);
1774 	set_pmd_at(mm, haddr, pmd, entry);
1775 	update_mmu_cache_pmd(vma, address, &entry);
1776 
1777 	unlock_page(page);
1778 	put_page(page);
1779 	return 0;
1780 }
1781 #endif /* CONFIG_NUMA_BALANCING */
1782 
1783 #endif /* CONFIG_NUMA */
1784