xref: /openbmc/linux/mm/migrate.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -hpage_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_zone_device_page(new))) {
250 			if (is_device_private_page(new)) {
251 				entry = make_device_private_entry(new, pte_write(pte));
252 				pte = swp_entry_to_pte(entry);
253 				if (pte_swp_uffd_wp(*pvmw.pte))
254 					pte = pte_mkuffd_wp(pte);
255 			}
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device public or private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += hpage_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	/*
655 	 * PG_readahead shares the same bit with PG_reclaim.  The above
656 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
657 	 * bit after that.
658 	 */
659 	if (PageReadahead(page))
660 		SetPageReadahead(newpage);
661 
662 	copy_page_owner(page, newpage);
663 
664 	mem_cgroup_migrate(page, newpage);
665 }
666 EXPORT_SYMBOL(migrate_page_states);
667 
668 void migrate_page_copy(struct page *newpage, struct page *page)
669 {
670 	if (PageHuge(page) || PageTransHuge(page))
671 		copy_huge_page(newpage, page);
672 	else
673 		copy_highpage(newpage, page);
674 
675 	migrate_page_states(newpage, page);
676 }
677 EXPORT_SYMBOL(migrate_page_copy);
678 
679 /************************************************************
680  *                    Migration functions
681  ***********************************************************/
682 
683 /*
684  * Common logic to directly migrate a single LRU page suitable for
685  * pages that do not use PagePrivate/PagePrivate2.
686  *
687  * Pages are locked upon entry and exit.
688  */
689 int migrate_page(struct address_space *mapping,
690 		struct page *newpage, struct page *page,
691 		enum migrate_mode mode)
692 {
693 	int rc;
694 
695 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
696 
697 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
698 
699 	if (rc != MIGRATEPAGE_SUCCESS)
700 		return rc;
701 
702 	if (mode != MIGRATE_SYNC_NO_COPY)
703 		migrate_page_copy(newpage, page);
704 	else
705 		migrate_page_states(newpage, page);
706 	return MIGRATEPAGE_SUCCESS;
707 }
708 EXPORT_SYMBOL(migrate_page);
709 
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713 							enum migrate_mode mode)
714 {
715 	struct buffer_head *bh = head;
716 
717 	/* Simple case, sync compaction */
718 	if (mode != MIGRATE_ASYNC) {
719 		do {
720 			lock_buffer(bh);
721 			bh = bh->b_this_page;
722 
723 		} while (bh != head);
724 
725 		return true;
726 	}
727 
728 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
729 	do {
730 		if (!trylock_buffer(bh)) {
731 			/*
732 			 * We failed to lock the buffer and cannot stall in
733 			 * async migration. Release the taken locks
734 			 */
735 			struct buffer_head *failed_bh = bh;
736 			bh = head;
737 			while (bh != failed_bh) {
738 				unlock_buffer(bh);
739 				bh = bh->b_this_page;
740 			}
741 			return false;
742 		}
743 
744 		bh = bh->b_this_page;
745 	} while (bh != head);
746 	return true;
747 }
748 
749 static int __buffer_migrate_page(struct address_space *mapping,
750 		struct page *newpage, struct page *page, enum migrate_mode mode,
751 		bool check_refs)
752 {
753 	struct buffer_head *bh, *head;
754 	int rc;
755 	int expected_count;
756 
757 	if (!page_has_buffers(page))
758 		return migrate_page(mapping, newpage, page, mode);
759 
760 	/* Check whether page does not have extra refs before we do more work */
761 	expected_count = expected_page_refs(mapping, page);
762 	if (page_count(page) != expected_count)
763 		return -EAGAIN;
764 
765 	head = page_buffers(page);
766 	if (!buffer_migrate_lock_buffers(head, mode))
767 		return -EAGAIN;
768 
769 	if (check_refs) {
770 		bool busy;
771 		bool invalidated = false;
772 
773 recheck_buffers:
774 		busy = false;
775 		spin_lock(&mapping->private_lock);
776 		bh = head;
777 		do {
778 			if (atomic_read(&bh->b_count)) {
779 				busy = true;
780 				break;
781 			}
782 			bh = bh->b_this_page;
783 		} while (bh != head);
784 		if (busy) {
785 			if (invalidated) {
786 				rc = -EAGAIN;
787 				goto unlock_buffers;
788 			}
789 			spin_unlock(&mapping->private_lock);
790 			invalidate_bh_lrus();
791 			invalidated = true;
792 			goto recheck_buffers;
793 		}
794 	}
795 
796 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797 	if (rc != MIGRATEPAGE_SUCCESS)
798 		goto unlock_buffers;
799 
800 	ClearPagePrivate(page);
801 	set_page_private(newpage, page_private(page));
802 	set_page_private(page, 0);
803 	put_page(page);
804 	get_page(newpage);
805 
806 	bh = head;
807 	do {
808 		set_bh_page(bh, newpage, bh_offset(bh));
809 		bh = bh->b_this_page;
810 
811 	} while (bh != head);
812 
813 	SetPagePrivate(newpage);
814 
815 	if (mode != MIGRATE_SYNC_NO_COPY)
816 		migrate_page_copy(newpage, page);
817 	else
818 		migrate_page_states(newpage, page);
819 
820 	rc = MIGRATEPAGE_SUCCESS;
821 unlock_buffers:
822 	if (check_refs)
823 		spin_unlock(&mapping->private_lock);
824 	bh = head;
825 	do {
826 		unlock_buffer(bh);
827 		bh = bh->b_this_page;
828 
829 	} while (bh != head);
830 
831 	return rc;
832 }
833 
834 /*
835  * Migration function for pages with buffers. This function can only be used
836  * if the underlying filesystem guarantees that no other references to "page"
837  * exist. For example attached buffer heads are accessed only under page lock.
838  */
839 int buffer_migrate_page(struct address_space *mapping,
840 		struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
843 }
844 EXPORT_SYMBOL(buffer_migrate_page);
845 
846 /*
847  * Same as above except that this variant is more careful and checks that there
848  * are also no buffer head references. This function is the right one for
849  * mappings where buffer heads are directly looked up and referenced (such as
850  * block device mappings).
851  */
852 int buffer_migrate_page_norefs(struct address_space *mapping,
853 		struct page *newpage, struct page *page, enum migrate_mode mode)
854 {
855 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
856 }
857 #endif
858 
859 /*
860  * Writeback a page to clean the dirty state
861  */
862 static int writeout(struct address_space *mapping, struct page *page)
863 {
864 	struct writeback_control wbc = {
865 		.sync_mode = WB_SYNC_NONE,
866 		.nr_to_write = 1,
867 		.range_start = 0,
868 		.range_end = LLONG_MAX,
869 		.for_reclaim = 1
870 	};
871 	int rc;
872 
873 	if (!mapping->a_ops->writepage)
874 		/* No write method for the address space */
875 		return -EINVAL;
876 
877 	if (!clear_page_dirty_for_io(page))
878 		/* Someone else already triggered a write */
879 		return -EAGAIN;
880 
881 	/*
882 	 * A dirty page may imply that the underlying filesystem has
883 	 * the page on some queue. So the page must be clean for
884 	 * migration. Writeout may mean we loose the lock and the
885 	 * page state is no longer what we checked for earlier.
886 	 * At this point we know that the migration attempt cannot
887 	 * be successful.
888 	 */
889 	remove_migration_ptes(page, page, false);
890 
891 	rc = mapping->a_ops->writepage(page, &wbc);
892 
893 	if (rc != AOP_WRITEPAGE_ACTIVATE)
894 		/* unlocked. Relock */
895 		lock_page(page);
896 
897 	return (rc < 0) ? -EIO : -EAGAIN;
898 }
899 
900 /*
901  * Default handling if a filesystem does not provide a migration function.
902  */
903 static int fallback_migrate_page(struct address_space *mapping,
904 	struct page *newpage, struct page *page, enum migrate_mode mode)
905 {
906 	if (PageDirty(page)) {
907 		/* Only writeback pages in full synchronous migration */
908 		switch (mode) {
909 		case MIGRATE_SYNC:
910 		case MIGRATE_SYNC_NO_COPY:
911 			break;
912 		default:
913 			return -EBUSY;
914 		}
915 		return writeout(mapping, page);
916 	}
917 
918 	/*
919 	 * Buffers may be managed in a filesystem specific way.
920 	 * We must have no buffers or drop them.
921 	 */
922 	if (page_has_private(page) &&
923 	    !try_to_release_page(page, GFP_KERNEL))
924 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
925 
926 	return migrate_page(mapping, newpage, page, mode);
927 }
928 
929 /*
930  * Move a page to a newly allocated page
931  * The page is locked and all ptes have been successfully removed.
932  *
933  * The new page will have replaced the old page if this function
934  * is successful.
935  *
936  * Return value:
937  *   < 0 - error code
938  *  MIGRATEPAGE_SUCCESS - success
939  */
940 static int move_to_new_page(struct page *newpage, struct page *page,
941 				enum migrate_mode mode)
942 {
943 	struct address_space *mapping;
944 	int rc = -EAGAIN;
945 	bool is_lru = !__PageMovable(page);
946 
947 	VM_BUG_ON_PAGE(!PageLocked(page), page);
948 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
949 
950 	mapping = page_mapping(page);
951 
952 	if (likely(is_lru)) {
953 		if (!mapping)
954 			rc = migrate_page(mapping, newpage, page, mode);
955 		else if (mapping->a_ops->migratepage)
956 			/*
957 			 * Most pages have a mapping and most filesystems
958 			 * provide a migratepage callback. Anonymous pages
959 			 * are part of swap space which also has its own
960 			 * migratepage callback. This is the most common path
961 			 * for page migration.
962 			 */
963 			rc = mapping->a_ops->migratepage(mapping, newpage,
964 							page, mode);
965 		else
966 			rc = fallback_migrate_page(mapping, newpage,
967 							page, mode);
968 	} else {
969 		/*
970 		 * In case of non-lru page, it could be released after
971 		 * isolation step. In that case, we shouldn't try migration.
972 		 */
973 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
974 		if (!PageMovable(page)) {
975 			rc = MIGRATEPAGE_SUCCESS;
976 			__ClearPageIsolated(page);
977 			goto out;
978 		}
979 
980 		rc = mapping->a_ops->migratepage(mapping, newpage,
981 						page, mode);
982 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
983 			!PageIsolated(page));
984 	}
985 
986 	/*
987 	 * When successful, old pagecache page->mapping must be cleared before
988 	 * page is freed; but stats require that PageAnon be left as PageAnon.
989 	 */
990 	if (rc == MIGRATEPAGE_SUCCESS) {
991 		if (__PageMovable(page)) {
992 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
993 
994 			/*
995 			 * We clear PG_movable under page_lock so any compactor
996 			 * cannot try to migrate this page.
997 			 */
998 			__ClearPageIsolated(page);
999 		}
1000 
1001 		/*
1002 		 * Anonymous and movable page->mapping will be cleared by
1003 		 * free_pages_prepare so don't reset it here for keeping
1004 		 * the type to work PageAnon, for example.
1005 		 */
1006 		if (!PageMappingFlags(page))
1007 			page->mapping = NULL;
1008 
1009 		if (likely(!is_zone_device_page(newpage)))
1010 			flush_dcache_page(newpage);
1011 
1012 	}
1013 out:
1014 	return rc;
1015 }
1016 
1017 static int __unmap_and_move(struct page *page, struct page *newpage,
1018 				int force, enum migrate_mode mode)
1019 {
1020 	int rc = -EAGAIN;
1021 	int page_was_mapped = 0;
1022 	struct anon_vma *anon_vma = NULL;
1023 	bool is_lru = !__PageMovable(page);
1024 
1025 	if (!trylock_page(page)) {
1026 		if (!force || mode == MIGRATE_ASYNC)
1027 			goto out;
1028 
1029 		/*
1030 		 * It's not safe for direct compaction to call lock_page.
1031 		 * For example, during page readahead pages are added locked
1032 		 * to the LRU. Later, when the IO completes the pages are
1033 		 * marked uptodate and unlocked. However, the queueing
1034 		 * could be merging multiple pages for one bio (e.g.
1035 		 * mpage_readpages). If an allocation happens for the
1036 		 * second or third page, the process can end up locking
1037 		 * the same page twice and deadlocking. Rather than
1038 		 * trying to be clever about what pages can be locked,
1039 		 * avoid the use of lock_page for direct compaction
1040 		 * altogether.
1041 		 */
1042 		if (current->flags & PF_MEMALLOC)
1043 			goto out;
1044 
1045 		lock_page(page);
1046 	}
1047 
1048 	if (PageWriteback(page)) {
1049 		/*
1050 		 * Only in the case of a full synchronous migration is it
1051 		 * necessary to wait for PageWriteback. In the async case,
1052 		 * the retry loop is too short and in the sync-light case,
1053 		 * the overhead of stalling is too much
1054 		 */
1055 		switch (mode) {
1056 		case MIGRATE_SYNC:
1057 		case MIGRATE_SYNC_NO_COPY:
1058 			break;
1059 		default:
1060 			rc = -EBUSY;
1061 			goto out_unlock;
1062 		}
1063 		if (!force)
1064 			goto out_unlock;
1065 		wait_on_page_writeback(page);
1066 	}
1067 
1068 	/*
1069 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1070 	 * we cannot notice that anon_vma is freed while we migrates a page.
1071 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1072 	 * of migration. File cache pages are no problem because of page_lock()
1073 	 * File Caches may use write_page() or lock_page() in migration, then,
1074 	 * just care Anon page here.
1075 	 *
1076 	 * Only page_get_anon_vma() understands the subtleties of
1077 	 * getting a hold on an anon_vma from outside one of its mms.
1078 	 * But if we cannot get anon_vma, then we won't need it anyway,
1079 	 * because that implies that the anon page is no longer mapped
1080 	 * (and cannot be remapped so long as we hold the page lock).
1081 	 */
1082 	if (PageAnon(page) && !PageKsm(page))
1083 		anon_vma = page_get_anon_vma(page);
1084 
1085 	/*
1086 	 * Block others from accessing the new page when we get around to
1087 	 * establishing additional references. We are usually the only one
1088 	 * holding a reference to newpage at this point. We used to have a BUG
1089 	 * here if trylock_page(newpage) fails, but would like to allow for
1090 	 * cases where there might be a race with the previous use of newpage.
1091 	 * This is much like races on refcount of oldpage: just don't BUG().
1092 	 */
1093 	if (unlikely(!trylock_page(newpage)))
1094 		goto out_unlock;
1095 
1096 	if (unlikely(!is_lru)) {
1097 		rc = move_to_new_page(newpage, page, mode);
1098 		goto out_unlock_both;
1099 	}
1100 
1101 	/*
1102 	 * Corner case handling:
1103 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1104 	 * and treated as swapcache but it has no rmap yet.
1105 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1106 	 * trigger a BUG.  So handle it here.
1107 	 * 2. An orphaned page (see truncate_complete_page) might have
1108 	 * fs-private metadata. The page can be picked up due to memory
1109 	 * offlining.  Everywhere else except page reclaim, the page is
1110 	 * invisible to the vm, so the page can not be migrated.  So try to
1111 	 * free the metadata, so the page can be freed.
1112 	 */
1113 	if (!page->mapping) {
1114 		VM_BUG_ON_PAGE(PageAnon(page), page);
1115 		if (page_has_private(page)) {
1116 			try_to_free_buffers(page);
1117 			goto out_unlock_both;
1118 		}
1119 	} else if (page_mapped(page)) {
1120 		/* Establish migration ptes */
1121 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1122 				page);
1123 		try_to_unmap(page,
1124 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1125 		page_was_mapped = 1;
1126 	}
1127 
1128 	if (!page_mapped(page))
1129 		rc = move_to_new_page(newpage, page, mode);
1130 
1131 	if (page_was_mapped)
1132 		remove_migration_ptes(page,
1133 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1134 
1135 out_unlock_both:
1136 	unlock_page(newpage);
1137 out_unlock:
1138 	/* Drop an anon_vma reference if we took one */
1139 	if (anon_vma)
1140 		put_anon_vma(anon_vma);
1141 	unlock_page(page);
1142 out:
1143 	/*
1144 	 * If migration is successful, decrease refcount of the newpage
1145 	 * which will not free the page because new page owner increased
1146 	 * refcounter. As well, if it is LRU page, add the page to LRU
1147 	 * list in here. Use the old state of the isolated source page to
1148 	 * determine if we migrated a LRU page. newpage was already unlocked
1149 	 * and possibly modified by its owner - don't rely on the page
1150 	 * state.
1151 	 */
1152 	if (rc == MIGRATEPAGE_SUCCESS) {
1153 		if (unlikely(!is_lru))
1154 			put_page(newpage);
1155 		else
1156 			putback_lru_page(newpage);
1157 	}
1158 
1159 	return rc;
1160 }
1161 
1162 /*
1163  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1164  * around it.
1165  */
1166 #if defined(CONFIG_ARM) && \
1167 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1168 #define ICE_noinline noinline
1169 #else
1170 #define ICE_noinline
1171 #endif
1172 
1173 /*
1174  * Obtain the lock on page, remove all ptes and migrate the page
1175  * to the newly allocated page in newpage.
1176  */
1177 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1178 				   free_page_t put_new_page,
1179 				   unsigned long private, struct page *page,
1180 				   int force, enum migrate_mode mode,
1181 				   enum migrate_reason reason)
1182 {
1183 	int rc = MIGRATEPAGE_SUCCESS;
1184 	struct page *newpage = NULL;
1185 
1186 	if (!thp_migration_supported() && PageTransHuge(page))
1187 		return -ENOMEM;
1188 
1189 	if (page_count(page) == 1) {
1190 		/* page was freed from under us. So we are done. */
1191 		ClearPageActive(page);
1192 		ClearPageUnevictable(page);
1193 		if (unlikely(__PageMovable(page))) {
1194 			lock_page(page);
1195 			if (!PageMovable(page))
1196 				__ClearPageIsolated(page);
1197 			unlock_page(page);
1198 		}
1199 		goto out;
1200 	}
1201 
1202 	newpage = get_new_page(page, private);
1203 	if (!newpage)
1204 		return -ENOMEM;
1205 
1206 	rc = __unmap_and_move(page, newpage, force, mode);
1207 	if (rc == MIGRATEPAGE_SUCCESS)
1208 		set_page_owner_migrate_reason(newpage, reason);
1209 
1210 out:
1211 	if (rc != -EAGAIN) {
1212 		/*
1213 		 * A page that has been migrated has all references
1214 		 * removed and will be freed. A page that has not been
1215 		 * migrated will have kept its references and be restored.
1216 		 */
1217 		list_del(&page->lru);
1218 
1219 		/*
1220 		 * Compaction can migrate also non-LRU pages which are
1221 		 * not accounted to NR_ISOLATED_*. They can be recognized
1222 		 * as __PageMovable
1223 		 */
1224 		if (likely(!__PageMovable(page)))
1225 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226 					page_is_file_lru(page), -hpage_nr_pages(page));
1227 	}
1228 
1229 	/*
1230 	 * If migration is successful, releases reference grabbed during
1231 	 * isolation. Otherwise, restore the page to right list unless
1232 	 * we want to retry.
1233 	 */
1234 	if (rc == MIGRATEPAGE_SUCCESS) {
1235 		put_page(page);
1236 		if (reason == MR_MEMORY_FAILURE) {
1237 			/*
1238 			 * Set PG_HWPoison on just freed page
1239 			 * intentionally. Although it's rather weird,
1240 			 * it's how HWPoison flag works at the moment.
1241 			 */
1242 			if (set_hwpoison_free_buddy_page(page))
1243 				num_poisoned_pages_inc();
1244 		}
1245 	} else {
1246 		if (rc != -EAGAIN) {
1247 			if (likely(!__PageMovable(page))) {
1248 				putback_lru_page(page);
1249 				goto put_new;
1250 			}
1251 
1252 			lock_page(page);
1253 			if (PageMovable(page))
1254 				putback_movable_page(page);
1255 			else
1256 				__ClearPageIsolated(page);
1257 			unlock_page(page);
1258 			put_page(page);
1259 		}
1260 put_new:
1261 		if (put_new_page)
1262 			put_new_page(newpage, private);
1263 		else
1264 			put_page(newpage);
1265 	}
1266 
1267 	return rc;
1268 }
1269 
1270 /*
1271  * Counterpart of unmap_and_move_page() for hugepage migration.
1272  *
1273  * This function doesn't wait the completion of hugepage I/O
1274  * because there is no race between I/O and migration for hugepage.
1275  * Note that currently hugepage I/O occurs only in direct I/O
1276  * where no lock is held and PG_writeback is irrelevant,
1277  * and writeback status of all subpages are counted in the reference
1278  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279  * under direct I/O, the reference of the head page is 512 and a bit more.)
1280  * This means that when we try to migrate hugepage whose subpages are
1281  * doing direct I/O, some references remain after try_to_unmap() and
1282  * hugepage migration fails without data corruption.
1283  *
1284  * There is also no race when direct I/O is issued on the page under migration,
1285  * because then pte is replaced with migration swap entry and direct I/O code
1286  * will wait in the page fault for migration to complete.
1287  */
1288 static int unmap_and_move_huge_page(new_page_t get_new_page,
1289 				free_page_t put_new_page, unsigned long private,
1290 				struct page *hpage, int force,
1291 				enum migrate_mode mode, int reason)
1292 {
1293 	int rc = -EAGAIN;
1294 	int page_was_mapped = 0;
1295 	struct page *new_hpage;
1296 	struct anon_vma *anon_vma = NULL;
1297 	struct address_space *mapping = NULL;
1298 
1299 	/*
1300 	 * Migratability of hugepages depends on architectures and their size.
1301 	 * This check is necessary because some callers of hugepage migration
1302 	 * like soft offline and memory hotremove don't walk through page
1303 	 * tables or check whether the hugepage is pmd-based or not before
1304 	 * kicking migration.
1305 	 */
1306 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1307 		putback_active_hugepage(hpage);
1308 		return -ENOSYS;
1309 	}
1310 
1311 	new_hpage = get_new_page(hpage, private);
1312 	if (!new_hpage)
1313 		return -ENOMEM;
1314 
1315 	if (!trylock_page(hpage)) {
1316 		if (!force)
1317 			goto out;
1318 		switch (mode) {
1319 		case MIGRATE_SYNC:
1320 		case MIGRATE_SYNC_NO_COPY:
1321 			break;
1322 		default:
1323 			goto out;
1324 		}
1325 		lock_page(hpage);
1326 	}
1327 
1328 	/*
1329 	 * Check for pages which are in the process of being freed.  Without
1330 	 * page_mapping() set, hugetlbfs specific move page routine will not
1331 	 * be called and we could leak usage counts for subpools.
1332 	 */
1333 	if (page_private(hpage) && !page_mapping(hpage)) {
1334 		rc = -EBUSY;
1335 		goto out_unlock;
1336 	}
1337 
1338 	if (PageAnon(hpage))
1339 		anon_vma = page_get_anon_vma(hpage);
1340 
1341 	if (unlikely(!trylock_page(new_hpage)))
1342 		goto put_anon;
1343 
1344 	if (page_mapped(hpage)) {
1345 		/*
1346 		 * try_to_unmap could potentially call huge_pmd_unshare.
1347 		 * Because of this, take semaphore in write mode here and
1348 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1349 		 * taken the lock.
1350 		 */
1351 		mapping = hugetlb_page_mapping_lock_write(hpage);
1352 		if (unlikely(!mapping))
1353 			goto unlock_put_anon;
1354 
1355 		try_to_unmap(hpage,
1356 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1357 			TTU_RMAP_LOCKED);
1358 		page_was_mapped = 1;
1359 		/*
1360 		 * Leave mapping locked until after subsequent call to
1361 		 * remove_migration_ptes()
1362 		 */
1363 	}
1364 
1365 	if (!page_mapped(hpage))
1366 		rc = move_to_new_page(new_hpage, hpage, mode);
1367 
1368 	if (page_was_mapped) {
1369 		remove_migration_ptes(hpage,
1370 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1371 		i_mmap_unlock_write(mapping);
1372 	}
1373 
1374 unlock_put_anon:
1375 	unlock_page(new_hpage);
1376 
1377 put_anon:
1378 	if (anon_vma)
1379 		put_anon_vma(anon_vma);
1380 
1381 	if (rc == MIGRATEPAGE_SUCCESS) {
1382 		move_hugetlb_state(hpage, new_hpage, reason);
1383 		put_new_page = NULL;
1384 	}
1385 
1386 out_unlock:
1387 	unlock_page(hpage);
1388 out:
1389 	if (rc != -EAGAIN)
1390 		putback_active_hugepage(hpage);
1391 
1392 	/*
1393 	 * If migration was not successful and there's a freeing callback, use
1394 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1395 	 * isolation.
1396 	 */
1397 	if (put_new_page)
1398 		put_new_page(new_hpage, private);
1399 	else
1400 		putback_active_hugepage(new_hpage);
1401 
1402 	return rc;
1403 }
1404 
1405 /*
1406  * migrate_pages - migrate the pages specified in a list, to the free pages
1407  *		   supplied as the target for the page migration
1408  *
1409  * @from:		The list of pages to be migrated.
1410  * @get_new_page:	The function used to allocate free pages to be used
1411  *			as the target of the page migration.
1412  * @put_new_page:	The function used to free target pages if migration
1413  *			fails, or NULL if no special handling is necessary.
1414  * @private:		Private data to be passed on to get_new_page()
1415  * @mode:		The migration mode that specifies the constraints for
1416  *			page migration, if any.
1417  * @reason:		The reason for page migration.
1418  *
1419  * The function returns after 10 attempts or if no pages are movable any more
1420  * because the list has become empty or no retryable pages exist any more.
1421  * The caller should call putback_movable_pages() to return pages to the LRU
1422  * or free list only if ret != 0.
1423  *
1424  * Returns the number of pages that were not migrated, or an error code.
1425  */
1426 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1427 		free_page_t put_new_page, unsigned long private,
1428 		enum migrate_mode mode, int reason)
1429 {
1430 	int retry = 1;
1431 	int nr_failed = 0;
1432 	int nr_succeeded = 0;
1433 	int pass = 0;
1434 	struct page *page;
1435 	struct page *page2;
1436 	int swapwrite = current->flags & PF_SWAPWRITE;
1437 	int rc;
1438 
1439 	if (!swapwrite)
1440 		current->flags |= PF_SWAPWRITE;
1441 
1442 	for(pass = 0; pass < 10 && retry; pass++) {
1443 		retry = 0;
1444 
1445 		list_for_each_entry_safe(page, page2, from, lru) {
1446 retry:
1447 			cond_resched();
1448 
1449 			if (PageHuge(page))
1450 				rc = unmap_and_move_huge_page(get_new_page,
1451 						put_new_page, private, page,
1452 						pass > 2, mode, reason);
1453 			else
1454 				rc = unmap_and_move(get_new_page, put_new_page,
1455 						private, page, pass > 2, mode,
1456 						reason);
1457 
1458 			switch(rc) {
1459 			case -ENOMEM:
1460 				/*
1461 				 * THP migration might be unsupported or the
1462 				 * allocation could've failed so we should
1463 				 * retry on the same page with the THP split
1464 				 * to base pages.
1465 				 *
1466 				 * Head page is retried immediately and tail
1467 				 * pages are added to the tail of the list so
1468 				 * we encounter them after the rest of the list
1469 				 * is processed.
1470 				 */
1471 				if (PageTransHuge(page) && !PageHuge(page)) {
1472 					lock_page(page);
1473 					rc = split_huge_page_to_list(page, from);
1474 					unlock_page(page);
1475 					if (!rc) {
1476 						list_safe_reset_next(page, page2, lru);
1477 						goto retry;
1478 					}
1479 				}
1480 				nr_failed++;
1481 				goto out;
1482 			case -EAGAIN:
1483 				retry++;
1484 				break;
1485 			case MIGRATEPAGE_SUCCESS:
1486 				nr_succeeded++;
1487 				break;
1488 			default:
1489 				/*
1490 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1491 				 * unlike -EAGAIN case, the failed page is
1492 				 * removed from migration page list and not
1493 				 * retried in the next outer loop.
1494 				 */
1495 				nr_failed++;
1496 				break;
1497 			}
1498 		}
1499 	}
1500 	nr_failed += retry;
1501 	rc = nr_failed;
1502 out:
1503 	if (nr_succeeded)
1504 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1505 	if (nr_failed)
1506 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1507 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1508 
1509 	if (!swapwrite)
1510 		current->flags &= ~PF_SWAPWRITE;
1511 
1512 	return rc;
1513 }
1514 
1515 #ifdef CONFIG_NUMA
1516 
1517 static int store_status(int __user *status, int start, int value, int nr)
1518 {
1519 	while (nr-- > 0) {
1520 		if (put_user(value, status + start))
1521 			return -EFAULT;
1522 		start++;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 static int do_move_pages_to_node(struct mm_struct *mm,
1529 		struct list_head *pagelist, int node)
1530 {
1531 	int err;
1532 
1533 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1534 			MIGRATE_SYNC, MR_SYSCALL);
1535 	if (err)
1536 		putback_movable_pages(pagelist);
1537 	return err;
1538 }
1539 
1540 /*
1541  * Resolves the given address to a struct page, isolates it from the LRU and
1542  * puts it to the given pagelist.
1543  * Returns:
1544  *     errno - if the page cannot be found/isolated
1545  *     0 - when it doesn't have to be migrated because it is already on the
1546  *         target node
1547  *     1 - when it has been queued
1548  */
1549 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1550 		int node, struct list_head *pagelist, bool migrate_all)
1551 {
1552 	struct vm_area_struct *vma;
1553 	struct page *page;
1554 	unsigned int follflags;
1555 	int err;
1556 
1557 	down_read(&mm->mmap_sem);
1558 	err = -EFAULT;
1559 	vma = find_vma(mm, addr);
1560 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1561 		goto out;
1562 
1563 	/* FOLL_DUMP to ignore special (like zero) pages */
1564 	follflags = FOLL_GET | FOLL_DUMP;
1565 	page = follow_page(vma, addr, follflags);
1566 
1567 	err = PTR_ERR(page);
1568 	if (IS_ERR(page))
1569 		goto out;
1570 
1571 	err = -ENOENT;
1572 	if (!page)
1573 		goto out;
1574 
1575 	err = 0;
1576 	if (page_to_nid(page) == node)
1577 		goto out_putpage;
1578 
1579 	err = -EACCES;
1580 	if (page_mapcount(page) > 1 && !migrate_all)
1581 		goto out_putpage;
1582 
1583 	if (PageHuge(page)) {
1584 		if (PageHead(page)) {
1585 			isolate_huge_page(page, pagelist);
1586 			err = 1;
1587 		}
1588 	} else {
1589 		struct page *head;
1590 
1591 		head = compound_head(page);
1592 		err = isolate_lru_page(head);
1593 		if (err)
1594 			goto out_putpage;
1595 
1596 		err = 1;
1597 		list_add_tail(&head->lru, pagelist);
1598 		mod_node_page_state(page_pgdat(head),
1599 			NR_ISOLATED_ANON + page_is_file_lru(head),
1600 			hpage_nr_pages(head));
1601 	}
1602 out_putpage:
1603 	/*
1604 	 * Either remove the duplicate refcount from
1605 	 * isolate_lru_page() or drop the page ref if it was
1606 	 * not isolated.
1607 	 */
1608 	put_page(page);
1609 out:
1610 	up_read(&mm->mmap_sem);
1611 	return err;
1612 }
1613 
1614 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1615 		struct list_head *pagelist, int __user *status,
1616 		int start, int i, unsigned long nr_pages)
1617 {
1618 	int err;
1619 
1620 	if (list_empty(pagelist))
1621 		return 0;
1622 
1623 	err = do_move_pages_to_node(mm, pagelist, node);
1624 	if (err) {
1625 		/*
1626 		 * Positive err means the number of failed
1627 		 * pages to migrate.  Since we are going to
1628 		 * abort and return the number of non-migrated
1629 		 * pages, so need to incude the rest of the
1630 		 * nr_pages that have not been attempted as
1631 		 * well.
1632 		 */
1633 		if (err > 0)
1634 			err += nr_pages - i - 1;
1635 		return err;
1636 	}
1637 	return store_status(status, start, node, i - start);
1638 }
1639 
1640 /*
1641  * Migrate an array of page address onto an array of nodes and fill
1642  * the corresponding array of status.
1643  */
1644 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1645 			 unsigned long nr_pages,
1646 			 const void __user * __user *pages,
1647 			 const int __user *nodes,
1648 			 int __user *status, int flags)
1649 {
1650 	int current_node = NUMA_NO_NODE;
1651 	LIST_HEAD(pagelist);
1652 	int start, i;
1653 	int err = 0, err1;
1654 
1655 	migrate_prep();
1656 
1657 	for (i = start = 0; i < nr_pages; i++) {
1658 		const void __user *p;
1659 		unsigned long addr;
1660 		int node;
1661 
1662 		err = -EFAULT;
1663 		if (get_user(p, pages + i))
1664 			goto out_flush;
1665 		if (get_user(node, nodes + i))
1666 			goto out_flush;
1667 		addr = (unsigned long)untagged_addr(p);
1668 
1669 		err = -ENODEV;
1670 		if (node < 0 || node >= MAX_NUMNODES)
1671 			goto out_flush;
1672 		if (!node_state(node, N_MEMORY))
1673 			goto out_flush;
1674 
1675 		err = -EACCES;
1676 		if (!node_isset(node, task_nodes))
1677 			goto out_flush;
1678 
1679 		if (current_node == NUMA_NO_NODE) {
1680 			current_node = node;
1681 			start = i;
1682 		} else if (node != current_node) {
1683 			err = move_pages_and_store_status(mm, current_node,
1684 					&pagelist, status, start, i, nr_pages);
1685 			if (err)
1686 				goto out;
1687 			start = i;
1688 			current_node = node;
1689 		}
1690 
1691 		/*
1692 		 * Errors in the page lookup or isolation are not fatal and we simply
1693 		 * report them via status
1694 		 */
1695 		err = add_page_for_migration(mm, addr, current_node,
1696 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1697 
1698 		if (err > 0) {
1699 			/* The page is successfully queued for migration */
1700 			continue;
1701 		}
1702 
1703 		/*
1704 		 * If the page is already on the target node (!err), store the
1705 		 * node, otherwise, store the err.
1706 		 */
1707 		err = store_status(status, i, err ? : current_node, 1);
1708 		if (err)
1709 			goto out_flush;
1710 
1711 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1712 				status, start, i, nr_pages);
1713 		if (err)
1714 			goto out;
1715 		current_node = NUMA_NO_NODE;
1716 	}
1717 out_flush:
1718 	/* Make sure we do not overwrite the existing error */
1719 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1720 				status, start, i, nr_pages);
1721 	if (err >= 0)
1722 		err = err1;
1723 out:
1724 	return err;
1725 }
1726 
1727 /*
1728  * Determine the nodes of an array of pages and store it in an array of status.
1729  */
1730 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1731 				const void __user **pages, int *status)
1732 {
1733 	unsigned long i;
1734 
1735 	down_read(&mm->mmap_sem);
1736 
1737 	for (i = 0; i < nr_pages; i++) {
1738 		unsigned long addr = (unsigned long)(*pages);
1739 		struct vm_area_struct *vma;
1740 		struct page *page;
1741 		int err = -EFAULT;
1742 
1743 		vma = find_vma(mm, addr);
1744 		if (!vma || addr < vma->vm_start)
1745 			goto set_status;
1746 
1747 		/* FOLL_DUMP to ignore special (like zero) pages */
1748 		page = follow_page(vma, addr, FOLL_DUMP);
1749 
1750 		err = PTR_ERR(page);
1751 		if (IS_ERR(page))
1752 			goto set_status;
1753 
1754 		err = page ? page_to_nid(page) : -ENOENT;
1755 set_status:
1756 		*status = err;
1757 
1758 		pages++;
1759 		status++;
1760 	}
1761 
1762 	up_read(&mm->mmap_sem);
1763 }
1764 
1765 /*
1766  * Determine the nodes of a user array of pages and store it in
1767  * a user array of status.
1768  */
1769 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1770 			 const void __user * __user *pages,
1771 			 int __user *status)
1772 {
1773 #define DO_PAGES_STAT_CHUNK_NR 16
1774 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1775 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1776 
1777 	while (nr_pages) {
1778 		unsigned long chunk_nr;
1779 
1780 		chunk_nr = nr_pages;
1781 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1782 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1783 
1784 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1785 			break;
1786 
1787 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1788 
1789 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1790 			break;
1791 
1792 		pages += chunk_nr;
1793 		status += chunk_nr;
1794 		nr_pages -= chunk_nr;
1795 	}
1796 	return nr_pages ? -EFAULT : 0;
1797 }
1798 
1799 /*
1800  * Move a list of pages in the address space of the currently executing
1801  * process.
1802  */
1803 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1804 			     const void __user * __user *pages,
1805 			     const int __user *nodes,
1806 			     int __user *status, int flags)
1807 {
1808 	struct task_struct *task;
1809 	struct mm_struct *mm;
1810 	int err;
1811 	nodemask_t task_nodes;
1812 
1813 	/* Check flags */
1814 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1815 		return -EINVAL;
1816 
1817 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1818 		return -EPERM;
1819 
1820 	/* Find the mm_struct */
1821 	rcu_read_lock();
1822 	task = pid ? find_task_by_vpid(pid) : current;
1823 	if (!task) {
1824 		rcu_read_unlock();
1825 		return -ESRCH;
1826 	}
1827 	get_task_struct(task);
1828 
1829 	/*
1830 	 * Check if this process has the right to modify the specified
1831 	 * process. Use the regular "ptrace_may_access()" checks.
1832 	 */
1833 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1834 		rcu_read_unlock();
1835 		err = -EPERM;
1836 		goto out;
1837 	}
1838 	rcu_read_unlock();
1839 
1840  	err = security_task_movememory(task);
1841  	if (err)
1842 		goto out;
1843 
1844 	task_nodes = cpuset_mems_allowed(task);
1845 	mm = get_task_mm(task);
1846 	put_task_struct(task);
1847 
1848 	if (!mm)
1849 		return -EINVAL;
1850 
1851 	if (nodes)
1852 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1853 				    nodes, status, flags);
1854 	else
1855 		err = do_pages_stat(mm, nr_pages, pages, status);
1856 
1857 	mmput(mm);
1858 	return err;
1859 
1860 out:
1861 	put_task_struct(task);
1862 	return err;
1863 }
1864 
1865 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1866 		const void __user * __user *, pages,
1867 		const int __user *, nodes,
1868 		int __user *, status, int, flags)
1869 {
1870 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871 }
1872 
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1875 		       compat_uptr_t __user *, pages32,
1876 		       const int __user *, nodes,
1877 		       int __user *, status,
1878 		       int, flags)
1879 {
1880 	const void __user * __user *pages;
1881 	int i;
1882 
1883 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1884 	for (i = 0; i < nr_pages; i++) {
1885 		compat_uptr_t p;
1886 
1887 		if (get_user(p, pages32 + i) ||
1888 			put_user(compat_ptr(p), pages + i))
1889 			return -EFAULT;
1890 	}
1891 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1892 }
1893 #endif /* CONFIG_COMPAT */
1894 
1895 #ifdef CONFIG_NUMA_BALANCING
1896 /*
1897  * Returns true if this is a safe migration target node for misplaced NUMA
1898  * pages. Currently it only checks the watermarks which crude
1899  */
1900 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1901 				   unsigned long nr_migrate_pages)
1902 {
1903 	int z;
1904 
1905 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1906 		struct zone *zone = pgdat->node_zones + z;
1907 
1908 		if (!populated_zone(zone))
1909 			continue;
1910 
1911 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1912 		if (!zone_watermark_ok(zone, 0,
1913 				       high_wmark_pages(zone) +
1914 				       nr_migrate_pages,
1915 				       ZONE_MOVABLE, 0))
1916 			continue;
1917 		return true;
1918 	}
1919 	return false;
1920 }
1921 
1922 static struct page *alloc_misplaced_dst_page(struct page *page,
1923 					   unsigned long data)
1924 {
1925 	int nid = (int) data;
1926 	struct page *newpage;
1927 
1928 	newpage = __alloc_pages_node(nid,
1929 					 (GFP_HIGHUSER_MOVABLE |
1930 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1931 					  __GFP_NORETRY | __GFP_NOWARN) &
1932 					 ~__GFP_RECLAIM, 0);
1933 
1934 	return newpage;
1935 }
1936 
1937 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1938 {
1939 	int page_lru;
1940 
1941 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1942 
1943 	/* Avoid migrating to a node that is nearly full */
1944 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1945 		return 0;
1946 
1947 	if (isolate_lru_page(page))
1948 		return 0;
1949 
1950 	/*
1951 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1952 	 * check on page_count(), so we must do it here, now that the page
1953 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1954 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1955 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1956 	 */
1957 	if (PageTransHuge(page) && page_count(page) != 3) {
1958 		putback_lru_page(page);
1959 		return 0;
1960 	}
1961 
1962 	page_lru = page_is_file_lru(page);
1963 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1964 				hpage_nr_pages(page));
1965 
1966 	/*
1967 	 * Isolating the page has taken another reference, so the
1968 	 * caller's reference can be safely dropped without the page
1969 	 * disappearing underneath us during migration.
1970 	 */
1971 	put_page(page);
1972 	return 1;
1973 }
1974 
1975 bool pmd_trans_migrating(pmd_t pmd)
1976 {
1977 	struct page *page = pmd_page(pmd);
1978 	return PageLocked(page);
1979 }
1980 
1981 /*
1982  * Attempt to migrate a misplaced page to the specified destination
1983  * node. Caller is expected to have an elevated reference count on
1984  * the page that will be dropped by this function before returning.
1985  */
1986 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1987 			   int node)
1988 {
1989 	pg_data_t *pgdat = NODE_DATA(node);
1990 	int isolated;
1991 	int nr_remaining;
1992 	LIST_HEAD(migratepages);
1993 
1994 	/*
1995 	 * Don't migrate file pages that are mapped in multiple processes
1996 	 * with execute permissions as they are probably shared libraries.
1997 	 */
1998 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1999 	    (vma->vm_flags & VM_EXEC))
2000 		goto out;
2001 
2002 	/*
2003 	 * Also do not migrate dirty pages as not all filesystems can move
2004 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2005 	 */
2006 	if (page_is_file_lru(page) && PageDirty(page))
2007 		goto out;
2008 
2009 	isolated = numamigrate_isolate_page(pgdat, page);
2010 	if (!isolated)
2011 		goto out;
2012 
2013 	list_add(&page->lru, &migratepages);
2014 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2015 				     NULL, node, MIGRATE_ASYNC,
2016 				     MR_NUMA_MISPLACED);
2017 	if (nr_remaining) {
2018 		if (!list_empty(&migratepages)) {
2019 			list_del(&page->lru);
2020 			dec_node_page_state(page, NR_ISOLATED_ANON +
2021 					page_is_file_lru(page));
2022 			putback_lru_page(page);
2023 		}
2024 		isolated = 0;
2025 	} else
2026 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2027 	BUG_ON(!list_empty(&migratepages));
2028 	return isolated;
2029 
2030 out:
2031 	put_page(page);
2032 	return 0;
2033 }
2034 #endif /* CONFIG_NUMA_BALANCING */
2035 
2036 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2037 /*
2038  * Migrates a THP to a given target node. page must be locked and is unlocked
2039  * before returning.
2040  */
2041 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2042 				struct vm_area_struct *vma,
2043 				pmd_t *pmd, pmd_t entry,
2044 				unsigned long address,
2045 				struct page *page, int node)
2046 {
2047 	spinlock_t *ptl;
2048 	pg_data_t *pgdat = NODE_DATA(node);
2049 	int isolated = 0;
2050 	struct page *new_page = NULL;
2051 	int page_lru = page_is_file_lru(page);
2052 	unsigned long start = address & HPAGE_PMD_MASK;
2053 
2054 	new_page = alloc_pages_node(node,
2055 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2056 		HPAGE_PMD_ORDER);
2057 	if (!new_page)
2058 		goto out_fail;
2059 	prep_transhuge_page(new_page);
2060 
2061 	isolated = numamigrate_isolate_page(pgdat, page);
2062 	if (!isolated) {
2063 		put_page(new_page);
2064 		goto out_fail;
2065 	}
2066 
2067 	/* Prepare a page as a migration target */
2068 	__SetPageLocked(new_page);
2069 	if (PageSwapBacked(page))
2070 		__SetPageSwapBacked(new_page);
2071 
2072 	/* anon mapping, we can simply copy page->mapping to the new page: */
2073 	new_page->mapping = page->mapping;
2074 	new_page->index = page->index;
2075 	/* flush the cache before copying using the kernel virtual address */
2076 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2077 	migrate_page_copy(new_page, page);
2078 	WARN_ON(PageLRU(new_page));
2079 
2080 	/* Recheck the target PMD */
2081 	ptl = pmd_lock(mm, pmd);
2082 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2083 		spin_unlock(ptl);
2084 
2085 		/* Reverse changes made by migrate_page_copy() */
2086 		if (TestClearPageActive(new_page))
2087 			SetPageActive(page);
2088 		if (TestClearPageUnevictable(new_page))
2089 			SetPageUnevictable(page);
2090 
2091 		unlock_page(new_page);
2092 		put_page(new_page);		/* Free it */
2093 
2094 		/* Retake the callers reference and putback on LRU */
2095 		get_page(page);
2096 		putback_lru_page(page);
2097 		mod_node_page_state(page_pgdat(page),
2098 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2099 
2100 		goto out_unlock;
2101 	}
2102 
2103 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2104 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2105 
2106 	/*
2107 	 * Overwrite the old entry under pagetable lock and establish
2108 	 * the new PTE. Any parallel GUP will either observe the old
2109 	 * page blocking on the page lock, block on the page table
2110 	 * lock or observe the new page. The SetPageUptodate on the
2111 	 * new page and page_add_new_anon_rmap guarantee the copy is
2112 	 * visible before the pagetable update.
2113 	 */
2114 	page_add_anon_rmap(new_page, vma, start, true);
2115 	/*
2116 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2117 	 * has already been flushed globally.  So no TLB can be currently
2118 	 * caching this non present pmd mapping.  There's no need to clear the
2119 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2120 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2121 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2122 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2123 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2124 	 * pmd.
2125 	 */
2126 	set_pmd_at(mm, start, pmd, entry);
2127 	update_mmu_cache_pmd(vma, address, &entry);
2128 
2129 	page_ref_unfreeze(page, 2);
2130 	mlock_migrate_page(new_page, page);
2131 	page_remove_rmap(page, true);
2132 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2133 
2134 	spin_unlock(ptl);
2135 
2136 	/* Take an "isolate" reference and put new page on the LRU. */
2137 	get_page(new_page);
2138 	putback_lru_page(new_page);
2139 
2140 	unlock_page(new_page);
2141 	unlock_page(page);
2142 	put_page(page);			/* Drop the rmap reference */
2143 	put_page(page);			/* Drop the LRU isolation reference */
2144 
2145 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2146 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2147 
2148 	mod_node_page_state(page_pgdat(page),
2149 			NR_ISOLATED_ANON + page_lru,
2150 			-HPAGE_PMD_NR);
2151 	return isolated;
2152 
2153 out_fail:
2154 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2155 	ptl = pmd_lock(mm, pmd);
2156 	if (pmd_same(*pmd, entry)) {
2157 		entry = pmd_modify(entry, vma->vm_page_prot);
2158 		set_pmd_at(mm, start, pmd, entry);
2159 		update_mmu_cache_pmd(vma, address, &entry);
2160 	}
2161 	spin_unlock(ptl);
2162 
2163 out_unlock:
2164 	unlock_page(page);
2165 	put_page(page);
2166 	return 0;
2167 }
2168 #endif /* CONFIG_NUMA_BALANCING */
2169 
2170 #endif /* CONFIG_NUMA */
2171 
2172 #ifdef CONFIG_DEVICE_PRIVATE
2173 static int migrate_vma_collect_hole(unsigned long start,
2174 				    unsigned long end,
2175 				    __always_unused int depth,
2176 				    struct mm_walk *walk)
2177 {
2178 	struct migrate_vma *migrate = walk->private;
2179 	unsigned long addr;
2180 
2181 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2182 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2183 		migrate->dst[migrate->npages] = 0;
2184 		migrate->npages++;
2185 		migrate->cpages++;
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 static int migrate_vma_collect_skip(unsigned long start,
2192 				    unsigned long end,
2193 				    struct mm_walk *walk)
2194 {
2195 	struct migrate_vma *migrate = walk->private;
2196 	unsigned long addr;
2197 
2198 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2199 		migrate->dst[migrate->npages] = 0;
2200 		migrate->src[migrate->npages++] = 0;
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2207 				   unsigned long start,
2208 				   unsigned long end,
2209 				   struct mm_walk *walk)
2210 {
2211 	struct migrate_vma *migrate = walk->private;
2212 	struct vm_area_struct *vma = walk->vma;
2213 	struct mm_struct *mm = vma->vm_mm;
2214 	unsigned long addr = start, unmapped = 0;
2215 	spinlock_t *ptl;
2216 	pte_t *ptep;
2217 
2218 again:
2219 	if (pmd_none(*pmdp))
2220 		return migrate_vma_collect_hole(start, end, -1, walk);
2221 
2222 	if (pmd_trans_huge(*pmdp)) {
2223 		struct page *page;
2224 
2225 		ptl = pmd_lock(mm, pmdp);
2226 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2227 			spin_unlock(ptl);
2228 			goto again;
2229 		}
2230 
2231 		page = pmd_page(*pmdp);
2232 		if (is_huge_zero_page(page)) {
2233 			spin_unlock(ptl);
2234 			split_huge_pmd(vma, pmdp, addr);
2235 			if (pmd_trans_unstable(pmdp))
2236 				return migrate_vma_collect_skip(start, end,
2237 								walk);
2238 		} else {
2239 			int ret;
2240 
2241 			get_page(page);
2242 			spin_unlock(ptl);
2243 			if (unlikely(!trylock_page(page)))
2244 				return migrate_vma_collect_skip(start, end,
2245 								walk);
2246 			ret = split_huge_page(page);
2247 			unlock_page(page);
2248 			put_page(page);
2249 			if (ret)
2250 				return migrate_vma_collect_skip(start, end,
2251 								walk);
2252 			if (pmd_none(*pmdp))
2253 				return migrate_vma_collect_hole(start, end, -1,
2254 								walk);
2255 		}
2256 	}
2257 
2258 	if (unlikely(pmd_bad(*pmdp)))
2259 		return migrate_vma_collect_skip(start, end, walk);
2260 
2261 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2262 	arch_enter_lazy_mmu_mode();
2263 
2264 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2265 		unsigned long mpfn = 0, pfn;
2266 		struct page *page;
2267 		swp_entry_t entry;
2268 		pte_t pte;
2269 
2270 		pte = *ptep;
2271 
2272 		if (pte_none(pte)) {
2273 			mpfn = MIGRATE_PFN_MIGRATE;
2274 			migrate->cpages++;
2275 			goto next;
2276 		}
2277 
2278 		if (!pte_present(pte)) {
2279 			/*
2280 			 * Only care about unaddressable device page special
2281 			 * page table entry. Other special swap entries are not
2282 			 * migratable, and we ignore regular swapped page.
2283 			 */
2284 			entry = pte_to_swp_entry(pte);
2285 			if (!is_device_private_entry(entry))
2286 				goto next;
2287 
2288 			page = device_private_entry_to_page(entry);
2289 			if (page->pgmap->owner != migrate->src_owner)
2290 				goto next;
2291 
2292 			mpfn = migrate_pfn(page_to_pfn(page)) |
2293 					MIGRATE_PFN_MIGRATE;
2294 			if (is_write_device_private_entry(entry))
2295 				mpfn |= MIGRATE_PFN_WRITE;
2296 		} else {
2297 			if (migrate->src_owner)
2298 				goto next;
2299 			pfn = pte_pfn(pte);
2300 			if (is_zero_pfn(pfn)) {
2301 				mpfn = MIGRATE_PFN_MIGRATE;
2302 				migrate->cpages++;
2303 				goto next;
2304 			}
2305 			page = vm_normal_page(migrate->vma, addr, pte);
2306 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2307 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2308 		}
2309 
2310 		/* FIXME support THP */
2311 		if (!page || !page->mapping || PageTransCompound(page)) {
2312 			mpfn = 0;
2313 			goto next;
2314 		}
2315 
2316 		/*
2317 		 * By getting a reference on the page we pin it and that blocks
2318 		 * any kind of migration. Side effect is that it "freezes" the
2319 		 * pte.
2320 		 *
2321 		 * We drop this reference after isolating the page from the lru
2322 		 * for non device page (device page are not on the lru and thus
2323 		 * can't be dropped from it).
2324 		 */
2325 		get_page(page);
2326 		migrate->cpages++;
2327 
2328 		/*
2329 		 * Optimize for the common case where page is only mapped once
2330 		 * in one process. If we can lock the page, then we can safely
2331 		 * set up a special migration page table entry now.
2332 		 */
2333 		if (trylock_page(page)) {
2334 			pte_t swp_pte;
2335 
2336 			mpfn |= MIGRATE_PFN_LOCKED;
2337 			ptep_get_and_clear(mm, addr, ptep);
2338 
2339 			/* Setup special migration page table entry */
2340 			entry = make_migration_entry(page, mpfn &
2341 						     MIGRATE_PFN_WRITE);
2342 			swp_pte = swp_entry_to_pte(entry);
2343 			if (pte_soft_dirty(pte))
2344 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2345 			if (pte_uffd_wp(pte))
2346 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2347 			set_pte_at(mm, addr, ptep, swp_pte);
2348 
2349 			/*
2350 			 * This is like regular unmap: we remove the rmap and
2351 			 * drop page refcount. Page won't be freed, as we took
2352 			 * a reference just above.
2353 			 */
2354 			page_remove_rmap(page, false);
2355 			put_page(page);
2356 
2357 			if (pte_present(pte))
2358 				unmapped++;
2359 		}
2360 
2361 next:
2362 		migrate->dst[migrate->npages] = 0;
2363 		migrate->src[migrate->npages++] = mpfn;
2364 	}
2365 	arch_leave_lazy_mmu_mode();
2366 	pte_unmap_unlock(ptep - 1, ptl);
2367 
2368 	/* Only flush the TLB if we actually modified any entries */
2369 	if (unmapped)
2370 		flush_tlb_range(walk->vma, start, end);
2371 
2372 	return 0;
2373 }
2374 
2375 static const struct mm_walk_ops migrate_vma_walk_ops = {
2376 	.pmd_entry		= migrate_vma_collect_pmd,
2377 	.pte_hole		= migrate_vma_collect_hole,
2378 };
2379 
2380 /*
2381  * migrate_vma_collect() - collect pages over a range of virtual addresses
2382  * @migrate: migrate struct containing all migration information
2383  *
2384  * This will walk the CPU page table. For each virtual address backed by a
2385  * valid page, it updates the src array and takes a reference on the page, in
2386  * order to pin the page until we lock it and unmap it.
2387  */
2388 static void migrate_vma_collect(struct migrate_vma *migrate)
2389 {
2390 	struct mmu_notifier_range range;
2391 
2392 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2393 			migrate->vma->vm_mm, migrate->start, migrate->end);
2394 	mmu_notifier_invalidate_range_start(&range);
2395 
2396 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2397 			&migrate_vma_walk_ops, migrate);
2398 
2399 	mmu_notifier_invalidate_range_end(&range);
2400 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2401 }
2402 
2403 /*
2404  * migrate_vma_check_page() - check if page is pinned or not
2405  * @page: struct page to check
2406  *
2407  * Pinned pages cannot be migrated. This is the same test as in
2408  * migrate_page_move_mapping(), except that here we allow migration of a
2409  * ZONE_DEVICE page.
2410  */
2411 static bool migrate_vma_check_page(struct page *page)
2412 {
2413 	/*
2414 	 * One extra ref because caller holds an extra reference, either from
2415 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2416 	 * a device page.
2417 	 */
2418 	int extra = 1;
2419 
2420 	/*
2421 	 * FIXME support THP (transparent huge page), it is bit more complex to
2422 	 * check them than regular pages, because they can be mapped with a pmd
2423 	 * or with a pte (split pte mapping).
2424 	 */
2425 	if (PageCompound(page))
2426 		return false;
2427 
2428 	/* Page from ZONE_DEVICE have one extra reference */
2429 	if (is_zone_device_page(page)) {
2430 		/*
2431 		 * Private page can never be pin as they have no valid pte and
2432 		 * GUP will fail for those. Yet if there is a pending migration
2433 		 * a thread might try to wait on the pte migration entry and
2434 		 * will bump the page reference count. Sadly there is no way to
2435 		 * differentiate a regular pin from migration wait. Hence to
2436 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2437 		 * infinite loop (one stoping migration because the other is
2438 		 * waiting on pte migration entry). We always return true here.
2439 		 *
2440 		 * FIXME proper solution is to rework migration_entry_wait() so
2441 		 * it does not need to take a reference on page.
2442 		 */
2443 		return is_device_private_page(page);
2444 	}
2445 
2446 	/* For file back page */
2447 	if (page_mapping(page))
2448 		extra += 1 + page_has_private(page);
2449 
2450 	if ((page_count(page) - extra) > page_mapcount(page))
2451 		return false;
2452 
2453 	return true;
2454 }
2455 
2456 /*
2457  * migrate_vma_prepare() - lock pages and isolate them from the lru
2458  * @migrate: migrate struct containing all migration information
2459  *
2460  * This locks pages that have been collected by migrate_vma_collect(). Once each
2461  * page is locked it is isolated from the lru (for non-device pages). Finally,
2462  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463  * migrated by concurrent kernel threads.
2464  */
2465 static void migrate_vma_prepare(struct migrate_vma *migrate)
2466 {
2467 	const unsigned long npages = migrate->npages;
2468 	const unsigned long start = migrate->start;
2469 	unsigned long addr, i, restore = 0;
2470 	bool allow_drain = true;
2471 
2472 	lru_add_drain();
2473 
2474 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2475 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476 		bool remap = true;
2477 
2478 		if (!page)
2479 			continue;
2480 
2481 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2482 			/*
2483 			 * Because we are migrating several pages there can be
2484 			 * a deadlock between 2 concurrent migration where each
2485 			 * are waiting on each other page lock.
2486 			 *
2487 			 * Make migrate_vma() a best effort thing and backoff
2488 			 * for any page we can not lock right away.
2489 			 */
2490 			if (!trylock_page(page)) {
2491 				migrate->src[i] = 0;
2492 				migrate->cpages--;
2493 				put_page(page);
2494 				continue;
2495 			}
2496 			remap = false;
2497 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2498 		}
2499 
2500 		/* ZONE_DEVICE pages are not on LRU */
2501 		if (!is_zone_device_page(page)) {
2502 			if (!PageLRU(page) && allow_drain) {
2503 				/* Drain CPU's pagevec */
2504 				lru_add_drain_all();
2505 				allow_drain = false;
2506 			}
2507 
2508 			if (isolate_lru_page(page)) {
2509 				if (remap) {
2510 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 					migrate->cpages--;
2512 					restore++;
2513 				} else {
2514 					migrate->src[i] = 0;
2515 					unlock_page(page);
2516 					migrate->cpages--;
2517 					put_page(page);
2518 				}
2519 				continue;
2520 			}
2521 
2522 			/* Drop the reference we took in collect */
2523 			put_page(page);
2524 		}
2525 
2526 		if (!migrate_vma_check_page(page)) {
2527 			if (remap) {
2528 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529 				migrate->cpages--;
2530 				restore++;
2531 
2532 				if (!is_zone_device_page(page)) {
2533 					get_page(page);
2534 					putback_lru_page(page);
2535 				}
2536 			} else {
2537 				migrate->src[i] = 0;
2538 				unlock_page(page);
2539 				migrate->cpages--;
2540 
2541 				if (!is_zone_device_page(page))
2542 					putback_lru_page(page);
2543 				else
2544 					put_page(page);
2545 			}
2546 		}
2547 	}
2548 
2549 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2550 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551 
2552 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553 			continue;
2554 
2555 		remove_migration_pte(page, migrate->vma, addr, page);
2556 
2557 		migrate->src[i] = 0;
2558 		unlock_page(page);
2559 		put_page(page);
2560 		restore--;
2561 	}
2562 }
2563 
2564 /*
2565  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566  * @migrate: migrate struct containing all migration information
2567  *
2568  * Replace page mapping (CPU page table pte) with a special migration pte entry
2569  * and check again if it has been pinned. Pinned pages are restored because we
2570  * cannot migrate them.
2571  *
2572  * This is the last step before we call the device driver callback to allocate
2573  * destination memory and copy contents of original page over to new page.
2574  */
2575 static void migrate_vma_unmap(struct migrate_vma *migrate)
2576 {
2577 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2578 	const unsigned long npages = migrate->npages;
2579 	const unsigned long start = migrate->start;
2580 	unsigned long addr, i, restore = 0;
2581 
2582 	for (i = 0; i < npages; i++) {
2583 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584 
2585 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586 			continue;
2587 
2588 		if (page_mapped(page)) {
2589 			try_to_unmap(page, flags);
2590 			if (page_mapped(page))
2591 				goto restore;
2592 		}
2593 
2594 		if (migrate_vma_check_page(page))
2595 			continue;
2596 
2597 restore:
2598 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2599 		migrate->cpages--;
2600 		restore++;
2601 	}
2602 
2603 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2604 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605 
2606 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2607 			continue;
2608 
2609 		remove_migration_ptes(page, page, false);
2610 
2611 		migrate->src[i] = 0;
2612 		unlock_page(page);
2613 		restore--;
2614 
2615 		if (is_zone_device_page(page))
2616 			put_page(page);
2617 		else
2618 			putback_lru_page(page);
2619 	}
2620 }
2621 
2622 /**
2623  * migrate_vma_setup() - prepare to migrate a range of memory
2624  * @args: contains the vma, start, and and pfns arrays for the migration
2625  *
2626  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2627  * without an error.
2628  *
2629  * Prepare to migrate a range of memory virtual address range by collecting all
2630  * the pages backing each virtual address in the range, saving them inside the
2631  * src array.  Then lock those pages and unmap them. Once the pages are locked
2632  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2633  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2634  * corresponding src array entry.  Then restores any pages that are pinned, by
2635  * remapping and unlocking those pages.
2636  *
2637  * The caller should then allocate destination memory and copy source memory to
2638  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2639  * flag set).  Once these are allocated and copied, the caller must update each
2640  * corresponding entry in the dst array with the pfn value of the destination
2641  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2642  * (destination pages must have their struct pages locked, via lock_page()).
2643  *
2644  * Note that the caller does not have to migrate all the pages that are marked
2645  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2646  * device memory to system memory.  If the caller cannot migrate a device page
2647  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2648  * consequences for the userspace process, so it must be avoided if at all
2649  * possible.
2650  *
2651  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2652  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2653  * allowing the caller to allocate device memory for those unback virtual
2654  * address.  For this the caller simply has to allocate device memory and
2655  * properly set the destination entry like for regular migration.  Note that
2656  * this can still fails and thus inside the device driver must check if the
2657  * migration was successful for those entries after calling migrate_vma_pages()
2658  * just like for regular migration.
2659  *
2660  * After that, the callers must call migrate_vma_pages() to go over each entry
2661  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2662  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2663  * then migrate_vma_pages() to migrate struct page information from the source
2664  * struct page to the destination struct page.  If it fails to migrate the
2665  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2666  * src array.
2667  *
2668  * At this point all successfully migrated pages have an entry in the src
2669  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2670  * array entry with MIGRATE_PFN_VALID flag set.
2671  *
2672  * Once migrate_vma_pages() returns the caller may inspect which pages were
2673  * successfully migrated, and which were not.  Successfully migrated pages will
2674  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2675  *
2676  * It is safe to update device page table after migrate_vma_pages() because
2677  * both destination and source page are still locked, and the mmap_sem is held
2678  * in read mode (hence no one can unmap the range being migrated).
2679  *
2680  * Once the caller is done cleaning up things and updating its page table (if it
2681  * chose to do so, this is not an obligation) it finally calls
2682  * migrate_vma_finalize() to update the CPU page table to point to new pages
2683  * for successfully migrated pages or otherwise restore the CPU page table to
2684  * point to the original source pages.
2685  */
2686 int migrate_vma_setup(struct migrate_vma *args)
2687 {
2688 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2689 
2690 	args->start &= PAGE_MASK;
2691 	args->end &= PAGE_MASK;
2692 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2693 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2694 		return -EINVAL;
2695 	if (nr_pages <= 0)
2696 		return -EINVAL;
2697 	if (args->start < args->vma->vm_start ||
2698 	    args->start >= args->vma->vm_end)
2699 		return -EINVAL;
2700 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2701 		return -EINVAL;
2702 	if (!args->src || !args->dst)
2703 		return -EINVAL;
2704 
2705 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2706 	args->cpages = 0;
2707 	args->npages = 0;
2708 
2709 	migrate_vma_collect(args);
2710 
2711 	if (args->cpages)
2712 		migrate_vma_prepare(args);
2713 	if (args->cpages)
2714 		migrate_vma_unmap(args);
2715 
2716 	/*
2717 	 * At this point pages are locked and unmapped, and thus they have
2718 	 * stable content and can safely be copied to destination memory that
2719 	 * is allocated by the drivers.
2720 	 */
2721 	return 0;
2722 
2723 }
2724 EXPORT_SYMBOL(migrate_vma_setup);
2725 
2726 /*
2727  * This code closely matches the code in:
2728  *   __handle_mm_fault()
2729  *     handle_pte_fault()
2730  *       do_anonymous_page()
2731  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2732  * private page.
2733  */
2734 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2735 				    unsigned long addr,
2736 				    struct page *page,
2737 				    unsigned long *src,
2738 				    unsigned long *dst)
2739 {
2740 	struct vm_area_struct *vma = migrate->vma;
2741 	struct mm_struct *mm = vma->vm_mm;
2742 	struct mem_cgroup *memcg;
2743 	bool flush = false;
2744 	spinlock_t *ptl;
2745 	pte_t entry;
2746 	pgd_t *pgdp;
2747 	p4d_t *p4dp;
2748 	pud_t *pudp;
2749 	pmd_t *pmdp;
2750 	pte_t *ptep;
2751 
2752 	/* Only allow populating anonymous memory */
2753 	if (!vma_is_anonymous(vma))
2754 		goto abort;
2755 
2756 	pgdp = pgd_offset(mm, addr);
2757 	p4dp = p4d_alloc(mm, pgdp, addr);
2758 	if (!p4dp)
2759 		goto abort;
2760 	pudp = pud_alloc(mm, p4dp, addr);
2761 	if (!pudp)
2762 		goto abort;
2763 	pmdp = pmd_alloc(mm, pudp, addr);
2764 	if (!pmdp)
2765 		goto abort;
2766 
2767 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2768 		goto abort;
2769 
2770 	/*
2771 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2772 	 * pte_offset_map() on pmds where a huge pmd might be created
2773 	 * from a different thread.
2774 	 *
2775 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2776 	 * parallel threads are excluded by other means.
2777 	 *
2778 	 * Here we only have down_read(mmap_sem).
2779 	 */
2780 	if (pte_alloc(mm, pmdp))
2781 		goto abort;
2782 
2783 	/* See the comment in pte_alloc_one_map() */
2784 	if (unlikely(pmd_trans_unstable(pmdp)))
2785 		goto abort;
2786 
2787 	if (unlikely(anon_vma_prepare(vma)))
2788 		goto abort;
2789 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2790 		goto abort;
2791 
2792 	/*
2793 	 * The memory barrier inside __SetPageUptodate makes sure that
2794 	 * preceding stores to the page contents become visible before
2795 	 * the set_pte_at() write.
2796 	 */
2797 	__SetPageUptodate(page);
2798 
2799 	if (is_zone_device_page(page)) {
2800 		if (is_device_private_page(page)) {
2801 			swp_entry_t swp_entry;
2802 
2803 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2804 			entry = swp_entry_to_pte(swp_entry);
2805 		}
2806 	} else {
2807 		entry = mk_pte(page, vma->vm_page_prot);
2808 		if (vma->vm_flags & VM_WRITE)
2809 			entry = pte_mkwrite(pte_mkdirty(entry));
2810 	}
2811 
2812 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2813 
2814 	if (check_stable_address_space(mm))
2815 		goto unlock_abort;
2816 
2817 	if (pte_present(*ptep)) {
2818 		unsigned long pfn = pte_pfn(*ptep);
2819 
2820 		if (!is_zero_pfn(pfn))
2821 			goto unlock_abort;
2822 		flush = true;
2823 	} else if (!pte_none(*ptep))
2824 		goto unlock_abort;
2825 
2826 	/*
2827 	 * Check for userfaultfd but do not deliver the fault. Instead,
2828 	 * just back off.
2829 	 */
2830 	if (userfaultfd_missing(vma))
2831 		goto unlock_abort;
2832 
2833 	inc_mm_counter(mm, MM_ANONPAGES);
2834 	page_add_new_anon_rmap(page, vma, addr, false);
2835 	mem_cgroup_commit_charge(page, memcg, false, false);
2836 	if (!is_zone_device_page(page))
2837 		lru_cache_add_active_or_unevictable(page, vma);
2838 	get_page(page);
2839 
2840 	if (flush) {
2841 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2842 		ptep_clear_flush_notify(vma, addr, ptep);
2843 		set_pte_at_notify(mm, addr, ptep, entry);
2844 		update_mmu_cache(vma, addr, ptep);
2845 	} else {
2846 		/* No need to invalidate - it was non-present before */
2847 		set_pte_at(mm, addr, ptep, entry);
2848 		update_mmu_cache(vma, addr, ptep);
2849 	}
2850 
2851 	pte_unmap_unlock(ptep, ptl);
2852 	*src = MIGRATE_PFN_MIGRATE;
2853 	return;
2854 
2855 unlock_abort:
2856 	pte_unmap_unlock(ptep, ptl);
2857 	mem_cgroup_cancel_charge(page, memcg, false);
2858 abort:
2859 	*src &= ~MIGRATE_PFN_MIGRATE;
2860 }
2861 
2862 /**
2863  * migrate_vma_pages() - migrate meta-data from src page to dst page
2864  * @migrate: migrate struct containing all migration information
2865  *
2866  * This migrates struct page meta-data from source struct page to destination
2867  * struct page. This effectively finishes the migration from source page to the
2868  * destination page.
2869  */
2870 void migrate_vma_pages(struct migrate_vma *migrate)
2871 {
2872 	const unsigned long npages = migrate->npages;
2873 	const unsigned long start = migrate->start;
2874 	struct mmu_notifier_range range;
2875 	unsigned long addr, i;
2876 	bool notified = false;
2877 
2878 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2879 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2880 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2881 		struct address_space *mapping;
2882 		int r;
2883 
2884 		if (!newpage) {
2885 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2886 			continue;
2887 		}
2888 
2889 		if (!page) {
2890 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2891 				continue;
2892 			if (!notified) {
2893 				notified = true;
2894 
2895 				mmu_notifier_range_init(&range,
2896 							MMU_NOTIFY_CLEAR, 0,
2897 							NULL,
2898 							migrate->vma->vm_mm,
2899 							addr, migrate->end);
2900 				mmu_notifier_invalidate_range_start(&range);
2901 			}
2902 			migrate_vma_insert_page(migrate, addr, newpage,
2903 						&migrate->src[i],
2904 						&migrate->dst[i]);
2905 			continue;
2906 		}
2907 
2908 		mapping = page_mapping(page);
2909 
2910 		if (is_zone_device_page(newpage)) {
2911 			if (is_device_private_page(newpage)) {
2912 				/*
2913 				 * For now only support private anonymous when
2914 				 * migrating to un-addressable device memory.
2915 				 */
2916 				if (mapping) {
2917 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918 					continue;
2919 				}
2920 			} else {
2921 				/*
2922 				 * Other types of ZONE_DEVICE page are not
2923 				 * supported.
2924 				 */
2925 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2926 				continue;
2927 			}
2928 		}
2929 
2930 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2931 		if (r != MIGRATEPAGE_SUCCESS)
2932 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2933 	}
2934 
2935 	/*
2936 	 * No need to double call mmu_notifier->invalidate_range() callback as
2937 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2938 	 * did already call it.
2939 	 */
2940 	if (notified)
2941 		mmu_notifier_invalidate_range_only_end(&range);
2942 }
2943 EXPORT_SYMBOL(migrate_vma_pages);
2944 
2945 /**
2946  * migrate_vma_finalize() - restore CPU page table entry
2947  * @migrate: migrate struct containing all migration information
2948  *
2949  * This replaces the special migration pte entry with either a mapping to the
2950  * new page if migration was successful for that page, or to the original page
2951  * otherwise.
2952  *
2953  * This also unlocks the pages and puts them back on the lru, or drops the extra
2954  * refcount, for device pages.
2955  */
2956 void migrate_vma_finalize(struct migrate_vma *migrate)
2957 {
2958 	const unsigned long npages = migrate->npages;
2959 	unsigned long i;
2960 
2961 	for (i = 0; i < npages; i++) {
2962 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2963 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2964 
2965 		if (!page) {
2966 			if (newpage) {
2967 				unlock_page(newpage);
2968 				put_page(newpage);
2969 			}
2970 			continue;
2971 		}
2972 
2973 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2974 			if (newpage) {
2975 				unlock_page(newpage);
2976 				put_page(newpage);
2977 			}
2978 			newpage = page;
2979 		}
2980 
2981 		remove_migration_ptes(page, newpage, false);
2982 		unlock_page(page);
2983 		migrate->cpages--;
2984 
2985 		if (is_zone_device_page(page))
2986 			put_page(page);
2987 		else
2988 			putback_lru_page(page);
2989 
2990 		if (newpage != page) {
2991 			unlock_page(newpage);
2992 			if (is_zone_device_page(newpage))
2993 				put_page(newpage);
2994 			else
2995 				putback_lru_page(newpage);
2996 		}
2997 	}
2998 }
2999 EXPORT_SYMBOL(migrate_vma_finalize);
3000 #endif /* CONFIG_DEVICE_PRIVATE */
3001