xref: /openbmc/linux/mm/migrate.c (revision 14e0f9bc)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/gfp.h>
37 #include <linux/balloon_compaction.h>
38 #include <linux/mmu_notifier.h>
39 #include <linux/page_idle.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 
124 		ptep = pte_offset_map(pmd, addr);
125 
126 		/*
127 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128 		 * can race mremap's move_ptes(), which skips anon_vma lock.
129 		 */
130 
131 		ptl = pte_lockptr(mm, pmd);
132 	}
133 
134  	spin_lock(ptl);
135 	pte = *ptep;
136 	if (!is_swap_pte(pte))
137 		goto unlock;
138 
139 	entry = pte_to_swp_entry(pte);
140 
141 	if (!is_migration_entry(entry) ||
142 	    migration_entry_to_page(entry) != old)
143 		goto unlock;
144 
145 	get_page(new);
146 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 	if (pte_swp_soft_dirty(*ptep))
148 		pte = pte_mksoft_dirty(pte);
149 
150 	/* Recheck VMA as permissions can change since migration started  */
151 	if (is_write_migration_entry(entry))
152 		pte = maybe_mkwrite(pte, vma);
153 
154 #ifdef CONFIG_HUGETLB_PAGE
155 	if (PageHuge(new)) {
156 		pte = pte_mkhuge(pte);
157 		pte = arch_make_huge_pte(pte, vma, new, 0);
158 	}
159 #endif
160 	flush_dcache_page(new);
161 	set_pte_at(mm, addr, ptep, pte);
162 
163 	if (PageHuge(new)) {
164 		if (PageAnon(new))
165 			hugepage_add_anon_rmap(new, vma, addr);
166 		else
167 			page_dup_rmap(new);
168 	} else if (PageAnon(new))
169 		page_add_anon_rmap(new, vma, addr);
170 	else
171 		page_add_file_rmap(new);
172 
173 	if (vma->vm_flags & VM_LOCKED)
174 		mlock_vma_page(new);
175 
176 	/* No need to invalidate - it was non-present before */
177 	update_mmu_cache(vma, addr, ptep);
178 unlock:
179 	pte_unmap_unlock(ptep, ptl);
180 out:
181 	return SWAP_AGAIN;
182 }
183 
184 /*
185  * Get rid of all migration entries and replace them by
186  * references to the indicated page.
187  */
188 static void remove_migration_ptes(struct page *old, struct page *new)
189 {
190 	struct rmap_walk_control rwc = {
191 		.rmap_one = remove_migration_pte,
192 		.arg = old,
193 	};
194 
195 	rmap_walk(new, &rwc);
196 }
197 
198 /*
199  * Something used the pte of a page under migration. We need to
200  * get to the page and wait until migration is finished.
201  * When we return from this function the fault will be retried.
202  */
203 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 				spinlock_t *ptl)
205 {
206 	pte_t pte;
207 	swp_entry_t entry;
208 	struct page *page;
209 
210 	spin_lock(ptl);
211 	pte = *ptep;
212 	if (!is_swap_pte(pte))
213 		goto out;
214 
215 	entry = pte_to_swp_entry(pte);
216 	if (!is_migration_entry(entry))
217 		goto out;
218 
219 	page = migration_entry_to_page(entry);
220 
221 	/*
222 	 * Once radix-tree replacement of page migration started, page_count
223 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 	 * against a page without get_page().
225 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 	 * will occur again.
227 	 */
228 	if (!get_page_unless_zero(page))
229 		goto out;
230 	pte_unmap_unlock(ptep, ptl);
231 	wait_on_page_locked(page);
232 	put_page(page);
233 	return;
234 out:
235 	pte_unmap_unlock(ptep, ptl);
236 }
237 
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 				unsigned long address)
240 {
241 	spinlock_t *ptl = pte_lockptr(mm, pmd);
242 	pte_t *ptep = pte_offset_map(pmd, address);
243 	__migration_entry_wait(mm, ptep, ptl);
244 }
245 
246 void migration_entry_wait_huge(struct vm_area_struct *vma,
247 		struct mm_struct *mm, pte_t *pte)
248 {
249 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
250 	__migration_entry_wait(mm, pte, ptl);
251 }
252 
253 #ifdef CONFIG_BLOCK
254 /* Returns true if all buffers are successfully locked */
255 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
256 							enum migrate_mode mode)
257 {
258 	struct buffer_head *bh = head;
259 
260 	/* Simple case, sync compaction */
261 	if (mode != MIGRATE_ASYNC) {
262 		do {
263 			get_bh(bh);
264 			lock_buffer(bh);
265 			bh = bh->b_this_page;
266 
267 		} while (bh != head);
268 
269 		return true;
270 	}
271 
272 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
273 	do {
274 		get_bh(bh);
275 		if (!trylock_buffer(bh)) {
276 			/*
277 			 * We failed to lock the buffer and cannot stall in
278 			 * async migration. Release the taken locks
279 			 */
280 			struct buffer_head *failed_bh = bh;
281 			put_bh(failed_bh);
282 			bh = head;
283 			while (bh != failed_bh) {
284 				unlock_buffer(bh);
285 				put_bh(bh);
286 				bh = bh->b_this_page;
287 			}
288 			return false;
289 		}
290 
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 	return true;
294 }
295 #else
296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
297 							enum migrate_mode mode)
298 {
299 	return true;
300 }
301 #endif /* CONFIG_BLOCK */
302 
303 /*
304  * Replace the page in the mapping.
305  *
306  * The number of remaining references must be:
307  * 1 for anonymous pages without a mapping
308  * 2 for pages with a mapping
309  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310  */
311 int migrate_page_move_mapping(struct address_space *mapping,
312 		struct page *newpage, struct page *page,
313 		struct buffer_head *head, enum migrate_mode mode,
314 		int extra_count)
315 {
316 	int expected_count = 1 + extra_count;
317 	void **pslot;
318 
319 	if (!mapping) {
320 		/* Anonymous page without mapping */
321 		if (page_count(page) != expected_count)
322 			return -EAGAIN;
323 		return MIGRATEPAGE_SUCCESS;
324 	}
325 
326 	spin_lock_irq(&mapping->tree_lock);
327 
328 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
329  					page_index(page));
330 
331 	expected_count += 1 + page_has_private(page);
332 	if (page_count(page) != expected_count ||
333 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
334 		spin_unlock_irq(&mapping->tree_lock);
335 		return -EAGAIN;
336 	}
337 
338 	if (!page_freeze_refs(page, expected_count)) {
339 		spin_unlock_irq(&mapping->tree_lock);
340 		return -EAGAIN;
341 	}
342 
343 	/*
344 	 * In the async migration case of moving a page with buffers, lock the
345 	 * buffers using trylock before the mapping is moved. If the mapping
346 	 * was moved, we later failed to lock the buffers and could not move
347 	 * the mapping back due to an elevated page count, we would have to
348 	 * block waiting on other references to be dropped.
349 	 */
350 	if (mode == MIGRATE_ASYNC && head &&
351 			!buffer_migrate_lock_buffers(head, mode)) {
352 		page_unfreeze_refs(page, expected_count);
353 		spin_unlock_irq(&mapping->tree_lock);
354 		return -EAGAIN;
355 	}
356 
357 	/*
358 	 * Now we know that no one else is looking at the page.
359 	 */
360 	get_page(newpage);	/* add cache reference */
361 	if (PageSwapCache(page)) {
362 		SetPageSwapCache(newpage);
363 		set_page_private(newpage, page_private(page));
364 	}
365 
366 	radix_tree_replace_slot(pslot, newpage);
367 
368 	/*
369 	 * Drop cache reference from old page by unfreezing
370 	 * to one less reference.
371 	 * We know this isn't the last reference.
372 	 */
373 	page_unfreeze_refs(page, expected_count - 1);
374 
375 	/*
376 	 * If moved to a different zone then also account
377 	 * the page for that zone. Other VM counters will be
378 	 * taken care of when we establish references to the
379 	 * new page and drop references to the old page.
380 	 *
381 	 * Note that anonymous pages are accounted for
382 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
383 	 * are mapped to swap space.
384 	 */
385 	__dec_zone_page_state(page, NR_FILE_PAGES);
386 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
387 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
388 		__dec_zone_page_state(page, NR_SHMEM);
389 		__inc_zone_page_state(newpage, NR_SHMEM);
390 	}
391 	spin_unlock_irq(&mapping->tree_lock);
392 
393 	return MIGRATEPAGE_SUCCESS;
394 }
395 
396 /*
397  * The expected number of remaining references is the same as that
398  * of migrate_page_move_mapping().
399  */
400 int migrate_huge_page_move_mapping(struct address_space *mapping,
401 				   struct page *newpage, struct page *page)
402 {
403 	int expected_count;
404 	void **pslot;
405 
406 	if (!mapping) {
407 		if (page_count(page) != 1)
408 			return -EAGAIN;
409 		return MIGRATEPAGE_SUCCESS;
410 	}
411 
412 	spin_lock_irq(&mapping->tree_lock);
413 
414 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
415 					page_index(page));
416 
417 	expected_count = 2 + page_has_private(page);
418 	if (page_count(page) != expected_count ||
419 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
420 		spin_unlock_irq(&mapping->tree_lock);
421 		return -EAGAIN;
422 	}
423 
424 	if (!page_freeze_refs(page, expected_count)) {
425 		spin_unlock_irq(&mapping->tree_lock);
426 		return -EAGAIN;
427 	}
428 
429 	get_page(newpage);
430 
431 	radix_tree_replace_slot(pslot, newpage);
432 
433 	page_unfreeze_refs(page, expected_count - 1);
434 
435 	spin_unlock_irq(&mapping->tree_lock);
436 	return MIGRATEPAGE_SUCCESS;
437 }
438 
439 /*
440  * Gigantic pages are so large that we do not guarantee that page++ pointer
441  * arithmetic will work across the entire page.  We need something more
442  * specialized.
443  */
444 static void __copy_gigantic_page(struct page *dst, struct page *src,
445 				int nr_pages)
446 {
447 	int i;
448 	struct page *dst_base = dst;
449 	struct page *src_base = src;
450 
451 	for (i = 0; i < nr_pages; ) {
452 		cond_resched();
453 		copy_highpage(dst, src);
454 
455 		i++;
456 		dst = mem_map_next(dst, dst_base, i);
457 		src = mem_map_next(src, src_base, i);
458 	}
459 }
460 
461 static void copy_huge_page(struct page *dst, struct page *src)
462 {
463 	int i;
464 	int nr_pages;
465 
466 	if (PageHuge(src)) {
467 		/* hugetlbfs page */
468 		struct hstate *h = page_hstate(src);
469 		nr_pages = pages_per_huge_page(h);
470 
471 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
472 			__copy_gigantic_page(dst, src, nr_pages);
473 			return;
474 		}
475 	} else {
476 		/* thp page */
477 		BUG_ON(!PageTransHuge(src));
478 		nr_pages = hpage_nr_pages(src);
479 	}
480 
481 	for (i = 0; i < nr_pages; i++) {
482 		cond_resched();
483 		copy_highpage(dst + i, src + i);
484 	}
485 }
486 
487 /*
488  * Copy the page to its new location
489  */
490 void migrate_page_copy(struct page *newpage, struct page *page)
491 {
492 	int cpupid;
493 
494 	if (PageHuge(page) || PageTransHuge(page))
495 		copy_huge_page(newpage, page);
496 	else
497 		copy_highpage(newpage, page);
498 
499 	if (PageError(page))
500 		SetPageError(newpage);
501 	if (PageReferenced(page))
502 		SetPageReferenced(newpage);
503 	if (PageUptodate(page))
504 		SetPageUptodate(newpage);
505 	if (TestClearPageActive(page)) {
506 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
507 		SetPageActive(newpage);
508 	} else if (TestClearPageUnevictable(page))
509 		SetPageUnevictable(newpage);
510 	if (PageChecked(page))
511 		SetPageChecked(newpage);
512 	if (PageMappedToDisk(page))
513 		SetPageMappedToDisk(newpage);
514 
515 	if (PageDirty(page)) {
516 		clear_page_dirty_for_io(page);
517 		/*
518 		 * Want to mark the page and the radix tree as dirty, and
519 		 * redo the accounting that clear_page_dirty_for_io undid,
520 		 * but we can't use set_page_dirty because that function
521 		 * is actually a signal that all of the page has become dirty.
522 		 * Whereas only part of our page may be dirty.
523 		 */
524 		if (PageSwapBacked(page))
525 			SetPageDirty(newpage);
526 		else
527 			__set_page_dirty_nobuffers(newpage);
528  	}
529 
530 	if (page_is_young(page))
531 		set_page_young(newpage);
532 	if (page_is_idle(page))
533 		set_page_idle(newpage);
534 
535 	/*
536 	 * Copy NUMA information to the new page, to prevent over-eager
537 	 * future migrations of this same page.
538 	 */
539 	cpupid = page_cpupid_xchg_last(page, -1);
540 	page_cpupid_xchg_last(newpage, cpupid);
541 
542 	ksm_migrate_page(newpage, page);
543 	/*
544 	 * Please do not reorder this without considering how mm/ksm.c's
545 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
546 	 */
547 	if (PageSwapCache(page))
548 		ClearPageSwapCache(page);
549 	ClearPagePrivate(page);
550 	set_page_private(page, 0);
551 
552 	/*
553 	 * If any waiters have accumulated on the new page then
554 	 * wake them up.
555 	 */
556 	if (PageWriteback(newpage))
557 		end_page_writeback(newpage);
558 }
559 
560 /************************************************************
561  *                    Migration functions
562  ***********************************************************/
563 
564 /*
565  * Common logic to directly migrate a single page suitable for
566  * pages that do not use PagePrivate/PagePrivate2.
567  *
568  * Pages are locked upon entry and exit.
569  */
570 int migrate_page(struct address_space *mapping,
571 		struct page *newpage, struct page *page,
572 		enum migrate_mode mode)
573 {
574 	int rc;
575 
576 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
577 
578 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
579 
580 	if (rc != MIGRATEPAGE_SUCCESS)
581 		return rc;
582 
583 	migrate_page_copy(newpage, page);
584 	return MIGRATEPAGE_SUCCESS;
585 }
586 EXPORT_SYMBOL(migrate_page);
587 
588 #ifdef CONFIG_BLOCK
589 /*
590  * Migration function for pages with buffers. This function can only be used
591  * if the underlying filesystem guarantees that no other references to "page"
592  * exist.
593  */
594 int buffer_migrate_page(struct address_space *mapping,
595 		struct page *newpage, struct page *page, enum migrate_mode mode)
596 {
597 	struct buffer_head *bh, *head;
598 	int rc;
599 
600 	if (!page_has_buffers(page))
601 		return migrate_page(mapping, newpage, page, mode);
602 
603 	head = page_buffers(page);
604 
605 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
606 
607 	if (rc != MIGRATEPAGE_SUCCESS)
608 		return rc;
609 
610 	/*
611 	 * In the async case, migrate_page_move_mapping locked the buffers
612 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
613 	 * need to be locked now
614 	 */
615 	if (mode != MIGRATE_ASYNC)
616 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
617 
618 	ClearPagePrivate(page);
619 	set_page_private(newpage, page_private(page));
620 	set_page_private(page, 0);
621 	put_page(page);
622 	get_page(newpage);
623 
624 	bh = head;
625 	do {
626 		set_bh_page(bh, newpage, bh_offset(bh));
627 		bh = bh->b_this_page;
628 
629 	} while (bh != head);
630 
631 	SetPagePrivate(newpage);
632 
633 	migrate_page_copy(newpage, page);
634 
635 	bh = head;
636 	do {
637 		unlock_buffer(bh);
638  		put_bh(bh);
639 		bh = bh->b_this_page;
640 
641 	} while (bh != head);
642 
643 	return MIGRATEPAGE_SUCCESS;
644 }
645 EXPORT_SYMBOL(buffer_migrate_page);
646 #endif
647 
648 /*
649  * Writeback a page to clean the dirty state
650  */
651 static int writeout(struct address_space *mapping, struct page *page)
652 {
653 	struct writeback_control wbc = {
654 		.sync_mode = WB_SYNC_NONE,
655 		.nr_to_write = 1,
656 		.range_start = 0,
657 		.range_end = LLONG_MAX,
658 		.for_reclaim = 1
659 	};
660 	int rc;
661 
662 	if (!mapping->a_ops->writepage)
663 		/* No write method for the address space */
664 		return -EINVAL;
665 
666 	if (!clear_page_dirty_for_io(page))
667 		/* Someone else already triggered a write */
668 		return -EAGAIN;
669 
670 	/*
671 	 * A dirty page may imply that the underlying filesystem has
672 	 * the page on some queue. So the page must be clean for
673 	 * migration. Writeout may mean we loose the lock and the
674 	 * page state is no longer what we checked for earlier.
675 	 * At this point we know that the migration attempt cannot
676 	 * be successful.
677 	 */
678 	remove_migration_ptes(page, page);
679 
680 	rc = mapping->a_ops->writepage(page, &wbc);
681 
682 	if (rc != AOP_WRITEPAGE_ACTIVATE)
683 		/* unlocked. Relock */
684 		lock_page(page);
685 
686 	return (rc < 0) ? -EIO : -EAGAIN;
687 }
688 
689 /*
690  * Default handling if a filesystem does not provide a migration function.
691  */
692 static int fallback_migrate_page(struct address_space *mapping,
693 	struct page *newpage, struct page *page, enum migrate_mode mode)
694 {
695 	if (PageDirty(page)) {
696 		/* Only writeback pages in full synchronous migration */
697 		if (mode != MIGRATE_SYNC)
698 			return -EBUSY;
699 		return writeout(mapping, page);
700 	}
701 
702 	/*
703 	 * Buffers may be managed in a filesystem specific way.
704 	 * We must have no buffers or drop them.
705 	 */
706 	if (page_has_private(page) &&
707 	    !try_to_release_page(page, GFP_KERNEL))
708 		return -EAGAIN;
709 
710 	return migrate_page(mapping, newpage, page, mode);
711 }
712 
713 /*
714  * Move a page to a newly allocated page
715  * The page is locked and all ptes have been successfully removed.
716  *
717  * The new page will have replaced the old page if this function
718  * is successful.
719  *
720  * Return value:
721  *   < 0 - error code
722  *  MIGRATEPAGE_SUCCESS - success
723  */
724 static int move_to_new_page(struct page *newpage, struct page *page,
725 				int page_was_mapped, enum migrate_mode mode)
726 {
727 	struct address_space *mapping;
728 	int rc;
729 
730 	/*
731 	 * Block others from accessing the page when we get around to
732 	 * establishing additional references. We are the only one
733 	 * holding a reference to the new page at this point.
734 	 */
735 	if (!trylock_page(newpage))
736 		BUG();
737 
738 	/* Prepare mapping for the new page.*/
739 	newpage->index = page->index;
740 	newpage->mapping = page->mapping;
741 	if (PageSwapBacked(page))
742 		SetPageSwapBacked(newpage);
743 
744 	/*
745 	 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus
746 	 * needs newpage's memcg set to transfer memcg dirty page accounting.
747 	 * So perform memcg migration in two steps:
748 	 * 1. set newpage->mem_cgroup (here)
749 	 * 2. clear page->mem_cgroup (below)
750 	 */
751 	set_page_memcg(newpage, page_memcg(page));
752 
753 	mapping = page_mapping(page);
754 	if (!mapping)
755 		rc = migrate_page(mapping, newpage, page, mode);
756 	else if (mapping->a_ops->migratepage)
757 		/*
758 		 * Most pages have a mapping and most filesystems provide a
759 		 * migratepage callback. Anonymous pages are part of swap
760 		 * space which also has its own migratepage callback. This
761 		 * is the most common path for page migration.
762 		 */
763 		rc = mapping->a_ops->migratepage(mapping,
764 						newpage, page, mode);
765 	else
766 		rc = fallback_migrate_page(mapping, newpage, page, mode);
767 
768 	if (rc != MIGRATEPAGE_SUCCESS) {
769 		set_page_memcg(newpage, NULL);
770 		newpage->mapping = NULL;
771 	} else {
772 		set_page_memcg(page, NULL);
773 		if (page_was_mapped)
774 			remove_migration_ptes(page, newpage);
775 		page->mapping = NULL;
776 	}
777 
778 	unlock_page(newpage);
779 
780 	return rc;
781 }
782 
783 static int __unmap_and_move(struct page *page, struct page *newpage,
784 				int force, enum migrate_mode mode)
785 {
786 	int rc = -EAGAIN;
787 	int page_was_mapped = 0;
788 	struct anon_vma *anon_vma = NULL;
789 
790 	if (!trylock_page(page)) {
791 		if (!force || mode == MIGRATE_ASYNC)
792 			goto out;
793 
794 		/*
795 		 * It's not safe for direct compaction to call lock_page.
796 		 * For example, during page readahead pages are added locked
797 		 * to the LRU. Later, when the IO completes the pages are
798 		 * marked uptodate and unlocked. However, the queueing
799 		 * could be merging multiple pages for one bio (e.g.
800 		 * mpage_readpages). If an allocation happens for the
801 		 * second or third page, the process can end up locking
802 		 * the same page twice and deadlocking. Rather than
803 		 * trying to be clever about what pages can be locked,
804 		 * avoid the use of lock_page for direct compaction
805 		 * altogether.
806 		 */
807 		if (current->flags & PF_MEMALLOC)
808 			goto out;
809 
810 		lock_page(page);
811 	}
812 
813 	if (PageWriteback(page)) {
814 		/*
815 		 * Only in the case of a full synchronous migration is it
816 		 * necessary to wait for PageWriteback. In the async case,
817 		 * the retry loop is too short and in the sync-light case,
818 		 * the overhead of stalling is too much
819 		 */
820 		if (mode != MIGRATE_SYNC) {
821 			rc = -EBUSY;
822 			goto out_unlock;
823 		}
824 		if (!force)
825 			goto out_unlock;
826 		wait_on_page_writeback(page);
827 	}
828 	/*
829 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
830 	 * we cannot notice that anon_vma is freed while we migrates a page.
831 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
832 	 * of migration. File cache pages are no problem because of page_lock()
833 	 * File Caches may use write_page() or lock_page() in migration, then,
834 	 * just care Anon page here.
835 	 */
836 	if (PageAnon(page) && !PageKsm(page)) {
837 		/*
838 		 * Only page_lock_anon_vma_read() understands the subtleties of
839 		 * getting a hold on an anon_vma from outside one of its mms.
840 		 */
841 		anon_vma = page_get_anon_vma(page);
842 		if (anon_vma) {
843 			/*
844 			 * Anon page
845 			 */
846 		} else if (PageSwapCache(page)) {
847 			/*
848 			 * We cannot be sure that the anon_vma of an unmapped
849 			 * swapcache page is safe to use because we don't
850 			 * know in advance if the VMA that this page belonged
851 			 * to still exists. If the VMA and others sharing the
852 			 * data have been freed, then the anon_vma could
853 			 * already be invalid.
854 			 *
855 			 * To avoid this possibility, swapcache pages get
856 			 * migrated but are not remapped when migration
857 			 * completes
858 			 */
859 		} else {
860 			goto out_unlock;
861 		}
862 	}
863 
864 	if (unlikely(isolated_balloon_page(page))) {
865 		/*
866 		 * A ballooned page does not need any special attention from
867 		 * physical to virtual reverse mapping procedures.
868 		 * Skip any attempt to unmap PTEs or to remap swap cache,
869 		 * in order to avoid burning cycles at rmap level, and perform
870 		 * the page migration right away (proteced by page lock).
871 		 */
872 		rc = balloon_page_migrate(newpage, page, mode);
873 		goto out_unlock;
874 	}
875 
876 	/*
877 	 * Corner case handling:
878 	 * 1. When a new swap-cache page is read into, it is added to the LRU
879 	 * and treated as swapcache but it has no rmap yet.
880 	 * Calling try_to_unmap() against a page->mapping==NULL page will
881 	 * trigger a BUG.  So handle it here.
882 	 * 2. An orphaned page (see truncate_complete_page) might have
883 	 * fs-private metadata. The page can be picked up due to memory
884 	 * offlining.  Everywhere else except page reclaim, the page is
885 	 * invisible to the vm, so the page can not be migrated.  So try to
886 	 * free the metadata, so the page can be freed.
887 	 */
888 	if (!page->mapping) {
889 		VM_BUG_ON_PAGE(PageAnon(page), page);
890 		if (page_has_private(page)) {
891 			try_to_free_buffers(page);
892 			goto out_unlock;
893 		}
894 		goto skip_unmap;
895 	}
896 
897 	/* Establish migration ptes or remove ptes */
898 	if (page_mapped(page)) {
899 		try_to_unmap(page,
900 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
901 		page_was_mapped = 1;
902 	}
903 
904 skip_unmap:
905 	if (!page_mapped(page))
906 		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
907 
908 	if (rc && page_was_mapped)
909 		remove_migration_ptes(page, page);
910 
911 	/* Drop an anon_vma reference if we took one */
912 	if (anon_vma)
913 		put_anon_vma(anon_vma);
914 
915 out_unlock:
916 	unlock_page(page);
917 out:
918 	return rc;
919 }
920 
921 /*
922  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
923  * around it.
924  */
925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
926 #define ICE_noinline noinline
927 #else
928 #define ICE_noinline
929 #endif
930 
931 /*
932  * Obtain the lock on page, remove all ptes and migrate the page
933  * to the newly allocated page in newpage.
934  */
935 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
936 				   free_page_t put_new_page,
937 				   unsigned long private, struct page *page,
938 				   int force, enum migrate_mode mode,
939 				   enum migrate_reason reason)
940 {
941 	int rc = 0;
942 	int *result = NULL;
943 	struct page *newpage = get_new_page(page, private, &result);
944 
945 	if (!newpage)
946 		return -ENOMEM;
947 
948 	if (page_count(page) == 1) {
949 		/* page was freed from under us. So we are done. */
950 		goto out;
951 	}
952 
953 	if (unlikely(PageTransHuge(page)))
954 		if (unlikely(split_huge_page(page)))
955 			goto out;
956 
957 	rc = __unmap_and_move(page, newpage, force, mode);
958 
959 out:
960 	if (rc != -EAGAIN) {
961 		/*
962 		 * A page that has been migrated has all references
963 		 * removed and will be freed. A page that has not been
964 		 * migrated will have kepts its references and be
965 		 * restored.
966 		 */
967 		list_del(&page->lru);
968 		dec_zone_page_state(page, NR_ISOLATED_ANON +
969 				page_is_file_cache(page));
970 		/* Soft-offlined page shouldn't go through lru cache list */
971 		if (reason == MR_MEMORY_FAILURE) {
972 			put_page(page);
973 			if (!test_set_page_hwpoison(page))
974 				num_poisoned_pages_inc();
975 		} else
976 			putback_lru_page(page);
977 	}
978 
979 	/*
980 	 * If migration was not successful and there's a freeing callback, use
981 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
982 	 * during isolation.
983 	 */
984 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
985 		ClearPageSwapBacked(newpage);
986 		put_new_page(newpage, private);
987 	} else if (unlikely(__is_movable_balloon_page(newpage))) {
988 		/* drop our reference, page already in the balloon */
989 		put_page(newpage);
990 	} else
991 		putback_lru_page(newpage);
992 
993 	if (result) {
994 		if (rc)
995 			*result = rc;
996 		else
997 			*result = page_to_nid(newpage);
998 	}
999 	return rc;
1000 }
1001 
1002 /*
1003  * Counterpart of unmap_and_move_page() for hugepage migration.
1004  *
1005  * This function doesn't wait the completion of hugepage I/O
1006  * because there is no race between I/O and migration for hugepage.
1007  * Note that currently hugepage I/O occurs only in direct I/O
1008  * where no lock is held and PG_writeback is irrelevant,
1009  * and writeback status of all subpages are counted in the reference
1010  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1011  * under direct I/O, the reference of the head page is 512 and a bit more.)
1012  * This means that when we try to migrate hugepage whose subpages are
1013  * doing direct I/O, some references remain after try_to_unmap() and
1014  * hugepage migration fails without data corruption.
1015  *
1016  * There is also no race when direct I/O is issued on the page under migration,
1017  * because then pte is replaced with migration swap entry and direct I/O code
1018  * will wait in the page fault for migration to complete.
1019  */
1020 static int unmap_and_move_huge_page(new_page_t get_new_page,
1021 				free_page_t put_new_page, unsigned long private,
1022 				struct page *hpage, int force,
1023 				enum migrate_mode mode)
1024 {
1025 	int rc = 0;
1026 	int *result = NULL;
1027 	int page_was_mapped = 0;
1028 	struct page *new_hpage;
1029 	struct anon_vma *anon_vma = NULL;
1030 
1031 	/*
1032 	 * Movability of hugepages depends on architectures and hugepage size.
1033 	 * This check is necessary because some callers of hugepage migration
1034 	 * like soft offline and memory hotremove don't walk through page
1035 	 * tables or check whether the hugepage is pmd-based or not before
1036 	 * kicking migration.
1037 	 */
1038 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1039 		putback_active_hugepage(hpage);
1040 		return -ENOSYS;
1041 	}
1042 
1043 	new_hpage = get_new_page(hpage, private, &result);
1044 	if (!new_hpage)
1045 		return -ENOMEM;
1046 
1047 	rc = -EAGAIN;
1048 
1049 	if (!trylock_page(hpage)) {
1050 		if (!force || mode != MIGRATE_SYNC)
1051 			goto out;
1052 		lock_page(hpage);
1053 	}
1054 
1055 	if (PageAnon(hpage))
1056 		anon_vma = page_get_anon_vma(hpage);
1057 
1058 	if (page_mapped(hpage)) {
1059 		try_to_unmap(hpage,
1060 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1061 		page_was_mapped = 1;
1062 	}
1063 
1064 	if (!page_mapped(hpage))
1065 		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1066 
1067 	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1068 		remove_migration_ptes(hpage, hpage);
1069 
1070 	if (anon_vma)
1071 		put_anon_vma(anon_vma);
1072 
1073 	if (rc == MIGRATEPAGE_SUCCESS)
1074 		hugetlb_cgroup_migrate(hpage, new_hpage);
1075 
1076 	unlock_page(hpage);
1077 out:
1078 	if (rc != -EAGAIN)
1079 		putback_active_hugepage(hpage);
1080 
1081 	/*
1082 	 * If migration was not successful and there's a freeing callback, use
1083 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1084 	 * isolation.
1085 	 */
1086 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1087 		put_new_page(new_hpage, private);
1088 	else
1089 		putback_active_hugepage(new_hpage);
1090 
1091 	if (result) {
1092 		if (rc)
1093 			*result = rc;
1094 		else
1095 			*result = page_to_nid(new_hpage);
1096 	}
1097 	return rc;
1098 }
1099 
1100 /*
1101  * migrate_pages - migrate the pages specified in a list, to the free pages
1102  *		   supplied as the target for the page migration
1103  *
1104  * @from:		The list of pages to be migrated.
1105  * @get_new_page:	The function used to allocate free pages to be used
1106  *			as the target of the page migration.
1107  * @put_new_page:	The function used to free target pages if migration
1108  *			fails, or NULL if no special handling is necessary.
1109  * @private:		Private data to be passed on to get_new_page()
1110  * @mode:		The migration mode that specifies the constraints for
1111  *			page migration, if any.
1112  * @reason:		The reason for page migration.
1113  *
1114  * The function returns after 10 attempts or if no pages are movable any more
1115  * because the list has become empty or no retryable pages exist any more.
1116  * The caller should call putback_movable_pages() to return pages to the LRU
1117  * or free list only if ret != 0.
1118  *
1119  * Returns the number of pages that were not migrated, or an error code.
1120  */
1121 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1122 		free_page_t put_new_page, unsigned long private,
1123 		enum migrate_mode mode, int reason)
1124 {
1125 	int retry = 1;
1126 	int nr_failed = 0;
1127 	int nr_succeeded = 0;
1128 	int pass = 0;
1129 	struct page *page;
1130 	struct page *page2;
1131 	int swapwrite = current->flags & PF_SWAPWRITE;
1132 	int rc;
1133 
1134 	if (!swapwrite)
1135 		current->flags |= PF_SWAPWRITE;
1136 
1137 	for(pass = 0; pass < 10 && retry; pass++) {
1138 		retry = 0;
1139 
1140 		list_for_each_entry_safe(page, page2, from, lru) {
1141 			cond_resched();
1142 
1143 			if (PageHuge(page))
1144 				rc = unmap_and_move_huge_page(get_new_page,
1145 						put_new_page, private, page,
1146 						pass > 2, mode);
1147 			else
1148 				rc = unmap_and_move(get_new_page, put_new_page,
1149 						private, page, pass > 2, mode,
1150 						reason);
1151 
1152 			switch(rc) {
1153 			case -ENOMEM:
1154 				goto out;
1155 			case -EAGAIN:
1156 				retry++;
1157 				break;
1158 			case MIGRATEPAGE_SUCCESS:
1159 				nr_succeeded++;
1160 				break;
1161 			default:
1162 				/*
1163 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1164 				 * unlike -EAGAIN case, the failed page is
1165 				 * removed from migration page list and not
1166 				 * retried in the next outer loop.
1167 				 */
1168 				nr_failed++;
1169 				break;
1170 			}
1171 		}
1172 	}
1173 	nr_failed += retry;
1174 	rc = nr_failed;
1175 out:
1176 	if (nr_succeeded)
1177 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1178 	if (nr_failed)
1179 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1180 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1181 
1182 	if (!swapwrite)
1183 		current->flags &= ~PF_SWAPWRITE;
1184 
1185 	return rc;
1186 }
1187 
1188 #ifdef CONFIG_NUMA
1189 /*
1190  * Move a list of individual pages
1191  */
1192 struct page_to_node {
1193 	unsigned long addr;
1194 	struct page *page;
1195 	int node;
1196 	int status;
1197 };
1198 
1199 static struct page *new_page_node(struct page *p, unsigned long private,
1200 		int **result)
1201 {
1202 	struct page_to_node *pm = (struct page_to_node *)private;
1203 
1204 	while (pm->node != MAX_NUMNODES && pm->page != p)
1205 		pm++;
1206 
1207 	if (pm->node == MAX_NUMNODES)
1208 		return NULL;
1209 
1210 	*result = &pm->status;
1211 
1212 	if (PageHuge(p))
1213 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1214 					pm->node);
1215 	else
1216 		return __alloc_pages_node(pm->node,
1217 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1218 }
1219 
1220 /*
1221  * Move a set of pages as indicated in the pm array. The addr
1222  * field must be set to the virtual address of the page to be moved
1223  * and the node number must contain a valid target node.
1224  * The pm array ends with node = MAX_NUMNODES.
1225  */
1226 static int do_move_page_to_node_array(struct mm_struct *mm,
1227 				      struct page_to_node *pm,
1228 				      int migrate_all)
1229 {
1230 	int err;
1231 	struct page_to_node *pp;
1232 	LIST_HEAD(pagelist);
1233 
1234 	down_read(&mm->mmap_sem);
1235 
1236 	/*
1237 	 * Build a list of pages to migrate
1238 	 */
1239 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1240 		struct vm_area_struct *vma;
1241 		struct page *page;
1242 
1243 		err = -EFAULT;
1244 		vma = find_vma(mm, pp->addr);
1245 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1246 			goto set_status;
1247 
1248 		/* FOLL_DUMP to ignore special (like zero) pages */
1249 		page = follow_page(vma, pp->addr,
1250 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1251 
1252 		err = PTR_ERR(page);
1253 		if (IS_ERR(page))
1254 			goto set_status;
1255 
1256 		err = -ENOENT;
1257 		if (!page)
1258 			goto set_status;
1259 
1260 		pp->page = page;
1261 		err = page_to_nid(page);
1262 
1263 		if (err == pp->node)
1264 			/*
1265 			 * Node already in the right place
1266 			 */
1267 			goto put_and_set;
1268 
1269 		err = -EACCES;
1270 		if (page_mapcount(page) > 1 &&
1271 				!migrate_all)
1272 			goto put_and_set;
1273 
1274 		if (PageHuge(page)) {
1275 			if (PageHead(page))
1276 				isolate_huge_page(page, &pagelist);
1277 			goto put_and_set;
1278 		}
1279 
1280 		err = isolate_lru_page(page);
1281 		if (!err) {
1282 			list_add_tail(&page->lru, &pagelist);
1283 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1284 					    page_is_file_cache(page));
1285 		}
1286 put_and_set:
1287 		/*
1288 		 * Either remove the duplicate refcount from
1289 		 * isolate_lru_page() or drop the page ref if it was
1290 		 * not isolated.
1291 		 */
1292 		put_page(page);
1293 set_status:
1294 		pp->status = err;
1295 	}
1296 
1297 	err = 0;
1298 	if (!list_empty(&pagelist)) {
1299 		err = migrate_pages(&pagelist, new_page_node, NULL,
1300 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1301 		if (err)
1302 			putback_movable_pages(&pagelist);
1303 	}
1304 
1305 	up_read(&mm->mmap_sem);
1306 	return err;
1307 }
1308 
1309 /*
1310  * Migrate an array of page address onto an array of nodes and fill
1311  * the corresponding array of status.
1312  */
1313 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1314 			 unsigned long nr_pages,
1315 			 const void __user * __user *pages,
1316 			 const int __user *nodes,
1317 			 int __user *status, int flags)
1318 {
1319 	struct page_to_node *pm;
1320 	unsigned long chunk_nr_pages;
1321 	unsigned long chunk_start;
1322 	int err;
1323 
1324 	err = -ENOMEM;
1325 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1326 	if (!pm)
1327 		goto out;
1328 
1329 	migrate_prep();
1330 
1331 	/*
1332 	 * Store a chunk of page_to_node array in a page,
1333 	 * but keep the last one as a marker
1334 	 */
1335 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1336 
1337 	for (chunk_start = 0;
1338 	     chunk_start < nr_pages;
1339 	     chunk_start += chunk_nr_pages) {
1340 		int j;
1341 
1342 		if (chunk_start + chunk_nr_pages > nr_pages)
1343 			chunk_nr_pages = nr_pages - chunk_start;
1344 
1345 		/* fill the chunk pm with addrs and nodes from user-space */
1346 		for (j = 0; j < chunk_nr_pages; j++) {
1347 			const void __user *p;
1348 			int node;
1349 
1350 			err = -EFAULT;
1351 			if (get_user(p, pages + j + chunk_start))
1352 				goto out_pm;
1353 			pm[j].addr = (unsigned long) p;
1354 
1355 			if (get_user(node, nodes + j + chunk_start))
1356 				goto out_pm;
1357 
1358 			err = -ENODEV;
1359 			if (node < 0 || node >= MAX_NUMNODES)
1360 				goto out_pm;
1361 
1362 			if (!node_state(node, N_MEMORY))
1363 				goto out_pm;
1364 
1365 			err = -EACCES;
1366 			if (!node_isset(node, task_nodes))
1367 				goto out_pm;
1368 
1369 			pm[j].node = node;
1370 		}
1371 
1372 		/* End marker for this chunk */
1373 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1374 
1375 		/* Migrate this chunk */
1376 		err = do_move_page_to_node_array(mm, pm,
1377 						 flags & MPOL_MF_MOVE_ALL);
1378 		if (err < 0)
1379 			goto out_pm;
1380 
1381 		/* Return status information */
1382 		for (j = 0; j < chunk_nr_pages; j++)
1383 			if (put_user(pm[j].status, status + j + chunk_start)) {
1384 				err = -EFAULT;
1385 				goto out_pm;
1386 			}
1387 	}
1388 	err = 0;
1389 
1390 out_pm:
1391 	free_page((unsigned long)pm);
1392 out:
1393 	return err;
1394 }
1395 
1396 /*
1397  * Determine the nodes of an array of pages and store it in an array of status.
1398  */
1399 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1400 				const void __user **pages, int *status)
1401 {
1402 	unsigned long i;
1403 
1404 	down_read(&mm->mmap_sem);
1405 
1406 	for (i = 0; i < nr_pages; i++) {
1407 		unsigned long addr = (unsigned long)(*pages);
1408 		struct vm_area_struct *vma;
1409 		struct page *page;
1410 		int err = -EFAULT;
1411 
1412 		vma = find_vma(mm, addr);
1413 		if (!vma || addr < vma->vm_start)
1414 			goto set_status;
1415 
1416 		/* FOLL_DUMP to ignore special (like zero) pages */
1417 		page = follow_page(vma, addr, FOLL_DUMP);
1418 
1419 		err = PTR_ERR(page);
1420 		if (IS_ERR(page))
1421 			goto set_status;
1422 
1423 		err = page ? page_to_nid(page) : -ENOENT;
1424 set_status:
1425 		*status = err;
1426 
1427 		pages++;
1428 		status++;
1429 	}
1430 
1431 	up_read(&mm->mmap_sem);
1432 }
1433 
1434 /*
1435  * Determine the nodes of a user array of pages and store it in
1436  * a user array of status.
1437  */
1438 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1439 			 const void __user * __user *pages,
1440 			 int __user *status)
1441 {
1442 #define DO_PAGES_STAT_CHUNK_NR 16
1443 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1444 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1445 
1446 	while (nr_pages) {
1447 		unsigned long chunk_nr;
1448 
1449 		chunk_nr = nr_pages;
1450 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1451 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1452 
1453 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1454 			break;
1455 
1456 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1457 
1458 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1459 			break;
1460 
1461 		pages += chunk_nr;
1462 		status += chunk_nr;
1463 		nr_pages -= chunk_nr;
1464 	}
1465 	return nr_pages ? -EFAULT : 0;
1466 }
1467 
1468 /*
1469  * Move a list of pages in the address space of the currently executing
1470  * process.
1471  */
1472 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1473 		const void __user * __user *, pages,
1474 		const int __user *, nodes,
1475 		int __user *, status, int, flags)
1476 {
1477 	const struct cred *cred = current_cred(), *tcred;
1478 	struct task_struct *task;
1479 	struct mm_struct *mm;
1480 	int err;
1481 	nodemask_t task_nodes;
1482 
1483 	/* Check flags */
1484 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1485 		return -EINVAL;
1486 
1487 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1488 		return -EPERM;
1489 
1490 	/* Find the mm_struct */
1491 	rcu_read_lock();
1492 	task = pid ? find_task_by_vpid(pid) : current;
1493 	if (!task) {
1494 		rcu_read_unlock();
1495 		return -ESRCH;
1496 	}
1497 	get_task_struct(task);
1498 
1499 	/*
1500 	 * Check if this process has the right to modify the specified
1501 	 * process. The right exists if the process has administrative
1502 	 * capabilities, superuser privileges or the same
1503 	 * userid as the target process.
1504 	 */
1505 	tcred = __task_cred(task);
1506 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1507 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1508 	    !capable(CAP_SYS_NICE)) {
1509 		rcu_read_unlock();
1510 		err = -EPERM;
1511 		goto out;
1512 	}
1513 	rcu_read_unlock();
1514 
1515  	err = security_task_movememory(task);
1516  	if (err)
1517 		goto out;
1518 
1519 	task_nodes = cpuset_mems_allowed(task);
1520 	mm = get_task_mm(task);
1521 	put_task_struct(task);
1522 
1523 	if (!mm)
1524 		return -EINVAL;
1525 
1526 	if (nodes)
1527 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1528 				    nodes, status, flags);
1529 	else
1530 		err = do_pages_stat(mm, nr_pages, pages, status);
1531 
1532 	mmput(mm);
1533 	return err;
1534 
1535 out:
1536 	put_task_struct(task);
1537 	return err;
1538 }
1539 
1540 #ifdef CONFIG_NUMA_BALANCING
1541 /*
1542  * Returns true if this is a safe migration target node for misplaced NUMA
1543  * pages. Currently it only checks the watermarks which crude
1544  */
1545 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1546 				   unsigned long nr_migrate_pages)
1547 {
1548 	int z;
1549 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1550 		struct zone *zone = pgdat->node_zones + z;
1551 
1552 		if (!populated_zone(zone))
1553 			continue;
1554 
1555 		if (!zone_reclaimable(zone))
1556 			continue;
1557 
1558 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1559 		if (!zone_watermark_ok(zone, 0,
1560 				       high_wmark_pages(zone) +
1561 				       nr_migrate_pages,
1562 				       0, 0))
1563 			continue;
1564 		return true;
1565 	}
1566 	return false;
1567 }
1568 
1569 static struct page *alloc_misplaced_dst_page(struct page *page,
1570 					   unsigned long data,
1571 					   int **result)
1572 {
1573 	int nid = (int) data;
1574 	struct page *newpage;
1575 
1576 	newpage = __alloc_pages_node(nid,
1577 					 (GFP_HIGHUSER_MOVABLE |
1578 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1579 					  __GFP_NORETRY | __GFP_NOWARN) &
1580 					 ~GFP_IOFS, 0);
1581 
1582 	return newpage;
1583 }
1584 
1585 /*
1586  * page migration rate limiting control.
1587  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1588  * window of time. Default here says do not migrate more than 1280M per second.
1589  */
1590 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1591 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1592 
1593 /* Returns true if the node is migrate rate-limited after the update */
1594 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1595 					unsigned long nr_pages)
1596 {
1597 	/*
1598 	 * Rate-limit the amount of data that is being migrated to a node.
1599 	 * Optimal placement is no good if the memory bus is saturated and
1600 	 * all the time is being spent migrating!
1601 	 */
1602 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1603 		spin_lock(&pgdat->numabalancing_migrate_lock);
1604 		pgdat->numabalancing_migrate_nr_pages = 0;
1605 		pgdat->numabalancing_migrate_next_window = jiffies +
1606 			msecs_to_jiffies(migrate_interval_millisecs);
1607 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1608 	}
1609 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1610 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1611 								nr_pages);
1612 		return true;
1613 	}
1614 
1615 	/*
1616 	 * This is an unlocked non-atomic update so errors are possible.
1617 	 * The consequences are failing to migrate when we potentiall should
1618 	 * have which is not severe enough to warrant locking. If it is ever
1619 	 * a problem, it can be converted to a per-cpu counter.
1620 	 */
1621 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1622 	return false;
1623 }
1624 
1625 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1626 {
1627 	int page_lru;
1628 
1629 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1630 
1631 	/* Avoid migrating to a node that is nearly full */
1632 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1633 		return 0;
1634 
1635 	if (isolate_lru_page(page))
1636 		return 0;
1637 
1638 	/*
1639 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1640 	 * check on page_count(), so we must do it here, now that the page
1641 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1642 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1643 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1644 	 */
1645 	if (PageTransHuge(page) && page_count(page) != 3) {
1646 		putback_lru_page(page);
1647 		return 0;
1648 	}
1649 
1650 	page_lru = page_is_file_cache(page);
1651 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1652 				hpage_nr_pages(page));
1653 
1654 	/*
1655 	 * Isolating the page has taken another reference, so the
1656 	 * caller's reference can be safely dropped without the page
1657 	 * disappearing underneath us during migration.
1658 	 */
1659 	put_page(page);
1660 	return 1;
1661 }
1662 
1663 bool pmd_trans_migrating(pmd_t pmd)
1664 {
1665 	struct page *page = pmd_page(pmd);
1666 	return PageLocked(page);
1667 }
1668 
1669 /*
1670  * Attempt to migrate a misplaced page to the specified destination
1671  * node. Caller is expected to have an elevated reference count on
1672  * the page that will be dropped by this function before returning.
1673  */
1674 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1675 			   int node)
1676 {
1677 	pg_data_t *pgdat = NODE_DATA(node);
1678 	int isolated;
1679 	int nr_remaining;
1680 	LIST_HEAD(migratepages);
1681 
1682 	/*
1683 	 * Don't migrate file pages that are mapped in multiple processes
1684 	 * with execute permissions as they are probably shared libraries.
1685 	 */
1686 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1687 	    (vma->vm_flags & VM_EXEC))
1688 		goto out;
1689 
1690 	/*
1691 	 * Rate-limit the amount of data that is being migrated to a node.
1692 	 * Optimal placement is no good if the memory bus is saturated and
1693 	 * all the time is being spent migrating!
1694 	 */
1695 	if (numamigrate_update_ratelimit(pgdat, 1))
1696 		goto out;
1697 
1698 	isolated = numamigrate_isolate_page(pgdat, page);
1699 	if (!isolated)
1700 		goto out;
1701 
1702 	list_add(&page->lru, &migratepages);
1703 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1704 				     NULL, node, MIGRATE_ASYNC,
1705 				     MR_NUMA_MISPLACED);
1706 	if (nr_remaining) {
1707 		if (!list_empty(&migratepages)) {
1708 			list_del(&page->lru);
1709 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1710 					page_is_file_cache(page));
1711 			putback_lru_page(page);
1712 		}
1713 		isolated = 0;
1714 	} else
1715 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1716 	BUG_ON(!list_empty(&migratepages));
1717 	return isolated;
1718 
1719 out:
1720 	put_page(page);
1721 	return 0;
1722 }
1723 #endif /* CONFIG_NUMA_BALANCING */
1724 
1725 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1726 /*
1727  * Migrates a THP to a given target node. page must be locked and is unlocked
1728  * before returning.
1729  */
1730 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1731 				struct vm_area_struct *vma,
1732 				pmd_t *pmd, pmd_t entry,
1733 				unsigned long address,
1734 				struct page *page, int node)
1735 {
1736 	spinlock_t *ptl;
1737 	pg_data_t *pgdat = NODE_DATA(node);
1738 	int isolated = 0;
1739 	struct page *new_page = NULL;
1740 	int page_lru = page_is_file_cache(page);
1741 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1742 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1743 	pmd_t orig_entry;
1744 
1745 	/*
1746 	 * Rate-limit the amount of data that is being migrated to a node.
1747 	 * Optimal placement is no good if the memory bus is saturated and
1748 	 * all the time is being spent migrating!
1749 	 */
1750 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1751 		goto out_dropref;
1752 
1753 	new_page = alloc_pages_node(node,
1754 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1755 		HPAGE_PMD_ORDER);
1756 	if (!new_page)
1757 		goto out_fail;
1758 
1759 	isolated = numamigrate_isolate_page(pgdat, page);
1760 	if (!isolated) {
1761 		put_page(new_page);
1762 		goto out_fail;
1763 	}
1764 
1765 	if (mm_tlb_flush_pending(mm))
1766 		flush_tlb_range(vma, mmun_start, mmun_end);
1767 
1768 	/* Prepare a page as a migration target */
1769 	__set_page_locked(new_page);
1770 	SetPageSwapBacked(new_page);
1771 
1772 	/* anon mapping, we can simply copy page->mapping to the new page: */
1773 	new_page->mapping = page->mapping;
1774 	new_page->index = page->index;
1775 	migrate_page_copy(new_page, page);
1776 	WARN_ON(PageLRU(new_page));
1777 
1778 	/* Recheck the target PMD */
1779 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1780 	ptl = pmd_lock(mm, pmd);
1781 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1782 fail_putback:
1783 		spin_unlock(ptl);
1784 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1785 
1786 		/* Reverse changes made by migrate_page_copy() */
1787 		if (TestClearPageActive(new_page))
1788 			SetPageActive(page);
1789 		if (TestClearPageUnevictable(new_page))
1790 			SetPageUnevictable(page);
1791 
1792 		unlock_page(new_page);
1793 		put_page(new_page);		/* Free it */
1794 
1795 		/* Retake the callers reference and putback on LRU */
1796 		get_page(page);
1797 		putback_lru_page(page);
1798 		mod_zone_page_state(page_zone(page),
1799 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1800 
1801 		goto out_unlock;
1802 	}
1803 
1804 	orig_entry = *pmd;
1805 	entry = mk_pmd(new_page, vma->vm_page_prot);
1806 	entry = pmd_mkhuge(entry);
1807 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1808 
1809 	/*
1810 	 * Clear the old entry under pagetable lock and establish the new PTE.
1811 	 * Any parallel GUP will either observe the old page blocking on the
1812 	 * page lock, block on the page table lock or observe the new page.
1813 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1814 	 * guarantee the copy is visible before the pagetable update.
1815 	 */
1816 	flush_cache_range(vma, mmun_start, mmun_end);
1817 	page_add_anon_rmap(new_page, vma, mmun_start);
1818 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1819 	set_pmd_at(mm, mmun_start, pmd, entry);
1820 	flush_tlb_range(vma, mmun_start, mmun_end);
1821 	update_mmu_cache_pmd(vma, address, &entry);
1822 
1823 	if (page_count(page) != 2) {
1824 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1825 		flush_tlb_range(vma, mmun_start, mmun_end);
1826 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1827 		update_mmu_cache_pmd(vma, address, &entry);
1828 		page_remove_rmap(new_page);
1829 		goto fail_putback;
1830 	}
1831 
1832 	mlock_migrate_page(new_page, page);
1833 	set_page_memcg(new_page, page_memcg(page));
1834 	set_page_memcg(page, NULL);
1835 	page_remove_rmap(page);
1836 
1837 	spin_unlock(ptl);
1838 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1839 
1840 	/* Take an "isolate" reference and put new page on the LRU. */
1841 	get_page(new_page);
1842 	putback_lru_page(new_page);
1843 
1844 	unlock_page(new_page);
1845 	unlock_page(page);
1846 	put_page(page);			/* Drop the rmap reference */
1847 	put_page(page);			/* Drop the LRU isolation reference */
1848 
1849 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1850 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1851 
1852 	mod_zone_page_state(page_zone(page),
1853 			NR_ISOLATED_ANON + page_lru,
1854 			-HPAGE_PMD_NR);
1855 	return isolated;
1856 
1857 out_fail:
1858 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1859 out_dropref:
1860 	ptl = pmd_lock(mm, pmd);
1861 	if (pmd_same(*pmd, entry)) {
1862 		entry = pmd_modify(entry, vma->vm_page_prot);
1863 		set_pmd_at(mm, mmun_start, pmd, entry);
1864 		update_mmu_cache_pmd(vma, address, &entry);
1865 	}
1866 	spin_unlock(ptl);
1867 
1868 out_unlock:
1869 	unlock_page(page);
1870 	put_page(page);
1871 	return 0;
1872 }
1873 #endif /* CONFIG_NUMA_BALANCING */
1874 
1875 #endif /* CONFIG_NUMA */
1876