1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/syscalls.h> 34 #include <linux/hugetlb.h> 35 #include <linux/hugetlb_cgroup.h> 36 #include <linux/gfp.h> 37 #include <linux/balloon_compaction.h> 38 #include <linux/mmu_notifier.h> 39 #include <linux/page_idle.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154 #ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159 #endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 if (vma->vm_flags & VM_LOCKED) 174 mlock_vma_page(new); 175 176 /* No need to invalidate - it was non-present before */ 177 update_mmu_cache(vma, addr, ptep); 178 unlock: 179 pte_unmap_unlock(ptep, ptl); 180 out: 181 return SWAP_AGAIN; 182 } 183 184 /* 185 * Get rid of all migration entries and replace them by 186 * references to the indicated page. 187 */ 188 static void remove_migration_ptes(struct page *old, struct page *new) 189 { 190 struct rmap_walk_control rwc = { 191 .rmap_one = remove_migration_pte, 192 .arg = old, 193 }; 194 195 rmap_walk(new, &rwc); 196 } 197 198 /* 199 * Something used the pte of a page under migration. We need to 200 * get to the page and wait until migration is finished. 201 * When we return from this function the fault will be retried. 202 */ 203 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 204 spinlock_t *ptl) 205 { 206 pte_t pte; 207 swp_entry_t entry; 208 struct page *page; 209 210 spin_lock(ptl); 211 pte = *ptep; 212 if (!is_swap_pte(pte)) 213 goto out; 214 215 entry = pte_to_swp_entry(pte); 216 if (!is_migration_entry(entry)) 217 goto out; 218 219 page = migration_entry_to_page(entry); 220 221 /* 222 * Once radix-tree replacement of page migration started, page_count 223 * *must* be zero. And, we don't want to call wait_on_page_locked() 224 * against a page without get_page(). 225 * So, we use get_page_unless_zero(), here. Even failed, page fault 226 * will occur again. 227 */ 228 if (!get_page_unless_zero(page)) 229 goto out; 230 pte_unmap_unlock(ptep, ptl); 231 wait_on_page_locked(page); 232 put_page(page); 233 return; 234 out: 235 pte_unmap_unlock(ptep, ptl); 236 } 237 238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 239 unsigned long address) 240 { 241 spinlock_t *ptl = pte_lockptr(mm, pmd); 242 pte_t *ptep = pte_offset_map(pmd, address); 243 __migration_entry_wait(mm, ptep, ptl); 244 } 245 246 void migration_entry_wait_huge(struct vm_area_struct *vma, 247 struct mm_struct *mm, pte_t *pte) 248 { 249 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 250 __migration_entry_wait(mm, pte, ptl); 251 } 252 253 #ifdef CONFIG_BLOCK 254 /* Returns true if all buffers are successfully locked */ 255 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 256 enum migrate_mode mode) 257 { 258 struct buffer_head *bh = head; 259 260 /* Simple case, sync compaction */ 261 if (mode != MIGRATE_ASYNC) { 262 do { 263 get_bh(bh); 264 lock_buffer(bh); 265 bh = bh->b_this_page; 266 267 } while (bh != head); 268 269 return true; 270 } 271 272 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 273 do { 274 get_bh(bh); 275 if (!trylock_buffer(bh)) { 276 /* 277 * We failed to lock the buffer and cannot stall in 278 * async migration. Release the taken locks 279 */ 280 struct buffer_head *failed_bh = bh; 281 put_bh(failed_bh); 282 bh = head; 283 while (bh != failed_bh) { 284 unlock_buffer(bh); 285 put_bh(bh); 286 bh = bh->b_this_page; 287 } 288 return false; 289 } 290 291 bh = bh->b_this_page; 292 } while (bh != head); 293 return true; 294 } 295 #else 296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 297 enum migrate_mode mode) 298 { 299 return true; 300 } 301 #endif /* CONFIG_BLOCK */ 302 303 /* 304 * Replace the page in the mapping. 305 * 306 * The number of remaining references must be: 307 * 1 for anonymous pages without a mapping 308 * 2 for pages with a mapping 309 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 310 */ 311 int migrate_page_move_mapping(struct address_space *mapping, 312 struct page *newpage, struct page *page, 313 struct buffer_head *head, enum migrate_mode mode, 314 int extra_count) 315 { 316 int expected_count = 1 + extra_count; 317 void **pslot; 318 319 if (!mapping) { 320 /* Anonymous page without mapping */ 321 if (page_count(page) != expected_count) 322 return -EAGAIN; 323 return MIGRATEPAGE_SUCCESS; 324 } 325 326 spin_lock_irq(&mapping->tree_lock); 327 328 pslot = radix_tree_lookup_slot(&mapping->page_tree, 329 page_index(page)); 330 331 expected_count += 1 + page_has_private(page); 332 if (page_count(page) != expected_count || 333 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 334 spin_unlock_irq(&mapping->tree_lock); 335 return -EAGAIN; 336 } 337 338 if (!page_freeze_refs(page, expected_count)) { 339 spin_unlock_irq(&mapping->tree_lock); 340 return -EAGAIN; 341 } 342 343 /* 344 * In the async migration case of moving a page with buffers, lock the 345 * buffers using trylock before the mapping is moved. If the mapping 346 * was moved, we later failed to lock the buffers and could not move 347 * the mapping back due to an elevated page count, we would have to 348 * block waiting on other references to be dropped. 349 */ 350 if (mode == MIGRATE_ASYNC && head && 351 !buffer_migrate_lock_buffers(head, mode)) { 352 page_unfreeze_refs(page, expected_count); 353 spin_unlock_irq(&mapping->tree_lock); 354 return -EAGAIN; 355 } 356 357 /* 358 * Now we know that no one else is looking at the page. 359 */ 360 get_page(newpage); /* add cache reference */ 361 if (PageSwapCache(page)) { 362 SetPageSwapCache(newpage); 363 set_page_private(newpage, page_private(page)); 364 } 365 366 radix_tree_replace_slot(pslot, newpage); 367 368 /* 369 * Drop cache reference from old page by unfreezing 370 * to one less reference. 371 * We know this isn't the last reference. 372 */ 373 page_unfreeze_refs(page, expected_count - 1); 374 375 /* 376 * If moved to a different zone then also account 377 * the page for that zone. Other VM counters will be 378 * taken care of when we establish references to the 379 * new page and drop references to the old page. 380 * 381 * Note that anonymous pages are accounted for 382 * via NR_FILE_PAGES and NR_ANON_PAGES if they 383 * are mapped to swap space. 384 */ 385 __dec_zone_page_state(page, NR_FILE_PAGES); 386 __inc_zone_page_state(newpage, NR_FILE_PAGES); 387 if (!PageSwapCache(page) && PageSwapBacked(page)) { 388 __dec_zone_page_state(page, NR_SHMEM); 389 __inc_zone_page_state(newpage, NR_SHMEM); 390 } 391 spin_unlock_irq(&mapping->tree_lock); 392 393 return MIGRATEPAGE_SUCCESS; 394 } 395 396 /* 397 * The expected number of remaining references is the same as that 398 * of migrate_page_move_mapping(). 399 */ 400 int migrate_huge_page_move_mapping(struct address_space *mapping, 401 struct page *newpage, struct page *page) 402 { 403 int expected_count; 404 void **pslot; 405 406 if (!mapping) { 407 if (page_count(page) != 1) 408 return -EAGAIN; 409 return MIGRATEPAGE_SUCCESS; 410 } 411 412 spin_lock_irq(&mapping->tree_lock); 413 414 pslot = radix_tree_lookup_slot(&mapping->page_tree, 415 page_index(page)); 416 417 expected_count = 2 + page_has_private(page); 418 if (page_count(page) != expected_count || 419 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 420 spin_unlock_irq(&mapping->tree_lock); 421 return -EAGAIN; 422 } 423 424 if (!page_freeze_refs(page, expected_count)) { 425 spin_unlock_irq(&mapping->tree_lock); 426 return -EAGAIN; 427 } 428 429 get_page(newpage); 430 431 radix_tree_replace_slot(pslot, newpage); 432 433 page_unfreeze_refs(page, expected_count - 1); 434 435 spin_unlock_irq(&mapping->tree_lock); 436 return MIGRATEPAGE_SUCCESS; 437 } 438 439 /* 440 * Gigantic pages are so large that we do not guarantee that page++ pointer 441 * arithmetic will work across the entire page. We need something more 442 * specialized. 443 */ 444 static void __copy_gigantic_page(struct page *dst, struct page *src, 445 int nr_pages) 446 { 447 int i; 448 struct page *dst_base = dst; 449 struct page *src_base = src; 450 451 for (i = 0; i < nr_pages; ) { 452 cond_resched(); 453 copy_highpage(dst, src); 454 455 i++; 456 dst = mem_map_next(dst, dst_base, i); 457 src = mem_map_next(src, src_base, i); 458 } 459 } 460 461 static void copy_huge_page(struct page *dst, struct page *src) 462 { 463 int i; 464 int nr_pages; 465 466 if (PageHuge(src)) { 467 /* hugetlbfs page */ 468 struct hstate *h = page_hstate(src); 469 nr_pages = pages_per_huge_page(h); 470 471 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 472 __copy_gigantic_page(dst, src, nr_pages); 473 return; 474 } 475 } else { 476 /* thp page */ 477 BUG_ON(!PageTransHuge(src)); 478 nr_pages = hpage_nr_pages(src); 479 } 480 481 for (i = 0; i < nr_pages; i++) { 482 cond_resched(); 483 copy_highpage(dst + i, src + i); 484 } 485 } 486 487 /* 488 * Copy the page to its new location 489 */ 490 void migrate_page_copy(struct page *newpage, struct page *page) 491 { 492 int cpupid; 493 494 if (PageHuge(page) || PageTransHuge(page)) 495 copy_huge_page(newpage, page); 496 else 497 copy_highpage(newpage, page); 498 499 if (PageError(page)) 500 SetPageError(newpage); 501 if (PageReferenced(page)) 502 SetPageReferenced(newpage); 503 if (PageUptodate(page)) 504 SetPageUptodate(newpage); 505 if (TestClearPageActive(page)) { 506 VM_BUG_ON_PAGE(PageUnevictable(page), page); 507 SetPageActive(newpage); 508 } else if (TestClearPageUnevictable(page)) 509 SetPageUnevictable(newpage); 510 if (PageChecked(page)) 511 SetPageChecked(newpage); 512 if (PageMappedToDisk(page)) 513 SetPageMappedToDisk(newpage); 514 515 if (PageDirty(page)) { 516 clear_page_dirty_for_io(page); 517 /* 518 * Want to mark the page and the radix tree as dirty, and 519 * redo the accounting that clear_page_dirty_for_io undid, 520 * but we can't use set_page_dirty because that function 521 * is actually a signal that all of the page has become dirty. 522 * Whereas only part of our page may be dirty. 523 */ 524 if (PageSwapBacked(page)) 525 SetPageDirty(newpage); 526 else 527 __set_page_dirty_nobuffers(newpage); 528 } 529 530 if (page_is_young(page)) 531 set_page_young(newpage); 532 if (page_is_idle(page)) 533 set_page_idle(newpage); 534 535 /* 536 * Copy NUMA information to the new page, to prevent over-eager 537 * future migrations of this same page. 538 */ 539 cpupid = page_cpupid_xchg_last(page, -1); 540 page_cpupid_xchg_last(newpage, cpupid); 541 542 ksm_migrate_page(newpage, page); 543 /* 544 * Please do not reorder this without considering how mm/ksm.c's 545 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 546 */ 547 if (PageSwapCache(page)) 548 ClearPageSwapCache(page); 549 ClearPagePrivate(page); 550 set_page_private(page, 0); 551 552 /* 553 * If any waiters have accumulated on the new page then 554 * wake them up. 555 */ 556 if (PageWriteback(newpage)) 557 end_page_writeback(newpage); 558 } 559 560 /************************************************************ 561 * Migration functions 562 ***********************************************************/ 563 564 /* 565 * Common logic to directly migrate a single page suitable for 566 * pages that do not use PagePrivate/PagePrivate2. 567 * 568 * Pages are locked upon entry and exit. 569 */ 570 int migrate_page(struct address_space *mapping, 571 struct page *newpage, struct page *page, 572 enum migrate_mode mode) 573 { 574 int rc; 575 576 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 577 578 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 579 580 if (rc != MIGRATEPAGE_SUCCESS) 581 return rc; 582 583 migrate_page_copy(newpage, page); 584 return MIGRATEPAGE_SUCCESS; 585 } 586 EXPORT_SYMBOL(migrate_page); 587 588 #ifdef CONFIG_BLOCK 589 /* 590 * Migration function for pages with buffers. This function can only be used 591 * if the underlying filesystem guarantees that no other references to "page" 592 * exist. 593 */ 594 int buffer_migrate_page(struct address_space *mapping, 595 struct page *newpage, struct page *page, enum migrate_mode mode) 596 { 597 struct buffer_head *bh, *head; 598 int rc; 599 600 if (!page_has_buffers(page)) 601 return migrate_page(mapping, newpage, page, mode); 602 603 head = page_buffers(page); 604 605 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 606 607 if (rc != MIGRATEPAGE_SUCCESS) 608 return rc; 609 610 /* 611 * In the async case, migrate_page_move_mapping locked the buffers 612 * with an IRQ-safe spinlock held. In the sync case, the buffers 613 * need to be locked now 614 */ 615 if (mode != MIGRATE_ASYNC) 616 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 617 618 ClearPagePrivate(page); 619 set_page_private(newpage, page_private(page)); 620 set_page_private(page, 0); 621 put_page(page); 622 get_page(newpage); 623 624 bh = head; 625 do { 626 set_bh_page(bh, newpage, bh_offset(bh)); 627 bh = bh->b_this_page; 628 629 } while (bh != head); 630 631 SetPagePrivate(newpage); 632 633 migrate_page_copy(newpage, page); 634 635 bh = head; 636 do { 637 unlock_buffer(bh); 638 put_bh(bh); 639 bh = bh->b_this_page; 640 641 } while (bh != head); 642 643 return MIGRATEPAGE_SUCCESS; 644 } 645 EXPORT_SYMBOL(buffer_migrate_page); 646 #endif 647 648 /* 649 * Writeback a page to clean the dirty state 650 */ 651 static int writeout(struct address_space *mapping, struct page *page) 652 { 653 struct writeback_control wbc = { 654 .sync_mode = WB_SYNC_NONE, 655 .nr_to_write = 1, 656 .range_start = 0, 657 .range_end = LLONG_MAX, 658 .for_reclaim = 1 659 }; 660 int rc; 661 662 if (!mapping->a_ops->writepage) 663 /* No write method for the address space */ 664 return -EINVAL; 665 666 if (!clear_page_dirty_for_io(page)) 667 /* Someone else already triggered a write */ 668 return -EAGAIN; 669 670 /* 671 * A dirty page may imply that the underlying filesystem has 672 * the page on some queue. So the page must be clean for 673 * migration. Writeout may mean we loose the lock and the 674 * page state is no longer what we checked for earlier. 675 * At this point we know that the migration attempt cannot 676 * be successful. 677 */ 678 remove_migration_ptes(page, page); 679 680 rc = mapping->a_ops->writepage(page, &wbc); 681 682 if (rc != AOP_WRITEPAGE_ACTIVATE) 683 /* unlocked. Relock */ 684 lock_page(page); 685 686 return (rc < 0) ? -EIO : -EAGAIN; 687 } 688 689 /* 690 * Default handling if a filesystem does not provide a migration function. 691 */ 692 static int fallback_migrate_page(struct address_space *mapping, 693 struct page *newpage, struct page *page, enum migrate_mode mode) 694 { 695 if (PageDirty(page)) { 696 /* Only writeback pages in full synchronous migration */ 697 if (mode != MIGRATE_SYNC) 698 return -EBUSY; 699 return writeout(mapping, page); 700 } 701 702 /* 703 * Buffers may be managed in a filesystem specific way. 704 * We must have no buffers or drop them. 705 */ 706 if (page_has_private(page) && 707 !try_to_release_page(page, GFP_KERNEL)) 708 return -EAGAIN; 709 710 return migrate_page(mapping, newpage, page, mode); 711 } 712 713 /* 714 * Move a page to a newly allocated page 715 * The page is locked and all ptes have been successfully removed. 716 * 717 * The new page will have replaced the old page if this function 718 * is successful. 719 * 720 * Return value: 721 * < 0 - error code 722 * MIGRATEPAGE_SUCCESS - success 723 */ 724 static int move_to_new_page(struct page *newpage, struct page *page, 725 int page_was_mapped, enum migrate_mode mode) 726 { 727 struct address_space *mapping; 728 int rc; 729 730 /* 731 * Block others from accessing the page when we get around to 732 * establishing additional references. We are the only one 733 * holding a reference to the new page at this point. 734 */ 735 if (!trylock_page(newpage)) 736 BUG(); 737 738 /* Prepare mapping for the new page.*/ 739 newpage->index = page->index; 740 newpage->mapping = page->mapping; 741 if (PageSwapBacked(page)) 742 SetPageSwapBacked(newpage); 743 744 /* 745 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus 746 * needs newpage's memcg set to transfer memcg dirty page accounting. 747 * So perform memcg migration in two steps: 748 * 1. set newpage->mem_cgroup (here) 749 * 2. clear page->mem_cgroup (below) 750 */ 751 set_page_memcg(newpage, page_memcg(page)); 752 753 mapping = page_mapping(page); 754 if (!mapping) 755 rc = migrate_page(mapping, newpage, page, mode); 756 else if (mapping->a_ops->migratepage) 757 /* 758 * Most pages have a mapping and most filesystems provide a 759 * migratepage callback. Anonymous pages are part of swap 760 * space which also has its own migratepage callback. This 761 * is the most common path for page migration. 762 */ 763 rc = mapping->a_ops->migratepage(mapping, 764 newpage, page, mode); 765 else 766 rc = fallback_migrate_page(mapping, newpage, page, mode); 767 768 if (rc != MIGRATEPAGE_SUCCESS) { 769 set_page_memcg(newpage, NULL); 770 newpage->mapping = NULL; 771 } else { 772 set_page_memcg(page, NULL); 773 if (page_was_mapped) 774 remove_migration_ptes(page, newpage); 775 page->mapping = NULL; 776 } 777 778 unlock_page(newpage); 779 780 return rc; 781 } 782 783 static int __unmap_and_move(struct page *page, struct page *newpage, 784 int force, enum migrate_mode mode) 785 { 786 int rc = -EAGAIN; 787 int page_was_mapped = 0; 788 struct anon_vma *anon_vma = NULL; 789 790 if (!trylock_page(page)) { 791 if (!force || mode == MIGRATE_ASYNC) 792 goto out; 793 794 /* 795 * It's not safe for direct compaction to call lock_page. 796 * For example, during page readahead pages are added locked 797 * to the LRU. Later, when the IO completes the pages are 798 * marked uptodate and unlocked. However, the queueing 799 * could be merging multiple pages for one bio (e.g. 800 * mpage_readpages). If an allocation happens for the 801 * second or third page, the process can end up locking 802 * the same page twice and deadlocking. Rather than 803 * trying to be clever about what pages can be locked, 804 * avoid the use of lock_page for direct compaction 805 * altogether. 806 */ 807 if (current->flags & PF_MEMALLOC) 808 goto out; 809 810 lock_page(page); 811 } 812 813 if (PageWriteback(page)) { 814 /* 815 * Only in the case of a full synchronous migration is it 816 * necessary to wait for PageWriteback. In the async case, 817 * the retry loop is too short and in the sync-light case, 818 * the overhead of stalling is too much 819 */ 820 if (mode != MIGRATE_SYNC) { 821 rc = -EBUSY; 822 goto out_unlock; 823 } 824 if (!force) 825 goto out_unlock; 826 wait_on_page_writeback(page); 827 } 828 /* 829 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 830 * we cannot notice that anon_vma is freed while we migrates a page. 831 * This get_anon_vma() delays freeing anon_vma pointer until the end 832 * of migration. File cache pages are no problem because of page_lock() 833 * File Caches may use write_page() or lock_page() in migration, then, 834 * just care Anon page here. 835 */ 836 if (PageAnon(page) && !PageKsm(page)) { 837 /* 838 * Only page_lock_anon_vma_read() understands the subtleties of 839 * getting a hold on an anon_vma from outside one of its mms. 840 */ 841 anon_vma = page_get_anon_vma(page); 842 if (anon_vma) { 843 /* 844 * Anon page 845 */ 846 } else if (PageSwapCache(page)) { 847 /* 848 * We cannot be sure that the anon_vma of an unmapped 849 * swapcache page is safe to use because we don't 850 * know in advance if the VMA that this page belonged 851 * to still exists. If the VMA and others sharing the 852 * data have been freed, then the anon_vma could 853 * already be invalid. 854 * 855 * To avoid this possibility, swapcache pages get 856 * migrated but are not remapped when migration 857 * completes 858 */ 859 } else { 860 goto out_unlock; 861 } 862 } 863 864 if (unlikely(isolated_balloon_page(page))) { 865 /* 866 * A ballooned page does not need any special attention from 867 * physical to virtual reverse mapping procedures. 868 * Skip any attempt to unmap PTEs or to remap swap cache, 869 * in order to avoid burning cycles at rmap level, and perform 870 * the page migration right away (proteced by page lock). 871 */ 872 rc = balloon_page_migrate(newpage, page, mode); 873 goto out_unlock; 874 } 875 876 /* 877 * Corner case handling: 878 * 1. When a new swap-cache page is read into, it is added to the LRU 879 * and treated as swapcache but it has no rmap yet. 880 * Calling try_to_unmap() against a page->mapping==NULL page will 881 * trigger a BUG. So handle it here. 882 * 2. An orphaned page (see truncate_complete_page) might have 883 * fs-private metadata. The page can be picked up due to memory 884 * offlining. Everywhere else except page reclaim, the page is 885 * invisible to the vm, so the page can not be migrated. So try to 886 * free the metadata, so the page can be freed. 887 */ 888 if (!page->mapping) { 889 VM_BUG_ON_PAGE(PageAnon(page), page); 890 if (page_has_private(page)) { 891 try_to_free_buffers(page); 892 goto out_unlock; 893 } 894 goto skip_unmap; 895 } 896 897 /* Establish migration ptes or remove ptes */ 898 if (page_mapped(page)) { 899 try_to_unmap(page, 900 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 901 page_was_mapped = 1; 902 } 903 904 skip_unmap: 905 if (!page_mapped(page)) 906 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 907 908 if (rc && page_was_mapped) 909 remove_migration_ptes(page, page); 910 911 /* Drop an anon_vma reference if we took one */ 912 if (anon_vma) 913 put_anon_vma(anon_vma); 914 915 out_unlock: 916 unlock_page(page); 917 out: 918 return rc; 919 } 920 921 /* 922 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 923 * around it. 924 */ 925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 926 #define ICE_noinline noinline 927 #else 928 #define ICE_noinline 929 #endif 930 931 /* 932 * Obtain the lock on page, remove all ptes and migrate the page 933 * to the newly allocated page in newpage. 934 */ 935 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 936 free_page_t put_new_page, 937 unsigned long private, struct page *page, 938 int force, enum migrate_mode mode, 939 enum migrate_reason reason) 940 { 941 int rc = 0; 942 int *result = NULL; 943 struct page *newpage = get_new_page(page, private, &result); 944 945 if (!newpage) 946 return -ENOMEM; 947 948 if (page_count(page) == 1) { 949 /* page was freed from under us. So we are done. */ 950 goto out; 951 } 952 953 if (unlikely(PageTransHuge(page))) 954 if (unlikely(split_huge_page(page))) 955 goto out; 956 957 rc = __unmap_and_move(page, newpage, force, mode); 958 959 out: 960 if (rc != -EAGAIN) { 961 /* 962 * A page that has been migrated has all references 963 * removed and will be freed. A page that has not been 964 * migrated will have kepts its references and be 965 * restored. 966 */ 967 list_del(&page->lru); 968 dec_zone_page_state(page, NR_ISOLATED_ANON + 969 page_is_file_cache(page)); 970 /* Soft-offlined page shouldn't go through lru cache list */ 971 if (reason == MR_MEMORY_FAILURE) { 972 put_page(page); 973 if (!test_set_page_hwpoison(page)) 974 num_poisoned_pages_inc(); 975 } else 976 putback_lru_page(page); 977 } 978 979 /* 980 * If migration was not successful and there's a freeing callback, use 981 * it. Otherwise, putback_lru_page() will drop the reference grabbed 982 * during isolation. 983 */ 984 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 985 ClearPageSwapBacked(newpage); 986 put_new_page(newpage, private); 987 } else if (unlikely(__is_movable_balloon_page(newpage))) { 988 /* drop our reference, page already in the balloon */ 989 put_page(newpage); 990 } else 991 putback_lru_page(newpage); 992 993 if (result) { 994 if (rc) 995 *result = rc; 996 else 997 *result = page_to_nid(newpage); 998 } 999 return rc; 1000 } 1001 1002 /* 1003 * Counterpart of unmap_and_move_page() for hugepage migration. 1004 * 1005 * This function doesn't wait the completion of hugepage I/O 1006 * because there is no race between I/O and migration for hugepage. 1007 * Note that currently hugepage I/O occurs only in direct I/O 1008 * where no lock is held and PG_writeback is irrelevant, 1009 * and writeback status of all subpages are counted in the reference 1010 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1011 * under direct I/O, the reference of the head page is 512 and a bit more.) 1012 * This means that when we try to migrate hugepage whose subpages are 1013 * doing direct I/O, some references remain after try_to_unmap() and 1014 * hugepage migration fails without data corruption. 1015 * 1016 * There is also no race when direct I/O is issued on the page under migration, 1017 * because then pte is replaced with migration swap entry and direct I/O code 1018 * will wait in the page fault for migration to complete. 1019 */ 1020 static int unmap_and_move_huge_page(new_page_t get_new_page, 1021 free_page_t put_new_page, unsigned long private, 1022 struct page *hpage, int force, 1023 enum migrate_mode mode) 1024 { 1025 int rc = 0; 1026 int *result = NULL; 1027 int page_was_mapped = 0; 1028 struct page *new_hpage; 1029 struct anon_vma *anon_vma = NULL; 1030 1031 /* 1032 * Movability of hugepages depends on architectures and hugepage size. 1033 * This check is necessary because some callers of hugepage migration 1034 * like soft offline and memory hotremove don't walk through page 1035 * tables or check whether the hugepage is pmd-based or not before 1036 * kicking migration. 1037 */ 1038 if (!hugepage_migration_supported(page_hstate(hpage))) { 1039 putback_active_hugepage(hpage); 1040 return -ENOSYS; 1041 } 1042 1043 new_hpage = get_new_page(hpage, private, &result); 1044 if (!new_hpage) 1045 return -ENOMEM; 1046 1047 rc = -EAGAIN; 1048 1049 if (!trylock_page(hpage)) { 1050 if (!force || mode != MIGRATE_SYNC) 1051 goto out; 1052 lock_page(hpage); 1053 } 1054 1055 if (PageAnon(hpage)) 1056 anon_vma = page_get_anon_vma(hpage); 1057 1058 if (page_mapped(hpage)) { 1059 try_to_unmap(hpage, 1060 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1061 page_was_mapped = 1; 1062 } 1063 1064 if (!page_mapped(hpage)) 1065 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1066 1067 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1068 remove_migration_ptes(hpage, hpage); 1069 1070 if (anon_vma) 1071 put_anon_vma(anon_vma); 1072 1073 if (rc == MIGRATEPAGE_SUCCESS) 1074 hugetlb_cgroup_migrate(hpage, new_hpage); 1075 1076 unlock_page(hpage); 1077 out: 1078 if (rc != -EAGAIN) 1079 putback_active_hugepage(hpage); 1080 1081 /* 1082 * If migration was not successful and there's a freeing callback, use 1083 * it. Otherwise, put_page() will drop the reference grabbed during 1084 * isolation. 1085 */ 1086 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1087 put_new_page(new_hpage, private); 1088 else 1089 putback_active_hugepage(new_hpage); 1090 1091 if (result) { 1092 if (rc) 1093 *result = rc; 1094 else 1095 *result = page_to_nid(new_hpage); 1096 } 1097 return rc; 1098 } 1099 1100 /* 1101 * migrate_pages - migrate the pages specified in a list, to the free pages 1102 * supplied as the target for the page migration 1103 * 1104 * @from: The list of pages to be migrated. 1105 * @get_new_page: The function used to allocate free pages to be used 1106 * as the target of the page migration. 1107 * @put_new_page: The function used to free target pages if migration 1108 * fails, or NULL if no special handling is necessary. 1109 * @private: Private data to be passed on to get_new_page() 1110 * @mode: The migration mode that specifies the constraints for 1111 * page migration, if any. 1112 * @reason: The reason for page migration. 1113 * 1114 * The function returns after 10 attempts or if no pages are movable any more 1115 * because the list has become empty or no retryable pages exist any more. 1116 * The caller should call putback_movable_pages() to return pages to the LRU 1117 * or free list only if ret != 0. 1118 * 1119 * Returns the number of pages that were not migrated, or an error code. 1120 */ 1121 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1122 free_page_t put_new_page, unsigned long private, 1123 enum migrate_mode mode, int reason) 1124 { 1125 int retry = 1; 1126 int nr_failed = 0; 1127 int nr_succeeded = 0; 1128 int pass = 0; 1129 struct page *page; 1130 struct page *page2; 1131 int swapwrite = current->flags & PF_SWAPWRITE; 1132 int rc; 1133 1134 if (!swapwrite) 1135 current->flags |= PF_SWAPWRITE; 1136 1137 for(pass = 0; pass < 10 && retry; pass++) { 1138 retry = 0; 1139 1140 list_for_each_entry_safe(page, page2, from, lru) { 1141 cond_resched(); 1142 1143 if (PageHuge(page)) 1144 rc = unmap_and_move_huge_page(get_new_page, 1145 put_new_page, private, page, 1146 pass > 2, mode); 1147 else 1148 rc = unmap_and_move(get_new_page, put_new_page, 1149 private, page, pass > 2, mode, 1150 reason); 1151 1152 switch(rc) { 1153 case -ENOMEM: 1154 goto out; 1155 case -EAGAIN: 1156 retry++; 1157 break; 1158 case MIGRATEPAGE_SUCCESS: 1159 nr_succeeded++; 1160 break; 1161 default: 1162 /* 1163 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1164 * unlike -EAGAIN case, the failed page is 1165 * removed from migration page list and not 1166 * retried in the next outer loop. 1167 */ 1168 nr_failed++; 1169 break; 1170 } 1171 } 1172 } 1173 nr_failed += retry; 1174 rc = nr_failed; 1175 out: 1176 if (nr_succeeded) 1177 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1178 if (nr_failed) 1179 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1180 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1181 1182 if (!swapwrite) 1183 current->flags &= ~PF_SWAPWRITE; 1184 1185 return rc; 1186 } 1187 1188 #ifdef CONFIG_NUMA 1189 /* 1190 * Move a list of individual pages 1191 */ 1192 struct page_to_node { 1193 unsigned long addr; 1194 struct page *page; 1195 int node; 1196 int status; 1197 }; 1198 1199 static struct page *new_page_node(struct page *p, unsigned long private, 1200 int **result) 1201 { 1202 struct page_to_node *pm = (struct page_to_node *)private; 1203 1204 while (pm->node != MAX_NUMNODES && pm->page != p) 1205 pm++; 1206 1207 if (pm->node == MAX_NUMNODES) 1208 return NULL; 1209 1210 *result = &pm->status; 1211 1212 if (PageHuge(p)) 1213 return alloc_huge_page_node(page_hstate(compound_head(p)), 1214 pm->node); 1215 else 1216 return __alloc_pages_node(pm->node, 1217 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1218 } 1219 1220 /* 1221 * Move a set of pages as indicated in the pm array. The addr 1222 * field must be set to the virtual address of the page to be moved 1223 * and the node number must contain a valid target node. 1224 * The pm array ends with node = MAX_NUMNODES. 1225 */ 1226 static int do_move_page_to_node_array(struct mm_struct *mm, 1227 struct page_to_node *pm, 1228 int migrate_all) 1229 { 1230 int err; 1231 struct page_to_node *pp; 1232 LIST_HEAD(pagelist); 1233 1234 down_read(&mm->mmap_sem); 1235 1236 /* 1237 * Build a list of pages to migrate 1238 */ 1239 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1240 struct vm_area_struct *vma; 1241 struct page *page; 1242 1243 err = -EFAULT; 1244 vma = find_vma(mm, pp->addr); 1245 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1246 goto set_status; 1247 1248 /* FOLL_DUMP to ignore special (like zero) pages */ 1249 page = follow_page(vma, pp->addr, 1250 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1251 1252 err = PTR_ERR(page); 1253 if (IS_ERR(page)) 1254 goto set_status; 1255 1256 err = -ENOENT; 1257 if (!page) 1258 goto set_status; 1259 1260 pp->page = page; 1261 err = page_to_nid(page); 1262 1263 if (err == pp->node) 1264 /* 1265 * Node already in the right place 1266 */ 1267 goto put_and_set; 1268 1269 err = -EACCES; 1270 if (page_mapcount(page) > 1 && 1271 !migrate_all) 1272 goto put_and_set; 1273 1274 if (PageHuge(page)) { 1275 if (PageHead(page)) 1276 isolate_huge_page(page, &pagelist); 1277 goto put_and_set; 1278 } 1279 1280 err = isolate_lru_page(page); 1281 if (!err) { 1282 list_add_tail(&page->lru, &pagelist); 1283 inc_zone_page_state(page, NR_ISOLATED_ANON + 1284 page_is_file_cache(page)); 1285 } 1286 put_and_set: 1287 /* 1288 * Either remove the duplicate refcount from 1289 * isolate_lru_page() or drop the page ref if it was 1290 * not isolated. 1291 */ 1292 put_page(page); 1293 set_status: 1294 pp->status = err; 1295 } 1296 1297 err = 0; 1298 if (!list_empty(&pagelist)) { 1299 err = migrate_pages(&pagelist, new_page_node, NULL, 1300 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1301 if (err) 1302 putback_movable_pages(&pagelist); 1303 } 1304 1305 up_read(&mm->mmap_sem); 1306 return err; 1307 } 1308 1309 /* 1310 * Migrate an array of page address onto an array of nodes and fill 1311 * the corresponding array of status. 1312 */ 1313 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1314 unsigned long nr_pages, 1315 const void __user * __user *pages, 1316 const int __user *nodes, 1317 int __user *status, int flags) 1318 { 1319 struct page_to_node *pm; 1320 unsigned long chunk_nr_pages; 1321 unsigned long chunk_start; 1322 int err; 1323 1324 err = -ENOMEM; 1325 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1326 if (!pm) 1327 goto out; 1328 1329 migrate_prep(); 1330 1331 /* 1332 * Store a chunk of page_to_node array in a page, 1333 * but keep the last one as a marker 1334 */ 1335 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1336 1337 for (chunk_start = 0; 1338 chunk_start < nr_pages; 1339 chunk_start += chunk_nr_pages) { 1340 int j; 1341 1342 if (chunk_start + chunk_nr_pages > nr_pages) 1343 chunk_nr_pages = nr_pages - chunk_start; 1344 1345 /* fill the chunk pm with addrs and nodes from user-space */ 1346 for (j = 0; j < chunk_nr_pages; j++) { 1347 const void __user *p; 1348 int node; 1349 1350 err = -EFAULT; 1351 if (get_user(p, pages + j + chunk_start)) 1352 goto out_pm; 1353 pm[j].addr = (unsigned long) p; 1354 1355 if (get_user(node, nodes + j + chunk_start)) 1356 goto out_pm; 1357 1358 err = -ENODEV; 1359 if (node < 0 || node >= MAX_NUMNODES) 1360 goto out_pm; 1361 1362 if (!node_state(node, N_MEMORY)) 1363 goto out_pm; 1364 1365 err = -EACCES; 1366 if (!node_isset(node, task_nodes)) 1367 goto out_pm; 1368 1369 pm[j].node = node; 1370 } 1371 1372 /* End marker for this chunk */ 1373 pm[chunk_nr_pages].node = MAX_NUMNODES; 1374 1375 /* Migrate this chunk */ 1376 err = do_move_page_to_node_array(mm, pm, 1377 flags & MPOL_MF_MOVE_ALL); 1378 if (err < 0) 1379 goto out_pm; 1380 1381 /* Return status information */ 1382 for (j = 0; j < chunk_nr_pages; j++) 1383 if (put_user(pm[j].status, status + j + chunk_start)) { 1384 err = -EFAULT; 1385 goto out_pm; 1386 } 1387 } 1388 err = 0; 1389 1390 out_pm: 1391 free_page((unsigned long)pm); 1392 out: 1393 return err; 1394 } 1395 1396 /* 1397 * Determine the nodes of an array of pages and store it in an array of status. 1398 */ 1399 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1400 const void __user **pages, int *status) 1401 { 1402 unsigned long i; 1403 1404 down_read(&mm->mmap_sem); 1405 1406 for (i = 0; i < nr_pages; i++) { 1407 unsigned long addr = (unsigned long)(*pages); 1408 struct vm_area_struct *vma; 1409 struct page *page; 1410 int err = -EFAULT; 1411 1412 vma = find_vma(mm, addr); 1413 if (!vma || addr < vma->vm_start) 1414 goto set_status; 1415 1416 /* FOLL_DUMP to ignore special (like zero) pages */ 1417 page = follow_page(vma, addr, FOLL_DUMP); 1418 1419 err = PTR_ERR(page); 1420 if (IS_ERR(page)) 1421 goto set_status; 1422 1423 err = page ? page_to_nid(page) : -ENOENT; 1424 set_status: 1425 *status = err; 1426 1427 pages++; 1428 status++; 1429 } 1430 1431 up_read(&mm->mmap_sem); 1432 } 1433 1434 /* 1435 * Determine the nodes of a user array of pages and store it in 1436 * a user array of status. 1437 */ 1438 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1439 const void __user * __user *pages, 1440 int __user *status) 1441 { 1442 #define DO_PAGES_STAT_CHUNK_NR 16 1443 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1444 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1445 1446 while (nr_pages) { 1447 unsigned long chunk_nr; 1448 1449 chunk_nr = nr_pages; 1450 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1451 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1452 1453 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1454 break; 1455 1456 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1457 1458 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1459 break; 1460 1461 pages += chunk_nr; 1462 status += chunk_nr; 1463 nr_pages -= chunk_nr; 1464 } 1465 return nr_pages ? -EFAULT : 0; 1466 } 1467 1468 /* 1469 * Move a list of pages in the address space of the currently executing 1470 * process. 1471 */ 1472 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1473 const void __user * __user *, pages, 1474 const int __user *, nodes, 1475 int __user *, status, int, flags) 1476 { 1477 const struct cred *cred = current_cred(), *tcred; 1478 struct task_struct *task; 1479 struct mm_struct *mm; 1480 int err; 1481 nodemask_t task_nodes; 1482 1483 /* Check flags */ 1484 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1485 return -EINVAL; 1486 1487 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1488 return -EPERM; 1489 1490 /* Find the mm_struct */ 1491 rcu_read_lock(); 1492 task = pid ? find_task_by_vpid(pid) : current; 1493 if (!task) { 1494 rcu_read_unlock(); 1495 return -ESRCH; 1496 } 1497 get_task_struct(task); 1498 1499 /* 1500 * Check if this process has the right to modify the specified 1501 * process. The right exists if the process has administrative 1502 * capabilities, superuser privileges or the same 1503 * userid as the target process. 1504 */ 1505 tcred = __task_cred(task); 1506 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1507 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1508 !capable(CAP_SYS_NICE)) { 1509 rcu_read_unlock(); 1510 err = -EPERM; 1511 goto out; 1512 } 1513 rcu_read_unlock(); 1514 1515 err = security_task_movememory(task); 1516 if (err) 1517 goto out; 1518 1519 task_nodes = cpuset_mems_allowed(task); 1520 mm = get_task_mm(task); 1521 put_task_struct(task); 1522 1523 if (!mm) 1524 return -EINVAL; 1525 1526 if (nodes) 1527 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1528 nodes, status, flags); 1529 else 1530 err = do_pages_stat(mm, nr_pages, pages, status); 1531 1532 mmput(mm); 1533 return err; 1534 1535 out: 1536 put_task_struct(task); 1537 return err; 1538 } 1539 1540 #ifdef CONFIG_NUMA_BALANCING 1541 /* 1542 * Returns true if this is a safe migration target node for misplaced NUMA 1543 * pages. Currently it only checks the watermarks which crude 1544 */ 1545 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1546 unsigned long nr_migrate_pages) 1547 { 1548 int z; 1549 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1550 struct zone *zone = pgdat->node_zones + z; 1551 1552 if (!populated_zone(zone)) 1553 continue; 1554 1555 if (!zone_reclaimable(zone)) 1556 continue; 1557 1558 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1559 if (!zone_watermark_ok(zone, 0, 1560 high_wmark_pages(zone) + 1561 nr_migrate_pages, 1562 0, 0)) 1563 continue; 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 static struct page *alloc_misplaced_dst_page(struct page *page, 1570 unsigned long data, 1571 int **result) 1572 { 1573 int nid = (int) data; 1574 struct page *newpage; 1575 1576 newpage = __alloc_pages_node(nid, 1577 (GFP_HIGHUSER_MOVABLE | 1578 __GFP_THISNODE | __GFP_NOMEMALLOC | 1579 __GFP_NORETRY | __GFP_NOWARN) & 1580 ~GFP_IOFS, 0); 1581 1582 return newpage; 1583 } 1584 1585 /* 1586 * page migration rate limiting control. 1587 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1588 * window of time. Default here says do not migrate more than 1280M per second. 1589 */ 1590 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1591 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1592 1593 /* Returns true if the node is migrate rate-limited after the update */ 1594 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1595 unsigned long nr_pages) 1596 { 1597 /* 1598 * Rate-limit the amount of data that is being migrated to a node. 1599 * Optimal placement is no good if the memory bus is saturated and 1600 * all the time is being spent migrating! 1601 */ 1602 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1603 spin_lock(&pgdat->numabalancing_migrate_lock); 1604 pgdat->numabalancing_migrate_nr_pages = 0; 1605 pgdat->numabalancing_migrate_next_window = jiffies + 1606 msecs_to_jiffies(migrate_interval_millisecs); 1607 spin_unlock(&pgdat->numabalancing_migrate_lock); 1608 } 1609 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1610 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1611 nr_pages); 1612 return true; 1613 } 1614 1615 /* 1616 * This is an unlocked non-atomic update so errors are possible. 1617 * The consequences are failing to migrate when we potentiall should 1618 * have which is not severe enough to warrant locking. If it is ever 1619 * a problem, it can be converted to a per-cpu counter. 1620 */ 1621 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1622 return false; 1623 } 1624 1625 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1626 { 1627 int page_lru; 1628 1629 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1630 1631 /* Avoid migrating to a node that is nearly full */ 1632 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1633 return 0; 1634 1635 if (isolate_lru_page(page)) 1636 return 0; 1637 1638 /* 1639 * migrate_misplaced_transhuge_page() skips page migration's usual 1640 * check on page_count(), so we must do it here, now that the page 1641 * has been isolated: a GUP pin, or any other pin, prevents migration. 1642 * The expected page count is 3: 1 for page's mapcount and 1 for the 1643 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1644 */ 1645 if (PageTransHuge(page) && page_count(page) != 3) { 1646 putback_lru_page(page); 1647 return 0; 1648 } 1649 1650 page_lru = page_is_file_cache(page); 1651 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1652 hpage_nr_pages(page)); 1653 1654 /* 1655 * Isolating the page has taken another reference, so the 1656 * caller's reference can be safely dropped without the page 1657 * disappearing underneath us during migration. 1658 */ 1659 put_page(page); 1660 return 1; 1661 } 1662 1663 bool pmd_trans_migrating(pmd_t pmd) 1664 { 1665 struct page *page = pmd_page(pmd); 1666 return PageLocked(page); 1667 } 1668 1669 /* 1670 * Attempt to migrate a misplaced page to the specified destination 1671 * node. Caller is expected to have an elevated reference count on 1672 * the page that will be dropped by this function before returning. 1673 */ 1674 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1675 int node) 1676 { 1677 pg_data_t *pgdat = NODE_DATA(node); 1678 int isolated; 1679 int nr_remaining; 1680 LIST_HEAD(migratepages); 1681 1682 /* 1683 * Don't migrate file pages that are mapped in multiple processes 1684 * with execute permissions as they are probably shared libraries. 1685 */ 1686 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1687 (vma->vm_flags & VM_EXEC)) 1688 goto out; 1689 1690 /* 1691 * Rate-limit the amount of data that is being migrated to a node. 1692 * Optimal placement is no good if the memory bus is saturated and 1693 * all the time is being spent migrating! 1694 */ 1695 if (numamigrate_update_ratelimit(pgdat, 1)) 1696 goto out; 1697 1698 isolated = numamigrate_isolate_page(pgdat, page); 1699 if (!isolated) 1700 goto out; 1701 1702 list_add(&page->lru, &migratepages); 1703 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1704 NULL, node, MIGRATE_ASYNC, 1705 MR_NUMA_MISPLACED); 1706 if (nr_remaining) { 1707 if (!list_empty(&migratepages)) { 1708 list_del(&page->lru); 1709 dec_zone_page_state(page, NR_ISOLATED_ANON + 1710 page_is_file_cache(page)); 1711 putback_lru_page(page); 1712 } 1713 isolated = 0; 1714 } else 1715 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1716 BUG_ON(!list_empty(&migratepages)); 1717 return isolated; 1718 1719 out: 1720 put_page(page); 1721 return 0; 1722 } 1723 #endif /* CONFIG_NUMA_BALANCING */ 1724 1725 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1726 /* 1727 * Migrates a THP to a given target node. page must be locked and is unlocked 1728 * before returning. 1729 */ 1730 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1731 struct vm_area_struct *vma, 1732 pmd_t *pmd, pmd_t entry, 1733 unsigned long address, 1734 struct page *page, int node) 1735 { 1736 spinlock_t *ptl; 1737 pg_data_t *pgdat = NODE_DATA(node); 1738 int isolated = 0; 1739 struct page *new_page = NULL; 1740 int page_lru = page_is_file_cache(page); 1741 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1742 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1743 pmd_t orig_entry; 1744 1745 /* 1746 * Rate-limit the amount of data that is being migrated to a node. 1747 * Optimal placement is no good if the memory bus is saturated and 1748 * all the time is being spent migrating! 1749 */ 1750 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1751 goto out_dropref; 1752 1753 new_page = alloc_pages_node(node, 1754 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1755 HPAGE_PMD_ORDER); 1756 if (!new_page) 1757 goto out_fail; 1758 1759 isolated = numamigrate_isolate_page(pgdat, page); 1760 if (!isolated) { 1761 put_page(new_page); 1762 goto out_fail; 1763 } 1764 1765 if (mm_tlb_flush_pending(mm)) 1766 flush_tlb_range(vma, mmun_start, mmun_end); 1767 1768 /* Prepare a page as a migration target */ 1769 __set_page_locked(new_page); 1770 SetPageSwapBacked(new_page); 1771 1772 /* anon mapping, we can simply copy page->mapping to the new page: */ 1773 new_page->mapping = page->mapping; 1774 new_page->index = page->index; 1775 migrate_page_copy(new_page, page); 1776 WARN_ON(PageLRU(new_page)); 1777 1778 /* Recheck the target PMD */ 1779 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1780 ptl = pmd_lock(mm, pmd); 1781 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1782 fail_putback: 1783 spin_unlock(ptl); 1784 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1785 1786 /* Reverse changes made by migrate_page_copy() */ 1787 if (TestClearPageActive(new_page)) 1788 SetPageActive(page); 1789 if (TestClearPageUnevictable(new_page)) 1790 SetPageUnevictable(page); 1791 1792 unlock_page(new_page); 1793 put_page(new_page); /* Free it */ 1794 1795 /* Retake the callers reference and putback on LRU */ 1796 get_page(page); 1797 putback_lru_page(page); 1798 mod_zone_page_state(page_zone(page), 1799 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1800 1801 goto out_unlock; 1802 } 1803 1804 orig_entry = *pmd; 1805 entry = mk_pmd(new_page, vma->vm_page_prot); 1806 entry = pmd_mkhuge(entry); 1807 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1808 1809 /* 1810 * Clear the old entry under pagetable lock and establish the new PTE. 1811 * Any parallel GUP will either observe the old page blocking on the 1812 * page lock, block on the page table lock or observe the new page. 1813 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1814 * guarantee the copy is visible before the pagetable update. 1815 */ 1816 flush_cache_range(vma, mmun_start, mmun_end); 1817 page_add_anon_rmap(new_page, vma, mmun_start); 1818 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1819 set_pmd_at(mm, mmun_start, pmd, entry); 1820 flush_tlb_range(vma, mmun_start, mmun_end); 1821 update_mmu_cache_pmd(vma, address, &entry); 1822 1823 if (page_count(page) != 2) { 1824 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1825 flush_tlb_range(vma, mmun_start, mmun_end); 1826 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1827 update_mmu_cache_pmd(vma, address, &entry); 1828 page_remove_rmap(new_page); 1829 goto fail_putback; 1830 } 1831 1832 mlock_migrate_page(new_page, page); 1833 set_page_memcg(new_page, page_memcg(page)); 1834 set_page_memcg(page, NULL); 1835 page_remove_rmap(page); 1836 1837 spin_unlock(ptl); 1838 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1839 1840 /* Take an "isolate" reference and put new page on the LRU. */ 1841 get_page(new_page); 1842 putback_lru_page(new_page); 1843 1844 unlock_page(new_page); 1845 unlock_page(page); 1846 put_page(page); /* Drop the rmap reference */ 1847 put_page(page); /* Drop the LRU isolation reference */ 1848 1849 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1850 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1851 1852 mod_zone_page_state(page_zone(page), 1853 NR_ISOLATED_ANON + page_lru, 1854 -HPAGE_PMD_NR); 1855 return isolated; 1856 1857 out_fail: 1858 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1859 out_dropref: 1860 ptl = pmd_lock(mm, pmd); 1861 if (pmd_same(*pmd, entry)) { 1862 entry = pmd_modify(entry, vma->vm_page_prot); 1863 set_pmd_at(mm, mmun_start, pmd, entry); 1864 update_mmu_cache_pmd(vma, address, &entry); 1865 } 1866 spin_unlock(ptl); 1867 1868 out_unlock: 1869 unlock_page(page); 1870 put_page(page); 1871 return 0; 1872 } 1873 #endif /* CONFIG_NUMA_BALANCING */ 1874 1875 #endif /* CONFIG_NUMA */ 1876