xref: /openbmc/linux/mm/migrate.c (revision 110e6f26)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42 
43 #include <asm/tlbflush.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47 
48 #include "internal.h"
49 
50 /*
51  * migrate_prep() needs to be called before we start compiling a list of pages
52  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53  * undesirable, use migrate_prep_local()
54  */
55 int migrate_prep(void)
56 {
57 	/*
58 	 * Clear the LRU lists so pages can be isolated.
59 	 * Note that pages may be moved off the LRU after we have
60 	 * drained them. Those pages will fail to migrate like other
61 	 * pages that may be busy.
62 	 */
63 	lru_add_drain_all();
64 
65 	return 0;
66 }
67 
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 	lru_add_drain();
72 
73 	return 0;
74 }
75 
76 /*
77  * Put previously isolated pages back onto the appropriate lists
78  * from where they were once taken off for compaction/migration.
79  *
80  * This function shall be used whenever the isolated pageset has been
81  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82  * and isolate_huge_page().
83  */
84 void putback_movable_pages(struct list_head *l)
85 {
86 	struct page *page;
87 	struct page *page2;
88 
89 	list_for_each_entry_safe(page, page2, l, lru) {
90 		if (unlikely(PageHuge(page))) {
91 			putback_active_hugepage(page);
92 			continue;
93 		}
94 		list_del(&page->lru);
95 		dec_zone_page_state(page, NR_ISOLATED_ANON +
96 				page_is_file_cache(page));
97 		if (unlikely(isolated_balloon_page(page)))
98 			balloon_page_putback(page);
99 		else
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Restore a potential migration pte to a working pte entry
106  */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 				 unsigned long addr, void *old)
109 {
110 	struct mm_struct *mm = vma->vm_mm;
111 	swp_entry_t entry;
112  	pmd_t *pmd;
113 	pte_t *ptep, pte;
114  	spinlock_t *ptl;
115 
116 	if (unlikely(PageHuge(new))) {
117 		ptep = huge_pte_offset(mm, addr);
118 		if (!ptep)
119 			goto out;
120 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 	} else {
122 		pmd = mm_find_pmd(mm, addr);
123 		if (!pmd)
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 
152 	/* Recheck VMA as permissions can change since migration started  */
153 	if (is_write_migration_entry(entry))
154 		pte = maybe_mkwrite(pte, vma);
155 
156 #ifdef CONFIG_HUGETLB_PAGE
157 	if (PageHuge(new)) {
158 		pte = pte_mkhuge(pte);
159 		pte = arch_make_huge_pte(pte, vma, new, 0);
160 	}
161 #endif
162 	flush_dcache_page(new);
163 	set_pte_at(mm, addr, ptep, pte);
164 
165 	if (PageHuge(new)) {
166 		if (PageAnon(new))
167 			hugepage_add_anon_rmap(new, vma, addr);
168 		else
169 			page_dup_rmap(new, true);
170 	} else if (PageAnon(new))
171 		page_add_anon_rmap(new, vma, addr, false);
172 	else
173 		page_add_file_rmap(new);
174 
175 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
176 		mlock_vma_page(new);
177 
178 	/* No need to invalidate - it was non-present before */
179 	update_mmu_cache(vma, addr, ptep);
180 unlock:
181 	pte_unmap_unlock(ptep, ptl);
182 out:
183 	return SWAP_AGAIN;
184 }
185 
186 /*
187  * Get rid of all migration entries and replace them by
188  * references to the indicated page.
189  */
190 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
191 {
192 	struct rmap_walk_control rwc = {
193 		.rmap_one = remove_migration_pte,
194 		.arg = old,
195 	};
196 
197 	if (locked)
198 		rmap_walk_locked(new, &rwc);
199 	else
200 		rmap_walk(new, &rwc);
201 }
202 
203 /*
204  * Something used the pte of a page under migration. We need to
205  * get to the page and wait until migration is finished.
206  * When we return from this function the fault will be retried.
207  */
208 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
209 				spinlock_t *ptl)
210 {
211 	pte_t pte;
212 	swp_entry_t entry;
213 	struct page *page;
214 
215 	spin_lock(ptl);
216 	pte = *ptep;
217 	if (!is_swap_pte(pte))
218 		goto out;
219 
220 	entry = pte_to_swp_entry(pte);
221 	if (!is_migration_entry(entry))
222 		goto out;
223 
224 	page = migration_entry_to_page(entry);
225 
226 	/*
227 	 * Once radix-tree replacement of page migration started, page_count
228 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
229 	 * against a page without get_page().
230 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
231 	 * will occur again.
232 	 */
233 	if (!get_page_unless_zero(page))
234 		goto out;
235 	pte_unmap_unlock(ptep, ptl);
236 	wait_on_page_locked(page);
237 	put_page(page);
238 	return;
239 out:
240 	pte_unmap_unlock(ptep, ptl);
241 }
242 
243 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
244 				unsigned long address)
245 {
246 	spinlock_t *ptl = pte_lockptr(mm, pmd);
247 	pte_t *ptep = pte_offset_map(pmd, address);
248 	__migration_entry_wait(mm, ptep, ptl);
249 }
250 
251 void migration_entry_wait_huge(struct vm_area_struct *vma,
252 		struct mm_struct *mm, pte_t *pte)
253 {
254 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
255 	__migration_entry_wait(mm, pte, ptl);
256 }
257 
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 							enum migrate_mode mode)
262 {
263 	struct buffer_head *bh = head;
264 
265 	/* Simple case, sync compaction */
266 	if (mode != MIGRATE_ASYNC) {
267 		do {
268 			get_bh(bh);
269 			lock_buffer(bh);
270 			bh = bh->b_this_page;
271 
272 		} while (bh != head);
273 
274 		return true;
275 	}
276 
277 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
278 	do {
279 		get_bh(bh);
280 		if (!trylock_buffer(bh)) {
281 			/*
282 			 * We failed to lock the buffer and cannot stall in
283 			 * async migration. Release the taken locks
284 			 */
285 			struct buffer_head *failed_bh = bh;
286 			put_bh(failed_bh);
287 			bh = head;
288 			while (bh != failed_bh) {
289 				unlock_buffer(bh);
290 				put_bh(bh);
291 				bh = bh->b_this_page;
292 			}
293 			return false;
294 		}
295 
296 		bh = bh->b_this_page;
297 	} while (bh != head);
298 	return true;
299 }
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 							enum migrate_mode mode)
303 {
304 	return true;
305 }
306 #endif /* CONFIG_BLOCK */
307 
308 /*
309  * Replace the page in the mapping.
310  *
311  * The number of remaining references must be:
312  * 1 for anonymous pages without a mapping
313  * 2 for pages with a mapping
314  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315  */
316 int migrate_page_move_mapping(struct address_space *mapping,
317 		struct page *newpage, struct page *page,
318 		struct buffer_head *head, enum migrate_mode mode,
319 		int extra_count)
320 {
321 	struct zone *oldzone, *newzone;
322 	int dirty;
323 	int expected_count = 1 + extra_count;
324 	void **pslot;
325 
326 	if (!mapping) {
327 		/* Anonymous page without mapping */
328 		if (page_count(page) != expected_count)
329 			return -EAGAIN;
330 
331 		/* No turning back from here */
332 		newpage->index = page->index;
333 		newpage->mapping = page->mapping;
334 		if (PageSwapBacked(page))
335 			SetPageSwapBacked(newpage);
336 
337 		return MIGRATEPAGE_SUCCESS;
338 	}
339 
340 	oldzone = page_zone(page);
341 	newzone = page_zone(newpage);
342 
343 	spin_lock_irq(&mapping->tree_lock);
344 
345 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
346  					page_index(page));
347 
348 	expected_count += 1 + page_has_private(page);
349 	if (page_count(page) != expected_count ||
350 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
351 		spin_unlock_irq(&mapping->tree_lock);
352 		return -EAGAIN;
353 	}
354 
355 	if (!page_ref_freeze(page, expected_count)) {
356 		spin_unlock_irq(&mapping->tree_lock);
357 		return -EAGAIN;
358 	}
359 
360 	/*
361 	 * In the async migration case of moving a page with buffers, lock the
362 	 * buffers using trylock before the mapping is moved. If the mapping
363 	 * was moved, we later failed to lock the buffers and could not move
364 	 * the mapping back due to an elevated page count, we would have to
365 	 * block waiting on other references to be dropped.
366 	 */
367 	if (mode == MIGRATE_ASYNC && head &&
368 			!buffer_migrate_lock_buffers(head, mode)) {
369 		page_ref_unfreeze(page, expected_count);
370 		spin_unlock_irq(&mapping->tree_lock);
371 		return -EAGAIN;
372 	}
373 
374 	/*
375 	 * Now we know that no one else is looking at the page:
376 	 * no turning back from here.
377 	 */
378 	newpage->index = page->index;
379 	newpage->mapping = page->mapping;
380 	if (PageSwapBacked(page))
381 		SetPageSwapBacked(newpage);
382 
383 	get_page(newpage);	/* add cache reference */
384 	if (PageSwapCache(page)) {
385 		SetPageSwapCache(newpage);
386 		set_page_private(newpage, page_private(page));
387 	}
388 
389 	/* Move dirty while page refs frozen and newpage not yet exposed */
390 	dirty = PageDirty(page);
391 	if (dirty) {
392 		ClearPageDirty(page);
393 		SetPageDirty(newpage);
394 	}
395 
396 	radix_tree_replace_slot(pslot, newpage);
397 
398 	/*
399 	 * Drop cache reference from old page by unfreezing
400 	 * to one less reference.
401 	 * We know this isn't the last reference.
402 	 */
403 	page_ref_unfreeze(page, expected_count - 1);
404 
405 	spin_unlock(&mapping->tree_lock);
406 	/* Leave irq disabled to prevent preemption while updating stats */
407 
408 	/*
409 	 * If moved to a different zone then also account
410 	 * the page for that zone. Other VM counters will be
411 	 * taken care of when we establish references to the
412 	 * new page and drop references to the old page.
413 	 *
414 	 * Note that anonymous pages are accounted for
415 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
416 	 * are mapped to swap space.
417 	 */
418 	if (newzone != oldzone) {
419 		__dec_zone_state(oldzone, NR_FILE_PAGES);
420 		__inc_zone_state(newzone, NR_FILE_PAGES);
421 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
422 			__dec_zone_state(oldzone, NR_SHMEM);
423 			__inc_zone_state(newzone, NR_SHMEM);
424 		}
425 		if (dirty && mapping_cap_account_dirty(mapping)) {
426 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
427 			__inc_zone_state(newzone, NR_FILE_DIRTY);
428 		}
429 	}
430 	local_irq_enable();
431 
432 	return MIGRATEPAGE_SUCCESS;
433 }
434 
435 /*
436  * The expected number of remaining references is the same as that
437  * of migrate_page_move_mapping().
438  */
439 int migrate_huge_page_move_mapping(struct address_space *mapping,
440 				   struct page *newpage, struct page *page)
441 {
442 	int expected_count;
443 	void **pslot;
444 
445 	spin_lock_irq(&mapping->tree_lock);
446 
447 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 					page_index(page));
449 
450 	expected_count = 2 + page_has_private(page);
451 	if (page_count(page) != expected_count ||
452 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
453 		spin_unlock_irq(&mapping->tree_lock);
454 		return -EAGAIN;
455 	}
456 
457 	if (!page_ref_freeze(page, expected_count)) {
458 		spin_unlock_irq(&mapping->tree_lock);
459 		return -EAGAIN;
460 	}
461 
462 	newpage->index = page->index;
463 	newpage->mapping = page->mapping;
464 
465 	get_page(newpage);
466 
467 	radix_tree_replace_slot(pslot, newpage);
468 
469 	page_ref_unfreeze(page, expected_count - 1);
470 
471 	spin_unlock_irq(&mapping->tree_lock);
472 
473 	return MIGRATEPAGE_SUCCESS;
474 }
475 
476 /*
477  * Gigantic pages are so large that we do not guarantee that page++ pointer
478  * arithmetic will work across the entire page.  We need something more
479  * specialized.
480  */
481 static void __copy_gigantic_page(struct page *dst, struct page *src,
482 				int nr_pages)
483 {
484 	int i;
485 	struct page *dst_base = dst;
486 	struct page *src_base = src;
487 
488 	for (i = 0; i < nr_pages; ) {
489 		cond_resched();
490 		copy_highpage(dst, src);
491 
492 		i++;
493 		dst = mem_map_next(dst, dst_base, i);
494 		src = mem_map_next(src, src_base, i);
495 	}
496 }
497 
498 static void copy_huge_page(struct page *dst, struct page *src)
499 {
500 	int i;
501 	int nr_pages;
502 
503 	if (PageHuge(src)) {
504 		/* hugetlbfs page */
505 		struct hstate *h = page_hstate(src);
506 		nr_pages = pages_per_huge_page(h);
507 
508 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
509 			__copy_gigantic_page(dst, src, nr_pages);
510 			return;
511 		}
512 	} else {
513 		/* thp page */
514 		BUG_ON(!PageTransHuge(src));
515 		nr_pages = hpage_nr_pages(src);
516 	}
517 
518 	for (i = 0; i < nr_pages; i++) {
519 		cond_resched();
520 		copy_highpage(dst + i, src + i);
521 	}
522 }
523 
524 /*
525  * Copy the page to its new location
526  */
527 void migrate_page_copy(struct page *newpage, struct page *page)
528 {
529 	int cpupid;
530 
531 	if (PageHuge(page) || PageTransHuge(page))
532 		copy_huge_page(newpage, page);
533 	else
534 		copy_highpage(newpage, page);
535 
536 	if (PageError(page))
537 		SetPageError(newpage);
538 	if (PageReferenced(page))
539 		SetPageReferenced(newpage);
540 	if (PageUptodate(page))
541 		SetPageUptodate(newpage);
542 	if (TestClearPageActive(page)) {
543 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
544 		SetPageActive(newpage);
545 	} else if (TestClearPageUnevictable(page))
546 		SetPageUnevictable(newpage);
547 	if (PageChecked(page))
548 		SetPageChecked(newpage);
549 	if (PageMappedToDisk(page))
550 		SetPageMappedToDisk(newpage);
551 
552 	/* Move dirty on pages not done by migrate_page_move_mapping() */
553 	if (PageDirty(page))
554 		SetPageDirty(newpage);
555 
556 	if (page_is_young(page))
557 		set_page_young(newpage);
558 	if (page_is_idle(page))
559 		set_page_idle(newpage);
560 
561 	/*
562 	 * Copy NUMA information to the new page, to prevent over-eager
563 	 * future migrations of this same page.
564 	 */
565 	cpupid = page_cpupid_xchg_last(page, -1);
566 	page_cpupid_xchg_last(newpage, cpupid);
567 
568 	ksm_migrate_page(newpage, page);
569 	/*
570 	 * Please do not reorder this without considering how mm/ksm.c's
571 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
572 	 */
573 	if (PageSwapCache(page))
574 		ClearPageSwapCache(page);
575 	ClearPagePrivate(page);
576 	set_page_private(page, 0);
577 
578 	/*
579 	 * If any waiters have accumulated on the new page then
580 	 * wake them up.
581 	 */
582 	if (PageWriteback(newpage))
583 		end_page_writeback(newpage);
584 
585 	copy_page_owner(page, newpage);
586 
587 	mem_cgroup_migrate(page, newpage);
588 }
589 
590 /************************************************************
591  *                    Migration functions
592  ***********************************************************/
593 
594 /*
595  * Common logic to directly migrate a single page suitable for
596  * pages that do not use PagePrivate/PagePrivate2.
597  *
598  * Pages are locked upon entry and exit.
599  */
600 int migrate_page(struct address_space *mapping,
601 		struct page *newpage, struct page *page,
602 		enum migrate_mode mode)
603 {
604 	int rc;
605 
606 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
607 
608 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
609 
610 	if (rc != MIGRATEPAGE_SUCCESS)
611 		return rc;
612 
613 	migrate_page_copy(newpage, page);
614 	return MIGRATEPAGE_SUCCESS;
615 }
616 EXPORT_SYMBOL(migrate_page);
617 
618 #ifdef CONFIG_BLOCK
619 /*
620  * Migration function for pages with buffers. This function can only be used
621  * if the underlying filesystem guarantees that no other references to "page"
622  * exist.
623  */
624 int buffer_migrate_page(struct address_space *mapping,
625 		struct page *newpage, struct page *page, enum migrate_mode mode)
626 {
627 	struct buffer_head *bh, *head;
628 	int rc;
629 
630 	if (!page_has_buffers(page))
631 		return migrate_page(mapping, newpage, page, mode);
632 
633 	head = page_buffers(page);
634 
635 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
636 
637 	if (rc != MIGRATEPAGE_SUCCESS)
638 		return rc;
639 
640 	/*
641 	 * In the async case, migrate_page_move_mapping locked the buffers
642 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
643 	 * need to be locked now
644 	 */
645 	if (mode != MIGRATE_ASYNC)
646 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
647 
648 	ClearPagePrivate(page);
649 	set_page_private(newpage, page_private(page));
650 	set_page_private(page, 0);
651 	put_page(page);
652 	get_page(newpage);
653 
654 	bh = head;
655 	do {
656 		set_bh_page(bh, newpage, bh_offset(bh));
657 		bh = bh->b_this_page;
658 
659 	} while (bh != head);
660 
661 	SetPagePrivate(newpage);
662 
663 	migrate_page_copy(newpage, page);
664 
665 	bh = head;
666 	do {
667 		unlock_buffer(bh);
668  		put_bh(bh);
669 		bh = bh->b_this_page;
670 
671 	} while (bh != head);
672 
673 	return MIGRATEPAGE_SUCCESS;
674 }
675 EXPORT_SYMBOL(buffer_migrate_page);
676 #endif
677 
678 /*
679  * Writeback a page to clean the dirty state
680  */
681 static int writeout(struct address_space *mapping, struct page *page)
682 {
683 	struct writeback_control wbc = {
684 		.sync_mode = WB_SYNC_NONE,
685 		.nr_to_write = 1,
686 		.range_start = 0,
687 		.range_end = LLONG_MAX,
688 		.for_reclaim = 1
689 	};
690 	int rc;
691 
692 	if (!mapping->a_ops->writepage)
693 		/* No write method for the address space */
694 		return -EINVAL;
695 
696 	if (!clear_page_dirty_for_io(page))
697 		/* Someone else already triggered a write */
698 		return -EAGAIN;
699 
700 	/*
701 	 * A dirty page may imply that the underlying filesystem has
702 	 * the page on some queue. So the page must be clean for
703 	 * migration. Writeout may mean we loose the lock and the
704 	 * page state is no longer what we checked for earlier.
705 	 * At this point we know that the migration attempt cannot
706 	 * be successful.
707 	 */
708 	remove_migration_ptes(page, page, false);
709 
710 	rc = mapping->a_ops->writepage(page, &wbc);
711 
712 	if (rc != AOP_WRITEPAGE_ACTIVATE)
713 		/* unlocked. Relock */
714 		lock_page(page);
715 
716 	return (rc < 0) ? -EIO : -EAGAIN;
717 }
718 
719 /*
720  * Default handling if a filesystem does not provide a migration function.
721  */
722 static int fallback_migrate_page(struct address_space *mapping,
723 	struct page *newpage, struct page *page, enum migrate_mode mode)
724 {
725 	if (PageDirty(page)) {
726 		/* Only writeback pages in full synchronous migration */
727 		if (mode != MIGRATE_SYNC)
728 			return -EBUSY;
729 		return writeout(mapping, page);
730 	}
731 
732 	/*
733 	 * Buffers may be managed in a filesystem specific way.
734 	 * We must have no buffers or drop them.
735 	 */
736 	if (page_has_private(page) &&
737 	    !try_to_release_page(page, GFP_KERNEL))
738 		return -EAGAIN;
739 
740 	return migrate_page(mapping, newpage, page, mode);
741 }
742 
743 /*
744  * Move a page to a newly allocated page
745  * The page is locked and all ptes have been successfully removed.
746  *
747  * The new page will have replaced the old page if this function
748  * is successful.
749  *
750  * Return value:
751  *   < 0 - error code
752  *  MIGRATEPAGE_SUCCESS - success
753  */
754 static int move_to_new_page(struct page *newpage, struct page *page,
755 				enum migrate_mode mode)
756 {
757 	struct address_space *mapping;
758 	int rc;
759 
760 	VM_BUG_ON_PAGE(!PageLocked(page), page);
761 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
762 
763 	mapping = page_mapping(page);
764 	if (!mapping)
765 		rc = migrate_page(mapping, newpage, page, mode);
766 	else if (mapping->a_ops->migratepage)
767 		/*
768 		 * Most pages have a mapping and most filesystems provide a
769 		 * migratepage callback. Anonymous pages are part of swap
770 		 * space which also has its own migratepage callback. This
771 		 * is the most common path for page migration.
772 		 */
773 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
774 	else
775 		rc = fallback_migrate_page(mapping, newpage, page, mode);
776 
777 	/*
778 	 * When successful, old pagecache page->mapping must be cleared before
779 	 * page is freed; but stats require that PageAnon be left as PageAnon.
780 	 */
781 	if (rc == MIGRATEPAGE_SUCCESS) {
782 		if (!PageAnon(page))
783 			page->mapping = NULL;
784 	}
785 	return rc;
786 }
787 
788 static int __unmap_and_move(struct page *page, struct page *newpage,
789 				int force, enum migrate_mode mode)
790 {
791 	int rc = -EAGAIN;
792 	int page_was_mapped = 0;
793 	struct anon_vma *anon_vma = NULL;
794 
795 	if (!trylock_page(page)) {
796 		if (!force || mode == MIGRATE_ASYNC)
797 			goto out;
798 
799 		/*
800 		 * It's not safe for direct compaction to call lock_page.
801 		 * For example, during page readahead pages are added locked
802 		 * to the LRU. Later, when the IO completes the pages are
803 		 * marked uptodate and unlocked. However, the queueing
804 		 * could be merging multiple pages for one bio (e.g.
805 		 * mpage_readpages). If an allocation happens for the
806 		 * second or third page, the process can end up locking
807 		 * the same page twice and deadlocking. Rather than
808 		 * trying to be clever about what pages can be locked,
809 		 * avoid the use of lock_page for direct compaction
810 		 * altogether.
811 		 */
812 		if (current->flags & PF_MEMALLOC)
813 			goto out;
814 
815 		lock_page(page);
816 	}
817 
818 	if (PageWriteback(page)) {
819 		/*
820 		 * Only in the case of a full synchronous migration is it
821 		 * necessary to wait for PageWriteback. In the async case,
822 		 * the retry loop is too short and in the sync-light case,
823 		 * the overhead of stalling is too much
824 		 */
825 		if (mode != MIGRATE_SYNC) {
826 			rc = -EBUSY;
827 			goto out_unlock;
828 		}
829 		if (!force)
830 			goto out_unlock;
831 		wait_on_page_writeback(page);
832 	}
833 
834 	/*
835 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
836 	 * we cannot notice that anon_vma is freed while we migrates a page.
837 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
838 	 * of migration. File cache pages are no problem because of page_lock()
839 	 * File Caches may use write_page() or lock_page() in migration, then,
840 	 * just care Anon page here.
841 	 *
842 	 * Only page_get_anon_vma() understands the subtleties of
843 	 * getting a hold on an anon_vma from outside one of its mms.
844 	 * But if we cannot get anon_vma, then we won't need it anyway,
845 	 * because that implies that the anon page is no longer mapped
846 	 * (and cannot be remapped so long as we hold the page lock).
847 	 */
848 	if (PageAnon(page) && !PageKsm(page))
849 		anon_vma = page_get_anon_vma(page);
850 
851 	/*
852 	 * Block others from accessing the new page when we get around to
853 	 * establishing additional references. We are usually the only one
854 	 * holding a reference to newpage at this point. We used to have a BUG
855 	 * here if trylock_page(newpage) fails, but would like to allow for
856 	 * cases where there might be a race with the previous use of newpage.
857 	 * This is much like races on refcount of oldpage: just don't BUG().
858 	 */
859 	if (unlikely(!trylock_page(newpage)))
860 		goto out_unlock;
861 
862 	if (unlikely(isolated_balloon_page(page))) {
863 		/*
864 		 * A ballooned page does not need any special attention from
865 		 * physical to virtual reverse mapping procedures.
866 		 * Skip any attempt to unmap PTEs or to remap swap cache,
867 		 * in order to avoid burning cycles at rmap level, and perform
868 		 * the page migration right away (proteced by page lock).
869 		 */
870 		rc = balloon_page_migrate(newpage, page, mode);
871 		goto out_unlock_both;
872 	}
873 
874 	/*
875 	 * Corner case handling:
876 	 * 1. When a new swap-cache page is read into, it is added to the LRU
877 	 * and treated as swapcache but it has no rmap yet.
878 	 * Calling try_to_unmap() against a page->mapping==NULL page will
879 	 * trigger a BUG.  So handle it here.
880 	 * 2. An orphaned page (see truncate_complete_page) might have
881 	 * fs-private metadata. The page can be picked up due to memory
882 	 * offlining.  Everywhere else except page reclaim, the page is
883 	 * invisible to the vm, so the page can not be migrated.  So try to
884 	 * free the metadata, so the page can be freed.
885 	 */
886 	if (!page->mapping) {
887 		VM_BUG_ON_PAGE(PageAnon(page), page);
888 		if (page_has_private(page)) {
889 			try_to_free_buffers(page);
890 			goto out_unlock_both;
891 		}
892 	} else if (page_mapped(page)) {
893 		/* Establish migration ptes */
894 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
895 				page);
896 		try_to_unmap(page,
897 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
898 		page_was_mapped = 1;
899 	}
900 
901 	if (!page_mapped(page))
902 		rc = move_to_new_page(newpage, page, mode);
903 
904 	if (page_was_mapped)
905 		remove_migration_ptes(page,
906 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
907 
908 out_unlock_both:
909 	unlock_page(newpage);
910 out_unlock:
911 	/* Drop an anon_vma reference if we took one */
912 	if (anon_vma)
913 		put_anon_vma(anon_vma);
914 	unlock_page(page);
915 out:
916 	return rc;
917 }
918 
919 /*
920  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
921  * around it.
922  */
923 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
924 #define ICE_noinline noinline
925 #else
926 #define ICE_noinline
927 #endif
928 
929 /*
930  * Obtain the lock on page, remove all ptes and migrate the page
931  * to the newly allocated page in newpage.
932  */
933 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
934 				   free_page_t put_new_page,
935 				   unsigned long private, struct page *page,
936 				   int force, enum migrate_mode mode,
937 				   enum migrate_reason reason)
938 {
939 	int rc = MIGRATEPAGE_SUCCESS;
940 	int *result = NULL;
941 	struct page *newpage;
942 
943 	newpage = get_new_page(page, private, &result);
944 	if (!newpage)
945 		return -ENOMEM;
946 
947 	if (page_count(page) == 1) {
948 		/* page was freed from under us. So we are done. */
949 		goto out;
950 	}
951 
952 	if (unlikely(PageTransHuge(page))) {
953 		lock_page(page);
954 		rc = split_huge_page(page);
955 		unlock_page(page);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	rc = __unmap_and_move(page, newpage, force, mode);
961 	if (rc == MIGRATEPAGE_SUCCESS) {
962 		put_new_page = NULL;
963 		set_page_owner_migrate_reason(newpage, reason);
964 	}
965 
966 out:
967 	if (rc != -EAGAIN) {
968 		/*
969 		 * A page that has been migrated has all references
970 		 * removed and will be freed. A page that has not been
971 		 * migrated will have kepts its references and be
972 		 * restored.
973 		 */
974 		list_del(&page->lru);
975 		dec_zone_page_state(page, NR_ISOLATED_ANON +
976 				page_is_file_cache(page));
977 		/* Soft-offlined page shouldn't go through lru cache list */
978 		if (reason == MR_MEMORY_FAILURE) {
979 			put_page(page);
980 			if (!test_set_page_hwpoison(page))
981 				num_poisoned_pages_inc();
982 		} else
983 			putback_lru_page(page);
984 	}
985 
986 	/*
987 	 * If migration was not successful and there's a freeing callback, use
988 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
989 	 * during isolation.
990 	 */
991 	if (put_new_page)
992 		put_new_page(newpage, private);
993 	else if (unlikely(__is_movable_balloon_page(newpage))) {
994 		/* drop our reference, page already in the balloon */
995 		put_page(newpage);
996 	} else
997 		putback_lru_page(newpage);
998 
999 	if (result) {
1000 		if (rc)
1001 			*result = rc;
1002 		else
1003 			*result = page_to_nid(newpage);
1004 	}
1005 	return rc;
1006 }
1007 
1008 /*
1009  * Counterpart of unmap_and_move_page() for hugepage migration.
1010  *
1011  * This function doesn't wait the completion of hugepage I/O
1012  * because there is no race between I/O and migration for hugepage.
1013  * Note that currently hugepage I/O occurs only in direct I/O
1014  * where no lock is held and PG_writeback is irrelevant,
1015  * and writeback status of all subpages are counted in the reference
1016  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1017  * under direct I/O, the reference of the head page is 512 and a bit more.)
1018  * This means that when we try to migrate hugepage whose subpages are
1019  * doing direct I/O, some references remain after try_to_unmap() and
1020  * hugepage migration fails without data corruption.
1021  *
1022  * There is also no race when direct I/O is issued on the page under migration,
1023  * because then pte is replaced with migration swap entry and direct I/O code
1024  * will wait in the page fault for migration to complete.
1025  */
1026 static int unmap_and_move_huge_page(new_page_t get_new_page,
1027 				free_page_t put_new_page, unsigned long private,
1028 				struct page *hpage, int force,
1029 				enum migrate_mode mode, int reason)
1030 {
1031 	int rc = -EAGAIN;
1032 	int *result = NULL;
1033 	int page_was_mapped = 0;
1034 	struct page *new_hpage;
1035 	struct anon_vma *anon_vma = NULL;
1036 
1037 	/*
1038 	 * Movability of hugepages depends on architectures and hugepage size.
1039 	 * This check is necessary because some callers of hugepage migration
1040 	 * like soft offline and memory hotremove don't walk through page
1041 	 * tables or check whether the hugepage is pmd-based or not before
1042 	 * kicking migration.
1043 	 */
1044 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1045 		putback_active_hugepage(hpage);
1046 		return -ENOSYS;
1047 	}
1048 
1049 	new_hpage = get_new_page(hpage, private, &result);
1050 	if (!new_hpage)
1051 		return -ENOMEM;
1052 
1053 	if (!trylock_page(hpage)) {
1054 		if (!force || mode != MIGRATE_SYNC)
1055 			goto out;
1056 		lock_page(hpage);
1057 	}
1058 
1059 	if (PageAnon(hpage))
1060 		anon_vma = page_get_anon_vma(hpage);
1061 
1062 	if (unlikely(!trylock_page(new_hpage)))
1063 		goto put_anon;
1064 
1065 	if (page_mapped(hpage)) {
1066 		try_to_unmap(hpage,
1067 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1068 		page_was_mapped = 1;
1069 	}
1070 
1071 	if (!page_mapped(hpage))
1072 		rc = move_to_new_page(new_hpage, hpage, mode);
1073 
1074 	if (page_was_mapped)
1075 		remove_migration_ptes(hpage,
1076 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1077 
1078 	unlock_page(new_hpage);
1079 
1080 put_anon:
1081 	if (anon_vma)
1082 		put_anon_vma(anon_vma);
1083 
1084 	if (rc == MIGRATEPAGE_SUCCESS) {
1085 		hugetlb_cgroup_migrate(hpage, new_hpage);
1086 		put_new_page = NULL;
1087 		set_page_owner_migrate_reason(new_hpage, reason);
1088 	}
1089 
1090 	unlock_page(hpage);
1091 out:
1092 	if (rc != -EAGAIN)
1093 		putback_active_hugepage(hpage);
1094 
1095 	/*
1096 	 * If migration was not successful and there's a freeing callback, use
1097 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1098 	 * isolation.
1099 	 */
1100 	if (put_new_page)
1101 		put_new_page(new_hpage, private);
1102 	else
1103 		putback_active_hugepage(new_hpage);
1104 
1105 	if (result) {
1106 		if (rc)
1107 			*result = rc;
1108 		else
1109 			*result = page_to_nid(new_hpage);
1110 	}
1111 	return rc;
1112 }
1113 
1114 /*
1115  * migrate_pages - migrate the pages specified in a list, to the free pages
1116  *		   supplied as the target for the page migration
1117  *
1118  * @from:		The list of pages to be migrated.
1119  * @get_new_page:	The function used to allocate free pages to be used
1120  *			as the target of the page migration.
1121  * @put_new_page:	The function used to free target pages if migration
1122  *			fails, or NULL if no special handling is necessary.
1123  * @private:		Private data to be passed on to get_new_page()
1124  * @mode:		The migration mode that specifies the constraints for
1125  *			page migration, if any.
1126  * @reason:		The reason for page migration.
1127  *
1128  * The function returns after 10 attempts or if no pages are movable any more
1129  * because the list has become empty or no retryable pages exist any more.
1130  * The caller should call putback_movable_pages() to return pages to the LRU
1131  * or free list only if ret != 0.
1132  *
1133  * Returns the number of pages that were not migrated, or an error code.
1134  */
1135 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1136 		free_page_t put_new_page, unsigned long private,
1137 		enum migrate_mode mode, int reason)
1138 {
1139 	int retry = 1;
1140 	int nr_failed = 0;
1141 	int nr_succeeded = 0;
1142 	int pass = 0;
1143 	struct page *page;
1144 	struct page *page2;
1145 	int swapwrite = current->flags & PF_SWAPWRITE;
1146 	int rc;
1147 
1148 	if (!swapwrite)
1149 		current->flags |= PF_SWAPWRITE;
1150 
1151 	for(pass = 0; pass < 10 && retry; pass++) {
1152 		retry = 0;
1153 
1154 		list_for_each_entry_safe(page, page2, from, lru) {
1155 			cond_resched();
1156 
1157 			if (PageHuge(page))
1158 				rc = unmap_and_move_huge_page(get_new_page,
1159 						put_new_page, private, page,
1160 						pass > 2, mode, reason);
1161 			else
1162 				rc = unmap_and_move(get_new_page, put_new_page,
1163 						private, page, pass > 2, mode,
1164 						reason);
1165 
1166 			switch(rc) {
1167 			case -ENOMEM:
1168 				goto out;
1169 			case -EAGAIN:
1170 				retry++;
1171 				break;
1172 			case MIGRATEPAGE_SUCCESS:
1173 				nr_succeeded++;
1174 				break;
1175 			default:
1176 				/*
1177 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1178 				 * unlike -EAGAIN case, the failed page is
1179 				 * removed from migration page list and not
1180 				 * retried in the next outer loop.
1181 				 */
1182 				nr_failed++;
1183 				break;
1184 			}
1185 		}
1186 	}
1187 	nr_failed += retry;
1188 	rc = nr_failed;
1189 out:
1190 	if (nr_succeeded)
1191 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1192 	if (nr_failed)
1193 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1194 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1195 
1196 	if (!swapwrite)
1197 		current->flags &= ~PF_SWAPWRITE;
1198 
1199 	return rc;
1200 }
1201 
1202 #ifdef CONFIG_NUMA
1203 /*
1204  * Move a list of individual pages
1205  */
1206 struct page_to_node {
1207 	unsigned long addr;
1208 	struct page *page;
1209 	int node;
1210 	int status;
1211 };
1212 
1213 static struct page *new_page_node(struct page *p, unsigned long private,
1214 		int **result)
1215 {
1216 	struct page_to_node *pm = (struct page_to_node *)private;
1217 
1218 	while (pm->node != MAX_NUMNODES && pm->page != p)
1219 		pm++;
1220 
1221 	if (pm->node == MAX_NUMNODES)
1222 		return NULL;
1223 
1224 	*result = &pm->status;
1225 
1226 	if (PageHuge(p))
1227 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1228 					pm->node);
1229 	else
1230 		return __alloc_pages_node(pm->node,
1231 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1232 }
1233 
1234 /*
1235  * Move a set of pages as indicated in the pm array. The addr
1236  * field must be set to the virtual address of the page to be moved
1237  * and the node number must contain a valid target node.
1238  * The pm array ends with node = MAX_NUMNODES.
1239  */
1240 static int do_move_page_to_node_array(struct mm_struct *mm,
1241 				      struct page_to_node *pm,
1242 				      int migrate_all)
1243 {
1244 	int err;
1245 	struct page_to_node *pp;
1246 	LIST_HEAD(pagelist);
1247 
1248 	down_read(&mm->mmap_sem);
1249 
1250 	/*
1251 	 * Build a list of pages to migrate
1252 	 */
1253 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1254 		struct vm_area_struct *vma;
1255 		struct page *page;
1256 
1257 		err = -EFAULT;
1258 		vma = find_vma(mm, pp->addr);
1259 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1260 			goto set_status;
1261 
1262 		/* FOLL_DUMP to ignore special (like zero) pages */
1263 		page = follow_page(vma, pp->addr,
1264 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1265 
1266 		err = PTR_ERR(page);
1267 		if (IS_ERR(page))
1268 			goto set_status;
1269 
1270 		err = -ENOENT;
1271 		if (!page)
1272 			goto set_status;
1273 
1274 		pp->page = page;
1275 		err = page_to_nid(page);
1276 
1277 		if (err == pp->node)
1278 			/*
1279 			 * Node already in the right place
1280 			 */
1281 			goto put_and_set;
1282 
1283 		err = -EACCES;
1284 		if (page_mapcount(page) > 1 &&
1285 				!migrate_all)
1286 			goto put_and_set;
1287 
1288 		if (PageHuge(page)) {
1289 			if (PageHead(page))
1290 				isolate_huge_page(page, &pagelist);
1291 			goto put_and_set;
1292 		}
1293 
1294 		err = isolate_lru_page(page);
1295 		if (!err) {
1296 			list_add_tail(&page->lru, &pagelist);
1297 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1298 					    page_is_file_cache(page));
1299 		}
1300 put_and_set:
1301 		/*
1302 		 * Either remove the duplicate refcount from
1303 		 * isolate_lru_page() or drop the page ref if it was
1304 		 * not isolated.
1305 		 */
1306 		put_page(page);
1307 set_status:
1308 		pp->status = err;
1309 	}
1310 
1311 	err = 0;
1312 	if (!list_empty(&pagelist)) {
1313 		err = migrate_pages(&pagelist, new_page_node, NULL,
1314 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1315 		if (err)
1316 			putback_movable_pages(&pagelist);
1317 	}
1318 
1319 	up_read(&mm->mmap_sem);
1320 	return err;
1321 }
1322 
1323 /*
1324  * Migrate an array of page address onto an array of nodes and fill
1325  * the corresponding array of status.
1326  */
1327 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1328 			 unsigned long nr_pages,
1329 			 const void __user * __user *pages,
1330 			 const int __user *nodes,
1331 			 int __user *status, int flags)
1332 {
1333 	struct page_to_node *pm;
1334 	unsigned long chunk_nr_pages;
1335 	unsigned long chunk_start;
1336 	int err;
1337 
1338 	err = -ENOMEM;
1339 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1340 	if (!pm)
1341 		goto out;
1342 
1343 	migrate_prep();
1344 
1345 	/*
1346 	 * Store a chunk of page_to_node array in a page,
1347 	 * but keep the last one as a marker
1348 	 */
1349 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1350 
1351 	for (chunk_start = 0;
1352 	     chunk_start < nr_pages;
1353 	     chunk_start += chunk_nr_pages) {
1354 		int j;
1355 
1356 		if (chunk_start + chunk_nr_pages > nr_pages)
1357 			chunk_nr_pages = nr_pages - chunk_start;
1358 
1359 		/* fill the chunk pm with addrs and nodes from user-space */
1360 		for (j = 0; j < chunk_nr_pages; j++) {
1361 			const void __user *p;
1362 			int node;
1363 
1364 			err = -EFAULT;
1365 			if (get_user(p, pages + j + chunk_start))
1366 				goto out_pm;
1367 			pm[j].addr = (unsigned long) p;
1368 
1369 			if (get_user(node, nodes + j + chunk_start))
1370 				goto out_pm;
1371 
1372 			err = -ENODEV;
1373 			if (node < 0 || node >= MAX_NUMNODES)
1374 				goto out_pm;
1375 
1376 			if (!node_state(node, N_MEMORY))
1377 				goto out_pm;
1378 
1379 			err = -EACCES;
1380 			if (!node_isset(node, task_nodes))
1381 				goto out_pm;
1382 
1383 			pm[j].node = node;
1384 		}
1385 
1386 		/* End marker for this chunk */
1387 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1388 
1389 		/* Migrate this chunk */
1390 		err = do_move_page_to_node_array(mm, pm,
1391 						 flags & MPOL_MF_MOVE_ALL);
1392 		if (err < 0)
1393 			goto out_pm;
1394 
1395 		/* Return status information */
1396 		for (j = 0; j < chunk_nr_pages; j++)
1397 			if (put_user(pm[j].status, status + j + chunk_start)) {
1398 				err = -EFAULT;
1399 				goto out_pm;
1400 			}
1401 	}
1402 	err = 0;
1403 
1404 out_pm:
1405 	free_page((unsigned long)pm);
1406 out:
1407 	return err;
1408 }
1409 
1410 /*
1411  * Determine the nodes of an array of pages and store it in an array of status.
1412  */
1413 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1414 				const void __user **pages, int *status)
1415 {
1416 	unsigned long i;
1417 
1418 	down_read(&mm->mmap_sem);
1419 
1420 	for (i = 0; i < nr_pages; i++) {
1421 		unsigned long addr = (unsigned long)(*pages);
1422 		struct vm_area_struct *vma;
1423 		struct page *page;
1424 		int err = -EFAULT;
1425 
1426 		vma = find_vma(mm, addr);
1427 		if (!vma || addr < vma->vm_start)
1428 			goto set_status;
1429 
1430 		/* FOLL_DUMP to ignore special (like zero) pages */
1431 		page = follow_page(vma, addr, FOLL_DUMP);
1432 
1433 		err = PTR_ERR(page);
1434 		if (IS_ERR(page))
1435 			goto set_status;
1436 
1437 		err = page ? page_to_nid(page) : -ENOENT;
1438 set_status:
1439 		*status = err;
1440 
1441 		pages++;
1442 		status++;
1443 	}
1444 
1445 	up_read(&mm->mmap_sem);
1446 }
1447 
1448 /*
1449  * Determine the nodes of a user array of pages and store it in
1450  * a user array of status.
1451  */
1452 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1453 			 const void __user * __user *pages,
1454 			 int __user *status)
1455 {
1456 #define DO_PAGES_STAT_CHUNK_NR 16
1457 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1458 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1459 
1460 	while (nr_pages) {
1461 		unsigned long chunk_nr;
1462 
1463 		chunk_nr = nr_pages;
1464 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1465 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1466 
1467 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1468 			break;
1469 
1470 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1471 
1472 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1473 			break;
1474 
1475 		pages += chunk_nr;
1476 		status += chunk_nr;
1477 		nr_pages -= chunk_nr;
1478 	}
1479 	return nr_pages ? -EFAULT : 0;
1480 }
1481 
1482 /*
1483  * Move a list of pages in the address space of the currently executing
1484  * process.
1485  */
1486 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1487 		const void __user * __user *, pages,
1488 		const int __user *, nodes,
1489 		int __user *, status, int, flags)
1490 {
1491 	const struct cred *cred = current_cred(), *tcred;
1492 	struct task_struct *task;
1493 	struct mm_struct *mm;
1494 	int err;
1495 	nodemask_t task_nodes;
1496 
1497 	/* Check flags */
1498 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1499 		return -EINVAL;
1500 
1501 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1502 		return -EPERM;
1503 
1504 	/* Find the mm_struct */
1505 	rcu_read_lock();
1506 	task = pid ? find_task_by_vpid(pid) : current;
1507 	if (!task) {
1508 		rcu_read_unlock();
1509 		return -ESRCH;
1510 	}
1511 	get_task_struct(task);
1512 
1513 	/*
1514 	 * Check if this process has the right to modify the specified
1515 	 * process. The right exists if the process has administrative
1516 	 * capabilities, superuser privileges or the same
1517 	 * userid as the target process.
1518 	 */
1519 	tcred = __task_cred(task);
1520 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1521 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1522 	    !capable(CAP_SYS_NICE)) {
1523 		rcu_read_unlock();
1524 		err = -EPERM;
1525 		goto out;
1526 	}
1527 	rcu_read_unlock();
1528 
1529  	err = security_task_movememory(task);
1530  	if (err)
1531 		goto out;
1532 
1533 	task_nodes = cpuset_mems_allowed(task);
1534 	mm = get_task_mm(task);
1535 	put_task_struct(task);
1536 
1537 	if (!mm)
1538 		return -EINVAL;
1539 
1540 	if (nodes)
1541 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1542 				    nodes, status, flags);
1543 	else
1544 		err = do_pages_stat(mm, nr_pages, pages, status);
1545 
1546 	mmput(mm);
1547 	return err;
1548 
1549 out:
1550 	put_task_struct(task);
1551 	return err;
1552 }
1553 
1554 #ifdef CONFIG_NUMA_BALANCING
1555 /*
1556  * Returns true if this is a safe migration target node for misplaced NUMA
1557  * pages. Currently it only checks the watermarks which crude
1558  */
1559 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1560 				   unsigned long nr_migrate_pages)
1561 {
1562 	int z;
1563 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1564 		struct zone *zone = pgdat->node_zones + z;
1565 
1566 		if (!populated_zone(zone))
1567 			continue;
1568 
1569 		if (!zone_reclaimable(zone))
1570 			continue;
1571 
1572 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1573 		if (!zone_watermark_ok(zone, 0,
1574 				       high_wmark_pages(zone) +
1575 				       nr_migrate_pages,
1576 				       0, 0))
1577 			continue;
1578 		return true;
1579 	}
1580 	return false;
1581 }
1582 
1583 static struct page *alloc_misplaced_dst_page(struct page *page,
1584 					   unsigned long data,
1585 					   int **result)
1586 {
1587 	int nid = (int) data;
1588 	struct page *newpage;
1589 
1590 	newpage = __alloc_pages_node(nid,
1591 					 (GFP_HIGHUSER_MOVABLE |
1592 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1593 					  __GFP_NORETRY | __GFP_NOWARN) &
1594 					 ~__GFP_RECLAIM, 0);
1595 
1596 	return newpage;
1597 }
1598 
1599 /*
1600  * page migration rate limiting control.
1601  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1602  * window of time. Default here says do not migrate more than 1280M per second.
1603  */
1604 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1605 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1606 
1607 /* Returns true if the node is migrate rate-limited after the update */
1608 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1609 					unsigned long nr_pages)
1610 {
1611 	/*
1612 	 * Rate-limit the amount of data that is being migrated to a node.
1613 	 * Optimal placement is no good if the memory bus is saturated and
1614 	 * all the time is being spent migrating!
1615 	 */
1616 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1617 		spin_lock(&pgdat->numabalancing_migrate_lock);
1618 		pgdat->numabalancing_migrate_nr_pages = 0;
1619 		pgdat->numabalancing_migrate_next_window = jiffies +
1620 			msecs_to_jiffies(migrate_interval_millisecs);
1621 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1622 	}
1623 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1624 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1625 								nr_pages);
1626 		return true;
1627 	}
1628 
1629 	/*
1630 	 * This is an unlocked non-atomic update so errors are possible.
1631 	 * The consequences are failing to migrate when we potentiall should
1632 	 * have which is not severe enough to warrant locking. If it is ever
1633 	 * a problem, it can be converted to a per-cpu counter.
1634 	 */
1635 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1636 	return false;
1637 }
1638 
1639 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1640 {
1641 	int page_lru;
1642 
1643 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1644 
1645 	/* Avoid migrating to a node that is nearly full */
1646 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1647 		return 0;
1648 
1649 	if (isolate_lru_page(page))
1650 		return 0;
1651 
1652 	/*
1653 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1654 	 * check on page_count(), so we must do it here, now that the page
1655 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1656 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1657 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1658 	 */
1659 	if (PageTransHuge(page) && page_count(page) != 3) {
1660 		putback_lru_page(page);
1661 		return 0;
1662 	}
1663 
1664 	page_lru = page_is_file_cache(page);
1665 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1666 				hpage_nr_pages(page));
1667 
1668 	/*
1669 	 * Isolating the page has taken another reference, so the
1670 	 * caller's reference can be safely dropped without the page
1671 	 * disappearing underneath us during migration.
1672 	 */
1673 	put_page(page);
1674 	return 1;
1675 }
1676 
1677 bool pmd_trans_migrating(pmd_t pmd)
1678 {
1679 	struct page *page = pmd_page(pmd);
1680 	return PageLocked(page);
1681 }
1682 
1683 /*
1684  * Attempt to migrate a misplaced page to the specified destination
1685  * node. Caller is expected to have an elevated reference count on
1686  * the page that will be dropped by this function before returning.
1687  */
1688 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1689 			   int node)
1690 {
1691 	pg_data_t *pgdat = NODE_DATA(node);
1692 	int isolated;
1693 	int nr_remaining;
1694 	LIST_HEAD(migratepages);
1695 
1696 	/*
1697 	 * Don't migrate file pages that are mapped in multiple processes
1698 	 * with execute permissions as they are probably shared libraries.
1699 	 */
1700 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1701 	    (vma->vm_flags & VM_EXEC))
1702 		goto out;
1703 
1704 	/*
1705 	 * Rate-limit the amount of data that is being migrated to a node.
1706 	 * Optimal placement is no good if the memory bus is saturated and
1707 	 * all the time is being spent migrating!
1708 	 */
1709 	if (numamigrate_update_ratelimit(pgdat, 1))
1710 		goto out;
1711 
1712 	isolated = numamigrate_isolate_page(pgdat, page);
1713 	if (!isolated)
1714 		goto out;
1715 
1716 	list_add(&page->lru, &migratepages);
1717 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1718 				     NULL, node, MIGRATE_ASYNC,
1719 				     MR_NUMA_MISPLACED);
1720 	if (nr_remaining) {
1721 		if (!list_empty(&migratepages)) {
1722 			list_del(&page->lru);
1723 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1724 					page_is_file_cache(page));
1725 			putback_lru_page(page);
1726 		}
1727 		isolated = 0;
1728 	} else
1729 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1730 	BUG_ON(!list_empty(&migratepages));
1731 	return isolated;
1732 
1733 out:
1734 	put_page(page);
1735 	return 0;
1736 }
1737 #endif /* CONFIG_NUMA_BALANCING */
1738 
1739 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1740 /*
1741  * Migrates a THP to a given target node. page must be locked and is unlocked
1742  * before returning.
1743  */
1744 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1745 				struct vm_area_struct *vma,
1746 				pmd_t *pmd, pmd_t entry,
1747 				unsigned long address,
1748 				struct page *page, int node)
1749 {
1750 	spinlock_t *ptl;
1751 	pg_data_t *pgdat = NODE_DATA(node);
1752 	int isolated = 0;
1753 	struct page *new_page = NULL;
1754 	int page_lru = page_is_file_cache(page);
1755 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1756 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1757 	pmd_t orig_entry;
1758 
1759 	/*
1760 	 * Rate-limit the amount of data that is being migrated to a node.
1761 	 * Optimal placement is no good if the memory bus is saturated and
1762 	 * all the time is being spent migrating!
1763 	 */
1764 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1765 		goto out_dropref;
1766 
1767 	new_page = alloc_pages_node(node,
1768 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1769 		HPAGE_PMD_ORDER);
1770 	if (!new_page)
1771 		goto out_fail;
1772 	prep_transhuge_page(new_page);
1773 
1774 	isolated = numamigrate_isolate_page(pgdat, page);
1775 	if (!isolated) {
1776 		put_page(new_page);
1777 		goto out_fail;
1778 	}
1779 	/*
1780 	 * We are not sure a pending tlb flush here is for a huge page
1781 	 * mapping or not. Hence use the tlb range variant
1782 	 */
1783 	if (mm_tlb_flush_pending(mm))
1784 		flush_tlb_range(vma, mmun_start, mmun_end);
1785 
1786 	/* Prepare a page as a migration target */
1787 	__SetPageLocked(new_page);
1788 	SetPageSwapBacked(new_page);
1789 
1790 	/* anon mapping, we can simply copy page->mapping to the new page: */
1791 	new_page->mapping = page->mapping;
1792 	new_page->index = page->index;
1793 	migrate_page_copy(new_page, page);
1794 	WARN_ON(PageLRU(new_page));
1795 
1796 	/* Recheck the target PMD */
1797 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1798 	ptl = pmd_lock(mm, pmd);
1799 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1800 fail_putback:
1801 		spin_unlock(ptl);
1802 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1803 
1804 		/* Reverse changes made by migrate_page_copy() */
1805 		if (TestClearPageActive(new_page))
1806 			SetPageActive(page);
1807 		if (TestClearPageUnevictable(new_page))
1808 			SetPageUnevictable(page);
1809 
1810 		unlock_page(new_page);
1811 		put_page(new_page);		/* Free it */
1812 
1813 		/* Retake the callers reference and putback on LRU */
1814 		get_page(page);
1815 		putback_lru_page(page);
1816 		mod_zone_page_state(page_zone(page),
1817 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1818 
1819 		goto out_unlock;
1820 	}
1821 
1822 	orig_entry = *pmd;
1823 	entry = mk_pmd(new_page, vma->vm_page_prot);
1824 	entry = pmd_mkhuge(entry);
1825 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1826 
1827 	/*
1828 	 * Clear the old entry under pagetable lock and establish the new PTE.
1829 	 * Any parallel GUP will either observe the old page blocking on the
1830 	 * page lock, block on the page table lock or observe the new page.
1831 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1832 	 * guarantee the copy is visible before the pagetable update.
1833 	 */
1834 	flush_cache_range(vma, mmun_start, mmun_end);
1835 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1836 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1837 	set_pmd_at(mm, mmun_start, pmd, entry);
1838 	update_mmu_cache_pmd(vma, address, &entry);
1839 
1840 	if (page_count(page) != 2) {
1841 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1842 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1843 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1844 		update_mmu_cache_pmd(vma, address, &entry);
1845 		page_remove_rmap(new_page, true);
1846 		goto fail_putback;
1847 	}
1848 
1849 	mlock_migrate_page(new_page, page);
1850 	page_remove_rmap(page, true);
1851 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1852 
1853 	spin_unlock(ptl);
1854 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1855 
1856 	/* Take an "isolate" reference and put new page on the LRU. */
1857 	get_page(new_page);
1858 	putback_lru_page(new_page);
1859 
1860 	unlock_page(new_page);
1861 	unlock_page(page);
1862 	put_page(page);			/* Drop the rmap reference */
1863 	put_page(page);			/* Drop the LRU isolation reference */
1864 
1865 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1866 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1867 
1868 	mod_zone_page_state(page_zone(page),
1869 			NR_ISOLATED_ANON + page_lru,
1870 			-HPAGE_PMD_NR);
1871 	return isolated;
1872 
1873 out_fail:
1874 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1875 out_dropref:
1876 	ptl = pmd_lock(mm, pmd);
1877 	if (pmd_same(*pmd, entry)) {
1878 		entry = pmd_modify(entry, vma->vm_page_prot);
1879 		set_pmd_at(mm, mmun_start, pmd, entry);
1880 		update_mmu_cache_pmd(vma, address, &entry);
1881 	}
1882 	spin_unlock(ptl);
1883 
1884 out_unlock:
1885 	unlock_page(page);
1886 	put_page(page);
1887 	return 0;
1888 }
1889 #endif /* CONFIG_NUMA_BALANCING */
1890 
1891 #endif /* CONFIG_NUMA */
1892