xref: /openbmc/linux/mm/migrate.c (revision 10b62a2f)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/pfn_t.h>
40 #include <linux/memremap.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/balloon_compaction.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 
49 #include <asm/tlbflush.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/migrate.h>
53 
54 #include "internal.h"
55 
56 /*
57  * migrate_prep() needs to be called before we start compiling a list of pages
58  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
59  * undesirable, use migrate_prep_local()
60  */
61 int migrate_prep(void)
62 {
63 	/*
64 	 * Clear the LRU lists so pages can be isolated.
65 	 * Note that pages may be moved off the LRU after we have
66 	 * drained them. Those pages will fail to migrate like other
67 	 * pages that may be busy.
68 	 */
69 	lru_add_drain_all();
70 
71 	return 0;
72 }
73 
74 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
75 int migrate_prep_local(void)
76 {
77 	lru_add_drain();
78 
79 	return 0;
80 }
81 
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 	struct address_space *mapping;
85 
86 	/*
87 	 * Avoid burning cycles with pages that are yet under __free_pages(),
88 	 * or just got freed under us.
89 	 *
90 	 * In case we 'win' a race for a movable page being freed under us and
91 	 * raise its refcount preventing __free_pages() from doing its job
92 	 * the put_page() at the end of this block will take care of
93 	 * release this page, thus avoiding a nasty leakage.
94 	 */
95 	if (unlikely(!get_page_unless_zero(page)))
96 		goto out;
97 
98 	/*
99 	 * Check PageMovable before holding a PG_lock because page's owner
100 	 * assumes anybody doesn't touch PG_lock of newly allocated page
101 	 * so unconditionally grapping the lock ruins page's owner side.
102 	 */
103 	if (unlikely(!__PageMovable(page)))
104 		goto out_putpage;
105 	/*
106 	 * As movable pages are not isolated from LRU lists, concurrent
107 	 * compaction threads can race against page migration functions
108 	 * as well as race against the releasing a page.
109 	 *
110 	 * In order to avoid having an already isolated movable page
111 	 * being (wrongly) re-isolated while it is under migration,
112 	 * or to avoid attempting to isolate pages being released,
113 	 * lets be sure we have the page lock
114 	 * before proceeding with the movable page isolation steps.
115 	 */
116 	if (unlikely(!trylock_page(page)))
117 		goto out_putpage;
118 
119 	if (!PageMovable(page) || PageIsolated(page))
120 		goto out_no_isolated;
121 
122 	mapping = page_mapping(page);
123 	VM_BUG_ON_PAGE(!mapping, page);
124 
125 	if (!mapping->a_ops->isolate_page(page, mode))
126 		goto out_no_isolated;
127 
128 	/* Driver shouldn't use PG_isolated bit of page->flags */
129 	WARN_ON_ONCE(PageIsolated(page));
130 	__SetPageIsolated(page);
131 	unlock_page(page);
132 
133 	return 0;
134 
135 out_no_isolated:
136 	unlock_page(page);
137 out_putpage:
138 	put_page(page);
139 out:
140 	return -EBUSY;
141 }
142 
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 	struct address_space *mapping;
147 
148 	VM_BUG_ON_PAGE(!PageLocked(page), page);
149 	VM_BUG_ON_PAGE(!PageMovable(page), page);
150 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
151 
152 	mapping = page_mapping(page);
153 	mapping->a_ops->putback_page(page);
154 	__ClearPageIsolated(page);
155 }
156 
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167 	struct page *page;
168 	struct page *page2;
169 
170 	list_for_each_entry_safe(page, page2, l, lru) {
171 		if (unlikely(PageHuge(page))) {
172 			putback_active_hugepage(page);
173 			continue;
174 		}
175 		list_del(&page->lru);
176 		/*
177 		 * We isolated non-lru movable page so here we can use
178 		 * __PageMovable because LRU page's mapping cannot have
179 		 * PAGE_MAPPING_MOVABLE.
180 		 */
181 		if (unlikely(__PageMovable(page))) {
182 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 			lock_page(page);
184 			if (PageMovable(page))
185 				putback_movable_page(page);
186 			else
187 				__ClearPageIsolated(page);
188 			unlock_page(page);
189 			put_page(page);
190 		} else {
191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 					page_is_file_cache(page), -hpage_nr_pages(page));
193 			putback_lru_page(page);
194 		}
195 	}
196 }
197 
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 				 unsigned long addr, void *old)
203 {
204 	struct page_vma_mapped_walk pvmw = {
205 		.page = old,
206 		.vma = vma,
207 		.address = addr,
208 		.flags = PVMW_SYNC | PVMW_MIGRATION,
209 	};
210 	struct page *new;
211 	pte_t pte;
212 	swp_entry_t entry;
213 
214 	VM_BUG_ON_PAGE(PageTail(page), page);
215 	while (page_vma_mapped_walk(&pvmw)) {
216 		if (PageKsm(page))
217 			new = page;
218 		else
219 			new = page - pvmw.page->index +
220 				linear_page_index(vma, pvmw.address);
221 
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 		/* PMD-mapped THP migration entry */
224 		if (!pvmw.pte) {
225 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 			remove_migration_pmd(&pvmw, new);
227 			continue;
228 		}
229 #endif
230 
231 		get_page(new);
232 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 		if (pte_swp_soft_dirty(*pvmw.pte))
234 			pte = pte_mksoft_dirty(pte);
235 
236 		/*
237 		 * Recheck VMA as permissions can change since migration started
238 		 */
239 		entry = pte_to_swp_entry(*pvmw.pte);
240 		if (is_write_migration_entry(entry))
241 			pte = maybe_mkwrite(pte, vma);
242 
243 		if (unlikely(is_zone_device_page(new))) {
244 			if (is_device_private_page(new)) {
245 				entry = make_device_private_entry(new, pte_write(pte));
246 				pte = swp_entry_to_pte(entry);
247 			} else if (is_device_public_page(new)) {
248 				pte = pte_mkdevmap(pte);
249 				flush_dcache_page(new);
250 			}
251 		} else
252 			flush_dcache_page(new);
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		/* No need to invalidate - it was non-present before */
277 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
278 	}
279 
280 	return true;
281 }
282 
283 /*
284  * Get rid of all migration entries and replace them by
285  * references to the indicated page.
286  */
287 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
288 {
289 	struct rmap_walk_control rwc = {
290 		.rmap_one = remove_migration_pte,
291 		.arg = old,
292 	};
293 
294 	if (locked)
295 		rmap_walk_locked(new, &rwc);
296 	else
297 		rmap_walk(new, &rwc);
298 }
299 
300 /*
301  * Something used the pte of a page under migration. We need to
302  * get to the page and wait until migration is finished.
303  * When we return from this function the fault will be retried.
304  */
305 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306 				spinlock_t *ptl)
307 {
308 	pte_t pte;
309 	swp_entry_t entry;
310 	struct page *page;
311 
312 	spin_lock(ptl);
313 	pte = *ptep;
314 	if (!is_swap_pte(pte))
315 		goto out;
316 
317 	entry = pte_to_swp_entry(pte);
318 	if (!is_migration_entry(entry))
319 		goto out;
320 
321 	page = migration_entry_to_page(entry);
322 
323 	/*
324 	 * Once radix-tree replacement of page migration started, page_count
325 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
326 	 * against a page without get_page().
327 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
328 	 * will occur again.
329 	 */
330 	if (!get_page_unless_zero(page))
331 		goto out;
332 	pte_unmap_unlock(ptep, ptl);
333 	wait_on_page_locked(page);
334 	put_page(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	wait_on_page_locked(page);
369 	put_page(page);
370 	return;
371 unlock:
372 	spin_unlock(ptl);
373 }
374 #endif
375 
376 #ifdef CONFIG_BLOCK
377 /* Returns true if all buffers are successfully locked */
378 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
379 							enum migrate_mode mode)
380 {
381 	struct buffer_head *bh = head;
382 
383 	/* Simple case, sync compaction */
384 	if (mode != MIGRATE_ASYNC) {
385 		do {
386 			get_bh(bh);
387 			lock_buffer(bh);
388 			bh = bh->b_this_page;
389 
390 		} while (bh != head);
391 
392 		return true;
393 	}
394 
395 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
396 	do {
397 		get_bh(bh);
398 		if (!trylock_buffer(bh)) {
399 			/*
400 			 * We failed to lock the buffer and cannot stall in
401 			 * async migration. Release the taken locks
402 			 */
403 			struct buffer_head *failed_bh = bh;
404 			put_bh(failed_bh);
405 			bh = head;
406 			while (bh != failed_bh) {
407 				unlock_buffer(bh);
408 				put_bh(bh);
409 				bh = bh->b_this_page;
410 			}
411 			return false;
412 		}
413 
414 		bh = bh->b_this_page;
415 	} while (bh != head);
416 	return true;
417 }
418 #else
419 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
420 							enum migrate_mode mode)
421 {
422 	return true;
423 }
424 #endif /* CONFIG_BLOCK */
425 
426 /*
427  * Replace the page in the mapping.
428  *
429  * The number of remaining references must be:
430  * 1 for anonymous pages without a mapping
431  * 2 for pages with a mapping
432  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
433  */
434 int migrate_page_move_mapping(struct address_space *mapping,
435 		struct page *newpage, struct page *page,
436 		struct buffer_head *head, enum migrate_mode mode,
437 		int extra_count)
438 {
439 	struct zone *oldzone, *newzone;
440 	int dirty;
441 	int expected_count = 1 + extra_count;
442 	void **pslot;
443 
444 	/*
445 	 * Device public or private pages have an extra refcount as they are
446 	 * ZONE_DEVICE pages.
447 	 */
448 	expected_count += is_device_private_page(page);
449 	expected_count += is_device_public_page(page);
450 
451 	if (!mapping) {
452 		/* Anonymous page without mapping */
453 		if (page_count(page) != expected_count)
454 			return -EAGAIN;
455 
456 		/* No turning back from here */
457 		newpage->index = page->index;
458 		newpage->mapping = page->mapping;
459 		if (PageSwapBacked(page))
460 			__SetPageSwapBacked(newpage);
461 
462 		return MIGRATEPAGE_SUCCESS;
463 	}
464 
465 	oldzone = page_zone(page);
466 	newzone = page_zone(newpage);
467 
468 	spin_lock_irq(&mapping->tree_lock);
469 
470 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
471  					page_index(page));
472 
473 	expected_count += 1 + page_has_private(page);
474 	if (page_count(page) != expected_count ||
475 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
476 		spin_unlock_irq(&mapping->tree_lock);
477 		return -EAGAIN;
478 	}
479 
480 	if (!page_ref_freeze(page, expected_count)) {
481 		spin_unlock_irq(&mapping->tree_lock);
482 		return -EAGAIN;
483 	}
484 
485 	/*
486 	 * In the async migration case of moving a page with buffers, lock the
487 	 * buffers using trylock before the mapping is moved. If the mapping
488 	 * was moved, we later failed to lock the buffers and could not move
489 	 * the mapping back due to an elevated page count, we would have to
490 	 * block waiting on other references to be dropped.
491 	 */
492 	if (mode == MIGRATE_ASYNC && head &&
493 			!buffer_migrate_lock_buffers(head, mode)) {
494 		page_ref_unfreeze(page, expected_count);
495 		spin_unlock_irq(&mapping->tree_lock);
496 		return -EAGAIN;
497 	}
498 
499 	/*
500 	 * Now we know that no one else is looking at the page:
501 	 * no turning back from here.
502 	 */
503 	newpage->index = page->index;
504 	newpage->mapping = page->mapping;
505 	get_page(newpage);	/* add cache reference */
506 	if (PageSwapBacked(page)) {
507 		__SetPageSwapBacked(newpage);
508 		if (PageSwapCache(page)) {
509 			SetPageSwapCache(newpage);
510 			set_page_private(newpage, page_private(page));
511 		}
512 	} else {
513 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
514 	}
515 
516 	/* Move dirty while page refs frozen and newpage not yet exposed */
517 	dirty = PageDirty(page);
518 	if (dirty) {
519 		ClearPageDirty(page);
520 		SetPageDirty(newpage);
521 	}
522 
523 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
524 
525 	/*
526 	 * Drop cache reference from old page by unfreezing
527 	 * to one less reference.
528 	 * We know this isn't the last reference.
529 	 */
530 	page_ref_unfreeze(page, expected_count - 1);
531 
532 	spin_unlock(&mapping->tree_lock);
533 	/* Leave irq disabled to prevent preemption while updating stats */
534 
535 	/*
536 	 * If moved to a different zone then also account
537 	 * the page for that zone. Other VM counters will be
538 	 * taken care of when we establish references to the
539 	 * new page and drop references to the old page.
540 	 *
541 	 * Note that anonymous pages are accounted for
542 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
543 	 * are mapped to swap space.
544 	 */
545 	if (newzone != oldzone) {
546 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
547 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
548 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
549 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
550 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
551 		}
552 		if (dirty && mapping_cap_account_dirty(mapping)) {
553 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
554 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
555 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
556 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
557 		}
558 	}
559 	local_irq_enable();
560 
561 	return MIGRATEPAGE_SUCCESS;
562 }
563 EXPORT_SYMBOL(migrate_page_move_mapping);
564 
565 /*
566  * The expected number of remaining references is the same as that
567  * of migrate_page_move_mapping().
568  */
569 int migrate_huge_page_move_mapping(struct address_space *mapping,
570 				   struct page *newpage, struct page *page)
571 {
572 	int expected_count;
573 	void **pslot;
574 
575 	spin_lock_irq(&mapping->tree_lock);
576 
577 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
578 					page_index(page));
579 
580 	expected_count = 2 + page_has_private(page);
581 	if (page_count(page) != expected_count ||
582 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
583 		spin_unlock_irq(&mapping->tree_lock);
584 		return -EAGAIN;
585 	}
586 
587 	if (!page_ref_freeze(page, expected_count)) {
588 		spin_unlock_irq(&mapping->tree_lock);
589 		return -EAGAIN;
590 	}
591 
592 	newpage->index = page->index;
593 	newpage->mapping = page->mapping;
594 
595 	get_page(newpage);
596 
597 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
598 
599 	page_ref_unfreeze(page, expected_count - 1);
600 
601 	spin_unlock_irq(&mapping->tree_lock);
602 
603 	return MIGRATEPAGE_SUCCESS;
604 }
605 
606 /*
607  * Gigantic pages are so large that we do not guarantee that page++ pointer
608  * arithmetic will work across the entire page.  We need something more
609  * specialized.
610  */
611 static void __copy_gigantic_page(struct page *dst, struct page *src,
612 				int nr_pages)
613 {
614 	int i;
615 	struct page *dst_base = dst;
616 	struct page *src_base = src;
617 
618 	for (i = 0; i < nr_pages; ) {
619 		cond_resched();
620 		copy_highpage(dst, src);
621 
622 		i++;
623 		dst = mem_map_next(dst, dst_base, i);
624 		src = mem_map_next(src, src_base, i);
625 	}
626 }
627 
628 static void copy_huge_page(struct page *dst, struct page *src)
629 {
630 	int i;
631 	int nr_pages;
632 
633 	if (PageHuge(src)) {
634 		/* hugetlbfs page */
635 		struct hstate *h = page_hstate(src);
636 		nr_pages = pages_per_huge_page(h);
637 
638 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
639 			__copy_gigantic_page(dst, src, nr_pages);
640 			return;
641 		}
642 	} else {
643 		/* thp page */
644 		BUG_ON(!PageTransHuge(src));
645 		nr_pages = hpage_nr_pages(src);
646 	}
647 
648 	for (i = 0; i < nr_pages; i++) {
649 		cond_resched();
650 		copy_highpage(dst + i, src + i);
651 	}
652 }
653 
654 /*
655  * Copy the page to its new location
656  */
657 void migrate_page_states(struct page *newpage, struct page *page)
658 {
659 	int cpupid;
660 
661 	if (PageError(page))
662 		SetPageError(newpage);
663 	if (PageReferenced(page))
664 		SetPageReferenced(newpage);
665 	if (PageUptodate(page))
666 		SetPageUptodate(newpage);
667 	if (TestClearPageActive(page)) {
668 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
669 		SetPageActive(newpage);
670 	} else if (TestClearPageUnevictable(page))
671 		SetPageUnevictable(newpage);
672 	if (PageChecked(page))
673 		SetPageChecked(newpage);
674 	if (PageMappedToDisk(page))
675 		SetPageMappedToDisk(newpage);
676 
677 	/* Move dirty on pages not done by migrate_page_move_mapping() */
678 	if (PageDirty(page))
679 		SetPageDirty(newpage);
680 
681 	if (page_is_young(page))
682 		set_page_young(newpage);
683 	if (page_is_idle(page))
684 		set_page_idle(newpage);
685 
686 	/*
687 	 * Copy NUMA information to the new page, to prevent over-eager
688 	 * future migrations of this same page.
689 	 */
690 	cpupid = page_cpupid_xchg_last(page, -1);
691 	page_cpupid_xchg_last(newpage, cpupid);
692 
693 	ksm_migrate_page(newpage, page);
694 	/*
695 	 * Please do not reorder this without considering how mm/ksm.c's
696 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
697 	 */
698 	if (PageSwapCache(page))
699 		ClearPageSwapCache(page);
700 	ClearPagePrivate(page);
701 	set_page_private(page, 0);
702 
703 	/*
704 	 * If any waiters have accumulated on the new page then
705 	 * wake them up.
706 	 */
707 	if (PageWriteback(newpage))
708 		end_page_writeback(newpage);
709 
710 	copy_page_owner(page, newpage);
711 
712 	mem_cgroup_migrate(page, newpage);
713 }
714 EXPORT_SYMBOL(migrate_page_states);
715 
716 void migrate_page_copy(struct page *newpage, struct page *page)
717 {
718 	if (PageHuge(page) || PageTransHuge(page))
719 		copy_huge_page(newpage, page);
720 	else
721 		copy_highpage(newpage, page);
722 
723 	migrate_page_states(newpage, page);
724 }
725 EXPORT_SYMBOL(migrate_page_copy);
726 
727 /************************************************************
728  *                    Migration functions
729  ***********************************************************/
730 
731 /*
732  * Common logic to directly migrate a single LRU page suitable for
733  * pages that do not use PagePrivate/PagePrivate2.
734  *
735  * Pages are locked upon entry and exit.
736  */
737 int migrate_page(struct address_space *mapping,
738 		struct page *newpage, struct page *page,
739 		enum migrate_mode mode)
740 {
741 	int rc;
742 
743 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
744 
745 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
746 
747 	if (rc != MIGRATEPAGE_SUCCESS)
748 		return rc;
749 
750 	if (mode != MIGRATE_SYNC_NO_COPY)
751 		migrate_page_copy(newpage, page);
752 	else
753 		migrate_page_states(newpage, page);
754 	return MIGRATEPAGE_SUCCESS;
755 }
756 EXPORT_SYMBOL(migrate_page);
757 
758 #ifdef CONFIG_BLOCK
759 /*
760  * Migration function for pages with buffers. This function can only be used
761  * if the underlying filesystem guarantees that no other references to "page"
762  * exist.
763  */
764 int buffer_migrate_page(struct address_space *mapping,
765 		struct page *newpage, struct page *page, enum migrate_mode mode)
766 {
767 	struct buffer_head *bh, *head;
768 	int rc;
769 
770 	if (!page_has_buffers(page))
771 		return migrate_page(mapping, newpage, page, mode);
772 
773 	head = page_buffers(page);
774 
775 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
776 
777 	if (rc != MIGRATEPAGE_SUCCESS)
778 		return rc;
779 
780 	/*
781 	 * In the async case, migrate_page_move_mapping locked the buffers
782 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
783 	 * need to be locked now
784 	 */
785 	if (mode != MIGRATE_ASYNC)
786 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
787 
788 	ClearPagePrivate(page);
789 	set_page_private(newpage, page_private(page));
790 	set_page_private(page, 0);
791 	put_page(page);
792 	get_page(newpage);
793 
794 	bh = head;
795 	do {
796 		set_bh_page(bh, newpage, bh_offset(bh));
797 		bh = bh->b_this_page;
798 
799 	} while (bh != head);
800 
801 	SetPagePrivate(newpage);
802 
803 	if (mode != MIGRATE_SYNC_NO_COPY)
804 		migrate_page_copy(newpage, page);
805 	else
806 		migrate_page_states(newpage, page);
807 
808 	bh = head;
809 	do {
810 		unlock_buffer(bh);
811 		put_bh(bh);
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	return MIGRATEPAGE_SUCCESS;
817 }
818 EXPORT_SYMBOL(buffer_migrate_page);
819 #endif
820 
821 /*
822  * Writeback a page to clean the dirty state
823  */
824 static int writeout(struct address_space *mapping, struct page *page)
825 {
826 	struct writeback_control wbc = {
827 		.sync_mode = WB_SYNC_NONE,
828 		.nr_to_write = 1,
829 		.range_start = 0,
830 		.range_end = LLONG_MAX,
831 		.for_reclaim = 1
832 	};
833 	int rc;
834 
835 	if (!mapping->a_ops->writepage)
836 		/* No write method for the address space */
837 		return -EINVAL;
838 
839 	if (!clear_page_dirty_for_io(page))
840 		/* Someone else already triggered a write */
841 		return -EAGAIN;
842 
843 	/*
844 	 * A dirty page may imply that the underlying filesystem has
845 	 * the page on some queue. So the page must be clean for
846 	 * migration. Writeout may mean we loose the lock and the
847 	 * page state is no longer what we checked for earlier.
848 	 * At this point we know that the migration attempt cannot
849 	 * be successful.
850 	 */
851 	remove_migration_ptes(page, page, false);
852 
853 	rc = mapping->a_ops->writepage(page, &wbc);
854 
855 	if (rc != AOP_WRITEPAGE_ACTIVATE)
856 		/* unlocked. Relock */
857 		lock_page(page);
858 
859 	return (rc < 0) ? -EIO : -EAGAIN;
860 }
861 
862 /*
863  * Default handling if a filesystem does not provide a migration function.
864  */
865 static int fallback_migrate_page(struct address_space *mapping,
866 	struct page *newpage, struct page *page, enum migrate_mode mode)
867 {
868 	if (PageDirty(page)) {
869 		/* Only writeback pages in full synchronous migration */
870 		switch (mode) {
871 		case MIGRATE_SYNC:
872 		case MIGRATE_SYNC_NO_COPY:
873 			break;
874 		default:
875 			return -EBUSY;
876 		}
877 		return writeout(mapping, page);
878 	}
879 
880 	/*
881 	 * Buffers may be managed in a filesystem specific way.
882 	 * We must have no buffers or drop them.
883 	 */
884 	if (page_has_private(page) &&
885 	    !try_to_release_page(page, GFP_KERNEL))
886 		return -EAGAIN;
887 
888 	return migrate_page(mapping, newpage, page, mode);
889 }
890 
891 /*
892  * Move a page to a newly allocated page
893  * The page is locked and all ptes have been successfully removed.
894  *
895  * The new page will have replaced the old page if this function
896  * is successful.
897  *
898  * Return value:
899  *   < 0 - error code
900  *  MIGRATEPAGE_SUCCESS - success
901  */
902 static int move_to_new_page(struct page *newpage, struct page *page,
903 				enum migrate_mode mode)
904 {
905 	struct address_space *mapping;
906 	int rc = -EAGAIN;
907 	bool is_lru = !__PageMovable(page);
908 
909 	VM_BUG_ON_PAGE(!PageLocked(page), page);
910 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
911 
912 	mapping = page_mapping(page);
913 
914 	if (likely(is_lru)) {
915 		if (!mapping)
916 			rc = migrate_page(mapping, newpage, page, mode);
917 		else if (mapping->a_ops->migratepage)
918 			/*
919 			 * Most pages have a mapping and most filesystems
920 			 * provide a migratepage callback. Anonymous pages
921 			 * are part of swap space which also has its own
922 			 * migratepage callback. This is the most common path
923 			 * for page migration.
924 			 */
925 			rc = mapping->a_ops->migratepage(mapping, newpage,
926 							page, mode);
927 		else
928 			rc = fallback_migrate_page(mapping, newpage,
929 							page, mode);
930 	} else {
931 		/*
932 		 * In case of non-lru page, it could be released after
933 		 * isolation step. In that case, we shouldn't try migration.
934 		 */
935 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
936 		if (!PageMovable(page)) {
937 			rc = MIGRATEPAGE_SUCCESS;
938 			__ClearPageIsolated(page);
939 			goto out;
940 		}
941 
942 		rc = mapping->a_ops->migratepage(mapping, newpage,
943 						page, mode);
944 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
945 			!PageIsolated(page));
946 	}
947 
948 	/*
949 	 * When successful, old pagecache page->mapping must be cleared before
950 	 * page is freed; but stats require that PageAnon be left as PageAnon.
951 	 */
952 	if (rc == MIGRATEPAGE_SUCCESS) {
953 		if (__PageMovable(page)) {
954 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
955 
956 			/*
957 			 * We clear PG_movable under page_lock so any compactor
958 			 * cannot try to migrate this page.
959 			 */
960 			__ClearPageIsolated(page);
961 		}
962 
963 		/*
964 		 * Anonymous and movable page->mapping will be cleard by
965 		 * free_pages_prepare so don't reset it here for keeping
966 		 * the type to work PageAnon, for example.
967 		 */
968 		if (!PageMappingFlags(page))
969 			page->mapping = NULL;
970 	}
971 out:
972 	return rc;
973 }
974 
975 static int __unmap_and_move(struct page *page, struct page *newpage,
976 				int force, enum migrate_mode mode)
977 {
978 	int rc = -EAGAIN;
979 	int page_was_mapped = 0;
980 	struct anon_vma *anon_vma = NULL;
981 	bool is_lru = !__PageMovable(page);
982 
983 	if (!trylock_page(page)) {
984 		if (!force || mode == MIGRATE_ASYNC)
985 			goto out;
986 
987 		/*
988 		 * It's not safe for direct compaction to call lock_page.
989 		 * For example, during page readahead pages are added locked
990 		 * to the LRU. Later, when the IO completes the pages are
991 		 * marked uptodate and unlocked. However, the queueing
992 		 * could be merging multiple pages for one bio (e.g.
993 		 * mpage_readpages). If an allocation happens for the
994 		 * second or third page, the process can end up locking
995 		 * the same page twice and deadlocking. Rather than
996 		 * trying to be clever about what pages can be locked,
997 		 * avoid the use of lock_page for direct compaction
998 		 * altogether.
999 		 */
1000 		if (current->flags & PF_MEMALLOC)
1001 			goto out;
1002 
1003 		lock_page(page);
1004 	}
1005 
1006 	if (PageWriteback(page)) {
1007 		/*
1008 		 * Only in the case of a full synchronous migration is it
1009 		 * necessary to wait for PageWriteback. In the async case,
1010 		 * the retry loop is too short and in the sync-light case,
1011 		 * the overhead of stalling is too much
1012 		 */
1013 		switch (mode) {
1014 		case MIGRATE_SYNC:
1015 		case MIGRATE_SYNC_NO_COPY:
1016 			break;
1017 		default:
1018 			rc = -EBUSY;
1019 			goto out_unlock;
1020 		}
1021 		if (!force)
1022 			goto out_unlock;
1023 		wait_on_page_writeback(page);
1024 	}
1025 
1026 	/*
1027 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1028 	 * we cannot notice that anon_vma is freed while we migrates a page.
1029 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1030 	 * of migration. File cache pages are no problem because of page_lock()
1031 	 * File Caches may use write_page() or lock_page() in migration, then,
1032 	 * just care Anon page here.
1033 	 *
1034 	 * Only page_get_anon_vma() understands the subtleties of
1035 	 * getting a hold on an anon_vma from outside one of its mms.
1036 	 * But if we cannot get anon_vma, then we won't need it anyway,
1037 	 * because that implies that the anon page is no longer mapped
1038 	 * (and cannot be remapped so long as we hold the page lock).
1039 	 */
1040 	if (PageAnon(page) && !PageKsm(page))
1041 		anon_vma = page_get_anon_vma(page);
1042 
1043 	/*
1044 	 * Block others from accessing the new page when we get around to
1045 	 * establishing additional references. We are usually the only one
1046 	 * holding a reference to newpage at this point. We used to have a BUG
1047 	 * here if trylock_page(newpage) fails, but would like to allow for
1048 	 * cases where there might be a race with the previous use of newpage.
1049 	 * This is much like races on refcount of oldpage: just don't BUG().
1050 	 */
1051 	if (unlikely(!trylock_page(newpage)))
1052 		goto out_unlock;
1053 
1054 	if (unlikely(!is_lru)) {
1055 		rc = move_to_new_page(newpage, page, mode);
1056 		goto out_unlock_both;
1057 	}
1058 
1059 	/*
1060 	 * Corner case handling:
1061 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1062 	 * and treated as swapcache but it has no rmap yet.
1063 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1064 	 * trigger a BUG.  So handle it here.
1065 	 * 2. An orphaned page (see truncate_complete_page) might have
1066 	 * fs-private metadata. The page can be picked up due to memory
1067 	 * offlining.  Everywhere else except page reclaim, the page is
1068 	 * invisible to the vm, so the page can not be migrated.  So try to
1069 	 * free the metadata, so the page can be freed.
1070 	 */
1071 	if (!page->mapping) {
1072 		VM_BUG_ON_PAGE(PageAnon(page), page);
1073 		if (page_has_private(page)) {
1074 			try_to_free_buffers(page);
1075 			goto out_unlock_both;
1076 		}
1077 	} else if (page_mapped(page)) {
1078 		/* Establish migration ptes */
1079 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1080 				page);
1081 		try_to_unmap(page,
1082 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1083 		page_was_mapped = 1;
1084 	}
1085 
1086 	if (!page_mapped(page))
1087 		rc = move_to_new_page(newpage, page, mode);
1088 
1089 	if (page_was_mapped)
1090 		remove_migration_ptes(page,
1091 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1092 
1093 out_unlock_both:
1094 	unlock_page(newpage);
1095 out_unlock:
1096 	/* Drop an anon_vma reference if we took one */
1097 	if (anon_vma)
1098 		put_anon_vma(anon_vma);
1099 	unlock_page(page);
1100 out:
1101 	/*
1102 	 * If migration is successful, decrease refcount of the newpage
1103 	 * which will not free the page because new page owner increased
1104 	 * refcounter. As well, if it is LRU page, add the page to LRU
1105 	 * list in here.
1106 	 */
1107 	if (rc == MIGRATEPAGE_SUCCESS) {
1108 		if (unlikely(__PageMovable(newpage)))
1109 			put_page(newpage);
1110 		else
1111 			putback_lru_page(newpage);
1112 	}
1113 
1114 	return rc;
1115 }
1116 
1117 /*
1118  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1119  * around it.
1120  */
1121 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1122 #define ICE_noinline noinline
1123 #else
1124 #define ICE_noinline
1125 #endif
1126 
1127 /*
1128  * Obtain the lock on page, remove all ptes and migrate the page
1129  * to the newly allocated page in newpage.
1130  */
1131 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1132 				   free_page_t put_new_page,
1133 				   unsigned long private, struct page *page,
1134 				   int force, enum migrate_mode mode,
1135 				   enum migrate_reason reason)
1136 {
1137 	int rc = MIGRATEPAGE_SUCCESS;
1138 	int *result = NULL;
1139 	struct page *newpage;
1140 
1141 	newpage = get_new_page(page, private, &result);
1142 	if (!newpage)
1143 		return -ENOMEM;
1144 
1145 	if (page_count(page) == 1) {
1146 		/* page was freed from under us. So we are done. */
1147 		ClearPageActive(page);
1148 		ClearPageUnevictable(page);
1149 		if (unlikely(__PageMovable(page))) {
1150 			lock_page(page);
1151 			if (!PageMovable(page))
1152 				__ClearPageIsolated(page);
1153 			unlock_page(page);
1154 		}
1155 		if (put_new_page)
1156 			put_new_page(newpage, private);
1157 		else
1158 			put_page(newpage);
1159 		goto out;
1160 	}
1161 
1162 	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1163 		lock_page(page);
1164 		rc = split_huge_page(page);
1165 		unlock_page(page);
1166 		if (rc)
1167 			goto out;
1168 	}
1169 
1170 	rc = __unmap_and_move(page, newpage, force, mode);
1171 	if (rc == MIGRATEPAGE_SUCCESS)
1172 		set_page_owner_migrate_reason(newpage, reason);
1173 
1174 out:
1175 	if (rc != -EAGAIN) {
1176 		/*
1177 		 * A page that has been migrated has all references
1178 		 * removed and will be freed. A page that has not been
1179 		 * migrated will have kepts its references and be
1180 		 * restored.
1181 		 */
1182 		list_del(&page->lru);
1183 
1184 		/*
1185 		 * Compaction can migrate also non-LRU pages which are
1186 		 * not accounted to NR_ISOLATED_*. They can be recognized
1187 		 * as __PageMovable
1188 		 */
1189 		if (likely(!__PageMovable(page)))
1190 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1191 					page_is_file_cache(page), -hpage_nr_pages(page));
1192 	}
1193 
1194 	/*
1195 	 * If migration is successful, releases reference grabbed during
1196 	 * isolation. Otherwise, restore the page to right list unless
1197 	 * we want to retry.
1198 	 */
1199 	if (rc == MIGRATEPAGE_SUCCESS) {
1200 		put_page(page);
1201 		if (reason == MR_MEMORY_FAILURE) {
1202 			/*
1203 			 * Set PG_HWPoison on just freed page
1204 			 * intentionally. Although it's rather weird,
1205 			 * it's how HWPoison flag works at the moment.
1206 			 */
1207 			if (!test_set_page_hwpoison(page))
1208 				num_poisoned_pages_inc();
1209 		}
1210 	} else {
1211 		if (rc != -EAGAIN) {
1212 			if (likely(!__PageMovable(page))) {
1213 				putback_lru_page(page);
1214 				goto put_new;
1215 			}
1216 
1217 			lock_page(page);
1218 			if (PageMovable(page))
1219 				putback_movable_page(page);
1220 			else
1221 				__ClearPageIsolated(page);
1222 			unlock_page(page);
1223 			put_page(page);
1224 		}
1225 put_new:
1226 		if (put_new_page)
1227 			put_new_page(newpage, private);
1228 		else
1229 			put_page(newpage);
1230 	}
1231 
1232 	if (result) {
1233 		if (rc)
1234 			*result = rc;
1235 		else
1236 			*result = page_to_nid(newpage);
1237 	}
1238 	return rc;
1239 }
1240 
1241 /*
1242  * Counterpart of unmap_and_move_page() for hugepage migration.
1243  *
1244  * This function doesn't wait the completion of hugepage I/O
1245  * because there is no race between I/O and migration for hugepage.
1246  * Note that currently hugepage I/O occurs only in direct I/O
1247  * where no lock is held and PG_writeback is irrelevant,
1248  * and writeback status of all subpages are counted in the reference
1249  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250  * under direct I/O, the reference of the head page is 512 and a bit more.)
1251  * This means that when we try to migrate hugepage whose subpages are
1252  * doing direct I/O, some references remain after try_to_unmap() and
1253  * hugepage migration fails without data corruption.
1254  *
1255  * There is also no race when direct I/O is issued on the page under migration,
1256  * because then pte is replaced with migration swap entry and direct I/O code
1257  * will wait in the page fault for migration to complete.
1258  */
1259 static int unmap_and_move_huge_page(new_page_t get_new_page,
1260 				free_page_t put_new_page, unsigned long private,
1261 				struct page *hpage, int force,
1262 				enum migrate_mode mode, int reason)
1263 {
1264 	int rc = -EAGAIN;
1265 	int *result = NULL;
1266 	int page_was_mapped = 0;
1267 	struct page *new_hpage;
1268 	struct anon_vma *anon_vma = NULL;
1269 
1270 	/*
1271 	 * Movability of hugepages depends on architectures and hugepage size.
1272 	 * This check is necessary because some callers of hugepage migration
1273 	 * like soft offline and memory hotremove don't walk through page
1274 	 * tables or check whether the hugepage is pmd-based or not before
1275 	 * kicking migration.
1276 	 */
1277 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278 		putback_active_hugepage(hpage);
1279 		return -ENOSYS;
1280 	}
1281 
1282 	new_hpage = get_new_page(hpage, private, &result);
1283 	if (!new_hpage)
1284 		return -ENOMEM;
1285 
1286 	if (!trylock_page(hpage)) {
1287 		if (!force)
1288 			goto out;
1289 		switch (mode) {
1290 		case MIGRATE_SYNC:
1291 		case MIGRATE_SYNC_NO_COPY:
1292 			break;
1293 		default:
1294 			goto out;
1295 		}
1296 		lock_page(hpage);
1297 	}
1298 
1299 	if (PageAnon(hpage))
1300 		anon_vma = page_get_anon_vma(hpage);
1301 
1302 	if (unlikely(!trylock_page(new_hpage)))
1303 		goto put_anon;
1304 
1305 	if (page_mapped(hpage)) {
1306 		try_to_unmap(hpage,
1307 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1308 		page_was_mapped = 1;
1309 	}
1310 
1311 	if (!page_mapped(hpage))
1312 		rc = move_to_new_page(new_hpage, hpage, mode);
1313 
1314 	if (page_was_mapped)
1315 		remove_migration_ptes(hpage,
1316 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1317 
1318 	unlock_page(new_hpage);
1319 
1320 put_anon:
1321 	if (anon_vma)
1322 		put_anon_vma(anon_vma);
1323 
1324 	if (rc == MIGRATEPAGE_SUCCESS) {
1325 		hugetlb_cgroup_migrate(hpage, new_hpage);
1326 		put_new_page = NULL;
1327 		set_page_owner_migrate_reason(new_hpage, reason);
1328 	}
1329 
1330 	unlock_page(hpage);
1331 out:
1332 	if (rc != -EAGAIN)
1333 		putback_active_hugepage(hpage);
1334 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1335 		num_poisoned_pages_inc();
1336 
1337 	/*
1338 	 * If migration was not successful and there's a freeing callback, use
1339 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1340 	 * isolation.
1341 	 */
1342 	if (put_new_page)
1343 		put_new_page(new_hpage, private);
1344 	else
1345 		putback_active_hugepage(new_hpage);
1346 
1347 	if (result) {
1348 		if (rc)
1349 			*result = rc;
1350 		else
1351 			*result = page_to_nid(new_hpage);
1352 	}
1353 	return rc;
1354 }
1355 
1356 /*
1357  * migrate_pages - migrate the pages specified in a list, to the free pages
1358  *		   supplied as the target for the page migration
1359  *
1360  * @from:		The list of pages to be migrated.
1361  * @get_new_page:	The function used to allocate free pages to be used
1362  *			as the target of the page migration.
1363  * @put_new_page:	The function used to free target pages if migration
1364  *			fails, or NULL if no special handling is necessary.
1365  * @private:		Private data to be passed on to get_new_page()
1366  * @mode:		The migration mode that specifies the constraints for
1367  *			page migration, if any.
1368  * @reason:		The reason for page migration.
1369  *
1370  * The function returns after 10 attempts or if no pages are movable any more
1371  * because the list has become empty or no retryable pages exist any more.
1372  * The caller should call putback_movable_pages() to return pages to the LRU
1373  * or free list only if ret != 0.
1374  *
1375  * Returns the number of pages that were not migrated, or an error code.
1376  */
1377 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1378 		free_page_t put_new_page, unsigned long private,
1379 		enum migrate_mode mode, int reason)
1380 {
1381 	int retry = 1;
1382 	int nr_failed = 0;
1383 	int nr_succeeded = 0;
1384 	int pass = 0;
1385 	struct page *page;
1386 	struct page *page2;
1387 	int swapwrite = current->flags & PF_SWAPWRITE;
1388 	int rc;
1389 
1390 	if (!swapwrite)
1391 		current->flags |= PF_SWAPWRITE;
1392 
1393 	for(pass = 0; pass < 10 && retry; pass++) {
1394 		retry = 0;
1395 
1396 		list_for_each_entry_safe(page, page2, from, lru) {
1397 			cond_resched();
1398 
1399 			if (PageHuge(page))
1400 				rc = unmap_and_move_huge_page(get_new_page,
1401 						put_new_page, private, page,
1402 						pass > 2, mode, reason);
1403 			else
1404 				rc = unmap_and_move(get_new_page, put_new_page,
1405 						private, page, pass > 2, mode,
1406 						reason);
1407 
1408 			switch(rc) {
1409 			case -ENOMEM:
1410 				nr_failed++;
1411 				goto out;
1412 			case -EAGAIN:
1413 				retry++;
1414 				break;
1415 			case MIGRATEPAGE_SUCCESS:
1416 				nr_succeeded++;
1417 				break;
1418 			default:
1419 				/*
1420 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1421 				 * unlike -EAGAIN case, the failed page is
1422 				 * removed from migration page list and not
1423 				 * retried in the next outer loop.
1424 				 */
1425 				nr_failed++;
1426 				break;
1427 			}
1428 		}
1429 	}
1430 	nr_failed += retry;
1431 	rc = nr_failed;
1432 out:
1433 	if (nr_succeeded)
1434 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1435 	if (nr_failed)
1436 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1437 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1438 
1439 	if (!swapwrite)
1440 		current->flags &= ~PF_SWAPWRITE;
1441 
1442 	return rc;
1443 }
1444 
1445 #ifdef CONFIG_NUMA
1446 /*
1447  * Move a list of individual pages
1448  */
1449 struct page_to_node {
1450 	unsigned long addr;
1451 	struct page *page;
1452 	int node;
1453 	int status;
1454 };
1455 
1456 static struct page *new_page_node(struct page *p, unsigned long private,
1457 		int **result)
1458 {
1459 	struct page_to_node *pm = (struct page_to_node *)private;
1460 
1461 	while (pm->node != MAX_NUMNODES && pm->page != p)
1462 		pm++;
1463 
1464 	if (pm->node == MAX_NUMNODES)
1465 		return NULL;
1466 
1467 	*result = &pm->status;
1468 
1469 	if (PageHuge(p))
1470 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1471 					pm->node);
1472 	else if (thp_migration_supported() && PageTransHuge(p)) {
1473 		struct page *thp;
1474 
1475 		thp = alloc_pages_node(pm->node,
1476 			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1477 			HPAGE_PMD_ORDER);
1478 		if (!thp)
1479 			return NULL;
1480 		prep_transhuge_page(thp);
1481 		return thp;
1482 	} else
1483 		return __alloc_pages_node(pm->node,
1484 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1485 }
1486 
1487 /*
1488  * Move a set of pages as indicated in the pm array. The addr
1489  * field must be set to the virtual address of the page to be moved
1490  * and the node number must contain a valid target node.
1491  * The pm array ends with node = MAX_NUMNODES.
1492  */
1493 static int do_move_page_to_node_array(struct mm_struct *mm,
1494 				      struct page_to_node *pm,
1495 				      int migrate_all)
1496 {
1497 	int err;
1498 	struct page_to_node *pp;
1499 	LIST_HEAD(pagelist);
1500 
1501 	down_read(&mm->mmap_sem);
1502 
1503 	/*
1504 	 * Build a list of pages to migrate
1505 	 */
1506 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1507 		struct vm_area_struct *vma;
1508 		struct page *page;
1509 		struct page *head;
1510 		unsigned int follflags;
1511 
1512 		err = -EFAULT;
1513 		vma = find_vma(mm, pp->addr);
1514 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1515 			goto set_status;
1516 
1517 		/* FOLL_DUMP to ignore special (like zero) pages */
1518 		follflags = FOLL_GET | FOLL_DUMP;
1519 		if (!thp_migration_supported())
1520 			follflags |= FOLL_SPLIT;
1521 		page = follow_page(vma, pp->addr, follflags);
1522 
1523 		err = PTR_ERR(page);
1524 		if (IS_ERR(page))
1525 			goto set_status;
1526 
1527 		err = -ENOENT;
1528 		if (!page)
1529 			goto set_status;
1530 
1531 		err = page_to_nid(page);
1532 
1533 		if (err == pp->node)
1534 			/*
1535 			 * Node already in the right place
1536 			 */
1537 			goto put_and_set;
1538 
1539 		err = -EACCES;
1540 		if (page_mapcount(page) > 1 &&
1541 				!migrate_all)
1542 			goto put_and_set;
1543 
1544 		if (PageHuge(page)) {
1545 			if (PageHead(page)) {
1546 				isolate_huge_page(page, &pagelist);
1547 				err = 0;
1548 				pp->page = page;
1549 			}
1550 			goto put_and_set;
1551 		}
1552 
1553 		pp->page = compound_head(page);
1554 		head = compound_head(page);
1555 		err = isolate_lru_page(head);
1556 		if (!err) {
1557 			list_add_tail(&head->lru, &pagelist);
1558 			mod_node_page_state(page_pgdat(head),
1559 				NR_ISOLATED_ANON + page_is_file_cache(head),
1560 				hpage_nr_pages(head));
1561 		}
1562 put_and_set:
1563 		/*
1564 		 * Either remove the duplicate refcount from
1565 		 * isolate_lru_page() or drop the page ref if it was
1566 		 * not isolated.
1567 		 */
1568 		put_page(page);
1569 set_status:
1570 		pp->status = err;
1571 	}
1572 
1573 	err = 0;
1574 	if (!list_empty(&pagelist)) {
1575 		err = migrate_pages(&pagelist, new_page_node, NULL,
1576 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1577 		if (err)
1578 			putback_movable_pages(&pagelist);
1579 	}
1580 
1581 	up_read(&mm->mmap_sem);
1582 	return err;
1583 }
1584 
1585 /*
1586  * Migrate an array of page address onto an array of nodes and fill
1587  * the corresponding array of status.
1588  */
1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590 			 unsigned long nr_pages,
1591 			 const void __user * __user *pages,
1592 			 const int __user *nodes,
1593 			 int __user *status, int flags)
1594 {
1595 	struct page_to_node *pm;
1596 	unsigned long chunk_nr_pages;
1597 	unsigned long chunk_start;
1598 	int err;
1599 
1600 	err = -ENOMEM;
1601 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1602 	if (!pm)
1603 		goto out;
1604 
1605 	migrate_prep();
1606 
1607 	/*
1608 	 * Store a chunk of page_to_node array in a page,
1609 	 * but keep the last one as a marker
1610 	 */
1611 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1612 
1613 	for (chunk_start = 0;
1614 	     chunk_start < nr_pages;
1615 	     chunk_start += chunk_nr_pages) {
1616 		int j;
1617 
1618 		if (chunk_start + chunk_nr_pages > nr_pages)
1619 			chunk_nr_pages = nr_pages - chunk_start;
1620 
1621 		/* fill the chunk pm with addrs and nodes from user-space */
1622 		for (j = 0; j < chunk_nr_pages; j++) {
1623 			const void __user *p;
1624 			int node;
1625 
1626 			err = -EFAULT;
1627 			if (get_user(p, pages + j + chunk_start))
1628 				goto out_pm;
1629 			pm[j].addr = (unsigned long) p;
1630 
1631 			if (get_user(node, nodes + j + chunk_start))
1632 				goto out_pm;
1633 
1634 			err = -ENODEV;
1635 			if (node < 0 || node >= MAX_NUMNODES)
1636 				goto out_pm;
1637 
1638 			if (!node_state(node, N_MEMORY))
1639 				goto out_pm;
1640 
1641 			err = -EACCES;
1642 			if (!node_isset(node, task_nodes))
1643 				goto out_pm;
1644 
1645 			pm[j].node = node;
1646 		}
1647 
1648 		/* End marker for this chunk */
1649 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1650 
1651 		/* Migrate this chunk */
1652 		err = do_move_page_to_node_array(mm, pm,
1653 						 flags & MPOL_MF_MOVE_ALL);
1654 		if (err < 0)
1655 			goto out_pm;
1656 
1657 		/* Return status information */
1658 		for (j = 0; j < chunk_nr_pages; j++)
1659 			if (put_user(pm[j].status, status + j + chunk_start)) {
1660 				err = -EFAULT;
1661 				goto out_pm;
1662 			}
1663 	}
1664 	err = 0;
1665 
1666 out_pm:
1667 	free_page((unsigned long)pm);
1668 out:
1669 	return err;
1670 }
1671 
1672 /*
1673  * Determine the nodes of an array of pages and store it in an array of status.
1674  */
1675 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1676 				const void __user **pages, int *status)
1677 {
1678 	unsigned long i;
1679 
1680 	down_read(&mm->mmap_sem);
1681 
1682 	for (i = 0; i < nr_pages; i++) {
1683 		unsigned long addr = (unsigned long)(*pages);
1684 		struct vm_area_struct *vma;
1685 		struct page *page;
1686 		int err = -EFAULT;
1687 
1688 		vma = find_vma(mm, addr);
1689 		if (!vma || addr < vma->vm_start)
1690 			goto set_status;
1691 
1692 		/* FOLL_DUMP to ignore special (like zero) pages */
1693 		page = follow_page(vma, addr, FOLL_DUMP);
1694 
1695 		err = PTR_ERR(page);
1696 		if (IS_ERR(page))
1697 			goto set_status;
1698 
1699 		err = page ? page_to_nid(page) : -ENOENT;
1700 set_status:
1701 		*status = err;
1702 
1703 		pages++;
1704 		status++;
1705 	}
1706 
1707 	up_read(&mm->mmap_sem);
1708 }
1709 
1710 /*
1711  * Determine the nodes of a user array of pages and store it in
1712  * a user array of status.
1713  */
1714 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1715 			 const void __user * __user *pages,
1716 			 int __user *status)
1717 {
1718 #define DO_PAGES_STAT_CHUNK_NR 16
1719 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1720 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1721 
1722 	while (nr_pages) {
1723 		unsigned long chunk_nr;
1724 
1725 		chunk_nr = nr_pages;
1726 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1727 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1728 
1729 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1730 			break;
1731 
1732 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1733 
1734 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1735 			break;
1736 
1737 		pages += chunk_nr;
1738 		status += chunk_nr;
1739 		nr_pages -= chunk_nr;
1740 	}
1741 	return nr_pages ? -EFAULT : 0;
1742 }
1743 
1744 /*
1745  * Move a list of pages in the address space of the currently executing
1746  * process.
1747  */
1748 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1749 		const void __user * __user *, pages,
1750 		const int __user *, nodes,
1751 		int __user *, status, int, flags)
1752 {
1753 	struct task_struct *task;
1754 	struct mm_struct *mm;
1755 	int err;
1756 	nodemask_t task_nodes;
1757 
1758 	/* Check flags */
1759 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1760 		return -EINVAL;
1761 
1762 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1763 		return -EPERM;
1764 
1765 	/* Find the mm_struct */
1766 	rcu_read_lock();
1767 	task = pid ? find_task_by_vpid(pid) : current;
1768 	if (!task) {
1769 		rcu_read_unlock();
1770 		return -ESRCH;
1771 	}
1772 	get_task_struct(task);
1773 
1774 	/*
1775 	 * Check if this process has the right to modify the specified
1776 	 * process. Use the regular "ptrace_may_access()" checks.
1777 	 */
1778 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1779 		rcu_read_unlock();
1780 		err = -EPERM;
1781 		goto out;
1782 	}
1783 	rcu_read_unlock();
1784 
1785  	err = security_task_movememory(task);
1786  	if (err)
1787 		goto out;
1788 
1789 	task_nodes = cpuset_mems_allowed(task);
1790 	mm = get_task_mm(task);
1791 	put_task_struct(task);
1792 
1793 	if (!mm)
1794 		return -EINVAL;
1795 
1796 	if (nodes)
1797 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1798 				    nodes, status, flags);
1799 	else
1800 		err = do_pages_stat(mm, nr_pages, pages, status);
1801 
1802 	mmput(mm);
1803 	return err;
1804 
1805 out:
1806 	put_task_struct(task);
1807 	return err;
1808 }
1809 
1810 #ifdef CONFIG_NUMA_BALANCING
1811 /*
1812  * Returns true if this is a safe migration target node for misplaced NUMA
1813  * pages. Currently it only checks the watermarks which crude
1814  */
1815 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1816 				   unsigned long nr_migrate_pages)
1817 {
1818 	int z;
1819 
1820 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1821 		struct zone *zone = pgdat->node_zones + z;
1822 
1823 		if (!populated_zone(zone))
1824 			continue;
1825 
1826 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1827 		if (!zone_watermark_ok(zone, 0,
1828 				       high_wmark_pages(zone) +
1829 				       nr_migrate_pages,
1830 				       0, 0))
1831 			continue;
1832 		return true;
1833 	}
1834 	return false;
1835 }
1836 
1837 static struct page *alloc_misplaced_dst_page(struct page *page,
1838 					   unsigned long data,
1839 					   int **result)
1840 {
1841 	int nid = (int) data;
1842 	struct page *newpage;
1843 
1844 	newpage = __alloc_pages_node(nid,
1845 					 (GFP_HIGHUSER_MOVABLE |
1846 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1847 					  __GFP_NORETRY | __GFP_NOWARN) &
1848 					 ~__GFP_RECLAIM, 0);
1849 
1850 	return newpage;
1851 }
1852 
1853 /*
1854  * page migration rate limiting control.
1855  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1856  * window of time. Default here says do not migrate more than 1280M per second.
1857  */
1858 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1859 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1860 
1861 /* Returns true if the node is migrate rate-limited after the update */
1862 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1863 					unsigned long nr_pages)
1864 {
1865 	/*
1866 	 * Rate-limit the amount of data that is being migrated to a node.
1867 	 * Optimal placement is no good if the memory bus is saturated and
1868 	 * all the time is being spent migrating!
1869 	 */
1870 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1871 		spin_lock(&pgdat->numabalancing_migrate_lock);
1872 		pgdat->numabalancing_migrate_nr_pages = 0;
1873 		pgdat->numabalancing_migrate_next_window = jiffies +
1874 			msecs_to_jiffies(migrate_interval_millisecs);
1875 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1876 	}
1877 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1878 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1879 								nr_pages);
1880 		return true;
1881 	}
1882 
1883 	/*
1884 	 * This is an unlocked non-atomic update so errors are possible.
1885 	 * The consequences are failing to migrate when we potentiall should
1886 	 * have which is not severe enough to warrant locking. If it is ever
1887 	 * a problem, it can be converted to a per-cpu counter.
1888 	 */
1889 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1890 	return false;
1891 }
1892 
1893 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1894 {
1895 	int page_lru;
1896 
1897 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1898 
1899 	/* Avoid migrating to a node that is nearly full */
1900 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1901 		return 0;
1902 
1903 	if (isolate_lru_page(page))
1904 		return 0;
1905 
1906 	/*
1907 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1908 	 * check on page_count(), so we must do it here, now that the page
1909 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1910 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1911 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1912 	 */
1913 	if (PageTransHuge(page) && page_count(page) != 3) {
1914 		putback_lru_page(page);
1915 		return 0;
1916 	}
1917 
1918 	page_lru = page_is_file_cache(page);
1919 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1920 				hpage_nr_pages(page));
1921 
1922 	/*
1923 	 * Isolating the page has taken another reference, so the
1924 	 * caller's reference can be safely dropped without the page
1925 	 * disappearing underneath us during migration.
1926 	 */
1927 	put_page(page);
1928 	return 1;
1929 }
1930 
1931 bool pmd_trans_migrating(pmd_t pmd)
1932 {
1933 	struct page *page = pmd_page(pmd);
1934 	return PageLocked(page);
1935 }
1936 
1937 /*
1938  * Attempt to migrate a misplaced page to the specified destination
1939  * node. Caller is expected to have an elevated reference count on
1940  * the page that will be dropped by this function before returning.
1941  */
1942 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1943 			   int node)
1944 {
1945 	pg_data_t *pgdat = NODE_DATA(node);
1946 	int isolated;
1947 	int nr_remaining;
1948 	LIST_HEAD(migratepages);
1949 
1950 	/*
1951 	 * Don't migrate file pages that are mapped in multiple processes
1952 	 * with execute permissions as they are probably shared libraries.
1953 	 */
1954 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1955 	    (vma->vm_flags & VM_EXEC))
1956 		goto out;
1957 
1958 	/*
1959 	 * Rate-limit the amount of data that is being migrated to a node.
1960 	 * Optimal placement is no good if the memory bus is saturated and
1961 	 * all the time is being spent migrating!
1962 	 */
1963 	if (numamigrate_update_ratelimit(pgdat, 1))
1964 		goto out;
1965 
1966 	isolated = numamigrate_isolate_page(pgdat, page);
1967 	if (!isolated)
1968 		goto out;
1969 
1970 	list_add(&page->lru, &migratepages);
1971 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1972 				     NULL, node, MIGRATE_ASYNC,
1973 				     MR_NUMA_MISPLACED);
1974 	if (nr_remaining) {
1975 		if (!list_empty(&migratepages)) {
1976 			list_del(&page->lru);
1977 			dec_node_page_state(page, NR_ISOLATED_ANON +
1978 					page_is_file_cache(page));
1979 			putback_lru_page(page);
1980 		}
1981 		isolated = 0;
1982 	} else
1983 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1984 	BUG_ON(!list_empty(&migratepages));
1985 	return isolated;
1986 
1987 out:
1988 	put_page(page);
1989 	return 0;
1990 }
1991 #endif /* CONFIG_NUMA_BALANCING */
1992 
1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1994 /*
1995  * Migrates a THP to a given target node. page must be locked and is unlocked
1996  * before returning.
1997  */
1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1999 				struct vm_area_struct *vma,
2000 				pmd_t *pmd, pmd_t entry,
2001 				unsigned long address,
2002 				struct page *page, int node)
2003 {
2004 	spinlock_t *ptl;
2005 	pg_data_t *pgdat = NODE_DATA(node);
2006 	int isolated = 0;
2007 	struct page *new_page = NULL;
2008 	int page_lru = page_is_file_cache(page);
2009 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2010 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2011 
2012 	/*
2013 	 * Rate-limit the amount of data that is being migrated to a node.
2014 	 * Optimal placement is no good if the memory bus is saturated and
2015 	 * all the time is being spent migrating!
2016 	 */
2017 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2018 		goto out_dropref;
2019 
2020 	new_page = alloc_pages_node(node,
2021 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2022 		HPAGE_PMD_ORDER);
2023 	if (!new_page)
2024 		goto out_fail;
2025 	prep_transhuge_page(new_page);
2026 
2027 	isolated = numamigrate_isolate_page(pgdat, page);
2028 	if (!isolated) {
2029 		put_page(new_page);
2030 		goto out_fail;
2031 	}
2032 
2033 	/* Prepare a page as a migration target */
2034 	__SetPageLocked(new_page);
2035 	if (PageSwapBacked(page))
2036 		__SetPageSwapBacked(new_page);
2037 
2038 	/* anon mapping, we can simply copy page->mapping to the new page: */
2039 	new_page->mapping = page->mapping;
2040 	new_page->index = page->index;
2041 	migrate_page_copy(new_page, page);
2042 	WARN_ON(PageLRU(new_page));
2043 
2044 	/* Recheck the target PMD */
2045 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2046 	ptl = pmd_lock(mm, pmd);
2047 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2048 		spin_unlock(ptl);
2049 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2050 
2051 		/* Reverse changes made by migrate_page_copy() */
2052 		if (TestClearPageActive(new_page))
2053 			SetPageActive(page);
2054 		if (TestClearPageUnevictable(new_page))
2055 			SetPageUnevictable(page);
2056 
2057 		unlock_page(new_page);
2058 		put_page(new_page);		/* Free it */
2059 
2060 		/* Retake the callers reference and putback on LRU */
2061 		get_page(page);
2062 		putback_lru_page(page);
2063 		mod_node_page_state(page_pgdat(page),
2064 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2065 
2066 		goto out_unlock;
2067 	}
2068 
2069 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2070 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2071 
2072 	/*
2073 	 * Clear the old entry under pagetable lock and establish the new PTE.
2074 	 * Any parallel GUP will either observe the old page blocking on the
2075 	 * page lock, block on the page table lock or observe the new page.
2076 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2077 	 * guarantee the copy is visible before the pagetable update.
2078 	 */
2079 	flush_cache_range(vma, mmun_start, mmun_end);
2080 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2081 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2082 	set_pmd_at(mm, mmun_start, pmd, entry);
2083 	update_mmu_cache_pmd(vma, address, &entry);
2084 
2085 	page_ref_unfreeze(page, 2);
2086 	mlock_migrate_page(new_page, page);
2087 	page_remove_rmap(page, true);
2088 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2089 
2090 	spin_unlock(ptl);
2091 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2092 
2093 	/* Take an "isolate" reference and put new page on the LRU. */
2094 	get_page(new_page);
2095 	putback_lru_page(new_page);
2096 
2097 	unlock_page(new_page);
2098 	unlock_page(page);
2099 	put_page(page);			/* Drop the rmap reference */
2100 	put_page(page);			/* Drop the LRU isolation reference */
2101 
2102 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2103 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2104 
2105 	mod_node_page_state(page_pgdat(page),
2106 			NR_ISOLATED_ANON + page_lru,
2107 			-HPAGE_PMD_NR);
2108 	return isolated;
2109 
2110 out_fail:
2111 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2112 out_dropref:
2113 	ptl = pmd_lock(mm, pmd);
2114 	if (pmd_same(*pmd, entry)) {
2115 		entry = pmd_modify(entry, vma->vm_page_prot);
2116 		set_pmd_at(mm, mmun_start, pmd, entry);
2117 		update_mmu_cache_pmd(vma, address, &entry);
2118 	}
2119 	spin_unlock(ptl);
2120 
2121 out_unlock:
2122 	unlock_page(page);
2123 	put_page(page);
2124 	return 0;
2125 }
2126 #endif /* CONFIG_NUMA_BALANCING */
2127 
2128 #endif /* CONFIG_NUMA */
2129 
2130 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2131 struct migrate_vma {
2132 	struct vm_area_struct	*vma;
2133 	unsigned long		*dst;
2134 	unsigned long		*src;
2135 	unsigned long		cpages;
2136 	unsigned long		npages;
2137 	unsigned long		start;
2138 	unsigned long		end;
2139 };
2140 
2141 static int migrate_vma_collect_hole(unsigned long start,
2142 				    unsigned long end,
2143 				    struct mm_walk *walk)
2144 {
2145 	struct migrate_vma *migrate = walk->private;
2146 	unsigned long addr;
2147 
2148 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149 		migrate->src[migrate->npages++] = MIGRATE_PFN_MIGRATE;
2150 		migrate->dst[migrate->npages] = 0;
2151 		migrate->cpages++;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static int migrate_vma_collect_skip(unsigned long start,
2158 				    unsigned long end,
2159 				    struct mm_walk *walk)
2160 {
2161 	struct migrate_vma *migrate = walk->private;
2162 	unsigned long addr;
2163 
2164 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2165 		migrate->dst[migrate->npages] = 0;
2166 		migrate->src[migrate->npages++] = 0;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2173 				   unsigned long start,
2174 				   unsigned long end,
2175 				   struct mm_walk *walk)
2176 {
2177 	struct migrate_vma *migrate = walk->private;
2178 	struct vm_area_struct *vma = walk->vma;
2179 	struct mm_struct *mm = vma->vm_mm;
2180 	unsigned long addr = start, unmapped = 0;
2181 	spinlock_t *ptl;
2182 	pte_t *ptep;
2183 
2184 again:
2185 	if (pmd_none(*pmdp))
2186 		return migrate_vma_collect_hole(start, end, walk);
2187 
2188 	if (pmd_trans_huge(*pmdp)) {
2189 		struct page *page;
2190 
2191 		ptl = pmd_lock(mm, pmdp);
2192 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2193 			spin_unlock(ptl);
2194 			goto again;
2195 		}
2196 
2197 		page = pmd_page(*pmdp);
2198 		if (is_huge_zero_page(page)) {
2199 			spin_unlock(ptl);
2200 			split_huge_pmd(vma, pmdp, addr);
2201 			if (pmd_trans_unstable(pmdp))
2202 				return migrate_vma_collect_skip(start, end,
2203 								walk);
2204 		} else {
2205 			int ret;
2206 
2207 			get_page(page);
2208 			spin_unlock(ptl);
2209 			if (unlikely(!trylock_page(page)))
2210 				return migrate_vma_collect_skip(start, end,
2211 								walk);
2212 			ret = split_huge_page(page);
2213 			unlock_page(page);
2214 			put_page(page);
2215 			if (ret)
2216 				return migrate_vma_collect_skip(start, end,
2217 								walk);
2218 			if (pmd_none(*pmdp))
2219 				return migrate_vma_collect_hole(start, end,
2220 								walk);
2221 		}
2222 	}
2223 
2224 	if (unlikely(pmd_bad(*pmdp)))
2225 		return migrate_vma_collect_skip(start, end, walk);
2226 
2227 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2228 	arch_enter_lazy_mmu_mode();
2229 
2230 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2231 		unsigned long mpfn, pfn;
2232 		struct page *page;
2233 		swp_entry_t entry;
2234 		pte_t pte;
2235 
2236 		pte = *ptep;
2237 		pfn = pte_pfn(pte);
2238 
2239 		if (pte_none(pte)) {
2240 			mpfn = MIGRATE_PFN_MIGRATE;
2241 			migrate->cpages++;
2242 			pfn = 0;
2243 			goto next;
2244 		}
2245 
2246 		if (!pte_present(pte)) {
2247 			mpfn = pfn = 0;
2248 
2249 			/*
2250 			 * Only care about unaddressable device page special
2251 			 * page table entry. Other special swap entries are not
2252 			 * migratable, and we ignore regular swapped page.
2253 			 */
2254 			entry = pte_to_swp_entry(pte);
2255 			if (!is_device_private_entry(entry))
2256 				goto next;
2257 
2258 			page = device_private_entry_to_page(entry);
2259 			mpfn = migrate_pfn(page_to_pfn(page))|
2260 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2261 			if (is_write_device_private_entry(entry))
2262 				mpfn |= MIGRATE_PFN_WRITE;
2263 		} else {
2264 			if (is_zero_pfn(pfn)) {
2265 				mpfn = MIGRATE_PFN_MIGRATE;
2266 				migrate->cpages++;
2267 				pfn = 0;
2268 				goto next;
2269 			}
2270 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2271 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2272 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2273 		}
2274 
2275 		/* FIXME support THP */
2276 		if (!page || !page->mapping || PageTransCompound(page)) {
2277 			mpfn = pfn = 0;
2278 			goto next;
2279 		}
2280 		pfn = page_to_pfn(page);
2281 
2282 		/*
2283 		 * By getting a reference on the page we pin it and that blocks
2284 		 * any kind of migration. Side effect is that it "freezes" the
2285 		 * pte.
2286 		 *
2287 		 * We drop this reference after isolating the page from the lru
2288 		 * for non device page (device page are not on the lru and thus
2289 		 * can't be dropped from it).
2290 		 */
2291 		get_page(page);
2292 		migrate->cpages++;
2293 
2294 		/*
2295 		 * Optimize for the common case where page is only mapped once
2296 		 * in one process. If we can lock the page, then we can safely
2297 		 * set up a special migration page table entry now.
2298 		 */
2299 		if (trylock_page(page)) {
2300 			pte_t swp_pte;
2301 
2302 			mpfn |= MIGRATE_PFN_LOCKED;
2303 			ptep_get_and_clear(mm, addr, ptep);
2304 
2305 			/* Setup special migration page table entry */
2306 			entry = make_migration_entry(page, pte_write(pte));
2307 			swp_pte = swp_entry_to_pte(entry);
2308 			if (pte_soft_dirty(pte))
2309 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2310 			set_pte_at(mm, addr, ptep, swp_pte);
2311 
2312 			/*
2313 			 * This is like regular unmap: we remove the rmap and
2314 			 * drop page refcount. Page won't be freed, as we took
2315 			 * a reference just above.
2316 			 */
2317 			page_remove_rmap(page, false);
2318 			put_page(page);
2319 
2320 			if (pte_present(pte))
2321 				unmapped++;
2322 		}
2323 
2324 next:
2325 		migrate->dst[migrate->npages] = 0;
2326 		migrate->src[migrate->npages++] = mpfn;
2327 	}
2328 	arch_leave_lazy_mmu_mode();
2329 	pte_unmap_unlock(ptep - 1, ptl);
2330 
2331 	/* Only flush the TLB if we actually modified any entries */
2332 	if (unmapped)
2333 		flush_tlb_range(walk->vma, start, end);
2334 
2335 	return 0;
2336 }
2337 
2338 /*
2339  * migrate_vma_collect() - collect pages over a range of virtual addresses
2340  * @migrate: migrate struct containing all migration information
2341  *
2342  * This will walk the CPU page table. For each virtual address backed by a
2343  * valid page, it updates the src array and takes a reference on the page, in
2344  * order to pin the page until we lock it and unmap it.
2345  */
2346 static void migrate_vma_collect(struct migrate_vma *migrate)
2347 {
2348 	struct mm_walk mm_walk;
2349 
2350 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2351 	mm_walk.pte_entry = NULL;
2352 	mm_walk.pte_hole = migrate_vma_collect_hole;
2353 	mm_walk.hugetlb_entry = NULL;
2354 	mm_walk.test_walk = NULL;
2355 	mm_walk.vma = migrate->vma;
2356 	mm_walk.mm = migrate->vma->vm_mm;
2357 	mm_walk.private = migrate;
2358 
2359 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2360 					    migrate->start,
2361 					    migrate->end);
2362 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2363 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2364 					  migrate->start,
2365 					  migrate->end);
2366 
2367 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2368 }
2369 
2370 /*
2371  * migrate_vma_check_page() - check if page is pinned or not
2372  * @page: struct page to check
2373  *
2374  * Pinned pages cannot be migrated. This is the same test as in
2375  * migrate_page_move_mapping(), except that here we allow migration of a
2376  * ZONE_DEVICE page.
2377  */
2378 static bool migrate_vma_check_page(struct page *page)
2379 {
2380 	/*
2381 	 * One extra ref because caller holds an extra reference, either from
2382 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2383 	 * a device page.
2384 	 */
2385 	int extra = 1;
2386 
2387 	/*
2388 	 * FIXME support THP (transparent huge page), it is bit more complex to
2389 	 * check them than regular pages, because they can be mapped with a pmd
2390 	 * or with a pte (split pte mapping).
2391 	 */
2392 	if (PageCompound(page))
2393 		return false;
2394 
2395 	/* Page from ZONE_DEVICE have one extra reference */
2396 	if (is_zone_device_page(page)) {
2397 		/*
2398 		 * Private page can never be pin as they have no valid pte and
2399 		 * GUP will fail for those. Yet if there is a pending migration
2400 		 * a thread might try to wait on the pte migration entry and
2401 		 * will bump the page reference count. Sadly there is no way to
2402 		 * differentiate a regular pin from migration wait. Hence to
2403 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2404 		 * infinite loop (one stoping migration because the other is
2405 		 * waiting on pte migration entry). We always return true here.
2406 		 *
2407 		 * FIXME proper solution is to rework migration_entry_wait() so
2408 		 * it does not need to take a reference on page.
2409 		 */
2410 		if (is_device_private_page(page))
2411 			return true;
2412 
2413 		/*
2414 		 * Only allow device public page to be migrated and account for
2415 		 * the extra reference count imply by ZONE_DEVICE pages.
2416 		 */
2417 		if (!is_device_public_page(page))
2418 			return false;
2419 		extra++;
2420 	}
2421 
2422 	/* For file back page */
2423 	if (page_mapping(page))
2424 		extra += 1 + page_has_private(page);
2425 
2426 	if ((page_count(page) - extra) > page_mapcount(page))
2427 		return false;
2428 
2429 	return true;
2430 }
2431 
2432 /*
2433  * migrate_vma_prepare() - lock pages and isolate them from the lru
2434  * @migrate: migrate struct containing all migration information
2435  *
2436  * This locks pages that have been collected by migrate_vma_collect(). Once each
2437  * page is locked it is isolated from the lru (for non-device pages). Finally,
2438  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2439  * migrated by concurrent kernel threads.
2440  */
2441 static void migrate_vma_prepare(struct migrate_vma *migrate)
2442 {
2443 	const unsigned long npages = migrate->npages;
2444 	const unsigned long start = migrate->start;
2445 	unsigned long addr, i, restore = 0;
2446 	bool allow_drain = true;
2447 
2448 	lru_add_drain();
2449 
2450 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2451 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2452 		bool remap = true;
2453 
2454 		if (!page)
2455 			continue;
2456 
2457 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2458 			/*
2459 			 * Because we are migrating several pages there can be
2460 			 * a deadlock between 2 concurrent migration where each
2461 			 * are waiting on each other page lock.
2462 			 *
2463 			 * Make migrate_vma() a best effort thing and backoff
2464 			 * for any page we can not lock right away.
2465 			 */
2466 			if (!trylock_page(page)) {
2467 				migrate->src[i] = 0;
2468 				migrate->cpages--;
2469 				put_page(page);
2470 				continue;
2471 			}
2472 			remap = false;
2473 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2474 		}
2475 
2476 		/* ZONE_DEVICE pages are not on LRU */
2477 		if (!is_zone_device_page(page)) {
2478 			if (!PageLRU(page) && allow_drain) {
2479 				/* Drain CPU's pagevec */
2480 				lru_add_drain_all();
2481 				allow_drain = false;
2482 			}
2483 
2484 			if (isolate_lru_page(page)) {
2485 				if (remap) {
2486 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487 					migrate->cpages--;
2488 					restore++;
2489 				} else {
2490 					migrate->src[i] = 0;
2491 					unlock_page(page);
2492 					migrate->cpages--;
2493 					put_page(page);
2494 				}
2495 				continue;
2496 			}
2497 
2498 			/* Drop the reference we took in collect */
2499 			put_page(page);
2500 		}
2501 
2502 		if (!migrate_vma_check_page(page)) {
2503 			if (remap) {
2504 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505 				migrate->cpages--;
2506 				restore++;
2507 
2508 				if (!is_zone_device_page(page)) {
2509 					get_page(page);
2510 					putback_lru_page(page);
2511 				}
2512 			} else {
2513 				migrate->src[i] = 0;
2514 				unlock_page(page);
2515 				migrate->cpages--;
2516 
2517 				if (!is_zone_device_page(page))
2518 					putback_lru_page(page);
2519 				else
2520 					put_page(page);
2521 			}
2522 		}
2523 	}
2524 
2525 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2526 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2527 
2528 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2529 			continue;
2530 
2531 		remove_migration_pte(page, migrate->vma, addr, page);
2532 
2533 		migrate->src[i] = 0;
2534 		unlock_page(page);
2535 		put_page(page);
2536 		restore--;
2537 	}
2538 }
2539 
2540 /*
2541  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2542  * @migrate: migrate struct containing all migration information
2543  *
2544  * Replace page mapping (CPU page table pte) with a special migration pte entry
2545  * and check again if it has been pinned. Pinned pages are restored because we
2546  * cannot migrate them.
2547  *
2548  * This is the last step before we call the device driver callback to allocate
2549  * destination memory and copy contents of original page over to new page.
2550  */
2551 static void migrate_vma_unmap(struct migrate_vma *migrate)
2552 {
2553 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2554 	const unsigned long npages = migrate->npages;
2555 	const unsigned long start = migrate->start;
2556 	unsigned long addr, i, restore = 0;
2557 
2558 	for (i = 0; i < npages; i++) {
2559 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2560 
2561 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2562 			continue;
2563 
2564 		if (page_mapped(page)) {
2565 			try_to_unmap(page, flags);
2566 			if (page_mapped(page))
2567 				goto restore;
2568 		}
2569 
2570 		if (migrate_vma_check_page(page))
2571 			continue;
2572 
2573 restore:
2574 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2575 		migrate->cpages--;
2576 		restore++;
2577 	}
2578 
2579 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2580 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581 
2582 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583 			continue;
2584 
2585 		remove_migration_ptes(page, page, false);
2586 
2587 		migrate->src[i] = 0;
2588 		unlock_page(page);
2589 		restore--;
2590 
2591 		if (is_zone_device_page(page))
2592 			put_page(page);
2593 		else
2594 			putback_lru_page(page);
2595 	}
2596 }
2597 
2598 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2599 				    unsigned long addr,
2600 				    struct page *page,
2601 				    unsigned long *src,
2602 				    unsigned long *dst)
2603 {
2604 	struct vm_area_struct *vma = migrate->vma;
2605 	struct mm_struct *mm = vma->vm_mm;
2606 	struct mem_cgroup *memcg;
2607 	bool flush = false;
2608 	spinlock_t *ptl;
2609 	pte_t entry;
2610 	pgd_t *pgdp;
2611 	p4d_t *p4dp;
2612 	pud_t *pudp;
2613 	pmd_t *pmdp;
2614 	pte_t *ptep;
2615 
2616 	/* Only allow populating anonymous memory */
2617 	if (!vma_is_anonymous(vma))
2618 		goto abort;
2619 
2620 	pgdp = pgd_offset(mm, addr);
2621 	p4dp = p4d_alloc(mm, pgdp, addr);
2622 	if (!p4dp)
2623 		goto abort;
2624 	pudp = pud_alloc(mm, p4dp, addr);
2625 	if (!pudp)
2626 		goto abort;
2627 	pmdp = pmd_alloc(mm, pudp, addr);
2628 	if (!pmdp)
2629 		goto abort;
2630 
2631 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2632 		goto abort;
2633 
2634 	/*
2635 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2636 	 * pte_offset_map() on pmds where a huge pmd might be created
2637 	 * from a different thread.
2638 	 *
2639 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2640 	 * parallel threads are excluded by other means.
2641 	 *
2642 	 * Here we only have down_read(mmap_sem).
2643 	 */
2644 	if (pte_alloc(mm, pmdp, addr))
2645 		goto abort;
2646 
2647 	/* See the comment in pte_alloc_one_map() */
2648 	if (unlikely(pmd_trans_unstable(pmdp)))
2649 		goto abort;
2650 
2651 	if (unlikely(anon_vma_prepare(vma)))
2652 		goto abort;
2653 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2654 		goto abort;
2655 
2656 	/*
2657 	 * The memory barrier inside __SetPageUptodate makes sure that
2658 	 * preceding stores to the page contents become visible before
2659 	 * the set_pte_at() write.
2660 	 */
2661 	__SetPageUptodate(page);
2662 
2663 	if (is_zone_device_page(page)) {
2664 		if (is_device_private_page(page)) {
2665 			swp_entry_t swp_entry;
2666 
2667 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2668 			entry = swp_entry_to_pte(swp_entry);
2669 		} else if (is_device_public_page(page)) {
2670 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2671 			if (vma->vm_flags & VM_WRITE)
2672 				entry = pte_mkwrite(pte_mkdirty(entry));
2673 			entry = pte_mkdevmap(entry);
2674 		}
2675 	} else {
2676 		entry = mk_pte(page, vma->vm_page_prot);
2677 		if (vma->vm_flags & VM_WRITE)
2678 			entry = pte_mkwrite(pte_mkdirty(entry));
2679 	}
2680 
2681 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2682 
2683 	if (pte_present(*ptep)) {
2684 		unsigned long pfn = pte_pfn(*ptep);
2685 
2686 		if (!is_zero_pfn(pfn)) {
2687 			pte_unmap_unlock(ptep, ptl);
2688 			mem_cgroup_cancel_charge(page, memcg, false);
2689 			goto abort;
2690 		}
2691 		flush = true;
2692 	} else if (!pte_none(*ptep)) {
2693 		pte_unmap_unlock(ptep, ptl);
2694 		mem_cgroup_cancel_charge(page, memcg, false);
2695 		goto abort;
2696 	}
2697 
2698 	/*
2699 	 * Check for usefaultfd but do not deliver the fault. Instead,
2700 	 * just back off.
2701 	 */
2702 	if (userfaultfd_missing(vma)) {
2703 		pte_unmap_unlock(ptep, ptl);
2704 		mem_cgroup_cancel_charge(page, memcg, false);
2705 		goto abort;
2706 	}
2707 
2708 	inc_mm_counter(mm, MM_ANONPAGES);
2709 	page_add_new_anon_rmap(page, vma, addr, false);
2710 	mem_cgroup_commit_charge(page, memcg, false, false);
2711 	if (!is_zone_device_page(page))
2712 		lru_cache_add_active_or_unevictable(page, vma);
2713 	get_page(page);
2714 
2715 	if (flush) {
2716 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2717 		ptep_clear_flush_notify(vma, addr, ptep);
2718 		set_pte_at_notify(mm, addr, ptep, entry);
2719 		update_mmu_cache(vma, addr, ptep);
2720 	} else {
2721 		/* No need to invalidate - it was non-present before */
2722 		set_pte_at(mm, addr, ptep, entry);
2723 		update_mmu_cache(vma, addr, ptep);
2724 	}
2725 
2726 	pte_unmap_unlock(ptep, ptl);
2727 	*src = MIGRATE_PFN_MIGRATE;
2728 	return;
2729 
2730 abort:
2731 	*src &= ~MIGRATE_PFN_MIGRATE;
2732 }
2733 
2734 /*
2735  * migrate_vma_pages() - migrate meta-data from src page to dst page
2736  * @migrate: migrate struct containing all migration information
2737  *
2738  * This migrates struct page meta-data from source struct page to destination
2739  * struct page. This effectively finishes the migration from source page to the
2740  * destination page.
2741  */
2742 static void migrate_vma_pages(struct migrate_vma *migrate)
2743 {
2744 	const unsigned long npages = migrate->npages;
2745 	const unsigned long start = migrate->start;
2746 	struct vm_area_struct *vma = migrate->vma;
2747 	struct mm_struct *mm = vma->vm_mm;
2748 	unsigned long addr, i, mmu_start;
2749 	bool notified = false;
2750 
2751 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2752 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2753 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2754 		struct address_space *mapping;
2755 		int r;
2756 
2757 		if (!newpage) {
2758 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759 			continue;
2760 		}
2761 
2762 		if (!page) {
2763 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2764 				continue;
2765 			}
2766 			if (!notified) {
2767 				mmu_start = addr;
2768 				notified = true;
2769 				mmu_notifier_invalidate_range_start(mm,
2770 								mmu_start,
2771 								migrate->end);
2772 			}
2773 			migrate_vma_insert_page(migrate, addr, newpage,
2774 						&migrate->src[i],
2775 						&migrate->dst[i]);
2776 			continue;
2777 		}
2778 
2779 		mapping = page_mapping(page);
2780 
2781 		if (is_zone_device_page(newpage)) {
2782 			if (is_device_private_page(newpage)) {
2783 				/*
2784 				 * For now only support private anonymous when
2785 				 * migrating to un-addressable device memory.
2786 				 */
2787 				if (mapping) {
2788 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2789 					continue;
2790 				}
2791 			} else if (!is_device_public_page(newpage)) {
2792 				/*
2793 				 * Other types of ZONE_DEVICE page are not
2794 				 * supported.
2795 				 */
2796 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2797 				continue;
2798 			}
2799 		}
2800 
2801 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2802 		if (r != MIGRATEPAGE_SUCCESS)
2803 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2804 	}
2805 
2806 	if (notified)
2807 		mmu_notifier_invalidate_range_end(mm, mmu_start,
2808 						  migrate->end);
2809 }
2810 
2811 /*
2812  * migrate_vma_finalize() - restore CPU page table entry
2813  * @migrate: migrate struct containing all migration information
2814  *
2815  * This replaces the special migration pte entry with either a mapping to the
2816  * new page if migration was successful for that page, or to the original page
2817  * otherwise.
2818  *
2819  * This also unlocks the pages and puts them back on the lru, or drops the extra
2820  * refcount, for device pages.
2821  */
2822 static void migrate_vma_finalize(struct migrate_vma *migrate)
2823 {
2824 	const unsigned long npages = migrate->npages;
2825 	unsigned long i;
2826 
2827 	for (i = 0; i < npages; i++) {
2828 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2829 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2830 
2831 		if (!page) {
2832 			if (newpage) {
2833 				unlock_page(newpage);
2834 				put_page(newpage);
2835 			}
2836 			continue;
2837 		}
2838 
2839 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2840 			if (newpage) {
2841 				unlock_page(newpage);
2842 				put_page(newpage);
2843 			}
2844 			newpage = page;
2845 		}
2846 
2847 		remove_migration_ptes(page, newpage, false);
2848 		unlock_page(page);
2849 		migrate->cpages--;
2850 
2851 		if (is_zone_device_page(page))
2852 			put_page(page);
2853 		else
2854 			putback_lru_page(page);
2855 
2856 		if (newpage != page) {
2857 			unlock_page(newpage);
2858 			if (is_zone_device_page(newpage))
2859 				put_page(newpage);
2860 			else
2861 				putback_lru_page(newpage);
2862 		}
2863 	}
2864 }
2865 
2866 /*
2867  * migrate_vma() - migrate a range of memory inside vma
2868  *
2869  * @ops: migration callback for allocating destination memory and copying
2870  * @vma: virtual memory area containing the range to be migrated
2871  * @start: start address of the range to migrate (inclusive)
2872  * @end: end address of the range to migrate (exclusive)
2873  * @src: array of hmm_pfn_t containing source pfns
2874  * @dst: array of hmm_pfn_t containing destination pfns
2875  * @private: pointer passed back to each of the callback
2876  * Returns: 0 on success, error code otherwise
2877  *
2878  * This function tries to migrate a range of memory virtual address range, using
2879  * callbacks to allocate and copy memory from source to destination. First it
2880  * collects all the pages backing each virtual address in the range, saving this
2881  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2882  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2883  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2884  * in the corresponding src array entry. It then restores any pages that are
2885  * pinned, by remapping and unlocking those pages.
2886  *
2887  * At this point it calls the alloc_and_copy() callback. For documentation on
2888  * what is expected from that callback, see struct migrate_vma_ops comments in
2889  * include/linux/migrate.h
2890  *
2891  * After the alloc_and_copy() callback, this function goes over each entry in
2892  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2893  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2894  * then the function tries to migrate struct page information from the source
2895  * struct page to the destination struct page. If it fails to migrate the struct
2896  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2897  * array.
2898  *
2899  * At this point all successfully migrated pages have an entry in the src
2900  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2901  * array entry with MIGRATE_PFN_VALID flag set.
2902  *
2903  * It then calls the finalize_and_map() callback. See comments for "struct
2904  * migrate_vma_ops", in include/linux/migrate.h for details about
2905  * finalize_and_map() behavior.
2906  *
2907  * After the finalize_and_map() callback, for successfully migrated pages, this
2908  * function updates the CPU page table to point to new pages, otherwise it
2909  * restores the CPU page table to point to the original source pages.
2910  *
2911  * Function returns 0 after the above steps, even if no pages were migrated
2912  * (The function only returns an error if any of the arguments are invalid.)
2913  *
2914  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2915  * unsigned long entries.
2916  */
2917 int migrate_vma(const struct migrate_vma_ops *ops,
2918 		struct vm_area_struct *vma,
2919 		unsigned long start,
2920 		unsigned long end,
2921 		unsigned long *src,
2922 		unsigned long *dst,
2923 		void *private)
2924 {
2925 	struct migrate_vma migrate;
2926 
2927 	/* Sanity check the arguments */
2928 	start &= PAGE_MASK;
2929 	end &= PAGE_MASK;
2930 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2931 		return -EINVAL;
2932 	if (start < vma->vm_start || start >= vma->vm_end)
2933 		return -EINVAL;
2934 	if (end <= vma->vm_start || end > vma->vm_end)
2935 		return -EINVAL;
2936 	if (!ops || !src || !dst || start >= end)
2937 		return -EINVAL;
2938 
2939 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2940 	migrate.src = src;
2941 	migrate.dst = dst;
2942 	migrate.start = start;
2943 	migrate.npages = 0;
2944 	migrate.cpages = 0;
2945 	migrate.end = end;
2946 	migrate.vma = vma;
2947 
2948 	/* Collect, and try to unmap source pages */
2949 	migrate_vma_collect(&migrate);
2950 	if (!migrate.cpages)
2951 		return 0;
2952 
2953 	/* Lock and isolate page */
2954 	migrate_vma_prepare(&migrate);
2955 	if (!migrate.cpages)
2956 		return 0;
2957 
2958 	/* Unmap pages */
2959 	migrate_vma_unmap(&migrate);
2960 	if (!migrate.cpages)
2961 		return 0;
2962 
2963 	/*
2964 	 * At this point pages are locked and unmapped, and thus they have
2965 	 * stable content and can safely be copied to destination memory that
2966 	 * is allocated by the callback.
2967 	 *
2968 	 * Note that migration can fail in migrate_vma_struct_page() for each
2969 	 * individual page.
2970 	 */
2971 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2972 
2973 	/* This does the real migration of struct page */
2974 	migrate_vma_pages(&migrate);
2975 
2976 	ops->finalize_and_map(vma, src, dst, start, end, private);
2977 
2978 	/* Unlock and remap pages */
2979 	migrate_vma_finalize(&migrate);
2980 
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL(migrate_vma);
2984 #endif /* defined(MIGRATE_VMA_HELPER) */
2985