xref: /openbmc/linux/mm/migrate.c (revision 0d07cf5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grabbing the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			}
250 		}
251 
252 #ifdef CONFIG_HUGETLB_PAGE
253 		if (PageHuge(new)) {
254 			pte = pte_mkhuge(pte);
255 			pte = arch_make_huge_pte(pte, vma, new, 0);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 			if (PageAnon(new))
258 				hugepage_add_anon_rmap(new, vma, pvmw.address);
259 			else
260 				page_dup_rmap(new, true);
261 		} else
262 #endif
263 		{
264 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265 
266 			if (PageAnon(new))
267 				page_add_anon_rmap(new, vma, pvmw.address, false);
268 			else
269 				page_add_file_rmap(new, false);
270 		}
271 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272 			mlock_vma_page(new);
273 
274 		if (PageTransHuge(page) && PageMlocked(page))
275 			clear_page_mlock(page);
276 
277 		/* No need to invalidate - it was non-present before */
278 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 	}
280 
281 	return true;
282 }
283 
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289 {
290 	struct rmap_walk_control rwc = {
291 		.rmap_one = remove_migration_pte,
292 		.arg = old,
293 	};
294 
295 	if (locked)
296 		rmap_walk_locked(new, &rwc);
297 	else
298 		rmap_walk(new, &rwc);
299 }
300 
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307 				spinlock_t *ptl)
308 {
309 	pte_t pte;
310 	swp_entry_t entry;
311 	struct page *page;
312 
313 	spin_lock(ptl);
314 	pte = *ptep;
315 	if (!is_swap_pte(pte))
316 		goto out;
317 
318 	entry = pte_to_swp_entry(pte);
319 	if (!is_migration_entry(entry))
320 		goto out;
321 
322 	page = migration_entry_to_page(entry);
323 
324 	/*
325 	 * Once page cache replacement of page migration started, page_count
326 	 * is zero; but we must not call put_and_wait_on_page_locked() without
327 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
328 	 */
329 	if (!get_page_unless_zero(page))
330 		goto out;
331 	pte_unmap_unlock(ptep, ptl);
332 	put_and_wait_on_page_locked(page);
333 	return;
334 out:
335 	pte_unmap_unlock(ptep, ptl);
336 }
337 
338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339 				unsigned long address)
340 {
341 	spinlock_t *ptl = pte_lockptr(mm, pmd);
342 	pte_t *ptep = pte_offset_map(pmd, address);
343 	__migration_entry_wait(mm, ptep, ptl);
344 }
345 
346 void migration_entry_wait_huge(struct vm_area_struct *vma,
347 		struct mm_struct *mm, pte_t *pte)
348 {
349 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350 	__migration_entry_wait(mm, pte, ptl);
351 }
352 
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355 {
356 	spinlock_t *ptl;
357 	struct page *page;
358 
359 	ptl = pmd_lock(mm, pmd);
360 	if (!is_pmd_migration_entry(*pmd))
361 		goto unlock;
362 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363 	if (!get_page_unless_zero(page))
364 		goto unlock;
365 	spin_unlock(ptl);
366 	put_and_wait_on_page_locked(page);
367 	return;
368 unlock:
369 	spin_unlock(ptl);
370 }
371 #endif
372 
373 static int expected_page_refs(struct address_space *mapping, struct page *page)
374 {
375 	int expected_count = 1;
376 
377 	/*
378 	 * Device public or private pages have an extra refcount as they are
379 	 * ZONE_DEVICE pages.
380 	 */
381 	expected_count += is_device_private_page(page);
382 	if (mapping)
383 		expected_count += hpage_nr_pages(page) + page_has_private(page);
384 
385 	return expected_count;
386 }
387 
388 /*
389  * Replace the page in the mapping.
390  *
391  * The number of remaining references must be:
392  * 1 for anonymous pages without a mapping
393  * 2 for pages with a mapping
394  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
395  */
396 int migrate_page_move_mapping(struct address_space *mapping,
397 		struct page *newpage, struct page *page, enum migrate_mode mode,
398 		int extra_count)
399 {
400 	XA_STATE(xas, &mapping->i_pages, page_index(page));
401 	struct zone *oldzone, *newzone;
402 	int dirty;
403 	int expected_count = expected_page_refs(mapping, page) + extra_count;
404 
405 	if (!mapping) {
406 		/* Anonymous page without mapping */
407 		if (page_count(page) != expected_count)
408 			return -EAGAIN;
409 
410 		/* No turning back from here */
411 		newpage->index = page->index;
412 		newpage->mapping = page->mapping;
413 		if (PageSwapBacked(page))
414 			__SetPageSwapBacked(newpage);
415 
416 		return MIGRATEPAGE_SUCCESS;
417 	}
418 
419 	oldzone = page_zone(page);
420 	newzone = page_zone(newpage);
421 
422 	xas_lock_irq(&xas);
423 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
424 		xas_unlock_irq(&xas);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_ref_freeze(page, expected_count)) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	/*
434 	 * Now we know that no one else is looking at the page:
435 	 * no turning back from here.
436 	 */
437 	newpage->index = page->index;
438 	newpage->mapping = page->mapping;
439 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440 	if (PageSwapBacked(page)) {
441 		__SetPageSwapBacked(newpage);
442 		if (PageSwapCache(page)) {
443 			SetPageSwapCache(newpage);
444 			set_page_private(newpage, page_private(page));
445 		}
446 	} else {
447 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
448 	}
449 
450 	/* Move dirty while page refs frozen and newpage not yet exposed */
451 	dirty = PageDirty(page);
452 	if (dirty) {
453 		ClearPageDirty(page);
454 		SetPageDirty(newpage);
455 	}
456 
457 	xas_store(&xas, newpage);
458 	if (PageTransHuge(page)) {
459 		int i;
460 
461 		for (i = 1; i < HPAGE_PMD_NR; i++) {
462 			xas_next(&xas);
463 			xas_store(&xas, newpage + i);
464 		}
465 	}
466 
467 	/*
468 	 * Drop cache reference from old page by unfreezing
469 	 * to one less reference.
470 	 * We know this isn't the last reference.
471 	 */
472 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473 
474 	xas_unlock(&xas);
475 	/* Leave irq disabled to prevent preemption while updating stats */
476 
477 	/*
478 	 * If moved to a different zone then also account
479 	 * the page for that zone. Other VM counters will be
480 	 * taken care of when we establish references to the
481 	 * new page and drop references to the old page.
482 	 *
483 	 * Note that anonymous pages are accounted for
484 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485 	 * are mapped to swap space.
486 	 */
487 	if (newzone != oldzone) {
488 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
491 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493 		}
494 		if (dirty && mapping_cap_account_dirty(mapping)) {
495 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499 		}
500 	}
501 	local_irq_enable();
502 
503 	return MIGRATEPAGE_SUCCESS;
504 }
505 EXPORT_SYMBOL(migrate_page_move_mapping);
506 
507 /*
508  * The expected number of remaining references is the same as that
509  * of migrate_page_move_mapping().
510  */
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512 				   struct page *newpage, struct page *page)
513 {
514 	XA_STATE(xas, &mapping->i_pages, page_index(page));
515 	int expected_count;
516 
517 	xas_lock_irq(&xas);
518 	expected_count = 2 + page_has_private(page);
519 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
520 		xas_unlock_irq(&xas);
521 		return -EAGAIN;
522 	}
523 
524 	if (!page_ref_freeze(page, expected_count)) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	newpage->index = page->index;
530 	newpage->mapping = page->mapping;
531 
532 	get_page(newpage);
533 
534 	xas_store(&xas, newpage);
535 
536 	page_ref_unfreeze(page, expected_count - 1);
537 
538 	xas_unlock_irq(&xas);
539 
540 	return MIGRATEPAGE_SUCCESS;
541 }
542 
543 /*
544  * Gigantic pages are so large that we do not guarantee that page++ pointer
545  * arithmetic will work across the entire page.  We need something more
546  * specialized.
547  */
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
549 				int nr_pages)
550 {
551 	int i;
552 	struct page *dst_base = dst;
553 	struct page *src_base = src;
554 
555 	for (i = 0; i < nr_pages; ) {
556 		cond_resched();
557 		copy_highpage(dst, src);
558 
559 		i++;
560 		dst = mem_map_next(dst, dst_base, i);
561 		src = mem_map_next(src, src_base, i);
562 	}
563 }
564 
565 static void copy_huge_page(struct page *dst, struct page *src)
566 {
567 	int i;
568 	int nr_pages;
569 
570 	if (PageHuge(src)) {
571 		/* hugetlbfs page */
572 		struct hstate *h = page_hstate(src);
573 		nr_pages = pages_per_huge_page(h);
574 
575 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576 			__copy_gigantic_page(dst, src, nr_pages);
577 			return;
578 		}
579 	} else {
580 		/* thp page */
581 		BUG_ON(!PageTransHuge(src));
582 		nr_pages = hpage_nr_pages(src);
583 	}
584 
585 	for (i = 0; i < nr_pages; i++) {
586 		cond_resched();
587 		copy_highpage(dst + i, src + i);
588 	}
589 }
590 
591 /*
592  * Copy the page to its new location
593  */
594 void migrate_page_states(struct page *newpage, struct page *page)
595 {
596 	int cpupid;
597 
598 	if (PageError(page))
599 		SetPageError(newpage);
600 	if (PageReferenced(page))
601 		SetPageReferenced(newpage);
602 	if (PageUptodate(page))
603 		SetPageUptodate(newpage);
604 	if (TestClearPageActive(page)) {
605 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
606 		SetPageActive(newpage);
607 	} else if (TestClearPageUnevictable(page))
608 		SetPageUnevictable(newpage);
609 	if (PageWorkingset(page))
610 		SetPageWorkingset(newpage);
611 	if (PageChecked(page))
612 		SetPageChecked(newpage);
613 	if (PageMappedToDisk(page))
614 		SetPageMappedToDisk(newpage);
615 
616 	/* Move dirty on pages not done by migrate_page_move_mapping() */
617 	if (PageDirty(page))
618 		SetPageDirty(newpage);
619 
620 	if (page_is_young(page))
621 		set_page_young(newpage);
622 	if (page_is_idle(page))
623 		set_page_idle(newpage);
624 
625 	/*
626 	 * Copy NUMA information to the new page, to prevent over-eager
627 	 * future migrations of this same page.
628 	 */
629 	cpupid = page_cpupid_xchg_last(page, -1);
630 	page_cpupid_xchg_last(newpage, cpupid);
631 
632 	ksm_migrate_page(newpage, page);
633 	/*
634 	 * Please do not reorder this without considering how mm/ksm.c's
635 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636 	 */
637 	if (PageSwapCache(page))
638 		ClearPageSwapCache(page);
639 	ClearPagePrivate(page);
640 	set_page_private(page, 0);
641 
642 	/*
643 	 * If any waiters have accumulated on the new page then
644 	 * wake them up.
645 	 */
646 	if (PageWriteback(newpage))
647 		end_page_writeback(newpage);
648 
649 	copy_page_owner(page, newpage);
650 
651 	mem_cgroup_migrate(page, newpage);
652 }
653 EXPORT_SYMBOL(migrate_page_states);
654 
655 void migrate_page_copy(struct page *newpage, struct page *page)
656 {
657 	if (PageHuge(page) || PageTransHuge(page))
658 		copy_huge_page(newpage, page);
659 	else
660 		copy_highpage(newpage, page);
661 
662 	migrate_page_states(newpage, page);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665 
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669 
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677 		struct page *newpage, struct page *page,
678 		enum migrate_mode mode)
679 {
680 	int rc;
681 
682 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
683 
684 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
685 
686 	if (rc != MIGRATEPAGE_SUCCESS)
687 		return rc;
688 
689 	if (mode != MIGRATE_SYNC_NO_COPY)
690 		migrate_page_copy(newpage, page);
691 	else
692 		migrate_page_states(newpage, page);
693 	return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696 
697 #ifdef CONFIG_BLOCK
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 							enum migrate_mode mode)
701 {
702 	struct buffer_head *bh = head;
703 
704 	/* Simple case, sync compaction */
705 	if (mode != MIGRATE_ASYNC) {
706 		do {
707 			lock_buffer(bh);
708 			bh = bh->b_this_page;
709 
710 		} while (bh != head);
711 
712 		return true;
713 	}
714 
715 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
716 	do {
717 		if (!trylock_buffer(bh)) {
718 			/*
719 			 * We failed to lock the buffer and cannot stall in
720 			 * async migration. Release the taken locks
721 			 */
722 			struct buffer_head *failed_bh = bh;
723 			bh = head;
724 			while (bh != failed_bh) {
725 				unlock_buffer(bh);
726 				bh = bh->b_this_page;
727 			}
728 			return false;
729 		}
730 
731 		bh = bh->b_this_page;
732 	} while (bh != head);
733 	return true;
734 }
735 
736 static int __buffer_migrate_page(struct address_space *mapping,
737 		struct page *newpage, struct page *page, enum migrate_mode mode,
738 		bool check_refs)
739 {
740 	struct buffer_head *bh, *head;
741 	int rc;
742 	int expected_count;
743 
744 	if (!page_has_buffers(page))
745 		return migrate_page(mapping, newpage, page, mode);
746 
747 	/* Check whether page does not have extra refs before we do more work */
748 	expected_count = expected_page_refs(mapping, page);
749 	if (page_count(page) != expected_count)
750 		return -EAGAIN;
751 
752 	head = page_buffers(page);
753 	if (!buffer_migrate_lock_buffers(head, mode))
754 		return -EAGAIN;
755 
756 	if (check_refs) {
757 		bool busy;
758 		bool invalidated = false;
759 
760 recheck_buffers:
761 		busy = false;
762 		spin_lock(&mapping->private_lock);
763 		bh = head;
764 		do {
765 			if (atomic_read(&bh->b_count)) {
766 				busy = true;
767 				break;
768 			}
769 			bh = bh->b_this_page;
770 		} while (bh != head);
771 		spin_unlock(&mapping->private_lock);
772 		if (busy) {
773 			if (invalidated) {
774 				rc = -EAGAIN;
775 				goto unlock_buffers;
776 			}
777 			invalidate_bh_lrus();
778 			invalidated = true;
779 			goto recheck_buffers;
780 		}
781 	}
782 
783 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
784 	if (rc != MIGRATEPAGE_SUCCESS)
785 		goto unlock_buffers;
786 
787 	ClearPagePrivate(page);
788 	set_page_private(newpage, page_private(page));
789 	set_page_private(page, 0);
790 	put_page(page);
791 	get_page(newpage);
792 
793 	bh = head;
794 	do {
795 		set_bh_page(bh, newpage, bh_offset(bh));
796 		bh = bh->b_this_page;
797 
798 	} while (bh != head);
799 
800 	SetPagePrivate(newpage);
801 
802 	if (mode != MIGRATE_SYNC_NO_COPY)
803 		migrate_page_copy(newpage, page);
804 	else
805 		migrate_page_states(newpage, page);
806 
807 	rc = MIGRATEPAGE_SUCCESS;
808 unlock_buffers:
809 	bh = head;
810 	do {
811 		unlock_buffer(bh);
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	return rc;
817 }
818 
819 /*
820  * Migration function for pages with buffers. This function can only be used
821  * if the underlying filesystem guarantees that no other references to "page"
822  * exist. For example attached buffer heads are accessed only under page lock.
823  */
824 int buffer_migrate_page(struct address_space *mapping,
825 		struct page *newpage, struct page *page, enum migrate_mode mode)
826 {
827 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
828 }
829 EXPORT_SYMBOL(buffer_migrate_page);
830 
831 /*
832  * Same as above except that this variant is more careful and checks that there
833  * are also no buffer head references. This function is the right one for
834  * mappings where buffer heads are directly looked up and referenced (such as
835  * block device mappings).
836  */
837 int buffer_migrate_page_norefs(struct address_space *mapping,
838 		struct page *newpage, struct page *page, enum migrate_mode mode)
839 {
840 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
841 }
842 #endif
843 
844 /*
845  * Writeback a page to clean the dirty state
846  */
847 static int writeout(struct address_space *mapping, struct page *page)
848 {
849 	struct writeback_control wbc = {
850 		.sync_mode = WB_SYNC_NONE,
851 		.nr_to_write = 1,
852 		.range_start = 0,
853 		.range_end = LLONG_MAX,
854 		.for_reclaim = 1
855 	};
856 	int rc;
857 
858 	if (!mapping->a_ops->writepage)
859 		/* No write method for the address space */
860 		return -EINVAL;
861 
862 	if (!clear_page_dirty_for_io(page))
863 		/* Someone else already triggered a write */
864 		return -EAGAIN;
865 
866 	/*
867 	 * A dirty page may imply that the underlying filesystem has
868 	 * the page on some queue. So the page must be clean for
869 	 * migration. Writeout may mean we loose the lock and the
870 	 * page state is no longer what we checked for earlier.
871 	 * At this point we know that the migration attempt cannot
872 	 * be successful.
873 	 */
874 	remove_migration_ptes(page, page, false);
875 
876 	rc = mapping->a_ops->writepage(page, &wbc);
877 
878 	if (rc != AOP_WRITEPAGE_ACTIVATE)
879 		/* unlocked. Relock */
880 		lock_page(page);
881 
882 	return (rc < 0) ? -EIO : -EAGAIN;
883 }
884 
885 /*
886  * Default handling if a filesystem does not provide a migration function.
887  */
888 static int fallback_migrate_page(struct address_space *mapping,
889 	struct page *newpage, struct page *page, enum migrate_mode mode)
890 {
891 	if (PageDirty(page)) {
892 		/* Only writeback pages in full synchronous migration */
893 		switch (mode) {
894 		case MIGRATE_SYNC:
895 		case MIGRATE_SYNC_NO_COPY:
896 			break;
897 		default:
898 			return -EBUSY;
899 		}
900 		return writeout(mapping, page);
901 	}
902 
903 	/*
904 	 * Buffers may be managed in a filesystem specific way.
905 	 * We must have no buffers or drop them.
906 	 */
907 	if (page_has_private(page) &&
908 	    !try_to_release_page(page, GFP_KERNEL))
909 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
910 
911 	return migrate_page(mapping, newpage, page, mode);
912 }
913 
914 /*
915  * Move a page to a newly allocated page
916  * The page is locked and all ptes have been successfully removed.
917  *
918  * The new page will have replaced the old page if this function
919  * is successful.
920  *
921  * Return value:
922  *   < 0 - error code
923  *  MIGRATEPAGE_SUCCESS - success
924  */
925 static int move_to_new_page(struct page *newpage, struct page *page,
926 				enum migrate_mode mode)
927 {
928 	struct address_space *mapping;
929 	int rc = -EAGAIN;
930 	bool is_lru = !__PageMovable(page);
931 
932 	VM_BUG_ON_PAGE(!PageLocked(page), page);
933 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
934 
935 	mapping = page_mapping(page);
936 
937 	if (likely(is_lru)) {
938 		if (!mapping)
939 			rc = migrate_page(mapping, newpage, page, mode);
940 		else if (mapping->a_ops->migratepage)
941 			/*
942 			 * Most pages have a mapping and most filesystems
943 			 * provide a migratepage callback. Anonymous pages
944 			 * are part of swap space which also has its own
945 			 * migratepage callback. This is the most common path
946 			 * for page migration.
947 			 */
948 			rc = mapping->a_ops->migratepage(mapping, newpage,
949 							page, mode);
950 		else
951 			rc = fallback_migrate_page(mapping, newpage,
952 							page, mode);
953 	} else {
954 		/*
955 		 * In case of non-lru page, it could be released after
956 		 * isolation step. In that case, we shouldn't try migration.
957 		 */
958 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
959 		if (!PageMovable(page)) {
960 			rc = MIGRATEPAGE_SUCCESS;
961 			__ClearPageIsolated(page);
962 			goto out;
963 		}
964 
965 		rc = mapping->a_ops->migratepage(mapping, newpage,
966 						page, mode);
967 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
968 			!PageIsolated(page));
969 	}
970 
971 	/*
972 	 * When successful, old pagecache page->mapping must be cleared before
973 	 * page is freed; but stats require that PageAnon be left as PageAnon.
974 	 */
975 	if (rc == MIGRATEPAGE_SUCCESS) {
976 		if (__PageMovable(page)) {
977 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
978 
979 			/*
980 			 * We clear PG_movable under page_lock so any compactor
981 			 * cannot try to migrate this page.
982 			 */
983 			__ClearPageIsolated(page);
984 		}
985 
986 		/*
987 		 * Anonymous and movable page->mapping will be cleard by
988 		 * free_pages_prepare so don't reset it here for keeping
989 		 * the type to work PageAnon, for example.
990 		 */
991 		if (!PageMappingFlags(page))
992 			page->mapping = NULL;
993 
994 		if (likely(!is_zone_device_page(newpage)))
995 			flush_dcache_page(newpage);
996 
997 	}
998 out:
999 	return rc;
1000 }
1001 
1002 static int __unmap_and_move(struct page *page, struct page *newpage,
1003 				int force, enum migrate_mode mode)
1004 {
1005 	int rc = -EAGAIN;
1006 	int page_was_mapped = 0;
1007 	struct anon_vma *anon_vma = NULL;
1008 	bool is_lru = !__PageMovable(page);
1009 
1010 	if (!trylock_page(page)) {
1011 		if (!force || mode == MIGRATE_ASYNC)
1012 			goto out;
1013 
1014 		/*
1015 		 * It's not safe for direct compaction to call lock_page.
1016 		 * For example, during page readahead pages are added locked
1017 		 * to the LRU. Later, when the IO completes the pages are
1018 		 * marked uptodate and unlocked. However, the queueing
1019 		 * could be merging multiple pages for one bio (e.g.
1020 		 * mpage_readpages). If an allocation happens for the
1021 		 * second or third page, the process can end up locking
1022 		 * the same page twice and deadlocking. Rather than
1023 		 * trying to be clever about what pages can be locked,
1024 		 * avoid the use of lock_page for direct compaction
1025 		 * altogether.
1026 		 */
1027 		if (current->flags & PF_MEMALLOC)
1028 			goto out;
1029 
1030 		lock_page(page);
1031 	}
1032 
1033 	if (PageWriteback(page)) {
1034 		/*
1035 		 * Only in the case of a full synchronous migration is it
1036 		 * necessary to wait for PageWriteback. In the async case,
1037 		 * the retry loop is too short and in the sync-light case,
1038 		 * the overhead of stalling is too much
1039 		 */
1040 		switch (mode) {
1041 		case MIGRATE_SYNC:
1042 		case MIGRATE_SYNC_NO_COPY:
1043 			break;
1044 		default:
1045 			rc = -EBUSY;
1046 			goto out_unlock;
1047 		}
1048 		if (!force)
1049 			goto out_unlock;
1050 		wait_on_page_writeback(page);
1051 	}
1052 
1053 	/*
1054 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1055 	 * we cannot notice that anon_vma is freed while we migrates a page.
1056 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1057 	 * of migration. File cache pages are no problem because of page_lock()
1058 	 * File Caches may use write_page() or lock_page() in migration, then,
1059 	 * just care Anon page here.
1060 	 *
1061 	 * Only page_get_anon_vma() understands the subtleties of
1062 	 * getting a hold on an anon_vma from outside one of its mms.
1063 	 * But if we cannot get anon_vma, then we won't need it anyway,
1064 	 * because that implies that the anon page is no longer mapped
1065 	 * (and cannot be remapped so long as we hold the page lock).
1066 	 */
1067 	if (PageAnon(page) && !PageKsm(page))
1068 		anon_vma = page_get_anon_vma(page);
1069 
1070 	/*
1071 	 * Block others from accessing the new page when we get around to
1072 	 * establishing additional references. We are usually the only one
1073 	 * holding a reference to newpage at this point. We used to have a BUG
1074 	 * here if trylock_page(newpage) fails, but would like to allow for
1075 	 * cases where there might be a race with the previous use of newpage.
1076 	 * This is much like races on refcount of oldpage: just don't BUG().
1077 	 */
1078 	if (unlikely(!trylock_page(newpage)))
1079 		goto out_unlock;
1080 
1081 	if (unlikely(!is_lru)) {
1082 		rc = move_to_new_page(newpage, page, mode);
1083 		goto out_unlock_both;
1084 	}
1085 
1086 	/*
1087 	 * Corner case handling:
1088 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1089 	 * and treated as swapcache but it has no rmap yet.
1090 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1091 	 * trigger a BUG.  So handle it here.
1092 	 * 2. An orphaned page (see truncate_complete_page) might have
1093 	 * fs-private metadata. The page can be picked up due to memory
1094 	 * offlining.  Everywhere else except page reclaim, the page is
1095 	 * invisible to the vm, so the page can not be migrated.  So try to
1096 	 * free the metadata, so the page can be freed.
1097 	 */
1098 	if (!page->mapping) {
1099 		VM_BUG_ON_PAGE(PageAnon(page), page);
1100 		if (page_has_private(page)) {
1101 			try_to_free_buffers(page);
1102 			goto out_unlock_both;
1103 		}
1104 	} else if (page_mapped(page)) {
1105 		/* Establish migration ptes */
1106 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1107 				page);
1108 		try_to_unmap(page,
1109 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1110 		page_was_mapped = 1;
1111 	}
1112 
1113 	if (!page_mapped(page))
1114 		rc = move_to_new_page(newpage, page, mode);
1115 
1116 	if (page_was_mapped)
1117 		remove_migration_ptes(page,
1118 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1119 
1120 out_unlock_both:
1121 	unlock_page(newpage);
1122 out_unlock:
1123 	/* Drop an anon_vma reference if we took one */
1124 	if (anon_vma)
1125 		put_anon_vma(anon_vma);
1126 	unlock_page(page);
1127 out:
1128 	/*
1129 	 * If migration is successful, decrease refcount of the newpage
1130 	 * which will not free the page because new page owner increased
1131 	 * refcounter. As well, if it is LRU page, add the page to LRU
1132 	 * list in here. Use the old state of the isolated source page to
1133 	 * determine if we migrated a LRU page. newpage was already unlocked
1134 	 * and possibly modified by its owner - don't rely on the page
1135 	 * state.
1136 	 */
1137 	if (rc == MIGRATEPAGE_SUCCESS) {
1138 		if (unlikely(!is_lru))
1139 			put_page(newpage);
1140 		else
1141 			putback_lru_page(newpage);
1142 	}
1143 
1144 	return rc;
1145 }
1146 
1147 /*
1148  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1149  * around it.
1150  */
1151 #if defined(CONFIG_ARM) && \
1152 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1153 #define ICE_noinline noinline
1154 #else
1155 #define ICE_noinline
1156 #endif
1157 
1158 /*
1159  * Obtain the lock on page, remove all ptes and migrate the page
1160  * to the newly allocated page in newpage.
1161  */
1162 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1163 				   free_page_t put_new_page,
1164 				   unsigned long private, struct page *page,
1165 				   int force, enum migrate_mode mode,
1166 				   enum migrate_reason reason)
1167 {
1168 	int rc = MIGRATEPAGE_SUCCESS;
1169 	struct page *newpage;
1170 
1171 	if (!thp_migration_supported() && PageTransHuge(page))
1172 		return -ENOMEM;
1173 
1174 	newpage = get_new_page(page, private);
1175 	if (!newpage)
1176 		return -ENOMEM;
1177 
1178 	if (page_count(page) == 1) {
1179 		/* page was freed from under us. So we are done. */
1180 		ClearPageActive(page);
1181 		ClearPageUnevictable(page);
1182 		if (unlikely(__PageMovable(page))) {
1183 			lock_page(page);
1184 			if (!PageMovable(page))
1185 				__ClearPageIsolated(page);
1186 			unlock_page(page);
1187 		}
1188 		if (put_new_page)
1189 			put_new_page(newpage, private);
1190 		else
1191 			put_page(newpage);
1192 		goto out;
1193 	}
1194 
1195 	rc = __unmap_and_move(page, newpage, force, mode);
1196 	if (rc == MIGRATEPAGE_SUCCESS)
1197 		set_page_owner_migrate_reason(newpage, reason);
1198 
1199 out:
1200 	if (rc != -EAGAIN) {
1201 		/*
1202 		 * A page that has been migrated has all references
1203 		 * removed and will be freed. A page that has not been
1204 		 * migrated will have kepts its references and be
1205 		 * restored.
1206 		 */
1207 		list_del(&page->lru);
1208 
1209 		/*
1210 		 * Compaction can migrate also non-LRU pages which are
1211 		 * not accounted to NR_ISOLATED_*. They can be recognized
1212 		 * as __PageMovable
1213 		 */
1214 		if (likely(!__PageMovable(page)))
1215 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 					page_is_file_cache(page), -hpage_nr_pages(page));
1217 	}
1218 
1219 	/*
1220 	 * If migration is successful, releases reference grabbed during
1221 	 * isolation. Otherwise, restore the page to right list unless
1222 	 * we want to retry.
1223 	 */
1224 	if (rc == MIGRATEPAGE_SUCCESS) {
1225 		put_page(page);
1226 		if (reason == MR_MEMORY_FAILURE) {
1227 			/*
1228 			 * Set PG_HWPoison on just freed page
1229 			 * intentionally. Although it's rather weird,
1230 			 * it's how HWPoison flag works at the moment.
1231 			 */
1232 			if (set_hwpoison_free_buddy_page(page))
1233 				num_poisoned_pages_inc();
1234 		}
1235 	} else {
1236 		if (rc != -EAGAIN) {
1237 			if (likely(!__PageMovable(page))) {
1238 				putback_lru_page(page);
1239 				goto put_new;
1240 			}
1241 
1242 			lock_page(page);
1243 			if (PageMovable(page))
1244 				putback_movable_page(page);
1245 			else
1246 				__ClearPageIsolated(page);
1247 			unlock_page(page);
1248 			put_page(page);
1249 		}
1250 put_new:
1251 		if (put_new_page)
1252 			put_new_page(newpage, private);
1253 		else
1254 			put_page(newpage);
1255 	}
1256 
1257 	return rc;
1258 }
1259 
1260 /*
1261  * Counterpart of unmap_and_move_page() for hugepage migration.
1262  *
1263  * This function doesn't wait the completion of hugepage I/O
1264  * because there is no race between I/O and migration for hugepage.
1265  * Note that currently hugepage I/O occurs only in direct I/O
1266  * where no lock is held and PG_writeback is irrelevant,
1267  * and writeback status of all subpages are counted in the reference
1268  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269  * under direct I/O, the reference of the head page is 512 and a bit more.)
1270  * This means that when we try to migrate hugepage whose subpages are
1271  * doing direct I/O, some references remain after try_to_unmap() and
1272  * hugepage migration fails without data corruption.
1273  *
1274  * There is also no race when direct I/O is issued on the page under migration,
1275  * because then pte is replaced with migration swap entry and direct I/O code
1276  * will wait in the page fault for migration to complete.
1277  */
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279 				free_page_t put_new_page, unsigned long private,
1280 				struct page *hpage, int force,
1281 				enum migrate_mode mode, int reason)
1282 {
1283 	int rc = -EAGAIN;
1284 	int page_was_mapped = 0;
1285 	struct page *new_hpage;
1286 	struct anon_vma *anon_vma = NULL;
1287 
1288 	/*
1289 	 * Migratability of hugepages depends on architectures and their size.
1290 	 * This check is necessary because some callers of hugepage migration
1291 	 * like soft offline and memory hotremove don't walk through page
1292 	 * tables or check whether the hugepage is pmd-based or not before
1293 	 * kicking migration.
1294 	 */
1295 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1296 		putback_active_hugepage(hpage);
1297 		return -ENOSYS;
1298 	}
1299 
1300 	new_hpage = get_new_page(hpage, private);
1301 	if (!new_hpage)
1302 		return -ENOMEM;
1303 
1304 	if (!trylock_page(hpage)) {
1305 		if (!force)
1306 			goto out;
1307 		switch (mode) {
1308 		case MIGRATE_SYNC:
1309 		case MIGRATE_SYNC_NO_COPY:
1310 			break;
1311 		default:
1312 			goto out;
1313 		}
1314 		lock_page(hpage);
1315 	}
1316 
1317 	/*
1318 	 * Check for pages which are in the process of being freed.  Without
1319 	 * page_mapping() set, hugetlbfs specific move page routine will not
1320 	 * be called and we could leak usage counts for subpools.
1321 	 */
1322 	if (page_private(hpage) && !page_mapping(hpage)) {
1323 		rc = -EBUSY;
1324 		goto out_unlock;
1325 	}
1326 
1327 	if (PageAnon(hpage))
1328 		anon_vma = page_get_anon_vma(hpage);
1329 
1330 	if (unlikely(!trylock_page(new_hpage)))
1331 		goto put_anon;
1332 
1333 	if (page_mapped(hpage)) {
1334 		try_to_unmap(hpage,
1335 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1336 		page_was_mapped = 1;
1337 	}
1338 
1339 	if (!page_mapped(hpage))
1340 		rc = move_to_new_page(new_hpage, hpage, mode);
1341 
1342 	if (page_was_mapped)
1343 		remove_migration_ptes(hpage,
1344 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1345 
1346 	unlock_page(new_hpage);
1347 
1348 put_anon:
1349 	if (anon_vma)
1350 		put_anon_vma(anon_vma);
1351 
1352 	if (rc == MIGRATEPAGE_SUCCESS) {
1353 		move_hugetlb_state(hpage, new_hpage, reason);
1354 		put_new_page = NULL;
1355 	}
1356 
1357 out_unlock:
1358 	unlock_page(hpage);
1359 out:
1360 	if (rc != -EAGAIN)
1361 		putback_active_hugepage(hpage);
1362 
1363 	/*
1364 	 * If migration was not successful and there's a freeing callback, use
1365 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1366 	 * isolation.
1367 	 */
1368 	if (put_new_page)
1369 		put_new_page(new_hpage, private);
1370 	else
1371 		putback_active_hugepage(new_hpage);
1372 
1373 	return rc;
1374 }
1375 
1376 /*
1377  * migrate_pages - migrate the pages specified in a list, to the free pages
1378  *		   supplied as the target for the page migration
1379  *
1380  * @from:		The list of pages to be migrated.
1381  * @get_new_page:	The function used to allocate free pages to be used
1382  *			as the target of the page migration.
1383  * @put_new_page:	The function used to free target pages if migration
1384  *			fails, or NULL if no special handling is necessary.
1385  * @private:		Private data to be passed on to get_new_page()
1386  * @mode:		The migration mode that specifies the constraints for
1387  *			page migration, if any.
1388  * @reason:		The reason for page migration.
1389  *
1390  * The function returns after 10 attempts or if no pages are movable any more
1391  * because the list has become empty or no retryable pages exist any more.
1392  * The caller should call putback_movable_pages() to return pages to the LRU
1393  * or free list only if ret != 0.
1394  *
1395  * Returns the number of pages that were not migrated, or an error code.
1396  */
1397 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1398 		free_page_t put_new_page, unsigned long private,
1399 		enum migrate_mode mode, int reason)
1400 {
1401 	int retry = 1;
1402 	int nr_failed = 0;
1403 	int nr_succeeded = 0;
1404 	int pass = 0;
1405 	struct page *page;
1406 	struct page *page2;
1407 	int swapwrite = current->flags & PF_SWAPWRITE;
1408 	int rc;
1409 
1410 	if (!swapwrite)
1411 		current->flags |= PF_SWAPWRITE;
1412 
1413 	for(pass = 0; pass < 10 && retry; pass++) {
1414 		retry = 0;
1415 
1416 		list_for_each_entry_safe(page, page2, from, lru) {
1417 retry:
1418 			cond_resched();
1419 
1420 			if (PageHuge(page))
1421 				rc = unmap_and_move_huge_page(get_new_page,
1422 						put_new_page, private, page,
1423 						pass > 2, mode, reason);
1424 			else
1425 				rc = unmap_and_move(get_new_page, put_new_page,
1426 						private, page, pass > 2, mode,
1427 						reason);
1428 
1429 			switch(rc) {
1430 			case -ENOMEM:
1431 				/*
1432 				 * THP migration might be unsupported or the
1433 				 * allocation could've failed so we should
1434 				 * retry on the same page with the THP split
1435 				 * to base pages.
1436 				 *
1437 				 * Head page is retried immediately and tail
1438 				 * pages are added to the tail of the list so
1439 				 * we encounter them after the rest of the list
1440 				 * is processed.
1441 				 */
1442 				if (PageTransHuge(page) && !PageHuge(page)) {
1443 					lock_page(page);
1444 					rc = split_huge_page_to_list(page, from);
1445 					unlock_page(page);
1446 					if (!rc) {
1447 						list_safe_reset_next(page, page2, lru);
1448 						goto retry;
1449 					}
1450 				}
1451 				nr_failed++;
1452 				goto out;
1453 			case -EAGAIN:
1454 				retry++;
1455 				break;
1456 			case MIGRATEPAGE_SUCCESS:
1457 				nr_succeeded++;
1458 				break;
1459 			default:
1460 				/*
1461 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1462 				 * unlike -EAGAIN case, the failed page is
1463 				 * removed from migration page list and not
1464 				 * retried in the next outer loop.
1465 				 */
1466 				nr_failed++;
1467 				break;
1468 			}
1469 		}
1470 	}
1471 	nr_failed += retry;
1472 	rc = nr_failed;
1473 out:
1474 	if (nr_succeeded)
1475 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1476 	if (nr_failed)
1477 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1478 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1479 
1480 	if (!swapwrite)
1481 		current->flags &= ~PF_SWAPWRITE;
1482 
1483 	return rc;
1484 }
1485 
1486 #ifdef CONFIG_NUMA
1487 
1488 static int store_status(int __user *status, int start, int value, int nr)
1489 {
1490 	while (nr-- > 0) {
1491 		if (put_user(value, status + start))
1492 			return -EFAULT;
1493 		start++;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static int do_move_pages_to_node(struct mm_struct *mm,
1500 		struct list_head *pagelist, int node)
1501 {
1502 	int err;
1503 
1504 	if (list_empty(pagelist))
1505 		return 0;
1506 
1507 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1508 			MIGRATE_SYNC, MR_SYSCALL);
1509 	if (err)
1510 		putback_movable_pages(pagelist);
1511 	return err;
1512 }
1513 
1514 /*
1515  * Resolves the given address to a struct page, isolates it from the LRU and
1516  * puts it to the given pagelist.
1517  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1518  * queued or the page doesn't need to be migrated because it is already on
1519  * the target node
1520  */
1521 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522 		int node, struct list_head *pagelist, bool migrate_all)
1523 {
1524 	struct vm_area_struct *vma;
1525 	struct page *page;
1526 	unsigned int follflags;
1527 	int err;
1528 
1529 	down_read(&mm->mmap_sem);
1530 	err = -EFAULT;
1531 	vma = find_vma(mm, addr);
1532 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533 		goto out;
1534 
1535 	/* FOLL_DUMP to ignore special (like zero) pages */
1536 	follflags = FOLL_GET | FOLL_DUMP;
1537 	page = follow_page(vma, addr, follflags);
1538 
1539 	err = PTR_ERR(page);
1540 	if (IS_ERR(page))
1541 		goto out;
1542 
1543 	err = -ENOENT;
1544 	if (!page)
1545 		goto out;
1546 
1547 	err = 0;
1548 	if (page_to_nid(page) == node)
1549 		goto out_putpage;
1550 
1551 	err = -EACCES;
1552 	if (page_mapcount(page) > 1 && !migrate_all)
1553 		goto out_putpage;
1554 
1555 	if (PageHuge(page)) {
1556 		if (PageHead(page)) {
1557 			isolate_huge_page(page, pagelist);
1558 			err = 0;
1559 		}
1560 	} else {
1561 		struct page *head;
1562 
1563 		head = compound_head(page);
1564 		err = isolate_lru_page(head);
1565 		if (err)
1566 			goto out_putpage;
1567 
1568 		err = 0;
1569 		list_add_tail(&head->lru, pagelist);
1570 		mod_node_page_state(page_pgdat(head),
1571 			NR_ISOLATED_ANON + page_is_file_cache(head),
1572 			hpage_nr_pages(head));
1573 	}
1574 out_putpage:
1575 	/*
1576 	 * Either remove the duplicate refcount from
1577 	 * isolate_lru_page() or drop the page ref if it was
1578 	 * not isolated.
1579 	 */
1580 	put_page(page);
1581 out:
1582 	up_read(&mm->mmap_sem);
1583 	return err;
1584 }
1585 
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 			 unsigned long nr_pages,
1592 			 const void __user * __user *pages,
1593 			 const int __user *nodes,
1594 			 int __user *status, int flags)
1595 {
1596 	int current_node = NUMA_NO_NODE;
1597 	LIST_HEAD(pagelist);
1598 	int start, i;
1599 	int err = 0, err1;
1600 
1601 	migrate_prep();
1602 
1603 	for (i = start = 0; i < nr_pages; i++) {
1604 		const void __user *p;
1605 		unsigned long addr;
1606 		int node;
1607 
1608 		err = -EFAULT;
1609 		if (get_user(p, pages + i))
1610 			goto out_flush;
1611 		if (get_user(node, nodes + i))
1612 			goto out_flush;
1613 		addr = (unsigned long)p;
1614 
1615 		err = -ENODEV;
1616 		if (node < 0 || node >= MAX_NUMNODES)
1617 			goto out_flush;
1618 		if (!node_state(node, N_MEMORY))
1619 			goto out_flush;
1620 
1621 		err = -EACCES;
1622 		if (!node_isset(node, task_nodes))
1623 			goto out_flush;
1624 
1625 		if (current_node == NUMA_NO_NODE) {
1626 			current_node = node;
1627 			start = i;
1628 		} else if (node != current_node) {
1629 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 			if (err)
1631 				goto out;
1632 			err = store_status(status, start, current_node, i - start);
1633 			if (err)
1634 				goto out;
1635 			start = i;
1636 			current_node = node;
1637 		}
1638 
1639 		/*
1640 		 * Errors in the page lookup or isolation are not fatal and we simply
1641 		 * report them via status
1642 		 */
1643 		err = add_page_for_migration(mm, addr, current_node,
1644 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1645 		if (!err)
1646 			continue;
1647 
1648 		err = store_status(status, i, err, 1);
1649 		if (err)
1650 			goto out_flush;
1651 
1652 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1653 		if (err)
1654 			goto out;
1655 		if (i > start) {
1656 			err = store_status(status, start, current_node, i - start);
1657 			if (err)
1658 				goto out;
1659 		}
1660 		current_node = NUMA_NO_NODE;
1661 	}
1662 out_flush:
1663 	if (list_empty(&pagelist))
1664 		return err;
1665 
1666 	/* Make sure we do not overwrite the existing error */
1667 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1668 	if (!err1)
1669 		err1 = store_status(status, start, current_node, i - start);
1670 	if (!err)
1671 		err = err1;
1672 out:
1673 	return err;
1674 }
1675 
1676 /*
1677  * Determine the nodes of an array of pages and store it in an array of status.
1678  */
1679 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1680 				const void __user **pages, int *status)
1681 {
1682 	unsigned long i;
1683 
1684 	down_read(&mm->mmap_sem);
1685 
1686 	for (i = 0; i < nr_pages; i++) {
1687 		unsigned long addr = (unsigned long)(*pages);
1688 		struct vm_area_struct *vma;
1689 		struct page *page;
1690 		int err = -EFAULT;
1691 
1692 		vma = find_vma(mm, addr);
1693 		if (!vma || addr < vma->vm_start)
1694 			goto set_status;
1695 
1696 		/* FOLL_DUMP to ignore special (like zero) pages */
1697 		page = follow_page(vma, addr, FOLL_DUMP);
1698 
1699 		err = PTR_ERR(page);
1700 		if (IS_ERR(page))
1701 			goto set_status;
1702 
1703 		err = page ? page_to_nid(page) : -ENOENT;
1704 set_status:
1705 		*status = err;
1706 
1707 		pages++;
1708 		status++;
1709 	}
1710 
1711 	up_read(&mm->mmap_sem);
1712 }
1713 
1714 /*
1715  * Determine the nodes of a user array of pages and store it in
1716  * a user array of status.
1717  */
1718 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1719 			 const void __user * __user *pages,
1720 			 int __user *status)
1721 {
1722 #define DO_PAGES_STAT_CHUNK_NR 16
1723 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1724 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1725 
1726 	while (nr_pages) {
1727 		unsigned long chunk_nr;
1728 
1729 		chunk_nr = nr_pages;
1730 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1731 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1732 
1733 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1734 			break;
1735 
1736 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1737 
1738 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1739 			break;
1740 
1741 		pages += chunk_nr;
1742 		status += chunk_nr;
1743 		nr_pages -= chunk_nr;
1744 	}
1745 	return nr_pages ? -EFAULT : 0;
1746 }
1747 
1748 /*
1749  * Move a list of pages in the address space of the currently executing
1750  * process.
1751  */
1752 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1753 			     const void __user * __user *pages,
1754 			     const int __user *nodes,
1755 			     int __user *status, int flags)
1756 {
1757 	struct task_struct *task;
1758 	struct mm_struct *mm;
1759 	int err;
1760 	nodemask_t task_nodes;
1761 
1762 	/* Check flags */
1763 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1764 		return -EINVAL;
1765 
1766 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1767 		return -EPERM;
1768 
1769 	/* Find the mm_struct */
1770 	rcu_read_lock();
1771 	task = pid ? find_task_by_vpid(pid) : current;
1772 	if (!task) {
1773 		rcu_read_unlock();
1774 		return -ESRCH;
1775 	}
1776 	get_task_struct(task);
1777 
1778 	/*
1779 	 * Check if this process has the right to modify the specified
1780 	 * process. Use the regular "ptrace_may_access()" checks.
1781 	 */
1782 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1783 		rcu_read_unlock();
1784 		err = -EPERM;
1785 		goto out;
1786 	}
1787 	rcu_read_unlock();
1788 
1789  	err = security_task_movememory(task);
1790  	if (err)
1791 		goto out;
1792 
1793 	task_nodes = cpuset_mems_allowed(task);
1794 	mm = get_task_mm(task);
1795 	put_task_struct(task);
1796 
1797 	if (!mm)
1798 		return -EINVAL;
1799 
1800 	if (nodes)
1801 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1802 				    nodes, status, flags);
1803 	else
1804 		err = do_pages_stat(mm, nr_pages, pages, status);
1805 
1806 	mmput(mm);
1807 	return err;
1808 
1809 out:
1810 	put_task_struct(task);
1811 	return err;
1812 }
1813 
1814 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1815 		const void __user * __user *, pages,
1816 		const int __user *, nodes,
1817 		int __user *, status, int, flags)
1818 {
1819 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1820 }
1821 
1822 #ifdef CONFIG_COMPAT
1823 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1824 		       compat_uptr_t __user *, pages32,
1825 		       const int __user *, nodes,
1826 		       int __user *, status,
1827 		       int, flags)
1828 {
1829 	const void __user * __user *pages;
1830 	int i;
1831 
1832 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1833 	for (i = 0; i < nr_pages; i++) {
1834 		compat_uptr_t p;
1835 
1836 		if (get_user(p, pages32 + i) ||
1837 			put_user(compat_ptr(p), pages + i))
1838 			return -EFAULT;
1839 	}
1840 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1841 }
1842 #endif /* CONFIG_COMPAT */
1843 
1844 #ifdef CONFIG_NUMA_BALANCING
1845 /*
1846  * Returns true if this is a safe migration target node for misplaced NUMA
1847  * pages. Currently it only checks the watermarks which crude
1848  */
1849 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1850 				   unsigned long nr_migrate_pages)
1851 {
1852 	int z;
1853 
1854 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1855 		struct zone *zone = pgdat->node_zones + z;
1856 
1857 		if (!populated_zone(zone))
1858 			continue;
1859 
1860 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1861 		if (!zone_watermark_ok(zone, 0,
1862 				       high_wmark_pages(zone) +
1863 				       nr_migrate_pages,
1864 				       0, 0))
1865 			continue;
1866 		return true;
1867 	}
1868 	return false;
1869 }
1870 
1871 static struct page *alloc_misplaced_dst_page(struct page *page,
1872 					   unsigned long data)
1873 {
1874 	int nid = (int) data;
1875 	struct page *newpage;
1876 
1877 	newpage = __alloc_pages_node(nid,
1878 					 (GFP_HIGHUSER_MOVABLE |
1879 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1880 					  __GFP_NORETRY | __GFP_NOWARN) &
1881 					 ~__GFP_RECLAIM, 0);
1882 
1883 	return newpage;
1884 }
1885 
1886 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1887 {
1888 	int page_lru;
1889 
1890 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1891 
1892 	/* Avoid migrating to a node that is nearly full */
1893 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1894 		return 0;
1895 
1896 	if (isolate_lru_page(page))
1897 		return 0;
1898 
1899 	/*
1900 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1901 	 * check on page_count(), so we must do it here, now that the page
1902 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1903 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1904 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1905 	 */
1906 	if (PageTransHuge(page) && page_count(page) != 3) {
1907 		putback_lru_page(page);
1908 		return 0;
1909 	}
1910 
1911 	page_lru = page_is_file_cache(page);
1912 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1913 				hpage_nr_pages(page));
1914 
1915 	/*
1916 	 * Isolating the page has taken another reference, so the
1917 	 * caller's reference can be safely dropped without the page
1918 	 * disappearing underneath us during migration.
1919 	 */
1920 	put_page(page);
1921 	return 1;
1922 }
1923 
1924 bool pmd_trans_migrating(pmd_t pmd)
1925 {
1926 	struct page *page = pmd_page(pmd);
1927 	return PageLocked(page);
1928 }
1929 
1930 /*
1931  * Attempt to migrate a misplaced page to the specified destination
1932  * node. Caller is expected to have an elevated reference count on
1933  * the page that will be dropped by this function before returning.
1934  */
1935 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1936 			   int node)
1937 {
1938 	pg_data_t *pgdat = NODE_DATA(node);
1939 	int isolated;
1940 	int nr_remaining;
1941 	LIST_HEAD(migratepages);
1942 
1943 	/*
1944 	 * Don't migrate file pages that are mapped in multiple processes
1945 	 * with execute permissions as they are probably shared libraries.
1946 	 */
1947 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1948 	    (vma->vm_flags & VM_EXEC))
1949 		goto out;
1950 
1951 	/*
1952 	 * Also do not migrate dirty pages as not all filesystems can move
1953 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1954 	 */
1955 	if (page_is_file_cache(page) && PageDirty(page))
1956 		goto out;
1957 
1958 	isolated = numamigrate_isolate_page(pgdat, page);
1959 	if (!isolated)
1960 		goto out;
1961 
1962 	list_add(&page->lru, &migratepages);
1963 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1964 				     NULL, node, MIGRATE_ASYNC,
1965 				     MR_NUMA_MISPLACED);
1966 	if (nr_remaining) {
1967 		if (!list_empty(&migratepages)) {
1968 			list_del(&page->lru);
1969 			dec_node_page_state(page, NR_ISOLATED_ANON +
1970 					page_is_file_cache(page));
1971 			putback_lru_page(page);
1972 		}
1973 		isolated = 0;
1974 	} else
1975 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1976 	BUG_ON(!list_empty(&migratepages));
1977 	return isolated;
1978 
1979 out:
1980 	put_page(page);
1981 	return 0;
1982 }
1983 #endif /* CONFIG_NUMA_BALANCING */
1984 
1985 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1986 /*
1987  * Migrates a THP to a given target node. page must be locked and is unlocked
1988  * before returning.
1989  */
1990 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1991 				struct vm_area_struct *vma,
1992 				pmd_t *pmd, pmd_t entry,
1993 				unsigned long address,
1994 				struct page *page, int node)
1995 {
1996 	spinlock_t *ptl;
1997 	pg_data_t *pgdat = NODE_DATA(node);
1998 	int isolated = 0;
1999 	struct page *new_page = NULL;
2000 	int page_lru = page_is_file_cache(page);
2001 	unsigned long start = address & HPAGE_PMD_MASK;
2002 
2003 	new_page = alloc_pages_node(node,
2004 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2005 		HPAGE_PMD_ORDER);
2006 	if (!new_page)
2007 		goto out_fail;
2008 	prep_transhuge_page(new_page);
2009 
2010 	isolated = numamigrate_isolate_page(pgdat, page);
2011 	if (!isolated) {
2012 		put_page(new_page);
2013 		goto out_fail;
2014 	}
2015 
2016 	/* Prepare a page as a migration target */
2017 	__SetPageLocked(new_page);
2018 	if (PageSwapBacked(page))
2019 		__SetPageSwapBacked(new_page);
2020 
2021 	/* anon mapping, we can simply copy page->mapping to the new page: */
2022 	new_page->mapping = page->mapping;
2023 	new_page->index = page->index;
2024 	/* flush the cache before copying using the kernel virtual address */
2025 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2026 	migrate_page_copy(new_page, page);
2027 	WARN_ON(PageLRU(new_page));
2028 
2029 	/* Recheck the target PMD */
2030 	ptl = pmd_lock(mm, pmd);
2031 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2032 		spin_unlock(ptl);
2033 
2034 		/* Reverse changes made by migrate_page_copy() */
2035 		if (TestClearPageActive(new_page))
2036 			SetPageActive(page);
2037 		if (TestClearPageUnevictable(new_page))
2038 			SetPageUnevictable(page);
2039 
2040 		unlock_page(new_page);
2041 		put_page(new_page);		/* Free it */
2042 
2043 		/* Retake the callers reference and putback on LRU */
2044 		get_page(page);
2045 		putback_lru_page(page);
2046 		mod_node_page_state(page_pgdat(page),
2047 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2048 
2049 		goto out_unlock;
2050 	}
2051 
2052 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2053 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2054 
2055 	/*
2056 	 * Overwrite the old entry under pagetable lock and establish
2057 	 * the new PTE. Any parallel GUP will either observe the old
2058 	 * page blocking on the page lock, block on the page table
2059 	 * lock or observe the new page. The SetPageUptodate on the
2060 	 * new page and page_add_new_anon_rmap guarantee the copy is
2061 	 * visible before the pagetable update.
2062 	 */
2063 	page_add_anon_rmap(new_page, vma, start, true);
2064 	/*
2065 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2066 	 * has already been flushed globally.  So no TLB can be currently
2067 	 * caching this non present pmd mapping.  There's no need to clear the
2068 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2069 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2070 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2071 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2072 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2073 	 * pmd.
2074 	 */
2075 	set_pmd_at(mm, start, pmd, entry);
2076 	update_mmu_cache_pmd(vma, address, &entry);
2077 
2078 	page_ref_unfreeze(page, 2);
2079 	mlock_migrate_page(new_page, page);
2080 	page_remove_rmap(page, true);
2081 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2082 
2083 	spin_unlock(ptl);
2084 
2085 	/* Take an "isolate" reference and put new page on the LRU. */
2086 	get_page(new_page);
2087 	putback_lru_page(new_page);
2088 
2089 	unlock_page(new_page);
2090 	unlock_page(page);
2091 	put_page(page);			/* Drop the rmap reference */
2092 	put_page(page);			/* Drop the LRU isolation reference */
2093 
2094 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2095 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2096 
2097 	mod_node_page_state(page_pgdat(page),
2098 			NR_ISOLATED_ANON + page_lru,
2099 			-HPAGE_PMD_NR);
2100 	return isolated;
2101 
2102 out_fail:
2103 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2104 	ptl = pmd_lock(mm, pmd);
2105 	if (pmd_same(*pmd, entry)) {
2106 		entry = pmd_modify(entry, vma->vm_page_prot);
2107 		set_pmd_at(mm, start, pmd, entry);
2108 		update_mmu_cache_pmd(vma, address, &entry);
2109 	}
2110 	spin_unlock(ptl);
2111 
2112 out_unlock:
2113 	unlock_page(page);
2114 	put_page(page);
2115 	return 0;
2116 }
2117 #endif /* CONFIG_NUMA_BALANCING */
2118 
2119 #endif /* CONFIG_NUMA */
2120 
2121 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2122 struct migrate_vma {
2123 	struct vm_area_struct	*vma;
2124 	unsigned long		*dst;
2125 	unsigned long		*src;
2126 	unsigned long		cpages;
2127 	unsigned long		npages;
2128 	unsigned long		start;
2129 	unsigned long		end;
2130 };
2131 
2132 static int migrate_vma_collect_hole(unsigned long start,
2133 				    unsigned long end,
2134 				    struct mm_walk *walk)
2135 {
2136 	struct migrate_vma *migrate = walk->private;
2137 	unsigned long addr;
2138 
2139 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2140 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2141 		migrate->dst[migrate->npages] = 0;
2142 		migrate->npages++;
2143 		migrate->cpages++;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int migrate_vma_collect_skip(unsigned long start,
2150 				    unsigned long end,
2151 				    struct mm_walk *walk)
2152 {
2153 	struct migrate_vma *migrate = walk->private;
2154 	unsigned long addr;
2155 
2156 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2157 		migrate->dst[migrate->npages] = 0;
2158 		migrate->src[migrate->npages++] = 0;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2165 				   unsigned long start,
2166 				   unsigned long end,
2167 				   struct mm_walk *walk)
2168 {
2169 	struct migrate_vma *migrate = walk->private;
2170 	struct vm_area_struct *vma = walk->vma;
2171 	struct mm_struct *mm = vma->vm_mm;
2172 	unsigned long addr = start, unmapped = 0;
2173 	spinlock_t *ptl;
2174 	pte_t *ptep;
2175 
2176 again:
2177 	if (pmd_none(*pmdp))
2178 		return migrate_vma_collect_hole(start, end, walk);
2179 
2180 	if (pmd_trans_huge(*pmdp)) {
2181 		struct page *page;
2182 
2183 		ptl = pmd_lock(mm, pmdp);
2184 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2185 			spin_unlock(ptl);
2186 			goto again;
2187 		}
2188 
2189 		page = pmd_page(*pmdp);
2190 		if (is_huge_zero_page(page)) {
2191 			spin_unlock(ptl);
2192 			split_huge_pmd(vma, pmdp, addr);
2193 			if (pmd_trans_unstable(pmdp))
2194 				return migrate_vma_collect_skip(start, end,
2195 								walk);
2196 		} else {
2197 			int ret;
2198 
2199 			get_page(page);
2200 			spin_unlock(ptl);
2201 			if (unlikely(!trylock_page(page)))
2202 				return migrate_vma_collect_skip(start, end,
2203 								walk);
2204 			ret = split_huge_page(page);
2205 			unlock_page(page);
2206 			put_page(page);
2207 			if (ret)
2208 				return migrate_vma_collect_skip(start, end,
2209 								walk);
2210 			if (pmd_none(*pmdp))
2211 				return migrate_vma_collect_hole(start, end,
2212 								walk);
2213 		}
2214 	}
2215 
2216 	if (unlikely(pmd_bad(*pmdp)))
2217 		return migrate_vma_collect_skip(start, end, walk);
2218 
2219 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2220 	arch_enter_lazy_mmu_mode();
2221 
2222 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2223 		unsigned long mpfn, pfn;
2224 		struct page *page;
2225 		swp_entry_t entry;
2226 		pte_t pte;
2227 
2228 		pte = *ptep;
2229 		pfn = pte_pfn(pte);
2230 
2231 		if (pte_none(pte)) {
2232 			mpfn = MIGRATE_PFN_MIGRATE;
2233 			migrate->cpages++;
2234 			pfn = 0;
2235 			goto next;
2236 		}
2237 
2238 		if (!pte_present(pte)) {
2239 			mpfn = pfn = 0;
2240 
2241 			/*
2242 			 * Only care about unaddressable device page special
2243 			 * page table entry. Other special swap entries are not
2244 			 * migratable, and we ignore regular swapped page.
2245 			 */
2246 			entry = pte_to_swp_entry(pte);
2247 			if (!is_device_private_entry(entry))
2248 				goto next;
2249 
2250 			page = device_private_entry_to_page(entry);
2251 			mpfn = migrate_pfn(page_to_pfn(page))|
2252 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2253 			if (is_write_device_private_entry(entry))
2254 				mpfn |= MIGRATE_PFN_WRITE;
2255 		} else {
2256 			if (is_zero_pfn(pfn)) {
2257 				mpfn = MIGRATE_PFN_MIGRATE;
2258 				migrate->cpages++;
2259 				pfn = 0;
2260 				goto next;
2261 			}
2262 			page = vm_normal_page(migrate->vma, addr, pte);
2263 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2264 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2265 		}
2266 
2267 		/* FIXME support THP */
2268 		if (!page || !page->mapping || PageTransCompound(page)) {
2269 			mpfn = pfn = 0;
2270 			goto next;
2271 		}
2272 		pfn = page_to_pfn(page);
2273 
2274 		/*
2275 		 * By getting a reference on the page we pin it and that blocks
2276 		 * any kind of migration. Side effect is that it "freezes" the
2277 		 * pte.
2278 		 *
2279 		 * We drop this reference after isolating the page from the lru
2280 		 * for non device page (device page are not on the lru and thus
2281 		 * can't be dropped from it).
2282 		 */
2283 		get_page(page);
2284 		migrate->cpages++;
2285 
2286 		/*
2287 		 * Optimize for the common case where page is only mapped once
2288 		 * in one process. If we can lock the page, then we can safely
2289 		 * set up a special migration page table entry now.
2290 		 */
2291 		if (trylock_page(page)) {
2292 			pte_t swp_pte;
2293 
2294 			mpfn |= MIGRATE_PFN_LOCKED;
2295 			ptep_get_and_clear(mm, addr, ptep);
2296 
2297 			/* Setup special migration page table entry */
2298 			entry = make_migration_entry(page, mpfn &
2299 						     MIGRATE_PFN_WRITE);
2300 			swp_pte = swp_entry_to_pte(entry);
2301 			if (pte_soft_dirty(pte))
2302 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2303 			set_pte_at(mm, addr, ptep, swp_pte);
2304 
2305 			/*
2306 			 * This is like regular unmap: we remove the rmap and
2307 			 * drop page refcount. Page won't be freed, as we took
2308 			 * a reference just above.
2309 			 */
2310 			page_remove_rmap(page, false);
2311 			put_page(page);
2312 
2313 			if (pte_present(pte))
2314 				unmapped++;
2315 		}
2316 
2317 next:
2318 		migrate->dst[migrate->npages] = 0;
2319 		migrate->src[migrate->npages++] = mpfn;
2320 	}
2321 	arch_leave_lazy_mmu_mode();
2322 	pte_unmap_unlock(ptep - 1, ptl);
2323 
2324 	/* Only flush the TLB if we actually modified any entries */
2325 	if (unmapped)
2326 		flush_tlb_range(walk->vma, start, end);
2327 
2328 	return 0;
2329 }
2330 
2331 /*
2332  * migrate_vma_collect() - collect pages over a range of virtual addresses
2333  * @migrate: migrate struct containing all migration information
2334  *
2335  * This will walk the CPU page table. For each virtual address backed by a
2336  * valid page, it updates the src array and takes a reference on the page, in
2337  * order to pin the page until we lock it and unmap it.
2338  */
2339 static void migrate_vma_collect(struct migrate_vma *migrate)
2340 {
2341 	struct mmu_notifier_range range;
2342 	struct mm_walk mm_walk;
2343 
2344 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2345 	mm_walk.pte_entry = NULL;
2346 	mm_walk.pte_hole = migrate_vma_collect_hole;
2347 	mm_walk.hugetlb_entry = NULL;
2348 	mm_walk.test_walk = NULL;
2349 	mm_walk.vma = migrate->vma;
2350 	mm_walk.mm = migrate->vma->vm_mm;
2351 	mm_walk.private = migrate;
2352 
2353 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2354 				migrate->start,
2355 				migrate->end);
2356 	mmu_notifier_invalidate_range_start(&range);
2357 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2358 	mmu_notifier_invalidate_range_end(&range);
2359 
2360 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2361 }
2362 
2363 /*
2364  * migrate_vma_check_page() - check if page is pinned or not
2365  * @page: struct page to check
2366  *
2367  * Pinned pages cannot be migrated. This is the same test as in
2368  * migrate_page_move_mapping(), except that here we allow migration of a
2369  * ZONE_DEVICE page.
2370  */
2371 static bool migrate_vma_check_page(struct page *page)
2372 {
2373 	/*
2374 	 * One extra ref because caller holds an extra reference, either from
2375 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2376 	 * a device page.
2377 	 */
2378 	int extra = 1;
2379 
2380 	/*
2381 	 * FIXME support THP (transparent huge page), it is bit more complex to
2382 	 * check them than regular pages, because they can be mapped with a pmd
2383 	 * or with a pte (split pte mapping).
2384 	 */
2385 	if (PageCompound(page))
2386 		return false;
2387 
2388 	/* Page from ZONE_DEVICE have one extra reference */
2389 	if (is_zone_device_page(page)) {
2390 		/*
2391 		 * Private page can never be pin as they have no valid pte and
2392 		 * GUP will fail for those. Yet if there is a pending migration
2393 		 * a thread might try to wait on the pte migration entry and
2394 		 * will bump the page reference count. Sadly there is no way to
2395 		 * differentiate a regular pin from migration wait. Hence to
2396 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2397 		 * infinite loop (one stoping migration because the other is
2398 		 * waiting on pte migration entry). We always return true here.
2399 		 *
2400 		 * FIXME proper solution is to rework migration_entry_wait() so
2401 		 * it does not need to take a reference on page.
2402 		 */
2403 		return is_device_private_page(page);
2404 	}
2405 
2406 	/* For file back page */
2407 	if (page_mapping(page))
2408 		extra += 1 + page_has_private(page);
2409 
2410 	if ((page_count(page) - extra) > page_mapcount(page))
2411 		return false;
2412 
2413 	return true;
2414 }
2415 
2416 /*
2417  * migrate_vma_prepare() - lock pages and isolate them from the lru
2418  * @migrate: migrate struct containing all migration information
2419  *
2420  * This locks pages that have been collected by migrate_vma_collect(). Once each
2421  * page is locked it is isolated from the lru (for non-device pages). Finally,
2422  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2423  * migrated by concurrent kernel threads.
2424  */
2425 static void migrate_vma_prepare(struct migrate_vma *migrate)
2426 {
2427 	const unsigned long npages = migrate->npages;
2428 	const unsigned long start = migrate->start;
2429 	unsigned long addr, i, restore = 0;
2430 	bool allow_drain = true;
2431 
2432 	lru_add_drain();
2433 
2434 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2435 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2436 		bool remap = true;
2437 
2438 		if (!page)
2439 			continue;
2440 
2441 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2442 			/*
2443 			 * Because we are migrating several pages there can be
2444 			 * a deadlock between 2 concurrent migration where each
2445 			 * are waiting on each other page lock.
2446 			 *
2447 			 * Make migrate_vma() a best effort thing and backoff
2448 			 * for any page we can not lock right away.
2449 			 */
2450 			if (!trylock_page(page)) {
2451 				migrate->src[i] = 0;
2452 				migrate->cpages--;
2453 				put_page(page);
2454 				continue;
2455 			}
2456 			remap = false;
2457 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2458 		}
2459 
2460 		/* ZONE_DEVICE pages are not on LRU */
2461 		if (!is_zone_device_page(page)) {
2462 			if (!PageLRU(page) && allow_drain) {
2463 				/* Drain CPU's pagevec */
2464 				lru_add_drain_all();
2465 				allow_drain = false;
2466 			}
2467 
2468 			if (isolate_lru_page(page)) {
2469 				if (remap) {
2470 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2471 					migrate->cpages--;
2472 					restore++;
2473 				} else {
2474 					migrate->src[i] = 0;
2475 					unlock_page(page);
2476 					migrate->cpages--;
2477 					put_page(page);
2478 				}
2479 				continue;
2480 			}
2481 
2482 			/* Drop the reference we took in collect */
2483 			put_page(page);
2484 		}
2485 
2486 		if (!migrate_vma_check_page(page)) {
2487 			if (remap) {
2488 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2489 				migrate->cpages--;
2490 				restore++;
2491 
2492 				if (!is_zone_device_page(page)) {
2493 					get_page(page);
2494 					putback_lru_page(page);
2495 				}
2496 			} else {
2497 				migrate->src[i] = 0;
2498 				unlock_page(page);
2499 				migrate->cpages--;
2500 
2501 				if (!is_zone_device_page(page))
2502 					putback_lru_page(page);
2503 				else
2504 					put_page(page);
2505 			}
2506 		}
2507 	}
2508 
2509 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2510 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2511 
2512 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 			continue;
2514 
2515 		remove_migration_pte(page, migrate->vma, addr, page);
2516 
2517 		migrate->src[i] = 0;
2518 		unlock_page(page);
2519 		put_page(page);
2520 		restore--;
2521 	}
2522 }
2523 
2524 /*
2525  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2526  * @migrate: migrate struct containing all migration information
2527  *
2528  * Replace page mapping (CPU page table pte) with a special migration pte entry
2529  * and check again if it has been pinned. Pinned pages are restored because we
2530  * cannot migrate them.
2531  *
2532  * This is the last step before we call the device driver callback to allocate
2533  * destination memory and copy contents of original page over to new page.
2534  */
2535 static void migrate_vma_unmap(struct migrate_vma *migrate)
2536 {
2537 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2538 	const unsigned long npages = migrate->npages;
2539 	const unsigned long start = migrate->start;
2540 	unsigned long addr, i, restore = 0;
2541 
2542 	for (i = 0; i < npages; i++) {
2543 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544 
2545 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546 			continue;
2547 
2548 		if (page_mapped(page)) {
2549 			try_to_unmap(page, flags);
2550 			if (page_mapped(page))
2551 				goto restore;
2552 		}
2553 
2554 		if (migrate_vma_check_page(page))
2555 			continue;
2556 
2557 restore:
2558 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2559 		migrate->cpages--;
2560 		restore++;
2561 	}
2562 
2563 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2564 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565 
2566 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 			continue;
2568 
2569 		remove_migration_ptes(page, page, false);
2570 
2571 		migrate->src[i] = 0;
2572 		unlock_page(page);
2573 		restore--;
2574 
2575 		if (is_zone_device_page(page))
2576 			put_page(page);
2577 		else
2578 			putback_lru_page(page);
2579 	}
2580 }
2581 
2582 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2583 				    unsigned long addr,
2584 				    struct page *page,
2585 				    unsigned long *src,
2586 				    unsigned long *dst)
2587 {
2588 	struct vm_area_struct *vma = migrate->vma;
2589 	struct mm_struct *mm = vma->vm_mm;
2590 	struct mem_cgroup *memcg;
2591 	bool flush = false;
2592 	spinlock_t *ptl;
2593 	pte_t entry;
2594 	pgd_t *pgdp;
2595 	p4d_t *p4dp;
2596 	pud_t *pudp;
2597 	pmd_t *pmdp;
2598 	pte_t *ptep;
2599 
2600 	/* Only allow populating anonymous memory */
2601 	if (!vma_is_anonymous(vma))
2602 		goto abort;
2603 
2604 	pgdp = pgd_offset(mm, addr);
2605 	p4dp = p4d_alloc(mm, pgdp, addr);
2606 	if (!p4dp)
2607 		goto abort;
2608 	pudp = pud_alloc(mm, p4dp, addr);
2609 	if (!pudp)
2610 		goto abort;
2611 	pmdp = pmd_alloc(mm, pudp, addr);
2612 	if (!pmdp)
2613 		goto abort;
2614 
2615 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2616 		goto abort;
2617 
2618 	/*
2619 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2620 	 * pte_offset_map() on pmds where a huge pmd might be created
2621 	 * from a different thread.
2622 	 *
2623 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2624 	 * parallel threads are excluded by other means.
2625 	 *
2626 	 * Here we only have down_read(mmap_sem).
2627 	 */
2628 	if (pte_alloc(mm, pmdp))
2629 		goto abort;
2630 
2631 	/* See the comment in pte_alloc_one_map() */
2632 	if (unlikely(pmd_trans_unstable(pmdp)))
2633 		goto abort;
2634 
2635 	if (unlikely(anon_vma_prepare(vma)))
2636 		goto abort;
2637 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2638 		goto abort;
2639 
2640 	/*
2641 	 * The memory barrier inside __SetPageUptodate makes sure that
2642 	 * preceding stores to the page contents become visible before
2643 	 * the set_pte_at() write.
2644 	 */
2645 	__SetPageUptodate(page);
2646 
2647 	if (is_zone_device_page(page)) {
2648 		if (is_device_private_page(page)) {
2649 			swp_entry_t swp_entry;
2650 
2651 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2652 			entry = swp_entry_to_pte(swp_entry);
2653 		}
2654 	} else {
2655 		entry = mk_pte(page, vma->vm_page_prot);
2656 		if (vma->vm_flags & VM_WRITE)
2657 			entry = pte_mkwrite(pte_mkdirty(entry));
2658 	}
2659 
2660 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2661 
2662 	if (pte_present(*ptep)) {
2663 		unsigned long pfn = pte_pfn(*ptep);
2664 
2665 		if (!is_zero_pfn(pfn)) {
2666 			pte_unmap_unlock(ptep, ptl);
2667 			mem_cgroup_cancel_charge(page, memcg, false);
2668 			goto abort;
2669 		}
2670 		flush = true;
2671 	} else if (!pte_none(*ptep)) {
2672 		pte_unmap_unlock(ptep, ptl);
2673 		mem_cgroup_cancel_charge(page, memcg, false);
2674 		goto abort;
2675 	}
2676 
2677 	/*
2678 	 * Check for usefaultfd but do not deliver the fault. Instead,
2679 	 * just back off.
2680 	 */
2681 	if (userfaultfd_missing(vma)) {
2682 		pte_unmap_unlock(ptep, ptl);
2683 		mem_cgroup_cancel_charge(page, memcg, false);
2684 		goto abort;
2685 	}
2686 
2687 	inc_mm_counter(mm, MM_ANONPAGES);
2688 	page_add_new_anon_rmap(page, vma, addr, false);
2689 	mem_cgroup_commit_charge(page, memcg, false, false);
2690 	if (!is_zone_device_page(page))
2691 		lru_cache_add_active_or_unevictable(page, vma);
2692 	get_page(page);
2693 
2694 	if (flush) {
2695 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2696 		ptep_clear_flush_notify(vma, addr, ptep);
2697 		set_pte_at_notify(mm, addr, ptep, entry);
2698 		update_mmu_cache(vma, addr, ptep);
2699 	} else {
2700 		/* No need to invalidate - it was non-present before */
2701 		set_pte_at(mm, addr, ptep, entry);
2702 		update_mmu_cache(vma, addr, ptep);
2703 	}
2704 
2705 	pte_unmap_unlock(ptep, ptl);
2706 	*src = MIGRATE_PFN_MIGRATE;
2707 	return;
2708 
2709 abort:
2710 	*src &= ~MIGRATE_PFN_MIGRATE;
2711 }
2712 
2713 /*
2714  * migrate_vma_pages() - migrate meta-data from src page to dst page
2715  * @migrate: migrate struct containing all migration information
2716  *
2717  * This migrates struct page meta-data from source struct page to destination
2718  * struct page. This effectively finishes the migration from source page to the
2719  * destination page.
2720  */
2721 static void migrate_vma_pages(struct migrate_vma *migrate)
2722 {
2723 	const unsigned long npages = migrate->npages;
2724 	const unsigned long start = migrate->start;
2725 	struct mmu_notifier_range range;
2726 	unsigned long addr, i;
2727 	bool notified = false;
2728 
2729 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2730 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2731 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2732 		struct address_space *mapping;
2733 		int r;
2734 
2735 		if (!newpage) {
2736 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2737 			continue;
2738 		}
2739 
2740 		if (!page) {
2741 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2742 				continue;
2743 			}
2744 			if (!notified) {
2745 				notified = true;
2746 
2747 				mmu_notifier_range_init(&range,
2748 							MMU_NOTIFY_CLEAR, 0,
2749 							NULL,
2750 							migrate->vma->vm_mm,
2751 							addr, migrate->end);
2752 				mmu_notifier_invalidate_range_start(&range);
2753 			}
2754 			migrate_vma_insert_page(migrate, addr, newpage,
2755 						&migrate->src[i],
2756 						&migrate->dst[i]);
2757 			continue;
2758 		}
2759 
2760 		mapping = page_mapping(page);
2761 
2762 		if (is_zone_device_page(newpage)) {
2763 			if (is_device_private_page(newpage)) {
2764 				/*
2765 				 * For now only support private anonymous when
2766 				 * migrating to un-addressable device memory.
2767 				 */
2768 				if (mapping) {
2769 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2770 					continue;
2771 				}
2772 			} else {
2773 				/*
2774 				 * Other types of ZONE_DEVICE page are not
2775 				 * supported.
2776 				 */
2777 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2778 				continue;
2779 			}
2780 		}
2781 
2782 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2783 		if (r != MIGRATEPAGE_SUCCESS)
2784 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2785 	}
2786 
2787 	/*
2788 	 * No need to double call mmu_notifier->invalidate_range() callback as
2789 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2790 	 * did already call it.
2791 	 */
2792 	if (notified)
2793 		mmu_notifier_invalidate_range_only_end(&range);
2794 }
2795 
2796 /*
2797  * migrate_vma_finalize() - restore CPU page table entry
2798  * @migrate: migrate struct containing all migration information
2799  *
2800  * This replaces the special migration pte entry with either a mapping to the
2801  * new page if migration was successful for that page, or to the original page
2802  * otherwise.
2803  *
2804  * This also unlocks the pages and puts them back on the lru, or drops the extra
2805  * refcount, for device pages.
2806  */
2807 static void migrate_vma_finalize(struct migrate_vma *migrate)
2808 {
2809 	const unsigned long npages = migrate->npages;
2810 	unsigned long i;
2811 
2812 	for (i = 0; i < npages; i++) {
2813 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2814 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2815 
2816 		if (!page) {
2817 			if (newpage) {
2818 				unlock_page(newpage);
2819 				put_page(newpage);
2820 			}
2821 			continue;
2822 		}
2823 
2824 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2825 			if (newpage) {
2826 				unlock_page(newpage);
2827 				put_page(newpage);
2828 			}
2829 			newpage = page;
2830 		}
2831 
2832 		remove_migration_ptes(page, newpage, false);
2833 		unlock_page(page);
2834 		migrate->cpages--;
2835 
2836 		if (is_zone_device_page(page))
2837 			put_page(page);
2838 		else
2839 			putback_lru_page(page);
2840 
2841 		if (newpage != page) {
2842 			unlock_page(newpage);
2843 			if (is_zone_device_page(newpage))
2844 				put_page(newpage);
2845 			else
2846 				putback_lru_page(newpage);
2847 		}
2848 	}
2849 }
2850 
2851 /*
2852  * migrate_vma() - migrate a range of memory inside vma
2853  *
2854  * @ops: migration callback for allocating destination memory and copying
2855  * @vma: virtual memory area containing the range to be migrated
2856  * @start: start address of the range to migrate (inclusive)
2857  * @end: end address of the range to migrate (exclusive)
2858  * @src: array of hmm_pfn_t containing source pfns
2859  * @dst: array of hmm_pfn_t containing destination pfns
2860  * @private: pointer passed back to each of the callback
2861  * Returns: 0 on success, error code otherwise
2862  *
2863  * This function tries to migrate a range of memory virtual address range, using
2864  * callbacks to allocate and copy memory from source to destination. First it
2865  * collects all the pages backing each virtual address in the range, saving this
2866  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2867  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2868  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2869  * in the corresponding src array entry. It then restores any pages that are
2870  * pinned, by remapping and unlocking those pages.
2871  *
2872  * At this point it calls the alloc_and_copy() callback. For documentation on
2873  * what is expected from that callback, see struct migrate_vma_ops comments in
2874  * include/linux/migrate.h
2875  *
2876  * After the alloc_and_copy() callback, this function goes over each entry in
2877  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2878  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2879  * then the function tries to migrate struct page information from the source
2880  * struct page to the destination struct page. If it fails to migrate the struct
2881  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2882  * array.
2883  *
2884  * At this point all successfully migrated pages have an entry in the src
2885  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2886  * array entry with MIGRATE_PFN_VALID flag set.
2887  *
2888  * It then calls the finalize_and_map() callback. See comments for "struct
2889  * migrate_vma_ops", in include/linux/migrate.h for details about
2890  * finalize_and_map() behavior.
2891  *
2892  * After the finalize_and_map() callback, for successfully migrated pages, this
2893  * function updates the CPU page table to point to new pages, otherwise it
2894  * restores the CPU page table to point to the original source pages.
2895  *
2896  * Function returns 0 after the above steps, even if no pages were migrated
2897  * (The function only returns an error if any of the arguments are invalid.)
2898  *
2899  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2900  * unsigned long entries.
2901  */
2902 int migrate_vma(const struct migrate_vma_ops *ops,
2903 		struct vm_area_struct *vma,
2904 		unsigned long start,
2905 		unsigned long end,
2906 		unsigned long *src,
2907 		unsigned long *dst,
2908 		void *private)
2909 {
2910 	struct migrate_vma migrate;
2911 
2912 	/* Sanity check the arguments */
2913 	start &= PAGE_MASK;
2914 	end &= PAGE_MASK;
2915 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2916 			vma_is_dax(vma))
2917 		return -EINVAL;
2918 	if (start < vma->vm_start || start >= vma->vm_end)
2919 		return -EINVAL;
2920 	if (end <= vma->vm_start || end > vma->vm_end)
2921 		return -EINVAL;
2922 	if (!ops || !src || !dst || start >= end)
2923 		return -EINVAL;
2924 
2925 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2926 	migrate.src = src;
2927 	migrate.dst = dst;
2928 	migrate.start = start;
2929 	migrate.npages = 0;
2930 	migrate.cpages = 0;
2931 	migrate.end = end;
2932 	migrate.vma = vma;
2933 
2934 	/* Collect, and try to unmap source pages */
2935 	migrate_vma_collect(&migrate);
2936 	if (!migrate.cpages)
2937 		return 0;
2938 
2939 	/* Lock and isolate page */
2940 	migrate_vma_prepare(&migrate);
2941 	if (!migrate.cpages)
2942 		return 0;
2943 
2944 	/* Unmap pages */
2945 	migrate_vma_unmap(&migrate);
2946 	if (!migrate.cpages)
2947 		return 0;
2948 
2949 	/*
2950 	 * At this point pages are locked and unmapped, and thus they have
2951 	 * stable content and can safely be copied to destination memory that
2952 	 * is allocated by the callback.
2953 	 *
2954 	 * Note that migration can fail in migrate_vma_struct_page() for each
2955 	 * individual page.
2956 	 */
2957 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2958 
2959 	/* This does the real migration of struct page */
2960 	migrate_vma_pages(&migrate);
2961 
2962 	ops->finalize_and_map(vma, src, dst, start, end, private);
2963 
2964 	/* Unlock and remap pages */
2965 	migrate_vma_finalize(&migrate);
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(migrate_vma);
2970 #endif /* defined(MIGRATE_VMA_HELPER) */
2971