xref: /openbmc/linux/mm/migrate.c (revision 09d62154)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once radix-tree replacement of page migration started, page_count
330 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 	 * against a page without get_page().
332 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 	 * will occur again.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	wait_on_page_locked(page);
339 	put_page(page);
340 	return;
341 out:
342 	pte_unmap_unlock(ptep, ptl);
343 }
344 
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 				unsigned long address)
347 {
348 	spinlock_t *ptl = pte_lockptr(mm, pmd);
349 	pte_t *ptep = pte_offset_map(pmd, address);
350 	__migration_entry_wait(mm, ptep, ptl);
351 }
352 
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 		struct mm_struct *mm, pte_t *pte)
355 {
356 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 	__migration_entry_wait(mm, pte, ptl);
358 }
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 	struct page *page;
365 
366 	ptl = pmd_lock(mm, pmd);
367 	if (!is_pmd_migration_entry(*pmd))
368 		goto unlock;
369 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 	if (!get_page_unless_zero(page))
371 		goto unlock;
372 	spin_unlock(ptl);
373 	wait_on_page_locked(page);
374 	put_page(page);
375 	return;
376 unlock:
377 	spin_unlock(ptl);
378 }
379 #endif
380 
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 							enum migrate_mode mode)
385 {
386 	struct buffer_head *bh = head;
387 
388 	/* Simple case, sync compaction */
389 	if (mode != MIGRATE_ASYNC) {
390 		do {
391 			get_bh(bh);
392 			lock_buffer(bh);
393 			bh = bh->b_this_page;
394 
395 		} while (bh != head);
396 
397 		return true;
398 	}
399 
400 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
401 	do {
402 		get_bh(bh);
403 		if (!trylock_buffer(bh)) {
404 			/*
405 			 * We failed to lock the buffer and cannot stall in
406 			 * async migration. Release the taken locks
407 			 */
408 			struct buffer_head *failed_bh = bh;
409 			put_bh(failed_bh);
410 			bh = head;
411 			while (bh != failed_bh) {
412 				unlock_buffer(bh);
413 				put_bh(bh);
414 				bh = bh->b_this_page;
415 			}
416 			return false;
417 		}
418 
419 		bh = bh->b_this_page;
420 	} while (bh != head);
421 	return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 							enum migrate_mode mode)
426 {
427 	return true;
428 }
429 #endif /* CONFIG_BLOCK */
430 
431 /*
432  * Replace the page in the mapping.
433  *
434  * The number of remaining references must be:
435  * 1 for anonymous pages without a mapping
436  * 2 for pages with a mapping
437  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438  */
439 int migrate_page_move_mapping(struct address_space *mapping,
440 		struct page *newpage, struct page *page,
441 		struct buffer_head *head, enum migrate_mode mode,
442 		int extra_count)
443 {
444 	struct zone *oldzone, *newzone;
445 	int dirty;
446 	int expected_count = 1 + extra_count;
447 	void **pslot;
448 
449 	/*
450 	 * Device public or private pages have an extra refcount as they are
451 	 * ZONE_DEVICE pages.
452 	 */
453 	expected_count += is_device_private_page(page);
454 	expected_count += is_device_public_page(page);
455 
456 	if (!mapping) {
457 		/* Anonymous page without mapping */
458 		if (page_count(page) != expected_count)
459 			return -EAGAIN;
460 
461 		/* No turning back from here */
462 		newpage->index = page->index;
463 		newpage->mapping = page->mapping;
464 		if (PageSwapBacked(page))
465 			__SetPageSwapBacked(newpage);
466 
467 		return MIGRATEPAGE_SUCCESS;
468 	}
469 
470 	oldzone = page_zone(page);
471 	newzone = page_zone(newpage);
472 
473 	xa_lock_irq(&mapping->i_pages);
474 
475 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
476  					page_index(page));
477 
478 	expected_count += hpage_nr_pages(page) + page_has_private(page);
479 	if (page_count(page) != expected_count ||
480 		radix_tree_deref_slot_protected(pslot,
481 					&mapping->i_pages.xa_lock) != page) {
482 		xa_unlock_irq(&mapping->i_pages);
483 		return -EAGAIN;
484 	}
485 
486 	if (!page_ref_freeze(page, expected_count)) {
487 		xa_unlock_irq(&mapping->i_pages);
488 		return -EAGAIN;
489 	}
490 
491 	/*
492 	 * In the async migration case of moving a page with buffers, lock the
493 	 * buffers using trylock before the mapping is moved. If the mapping
494 	 * was moved, we later failed to lock the buffers and could not move
495 	 * the mapping back due to an elevated page count, we would have to
496 	 * block waiting on other references to be dropped.
497 	 */
498 	if (mode == MIGRATE_ASYNC && head &&
499 			!buffer_migrate_lock_buffers(head, mode)) {
500 		page_ref_unfreeze(page, expected_count);
501 		xa_unlock_irq(&mapping->i_pages);
502 		return -EAGAIN;
503 	}
504 
505 	/*
506 	 * Now we know that no one else is looking at the page:
507 	 * no turning back from here.
508 	 */
509 	newpage->index = page->index;
510 	newpage->mapping = page->mapping;
511 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 	if (PageSwapBacked(page)) {
513 		__SetPageSwapBacked(newpage);
514 		if (PageSwapCache(page)) {
515 			SetPageSwapCache(newpage);
516 			set_page_private(newpage, page_private(page));
517 		}
518 	} else {
519 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
520 	}
521 
522 	/* Move dirty while page refs frozen and newpage not yet exposed */
523 	dirty = PageDirty(page);
524 	if (dirty) {
525 		ClearPageDirty(page);
526 		SetPageDirty(newpage);
527 	}
528 
529 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 	if (PageTransHuge(page)) {
531 		int i;
532 		int index = page_index(page);
533 
534 		for (i = 1; i < HPAGE_PMD_NR; i++) {
535 			pslot = radix_tree_lookup_slot(&mapping->i_pages,
536 						       index + i);
537 			radix_tree_replace_slot(&mapping->i_pages, pslot,
538 						newpage + i);
539 		}
540 	}
541 
542 	/*
543 	 * Drop cache reference from old page by unfreezing
544 	 * to one less reference.
545 	 * We know this isn't the last reference.
546 	 */
547 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548 
549 	xa_unlock(&mapping->i_pages);
550 	/* Leave irq disabled to prevent preemption while updating stats */
551 
552 	/*
553 	 * If moved to a different zone then also account
554 	 * the page for that zone. Other VM counters will be
555 	 * taken care of when we establish references to the
556 	 * new page and drop references to the old page.
557 	 *
558 	 * Note that anonymous pages are accounted for
559 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 	 * are mapped to swap space.
561 	 */
562 	if (newzone != oldzone) {
563 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 		}
569 		if (dirty && mapping_cap_account_dirty(mapping)) {
570 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574 		}
575 	}
576 	local_irq_enable();
577 
578 	return MIGRATEPAGE_SUCCESS;
579 }
580 EXPORT_SYMBOL(migrate_page_move_mapping);
581 
582 /*
583  * The expected number of remaining references is the same as that
584  * of migrate_page_move_mapping().
585  */
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587 				   struct page *newpage, struct page *page)
588 {
589 	int expected_count;
590 	void **pslot;
591 
592 	xa_lock_irq(&mapping->i_pages);
593 
594 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595 
596 	expected_count = 2 + page_has_private(page);
597 	if (page_count(page) != expected_count ||
598 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599 		xa_unlock_irq(&mapping->i_pages);
600 		return -EAGAIN;
601 	}
602 
603 	if (!page_ref_freeze(page, expected_count)) {
604 		xa_unlock_irq(&mapping->i_pages);
605 		return -EAGAIN;
606 	}
607 
608 	newpage->index = page->index;
609 	newpage->mapping = page->mapping;
610 
611 	get_page(newpage);
612 
613 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614 
615 	page_ref_unfreeze(page, expected_count - 1);
616 
617 	xa_unlock_irq(&mapping->i_pages);
618 
619 	return MIGRATEPAGE_SUCCESS;
620 }
621 
622 /*
623  * Gigantic pages are so large that we do not guarantee that page++ pointer
624  * arithmetic will work across the entire page.  We need something more
625  * specialized.
626  */
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
628 				int nr_pages)
629 {
630 	int i;
631 	struct page *dst_base = dst;
632 	struct page *src_base = src;
633 
634 	for (i = 0; i < nr_pages; ) {
635 		cond_resched();
636 		copy_highpage(dst, src);
637 
638 		i++;
639 		dst = mem_map_next(dst, dst_base, i);
640 		src = mem_map_next(src, src_base, i);
641 	}
642 }
643 
644 static void copy_huge_page(struct page *dst, struct page *src)
645 {
646 	int i;
647 	int nr_pages;
648 
649 	if (PageHuge(src)) {
650 		/* hugetlbfs page */
651 		struct hstate *h = page_hstate(src);
652 		nr_pages = pages_per_huge_page(h);
653 
654 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655 			__copy_gigantic_page(dst, src, nr_pages);
656 			return;
657 		}
658 	} else {
659 		/* thp page */
660 		BUG_ON(!PageTransHuge(src));
661 		nr_pages = hpage_nr_pages(src);
662 	}
663 
664 	for (i = 0; i < nr_pages; i++) {
665 		cond_resched();
666 		copy_highpage(dst + i, src + i);
667 	}
668 }
669 
670 /*
671  * Copy the page to its new location
672  */
673 void migrate_page_states(struct page *newpage, struct page *page)
674 {
675 	int cpupid;
676 
677 	if (PageError(page))
678 		SetPageError(newpage);
679 	if (PageReferenced(page))
680 		SetPageReferenced(newpage);
681 	if (PageUptodate(page))
682 		SetPageUptodate(newpage);
683 	if (TestClearPageActive(page)) {
684 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
685 		SetPageActive(newpage);
686 	} else if (TestClearPageUnevictable(page))
687 		SetPageUnevictable(newpage);
688 	if (PageChecked(page))
689 		SetPageChecked(newpage);
690 	if (PageMappedToDisk(page))
691 		SetPageMappedToDisk(newpage);
692 
693 	/* Move dirty on pages not done by migrate_page_move_mapping() */
694 	if (PageDirty(page))
695 		SetPageDirty(newpage);
696 
697 	if (page_is_young(page))
698 		set_page_young(newpage);
699 	if (page_is_idle(page))
700 		set_page_idle(newpage);
701 
702 	/*
703 	 * Copy NUMA information to the new page, to prevent over-eager
704 	 * future migrations of this same page.
705 	 */
706 	cpupid = page_cpupid_xchg_last(page, -1);
707 	page_cpupid_xchg_last(newpage, cpupid);
708 
709 	ksm_migrate_page(newpage, page);
710 	/*
711 	 * Please do not reorder this without considering how mm/ksm.c's
712 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
713 	 */
714 	if (PageSwapCache(page))
715 		ClearPageSwapCache(page);
716 	ClearPagePrivate(page);
717 	set_page_private(page, 0);
718 
719 	/*
720 	 * If any waiters have accumulated on the new page then
721 	 * wake them up.
722 	 */
723 	if (PageWriteback(newpage))
724 		end_page_writeback(newpage);
725 
726 	copy_page_owner(page, newpage);
727 
728 	mem_cgroup_migrate(page, newpage);
729 }
730 EXPORT_SYMBOL(migrate_page_states);
731 
732 void migrate_page_copy(struct page *newpage, struct page *page)
733 {
734 	if (PageHuge(page) || PageTransHuge(page))
735 		copy_huge_page(newpage, page);
736 	else
737 		copy_highpage(newpage, page);
738 
739 	migrate_page_states(newpage, page);
740 }
741 EXPORT_SYMBOL(migrate_page_copy);
742 
743 /************************************************************
744  *                    Migration functions
745  ***********************************************************/
746 
747 /*
748  * Common logic to directly migrate a single LRU page suitable for
749  * pages that do not use PagePrivate/PagePrivate2.
750  *
751  * Pages are locked upon entry and exit.
752  */
753 int migrate_page(struct address_space *mapping,
754 		struct page *newpage, struct page *page,
755 		enum migrate_mode mode)
756 {
757 	int rc;
758 
759 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
760 
761 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
762 
763 	if (rc != MIGRATEPAGE_SUCCESS)
764 		return rc;
765 
766 	if (mode != MIGRATE_SYNC_NO_COPY)
767 		migrate_page_copy(newpage, page);
768 	else
769 		migrate_page_states(newpage, page);
770 	return MIGRATEPAGE_SUCCESS;
771 }
772 EXPORT_SYMBOL(migrate_page);
773 
774 #ifdef CONFIG_BLOCK
775 /*
776  * Migration function for pages with buffers. This function can only be used
777  * if the underlying filesystem guarantees that no other references to "page"
778  * exist.
779  */
780 int buffer_migrate_page(struct address_space *mapping,
781 		struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783 	struct buffer_head *bh, *head;
784 	int rc;
785 
786 	if (!page_has_buffers(page))
787 		return migrate_page(mapping, newpage, page, mode);
788 
789 	head = page_buffers(page);
790 
791 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
792 
793 	if (rc != MIGRATEPAGE_SUCCESS)
794 		return rc;
795 
796 	/*
797 	 * In the async case, migrate_page_move_mapping locked the buffers
798 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
799 	 * need to be locked now
800 	 */
801 	if (mode != MIGRATE_ASYNC)
802 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
803 
804 	ClearPagePrivate(page);
805 	set_page_private(newpage, page_private(page));
806 	set_page_private(page, 0);
807 	put_page(page);
808 	get_page(newpage);
809 
810 	bh = head;
811 	do {
812 		set_bh_page(bh, newpage, bh_offset(bh));
813 		bh = bh->b_this_page;
814 
815 	} while (bh != head);
816 
817 	SetPagePrivate(newpage);
818 
819 	if (mode != MIGRATE_SYNC_NO_COPY)
820 		migrate_page_copy(newpage, page);
821 	else
822 		migrate_page_states(newpage, page);
823 
824 	bh = head;
825 	do {
826 		unlock_buffer(bh);
827 		put_bh(bh);
828 		bh = bh->b_this_page;
829 
830 	} while (bh != head);
831 
832 	return MIGRATEPAGE_SUCCESS;
833 }
834 EXPORT_SYMBOL(buffer_migrate_page);
835 #endif
836 
837 /*
838  * Writeback a page to clean the dirty state
839  */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842 	struct writeback_control wbc = {
843 		.sync_mode = WB_SYNC_NONE,
844 		.nr_to_write = 1,
845 		.range_start = 0,
846 		.range_end = LLONG_MAX,
847 		.for_reclaim = 1
848 	};
849 	int rc;
850 
851 	if (!mapping->a_ops->writepage)
852 		/* No write method for the address space */
853 		return -EINVAL;
854 
855 	if (!clear_page_dirty_for_io(page))
856 		/* Someone else already triggered a write */
857 		return -EAGAIN;
858 
859 	/*
860 	 * A dirty page may imply that the underlying filesystem has
861 	 * the page on some queue. So the page must be clean for
862 	 * migration. Writeout may mean we loose the lock and the
863 	 * page state is no longer what we checked for earlier.
864 	 * At this point we know that the migration attempt cannot
865 	 * be successful.
866 	 */
867 	remove_migration_ptes(page, page, false);
868 
869 	rc = mapping->a_ops->writepage(page, &wbc);
870 
871 	if (rc != AOP_WRITEPAGE_ACTIVATE)
872 		/* unlocked. Relock */
873 		lock_page(page);
874 
875 	return (rc < 0) ? -EIO : -EAGAIN;
876 }
877 
878 /*
879  * Default handling if a filesystem does not provide a migration function.
880  */
881 static int fallback_migrate_page(struct address_space *mapping,
882 	struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884 	if (PageDirty(page)) {
885 		/* Only writeback pages in full synchronous migration */
886 		switch (mode) {
887 		case MIGRATE_SYNC:
888 		case MIGRATE_SYNC_NO_COPY:
889 			break;
890 		default:
891 			return -EBUSY;
892 		}
893 		return writeout(mapping, page);
894 	}
895 
896 	/*
897 	 * Buffers may be managed in a filesystem specific way.
898 	 * We must have no buffers or drop them.
899 	 */
900 	if (page_has_private(page) &&
901 	    !try_to_release_page(page, GFP_KERNEL))
902 		return -EAGAIN;
903 
904 	return migrate_page(mapping, newpage, page, mode);
905 }
906 
907 /*
908  * Move a page to a newly allocated page
909  * The page is locked and all ptes have been successfully removed.
910  *
911  * The new page will have replaced the old page if this function
912  * is successful.
913  *
914  * Return value:
915  *   < 0 - error code
916  *  MIGRATEPAGE_SUCCESS - success
917  */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 				enum migrate_mode mode)
920 {
921 	struct address_space *mapping;
922 	int rc = -EAGAIN;
923 	bool is_lru = !__PageMovable(page);
924 
925 	VM_BUG_ON_PAGE(!PageLocked(page), page);
926 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927 
928 	mapping = page_mapping(page);
929 
930 	if (likely(is_lru)) {
931 		if (!mapping)
932 			rc = migrate_page(mapping, newpage, page, mode);
933 		else if (mapping->a_ops->migratepage)
934 			/*
935 			 * Most pages have a mapping and most filesystems
936 			 * provide a migratepage callback. Anonymous pages
937 			 * are part of swap space which also has its own
938 			 * migratepage callback. This is the most common path
939 			 * for page migration.
940 			 */
941 			rc = mapping->a_ops->migratepage(mapping, newpage,
942 							page, mode);
943 		else
944 			rc = fallback_migrate_page(mapping, newpage,
945 							page, mode);
946 	} else {
947 		/*
948 		 * In case of non-lru page, it could be released after
949 		 * isolation step. In that case, we shouldn't try migration.
950 		 */
951 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 		if (!PageMovable(page)) {
953 			rc = MIGRATEPAGE_SUCCESS;
954 			__ClearPageIsolated(page);
955 			goto out;
956 		}
957 
958 		rc = mapping->a_ops->migratepage(mapping, newpage,
959 						page, mode);
960 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 			!PageIsolated(page));
962 	}
963 
964 	/*
965 	 * When successful, old pagecache page->mapping must be cleared before
966 	 * page is freed; but stats require that PageAnon be left as PageAnon.
967 	 */
968 	if (rc == MIGRATEPAGE_SUCCESS) {
969 		if (__PageMovable(page)) {
970 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
971 
972 			/*
973 			 * We clear PG_movable under page_lock so any compactor
974 			 * cannot try to migrate this page.
975 			 */
976 			__ClearPageIsolated(page);
977 		}
978 
979 		/*
980 		 * Anonymous and movable page->mapping will be cleard by
981 		 * free_pages_prepare so don't reset it here for keeping
982 		 * the type to work PageAnon, for example.
983 		 */
984 		if (!PageMappingFlags(page))
985 			page->mapping = NULL;
986 	}
987 out:
988 	return rc;
989 }
990 
991 static int __unmap_and_move(struct page *page, struct page *newpage,
992 				int force, enum migrate_mode mode)
993 {
994 	int rc = -EAGAIN;
995 	int page_was_mapped = 0;
996 	struct anon_vma *anon_vma = NULL;
997 	bool is_lru = !__PageMovable(page);
998 
999 	if (!trylock_page(page)) {
1000 		if (!force || mode == MIGRATE_ASYNC)
1001 			goto out;
1002 
1003 		/*
1004 		 * It's not safe for direct compaction to call lock_page.
1005 		 * For example, during page readahead pages are added locked
1006 		 * to the LRU. Later, when the IO completes the pages are
1007 		 * marked uptodate and unlocked. However, the queueing
1008 		 * could be merging multiple pages for one bio (e.g.
1009 		 * mpage_readpages). If an allocation happens for the
1010 		 * second or third page, the process can end up locking
1011 		 * the same page twice and deadlocking. Rather than
1012 		 * trying to be clever about what pages can be locked,
1013 		 * avoid the use of lock_page for direct compaction
1014 		 * altogether.
1015 		 */
1016 		if (current->flags & PF_MEMALLOC)
1017 			goto out;
1018 
1019 		lock_page(page);
1020 	}
1021 
1022 	if (PageWriteback(page)) {
1023 		/*
1024 		 * Only in the case of a full synchronous migration is it
1025 		 * necessary to wait for PageWriteback. In the async case,
1026 		 * the retry loop is too short and in the sync-light case,
1027 		 * the overhead of stalling is too much
1028 		 */
1029 		switch (mode) {
1030 		case MIGRATE_SYNC:
1031 		case MIGRATE_SYNC_NO_COPY:
1032 			break;
1033 		default:
1034 			rc = -EBUSY;
1035 			goto out_unlock;
1036 		}
1037 		if (!force)
1038 			goto out_unlock;
1039 		wait_on_page_writeback(page);
1040 	}
1041 
1042 	/*
1043 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1044 	 * we cannot notice that anon_vma is freed while we migrates a page.
1045 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1046 	 * of migration. File cache pages are no problem because of page_lock()
1047 	 * File Caches may use write_page() or lock_page() in migration, then,
1048 	 * just care Anon page here.
1049 	 *
1050 	 * Only page_get_anon_vma() understands the subtleties of
1051 	 * getting a hold on an anon_vma from outside one of its mms.
1052 	 * But if we cannot get anon_vma, then we won't need it anyway,
1053 	 * because that implies that the anon page is no longer mapped
1054 	 * (and cannot be remapped so long as we hold the page lock).
1055 	 */
1056 	if (PageAnon(page) && !PageKsm(page))
1057 		anon_vma = page_get_anon_vma(page);
1058 
1059 	/*
1060 	 * Block others from accessing the new page when we get around to
1061 	 * establishing additional references. We are usually the only one
1062 	 * holding a reference to newpage at this point. We used to have a BUG
1063 	 * here if trylock_page(newpage) fails, but would like to allow for
1064 	 * cases where there might be a race with the previous use of newpage.
1065 	 * This is much like races on refcount of oldpage: just don't BUG().
1066 	 */
1067 	if (unlikely(!trylock_page(newpage)))
1068 		goto out_unlock;
1069 
1070 	if (unlikely(!is_lru)) {
1071 		rc = move_to_new_page(newpage, page, mode);
1072 		goto out_unlock_both;
1073 	}
1074 
1075 	/*
1076 	 * Corner case handling:
1077 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1078 	 * and treated as swapcache but it has no rmap yet.
1079 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1080 	 * trigger a BUG.  So handle it here.
1081 	 * 2. An orphaned page (see truncate_complete_page) might have
1082 	 * fs-private metadata. The page can be picked up due to memory
1083 	 * offlining.  Everywhere else except page reclaim, the page is
1084 	 * invisible to the vm, so the page can not be migrated.  So try to
1085 	 * free the metadata, so the page can be freed.
1086 	 */
1087 	if (!page->mapping) {
1088 		VM_BUG_ON_PAGE(PageAnon(page), page);
1089 		if (page_has_private(page)) {
1090 			try_to_free_buffers(page);
1091 			goto out_unlock_both;
1092 		}
1093 	} else if (page_mapped(page)) {
1094 		/* Establish migration ptes */
1095 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1096 				page);
1097 		try_to_unmap(page,
1098 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099 		page_was_mapped = 1;
1100 	}
1101 
1102 	if (!page_mapped(page))
1103 		rc = move_to_new_page(newpage, page, mode);
1104 
1105 	if (page_was_mapped)
1106 		remove_migration_ptes(page,
1107 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1108 
1109 out_unlock_both:
1110 	unlock_page(newpage);
1111 out_unlock:
1112 	/* Drop an anon_vma reference if we took one */
1113 	if (anon_vma)
1114 		put_anon_vma(anon_vma);
1115 	unlock_page(page);
1116 out:
1117 	/*
1118 	 * If migration is successful, decrease refcount of the newpage
1119 	 * which will not free the page because new page owner increased
1120 	 * refcounter. As well, if it is LRU page, add the page to LRU
1121 	 * list in here.
1122 	 */
1123 	if (rc == MIGRATEPAGE_SUCCESS) {
1124 		if (unlikely(__PageMovable(newpage)))
1125 			put_page(newpage);
1126 		else
1127 			putback_lru_page(newpage);
1128 	}
1129 
1130 	return rc;
1131 }
1132 
1133 /*
1134  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1135  * around it.
1136  */
1137 #if defined(CONFIG_ARM) && \
1138 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1139 #define ICE_noinline noinline
1140 #else
1141 #define ICE_noinline
1142 #endif
1143 
1144 /*
1145  * Obtain the lock on page, remove all ptes and migrate the page
1146  * to the newly allocated page in newpage.
1147  */
1148 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1149 				   free_page_t put_new_page,
1150 				   unsigned long private, struct page *page,
1151 				   int force, enum migrate_mode mode,
1152 				   enum migrate_reason reason)
1153 {
1154 	int rc = MIGRATEPAGE_SUCCESS;
1155 	struct page *newpage;
1156 
1157 	if (!thp_migration_supported() && PageTransHuge(page))
1158 		return -ENOMEM;
1159 
1160 	newpage = get_new_page(page, private);
1161 	if (!newpage)
1162 		return -ENOMEM;
1163 
1164 	if (page_count(page) == 1) {
1165 		/* page was freed from under us. So we are done. */
1166 		ClearPageActive(page);
1167 		ClearPageUnevictable(page);
1168 		if (unlikely(__PageMovable(page))) {
1169 			lock_page(page);
1170 			if (!PageMovable(page))
1171 				__ClearPageIsolated(page);
1172 			unlock_page(page);
1173 		}
1174 		if (put_new_page)
1175 			put_new_page(newpage, private);
1176 		else
1177 			put_page(newpage);
1178 		goto out;
1179 	}
1180 
1181 	rc = __unmap_and_move(page, newpage, force, mode);
1182 	if (rc == MIGRATEPAGE_SUCCESS)
1183 		set_page_owner_migrate_reason(newpage, reason);
1184 
1185 out:
1186 	if (rc != -EAGAIN) {
1187 		/*
1188 		 * A page that has been migrated has all references
1189 		 * removed and will be freed. A page that has not been
1190 		 * migrated will have kepts its references and be
1191 		 * restored.
1192 		 */
1193 		list_del(&page->lru);
1194 
1195 		/*
1196 		 * Compaction can migrate also non-LRU pages which are
1197 		 * not accounted to NR_ISOLATED_*. They can be recognized
1198 		 * as __PageMovable
1199 		 */
1200 		if (likely(!__PageMovable(page)))
1201 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1202 					page_is_file_cache(page), -hpage_nr_pages(page));
1203 	}
1204 
1205 	/*
1206 	 * If migration is successful, releases reference grabbed during
1207 	 * isolation. Otherwise, restore the page to right list unless
1208 	 * we want to retry.
1209 	 */
1210 	if (rc == MIGRATEPAGE_SUCCESS) {
1211 		put_page(page);
1212 		if (reason == MR_MEMORY_FAILURE) {
1213 			/*
1214 			 * Set PG_HWPoison on just freed page
1215 			 * intentionally. Although it's rather weird,
1216 			 * it's how HWPoison flag works at the moment.
1217 			 */
1218 			if (set_hwpoison_free_buddy_page(page))
1219 				num_poisoned_pages_inc();
1220 		}
1221 	} else {
1222 		if (rc != -EAGAIN) {
1223 			if (likely(!__PageMovable(page))) {
1224 				putback_lru_page(page);
1225 				goto put_new;
1226 			}
1227 
1228 			lock_page(page);
1229 			if (PageMovable(page))
1230 				putback_movable_page(page);
1231 			else
1232 				__ClearPageIsolated(page);
1233 			unlock_page(page);
1234 			put_page(page);
1235 		}
1236 put_new:
1237 		if (put_new_page)
1238 			put_new_page(newpage, private);
1239 		else
1240 			put_page(newpage);
1241 	}
1242 
1243 	return rc;
1244 }
1245 
1246 /*
1247  * Counterpart of unmap_and_move_page() for hugepage migration.
1248  *
1249  * This function doesn't wait the completion of hugepage I/O
1250  * because there is no race between I/O and migration for hugepage.
1251  * Note that currently hugepage I/O occurs only in direct I/O
1252  * where no lock is held and PG_writeback is irrelevant,
1253  * and writeback status of all subpages are counted in the reference
1254  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1255  * under direct I/O, the reference of the head page is 512 and a bit more.)
1256  * This means that when we try to migrate hugepage whose subpages are
1257  * doing direct I/O, some references remain after try_to_unmap() and
1258  * hugepage migration fails without data corruption.
1259  *
1260  * There is also no race when direct I/O is issued on the page under migration,
1261  * because then pte is replaced with migration swap entry and direct I/O code
1262  * will wait in the page fault for migration to complete.
1263  */
1264 static int unmap_and_move_huge_page(new_page_t get_new_page,
1265 				free_page_t put_new_page, unsigned long private,
1266 				struct page *hpage, int force,
1267 				enum migrate_mode mode, int reason)
1268 {
1269 	int rc = -EAGAIN;
1270 	int page_was_mapped = 0;
1271 	struct page *new_hpage;
1272 	struct anon_vma *anon_vma = NULL;
1273 
1274 	/*
1275 	 * Movability of hugepages depends on architectures and hugepage size.
1276 	 * This check is necessary because some callers of hugepage migration
1277 	 * like soft offline and memory hotremove don't walk through page
1278 	 * tables or check whether the hugepage is pmd-based or not before
1279 	 * kicking migration.
1280 	 */
1281 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1282 		putback_active_hugepage(hpage);
1283 		return -ENOSYS;
1284 	}
1285 
1286 	new_hpage = get_new_page(hpage, private);
1287 	if (!new_hpage)
1288 		return -ENOMEM;
1289 
1290 	if (!trylock_page(hpage)) {
1291 		if (!force)
1292 			goto out;
1293 		switch (mode) {
1294 		case MIGRATE_SYNC:
1295 		case MIGRATE_SYNC_NO_COPY:
1296 			break;
1297 		default:
1298 			goto out;
1299 		}
1300 		lock_page(hpage);
1301 	}
1302 
1303 	if (PageAnon(hpage))
1304 		anon_vma = page_get_anon_vma(hpage);
1305 
1306 	if (unlikely(!trylock_page(new_hpage)))
1307 		goto put_anon;
1308 
1309 	if (page_mapped(hpage)) {
1310 		try_to_unmap(hpage,
1311 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312 		page_was_mapped = 1;
1313 	}
1314 
1315 	if (!page_mapped(hpage))
1316 		rc = move_to_new_page(new_hpage, hpage, mode);
1317 
1318 	if (page_was_mapped)
1319 		remove_migration_ptes(hpage,
1320 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1321 
1322 	unlock_page(new_hpage);
1323 
1324 put_anon:
1325 	if (anon_vma)
1326 		put_anon_vma(anon_vma);
1327 
1328 	if (rc == MIGRATEPAGE_SUCCESS) {
1329 		move_hugetlb_state(hpage, new_hpage, reason);
1330 		put_new_page = NULL;
1331 	}
1332 
1333 	unlock_page(hpage);
1334 out:
1335 	if (rc != -EAGAIN)
1336 		putback_active_hugepage(hpage);
1337 
1338 	/*
1339 	 * If migration was not successful and there's a freeing callback, use
1340 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1341 	 * isolation.
1342 	 */
1343 	if (put_new_page)
1344 		put_new_page(new_hpage, private);
1345 	else
1346 		putback_active_hugepage(new_hpage);
1347 
1348 	return rc;
1349 }
1350 
1351 /*
1352  * migrate_pages - migrate the pages specified in a list, to the free pages
1353  *		   supplied as the target for the page migration
1354  *
1355  * @from:		The list of pages to be migrated.
1356  * @get_new_page:	The function used to allocate free pages to be used
1357  *			as the target of the page migration.
1358  * @put_new_page:	The function used to free target pages if migration
1359  *			fails, or NULL if no special handling is necessary.
1360  * @private:		Private data to be passed on to get_new_page()
1361  * @mode:		The migration mode that specifies the constraints for
1362  *			page migration, if any.
1363  * @reason:		The reason for page migration.
1364  *
1365  * The function returns after 10 attempts or if no pages are movable any more
1366  * because the list has become empty or no retryable pages exist any more.
1367  * The caller should call putback_movable_pages() to return pages to the LRU
1368  * or free list only if ret != 0.
1369  *
1370  * Returns the number of pages that were not migrated, or an error code.
1371  */
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 		free_page_t put_new_page, unsigned long private,
1374 		enum migrate_mode mode, int reason)
1375 {
1376 	int retry = 1;
1377 	int nr_failed = 0;
1378 	int nr_succeeded = 0;
1379 	int pass = 0;
1380 	struct page *page;
1381 	struct page *page2;
1382 	int swapwrite = current->flags & PF_SWAPWRITE;
1383 	int rc;
1384 
1385 	if (!swapwrite)
1386 		current->flags |= PF_SWAPWRITE;
1387 
1388 	for(pass = 0; pass < 10 && retry; pass++) {
1389 		retry = 0;
1390 
1391 		list_for_each_entry_safe(page, page2, from, lru) {
1392 retry:
1393 			cond_resched();
1394 
1395 			if (PageHuge(page))
1396 				rc = unmap_and_move_huge_page(get_new_page,
1397 						put_new_page, private, page,
1398 						pass > 2, mode, reason);
1399 			else
1400 				rc = unmap_and_move(get_new_page, put_new_page,
1401 						private, page, pass > 2, mode,
1402 						reason);
1403 
1404 			switch(rc) {
1405 			case -ENOMEM:
1406 				/*
1407 				 * THP migration might be unsupported or the
1408 				 * allocation could've failed so we should
1409 				 * retry on the same page with the THP split
1410 				 * to base pages.
1411 				 *
1412 				 * Head page is retried immediately and tail
1413 				 * pages are added to the tail of the list so
1414 				 * we encounter them after the rest of the list
1415 				 * is processed.
1416 				 */
1417 				if (PageTransHuge(page) && !PageHuge(page)) {
1418 					lock_page(page);
1419 					rc = split_huge_page_to_list(page, from);
1420 					unlock_page(page);
1421 					if (!rc) {
1422 						list_safe_reset_next(page, page2, lru);
1423 						goto retry;
1424 					}
1425 				}
1426 				nr_failed++;
1427 				goto out;
1428 			case -EAGAIN:
1429 				retry++;
1430 				break;
1431 			case MIGRATEPAGE_SUCCESS:
1432 				nr_succeeded++;
1433 				break;
1434 			default:
1435 				/*
1436 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 				 * unlike -EAGAIN case, the failed page is
1438 				 * removed from migration page list and not
1439 				 * retried in the next outer loop.
1440 				 */
1441 				nr_failed++;
1442 				break;
1443 			}
1444 		}
1445 	}
1446 	nr_failed += retry;
1447 	rc = nr_failed;
1448 out:
1449 	if (nr_succeeded)
1450 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451 	if (nr_failed)
1452 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454 
1455 	if (!swapwrite)
1456 		current->flags &= ~PF_SWAPWRITE;
1457 
1458 	return rc;
1459 }
1460 
1461 #ifdef CONFIG_NUMA
1462 
1463 static int store_status(int __user *status, int start, int value, int nr)
1464 {
1465 	while (nr-- > 0) {
1466 		if (put_user(value, status + start))
1467 			return -EFAULT;
1468 		start++;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475 		struct list_head *pagelist, int node)
1476 {
1477 	int err;
1478 
1479 	if (list_empty(pagelist))
1480 		return 0;
1481 
1482 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 			MIGRATE_SYNC, MR_SYSCALL);
1484 	if (err)
1485 		putback_movable_pages(pagelist);
1486 	return err;
1487 }
1488 
1489 /*
1490  * Resolves the given address to a struct page, isolates it from the LRU and
1491  * puts it to the given pagelist.
1492  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493  * queued or the page doesn't need to be migrated because it is already on
1494  * the target node
1495  */
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 		int node, struct list_head *pagelist, bool migrate_all)
1498 {
1499 	struct vm_area_struct *vma;
1500 	struct page *page;
1501 	unsigned int follflags;
1502 	int err;
1503 
1504 	down_read(&mm->mmap_sem);
1505 	err = -EFAULT;
1506 	vma = find_vma(mm, addr);
1507 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508 		goto out;
1509 
1510 	/* FOLL_DUMP to ignore special (like zero) pages */
1511 	follflags = FOLL_GET | FOLL_DUMP;
1512 	page = follow_page(vma, addr, follflags);
1513 
1514 	err = PTR_ERR(page);
1515 	if (IS_ERR(page))
1516 		goto out;
1517 
1518 	err = -ENOENT;
1519 	if (!page)
1520 		goto out;
1521 
1522 	err = 0;
1523 	if (page_to_nid(page) == node)
1524 		goto out_putpage;
1525 
1526 	err = -EACCES;
1527 	if (page_mapcount(page) > 1 && !migrate_all)
1528 		goto out_putpage;
1529 
1530 	if (PageHuge(page)) {
1531 		if (PageHead(page)) {
1532 			isolate_huge_page(page, pagelist);
1533 			err = 0;
1534 		}
1535 	} else {
1536 		struct page *head;
1537 
1538 		head = compound_head(page);
1539 		err = isolate_lru_page(head);
1540 		if (err)
1541 			goto out_putpage;
1542 
1543 		err = 0;
1544 		list_add_tail(&head->lru, pagelist);
1545 		mod_node_page_state(page_pgdat(head),
1546 			NR_ISOLATED_ANON + page_is_file_cache(head),
1547 			hpage_nr_pages(head));
1548 	}
1549 out_putpage:
1550 	/*
1551 	 * Either remove the duplicate refcount from
1552 	 * isolate_lru_page() or drop the page ref if it was
1553 	 * not isolated.
1554 	 */
1555 	put_page(page);
1556 out:
1557 	up_read(&mm->mmap_sem);
1558 	return err;
1559 }
1560 
1561 /*
1562  * Migrate an array of page address onto an array of nodes and fill
1563  * the corresponding array of status.
1564  */
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 			 unsigned long nr_pages,
1567 			 const void __user * __user *pages,
1568 			 const int __user *nodes,
1569 			 int __user *status, int flags)
1570 {
1571 	int current_node = NUMA_NO_NODE;
1572 	LIST_HEAD(pagelist);
1573 	int start, i;
1574 	int err = 0, err1;
1575 
1576 	migrate_prep();
1577 
1578 	for (i = start = 0; i < nr_pages; i++) {
1579 		const void __user *p;
1580 		unsigned long addr;
1581 		int node;
1582 
1583 		err = -EFAULT;
1584 		if (get_user(p, pages + i))
1585 			goto out_flush;
1586 		if (get_user(node, nodes + i))
1587 			goto out_flush;
1588 		addr = (unsigned long)p;
1589 
1590 		err = -ENODEV;
1591 		if (node < 0 || node >= MAX_NUMNODES)
1592 			goto out_flush;
1593 		if (!node_state(node, N_MEMORY))
1594 			goto out_flush;
1595 
1596 		err = -EACCES;
1597 		if (!node_isset(node, task_nodes))
1598 			goto out_flush;
1599 
1600 		if (current_node == NUMA_NO_NODE) {
1601 			current_node = node;
1602 			start = i;
1603 		} else if (node != current_node) {
1604 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1605 			if (err)
1606 				goto out;
1607 			err = store_status(status, start, current_node, i - start);
1608 			if (err)
1609 				goto out;
1610 			start = i;
1611 			current_node = node;
1612 		}
1613 
1614 		/*
1615 		 * Errors in the page lookup or isolation are not fatal and we simply
1616 		 * report them via status
1617 		 */
1618 		err = add_page_for_migration(mm, addr, current_node,
1619 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1620 		if (!err)
1621 			continue;
1622 
1623 		err = store_status(status, i, err, 1);
1624 		if (err)
1625 			goto out_flush;
1626 
1627 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1628 		if (err)
1629 			goto out;
1630 		if (i > start) {
1631 			err = store_status(status, start, current_node, i - start);
1632 			if (err)
1633 				goto out;
1634 		}
1635 		current_node = NUMA_NO_NODE;
1636 	}
1637 out_flush:
1638 	if (list_empty(&pagelist))
1639 		return err;
1640 
1641 	/* Make sure we do not overwrite the existing error */
1642 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643 	if (!err1)
1644 		err1 = store_status(status, start, current_node, i - start);
1645 	if (!err)
1646 		err = err1;
1647 out:
1648 	return err;
1649 }
1650 
1651 /*
1652  * Determine the nodes of an array of pages and store it in an array of status.
1653  */
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 				const void __user **pages, int *status)
1656 {
1657 	unsigned long i;
1658 
1659 	down_read(&mm->mmap_sem);
1660 
1661 	for (i = 0; i < nr_pages; i++) {
1662 		unsigned long addr = (unsigned long)(*pages);
1663 		struct vm_area_struct *vma;
1664 		struct page *page;
1665 		int err = -EFAULT;
1666 
1667 		vma = find_vma(mm, addr);
1668 		if (!vma || addr < vma->vm_start)
1669 			goto set_status;
1670 
1671 		/* FOLL_DUMP to ignore special (like zero) pages */
1672 		page = follow_page(vma, addr, FOLL_DUMP);
1673 
1674 		err = PTR_ERR(page);
1675 		if (IS_ERR(page))
1676 			goto set_status;
1677 
1678 		err = page ? page_to_nid(page) : -ENOENT;
1679 set_status:
1680 		*status = err;
1681 
1682 		pages++;
1683 		status++;
1684 	}
1685 
1686 	up_read(&mm->mmap_sem);
1687 }
1688 
1689 /*
1690  * Determine the nodes of a user array of pages and store it in
1691  * a user array of status.
1692  */
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 			 const void __user * __user *pages,
1695 			 int __user *status)
1696 {
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700 
1701 	while (nr_pages) {
1702 		unsigned long chunk_nr;
1703 
1704 		chunk_nr = nr_pages;
1705 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707 
1708 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709 			break;
1710 
1711 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712 
1713 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714 			break;
1715 
1716 		pages += chunk_nr;
1717 		status += chunk_nr;
1718 		nr_pages -= chunk_nr;
1719 	}
1720 	return nr_pages ? -EFAULT : 0;
1721 }
1722 
1723 /*
1724  * Move a list of pages in the address space of the currently executing
1725  * process.
1726  */
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 			     const void __user * __user *pages,
1729 			     const int __user *nodes,
1730 			     int __user *status, int flags)
1731 {
1732 	struct task_struct *task;
1733 	struct mm_struct *mm;
1734 	int err;
1735 	nodemask_t task_nodes;
1736 
1737 	/* Check flags */
1738 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739 		return -EINVAL;
1740 
1741 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742 		return -EPERM;
1743 
1744 	/* Find the mm_struct */
1745 	rcu_read_lock();
1746 	task = pid ? find_task_by_vpid(pid) : current;
1747 	if (!task) {
1748 		rcu_read_unlock();
1749 		return -ESRCH;
1750 	}
1751 	get_task_struct(task);
1752 
1753 	/*
1754 	 * Check if this process has the right to modify the specified
1755 	 * process. Use the regular "ptrace_may_access()" checks.
1756 	 */
1757 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758 		rcu_read_unlock();
1759 		err = -EPERM;
1760 		goto out;
1761 	}
1762 	rcu_read_unlock();
1763 
1764  	err = security_task_movememory(task);
1765  	if (err)
1766 		goto out;
1767 
1768 	task_nodes = cpuset_mems_allowed(task);
1769 	mm = get_task_mm(task);
1770 	put_task_struct(task);
1771 
1772 	if (!mm)
1773 		return -EINVAL;
1774 
1775 	if (nodes)
1776 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 				    nodes, status, flags);
1778 	else
1779 		err = do_pages_stat(mm, nr_pages, pages, status);
1780 
1781 	mmput(mm);
1782 	return err;
1783 
1784 out:
1785 	put_task_struct(task);
1786 	return err;
1787 }
1788 
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 		const void __user * __user *, pages,
1791 		const int __user *, nodes,
1792 		int __user *, status, int, flags)
1793 {
1794 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795 }
1796 
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 		       compat_uptr_t __user *, pages32,
1800 		       const int __user *, nodes,
1801 		       int __user *, status,
1802 		       int, flags)
1803 {
1804 	const void __user * __user *pages;
1805 	int i;
1806 
1807 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 	for (i = 0; i < nr_pages; i++) {
1809 		compat_uptr_t p;
1810 
1811 		if (get_user(p, pages32 + i) ||
1812 			put_user(compat_ptr(p), pages + i))
1813 			return -EFAULT;
1814 	}
1815 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816 }
1817 #endif /* CONFIG_COMPAT */
1818 
1819 #ifdef CONFIG_NUMA_BALANCING
1820 /*
1821  * Returns true if this is a safe migration target node for misplaced NUMA
1822  * pages. Currently it only checks the watermarks which crude
1823  */
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825 				   unsigned long nr_migrate_pages)
1826 {
1827 	int z;
1828 
1829 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 		struct zone *zone = pgdat->node_zones + z;
1831 
1832 		if (!populated_zone(zone))
1833 			continue;
1834 
1835 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 		if (!zone_watermark_ok(zone, 0,
1837 				       high_wmark_pages(zone) +
1838 				       nr_migrate_pages,
1839 				       0, 0))
1840 			continue;
1841 		return true;
1842 	}
1843 	return false;
1844 }
1845 
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1847 					   unsigned long data)
1848 {
1849 	int nid = (int) data;
1850 	struct page *newpage;
1851 
1852 	newpage = __alloc_pages_node(nid,
1853 					 (GFP_HIGHUSER_MOVABLE |
1854 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 					  __GFP_NORETRY | __GFP_NOWARN) &
1856 					 ~__GFP_RECLAIM, 0);
1857 
1858 	return newpage;
1859 }
1860 
1861 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1862 {
1863 	int page_lru;
1864 
1865 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1866 
1867 	/* Avoid migrating to a node that is nearly full */
1868 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1869 		return 0;
1870 
1871 	if (isolate_lru_page(page))
1872 		return 0;
1873 
1874 	/*
1875 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1876 	 * check on page_count(), so we must do it here, now that the page
1877 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1878 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1879 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1880 	 */
1881 	if (PageTransHuge(page) && page_count(page) != 3) {
1882 		putback_lru_page(page);
1883 		return 0;
1884 	}
1885 
1886 	page_lru = page_is_file_cache(page);
1887 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1888 				hpage_nr_pages(page));
1889 
1890 	/*
1891 	 * Isolating the page has taken another reference, so the
1892 	 * caller's reference can be safely dropped without the page
1893 	 * disappearing underneath us during migration.
1894 	 */
1895 	put_page(page);
1896 	return 1;
1897 }
1898 
1899 bool pmd_trans_migrating(pmd_t pmd)
1900 {
1901 	struct page *page = pmd_page(pmd);
1902 	return PageLocked(page);
1903 }
1904 
1905 /*
1906  * Attempt to migrate a misplaced page to the specified destination
1907  * node. Caller is expected to have an elevated reference count on
1908  * the page that will be dropped by this function before returning.
1909  */
1910 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1911 			   int node)
1912 {
1913 	pg_data_t *pgdat = NODE_DATA(node);
1914 	int isolated;
1915 	int nr_remaining;
1916 	LIST_HEAD(migratepages);
1917 
1918 	/*
1919 	 * Don't migrate file pages that are mapped in multiple processes
1920 	 * with execute permissions as they are probably shared libraries.
1921 	 */
1922 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1923 	    (vma->vm_flags & VM_EXEC))
1924 		goto out;
1925 
1926 	/*
1927 	 * Also do not migrate dirty pages as not all filesystems can move
1928 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1929 	 */
1930 	if (page_is_file_cache(page) && PageDirty(page))
1931 		goto out;
1932 
1933 	isolated = numamigrate_isolate_page(pgdat, page);
1934 	if (!isolated)
1935 		goto out;
1936 
1937 	list_add(&page->lru, &migratepages);
1938 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1939 				     NULL, node, MIGRATE_ASYNC,
1940 				     MR_NUMA_MISPLACED);
1941 	if (nr_remaining) {
1942 		if (!list_empty(&migratepages)) {
1943 			list_del(&page->lru);
1944 			dec_node_page_state(page, NR_ISOLATED_ANON +
1945 					page_is_file_cache(page));
1946 			putback_lru_page(page);
1947 		}
1948 		isolated = 0;
1949 	} else
1950 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1951 	BUG_ON(!list_empty(&migratepages));
1952 	return isolated;
1953 
1954 out:
1955 	put_page(page);
1956 	return 0;
1957 }
1958 #endif /* CONFIG_NUMA_BALANCING */
1959 
1960 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1961 /*
1962  * Migrates a THP to a given target node. page must be locked and is unlocked
1963  * before returning.
1964  */
1965 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1966 				struct vm_area_struct *vma,
1967 				pmd_t *pmd, pmd_t entry,
1968 				unsigned long address,
1969 				struct page *page, int node)
1970 {
1971 	spinlock_t *ptl;
1972 	pg_data_t *pgdat = NODE_DATA(node);
1973 	int isolated = 0;
1974 	struct page *new_page = NULL;
1975 	int page_lru = page_is_file_cache(page);
1976 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1977 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1978 
1979 	new_page = alloc_pages_node(node,
1980 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1981 		HPAGE_PMD_ORDER);
1982 	if (!new_page)
1983 		goto out_fail;
1984 	prep_transhuge_page(new_page);
1985 
1986 	isolated = numamigrate_isolate_page(pgdat, page);
1987 	if (!isolated) {
1988 		put_page(new_page);
1989 		goto out_fail;
1990 	}
1991 
1992 	/* Prepare a page as a migration target */
1993 	__SetPageLocked(new_page);
1994 	if (PageSwapBacked(page))
1995 		__SetPageSwapBacked(new_page);
1996 
1997 	/* anon mapping, we can simply copy page->mapping to the new page: */
1998 	new_page->mapping = page->mapping;
1999 	new_page->index = page->index;
2000 	migrate_page_copy(new_page, page);
2001 	WARN_ON(PageLRU(new_page));
2002 
2003 	/* Recheck the target PMD */
2004 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2005 	ptl = pmd_lock(mm, pmd);
2006 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2007 		spin_unlock(ptl);
2008 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2009 
2010 		/* Reverse changes made by migrate_page_copy() */
2011 		if (TestClearPageActive(new_page))
2012 			SetPageActive(page);
2013 		if (TestClearPageUnevictable(new_page))
2014 			SetPageUnevictable(page);
2015 
2016 		unlock_page(new_page);
2017 		put_page(new_page);		/* Free it */
2018 
2019 		/* Retake the callers reference and putback on LRU */
2020 		get_page(page);
2021 		putback_lru_page(page);
2022 		mod_node_page_state(page_pgdat(page),
2023 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2024 
2025 		goto out_unlock;
2026 	}
2027 
2028 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2029 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2030 
2031 	/*
2032 	 * Clear the old entry under pagetable lock and establish the new PTE.
2033 	 * Any parallel GUP will either observe the old page blocking on the
2034 	 * page lock, block on the page table lock or observe the new page.
2035 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2036 	 * guarantee the copy is visible before the pagetable update.
2037 	 */
2038 	flush_cache_range(vma, mmun_start, mmun_end);
2039 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2040 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2041 	set_pmd_at(mm, mmun_start, pmd, entry);
2042 	update_mmu_cache_pmd(vma, address, &entry);
2043 
2044 	page_ref_unfreeze(page, 2);
2045 	mlock_migrate_page(new_page, page);
2046 	page_remove_rmap(page, true);
2047 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2048 
2049 	spin_unlock(ptl);
2050 	/*
2051 	 * No need to double call mmu_notifier->invalidate_range() callback as
2052 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2053 	 */
2054 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2055 
2056 	/* Take an "isolate" reference and put new page on the LRU. */
2057 	get_page(new_page);
2058 	putback_lru_page(new_page);
2059 
2060 	unlock_page(new_page);
2061 	unlock_page(page);
2062 	put_page(page);			/* Drop the rmap reference */
2063 	put_page(page);			/* Drop the LRU isolation reference */
2064 
2065 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2066 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2067 
2068 	mod_node_page_state(page_pgdat(page),
2069 			NR_ISOLATED_ANON + page_lru,
2070 			-HPAGE_PMD_NR);
2071 	return isolated;
2072 
2073 out_fail:
2074 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2075 	ptl = pmd_lock(mm, pmd);
2076 	if (pmd_same(*pmd, entry)) {
2077 		entry = pmd_modify(entry, vma->vm_page_prot);
2078 		set_pmd_at(mm, mmun_start, pmd, entry);
2079 		update_mmu_cache_pmd(vma, address, &entry);
2080 	}
2081 	spin_unlock(ptl);
2082 
2083 out_unlock:
2084 	unlock_page(page);
2085 	put_page(page);
2086 	return 0;
2087 }
2088 #endif /* CONFIG_NUMA_BALANCING */
2089 
2090 #endif /* CONFIG_NUMA */
2091 
2092 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2093 struct migrate_vma {
2094 	struct vm_area_struct	*vma;
2095 	unsigned long		*dst;
2096 	unsigned long		*src;
2097 	unsigned long		cpages;
2098 	unsigned long		npages;
2099 	unsigned long		start;
2100 	unsigned long		end;
2101 };
2102 
2103 static int migrate_vma_collect_hole(unsigned long start,
2104 				    unsigned long end,
2105 				    struct mm_walk *walk)
2106 {
2107 	struct migrate_vma *migrate = walk->private;
2108 	unsigned long addr;
2109 
2110 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2111 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2112 		migrate->dst[migrate->npages] = 0;
2113 		migrate->npages++;
2114 		migrate->cpages++;
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 static int migrate_vma_collect_skip(unsigned long start,
2121 				    unsigned long end,
2122 				    struct mm_walk *walk)
2123 {
2124 	struct migrate_vma *migrate = walk->private;
2125 	unsigned long addr;
2126 
2127 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2128 		migrate->dst[migrate->npages] = 0;
2129 		migrate->src[migrate->npages++] = 0;
2130 	}
2131 
2132 	return 0;
2133 }
2134 
2135 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2136 				   unsigned long start,
2137 				   unsigned long end,
2138 				   struct mm_walk *walk)
2139 {
2140 	struct migrate_vma *migrate = walk->private;
2141 	struct vm_area_struct *vma = walk->vma;
2142 	struct mm_struct *mm = vma->vm_mm;
2143 	unsigned long addr = start, unmapped = 0;
2144 	spinlock_t *ptl;
2145 	pte_t *ptep;
2146 
2147 again:
2148 	if (pmd_none(*pmdp))
2149 		return migrate_vma_collect_hole(start, end, walk);
2150 
2151 	if (pmd_trans_huge(*pmdp)) {
2152 		struct page *page;
2153 
2154 		ptl = pmd_lock(mm, pmdp);
2155 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2156 			spin_unlock(ptl);
2157 			goto again;
2158 		}
2159 
2160 		page = pmd_page(*pmdp);
2161 		if (is_huge_zero_page(page)) {
2162 			spin_unlock(ptl);
2163 			split_huge_pmd(vma, pmdp, addr);
2164 			if (pmd_trans_unstable(pmdp))
2165 				return migrate_vma_collect_skip(start, end,
2166 								walk);
2167 		} else {
2168 			int ret;
2169 
2170 			get_page(page);
2171 			spin_unlock(ptl);
2172 			if (unlikely(!trylock_page(page)))
2173 				return migrate_vma_collect_skip(start, end,
2174 								walk);
2175 			ret = split_huge_page(page);
2176 			unlock_page(page);
2177 			put_page(page);
2178 			if (ret)
2179 				return migrate_vma_collect_skip(start, end,
2180 								walk);
2181 			if (pmd_none(*pmdp))
2182 				return migrate_vma_collect_hole(start, end,
2183 								walk);
2184 		}
2185 	}
2186 
2187 	if (unlikely(pmd_bad(*pmdp)))
2188 		return migrate_vma_collect_skip(start, end, walk);
2189 
2190 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2191 	arch_enter_lazy_mmu_mode();
2192 
2193 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2194 		unsigned long mpfn, pfn;
2195 		struct page *page;
2196 		swp_entry_t entry;
2197 		pte_t pte;
2198 
2199 		pte = *ptep;
2200 		pfn = pte_pfn(pte);
2201 
2202 		if (pte_none(pte)) {
2203 			mpfn = MIGRATE_PFN_MIGRATE;
2204 			migrate->cpages++;
2205 			pfn = 0;
2206 			goto next;
2207 		}
2208 
2209 		if (!pte_present(pte)) {
2210 			mpfn = pfn = 0;
2211 
2212 			/*
2213 			 * Only care about unaddressable device page special
2214 			 * page table entry. Other special swap entries are not
2215 			 * migratable, and we ignore regular swapped page.
2216 			 */
2217 			entry = pte_to_swp_entry(pte);
2218 			if (!is_device_private_entry(entry))
2219 				goto next;
2220 
2221 			page = device_private_entry_to_page(entry);
2222 			mpfn = migrate_pfn(page_to_pfn(page))|
2223 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2224 			if (is_write_device_private_entry(entry))
2225 				mpfn |= MIGRATE_PFN_WRITE;
2226 		} else {
2227 			if (is_zero_pfn(pfn)) {
2228 				mpfn = MIGRATE_PFN_MIGRATE;
2229 				migrate->cpages++;
2230 				pfn = 0;
2231 				goto next;
2232 			}
2233 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2234 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2235 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2236 		}
2237 
2238 		/* FIXME support THP */
2239 		if (!page || !page->mapping || PageTransCompound(page)) {
2240 			mpfn = pfn = 0;
2241 			goto next;
2242 		}
2243 		pfn = page_to_pfn(page);
2244 
2245 		/*
2246 		 * By getting a reference on the page we pin it and that blocks
2247 		 * any kind of migration. Side effect is that it "freezes" the
2248 		 * pte.
2249 		 *
2250 		 * We drop this reference after isolating the page from the lru
2251 		 * for non device page (device page are not on the lru and thus
2252 		 * can't be dropped from it).
2253 		 */
2254 		get_page(page);
2255 		migrate->cpages++;
2256 
2257 		/*
2258 		 * Optimize for the common case where page is only mapped once
2259 		 * in one process. If we can lock the page, then we can safely
2260 		 * set up a special migration page table entry now.
2261 		 */
2262 		if (trylock_page(page)) {
2263 			pte_t swp_pte;
2264 
2265 			mpfn |= MIGRATE_PFN_LOCKED;
2266 			ptep_get_and_clear(mm, addr, ptep);
2267 
2268 			/* Setup special migration page table entry */
2269 			entry = make_migration_entry(page, mpfn &
2270 						     MIGRATE_PFN_WRITE);
2271 			swp_pte = swp_entry_to_pte(entry);
2272 			if (pte_soft_dirty(pte))
2273 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2274 			set_pte_at(mm, addr, ptep, swp_pte);
2275 
2276 			/*
2277 			 * This is like regular unmap: we remove the rmap and
2278 			 * drop page refcount. Page won't be freed, as we took
2279 			 * a reference just above.
2280 			 */
2281 			page_remove_rmap(page, false);
2282 			put_page(page);
2283 
2284 			if (pte_present(pte))
2285 				unmapped++;
2286 		}
2287 
2288 next:
2289 		migrate->dst[migrate->npages] = 0;
2290 		migrate->src[migrate->npages++] = mpfn;
2291 	}
2292 	arch_leave_lazy_mmu_mode();
2293 	pte_unmap_unlock(ptep - 1, ptl);
2294 
2295 	/* Only flush the TLB if we actually modified any entries */
2296 	if (unmapped)
2297 		flush_tlb_range(walk->vma, start, end);
2298 
2299 	return 0;
2300 }
2301 
2302 /*
2303  * migrate_vma_collect() - collect pages over a range of virtual addresses
2304  * @migrate: migrate struct containing all migration information
2305  *
2306  * This will walk the CPU page table. For each virtual address backed by a
2307  * valid page, it updates the src array and takes a reference on the page, in
2308  * order to pin the page until we lock it and unmap it.
2309  */
2310 static void migrate_vma_collect(struct migrate_vma *migrate)
2311 {
2312 	struct mm_walk mm_walk;
2313 
2314 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2315 	mm_walk.pte_entry = NULL;
2316 	mm_walk.pte_hole = migrate_vma_collect_hole;
2317 	mm_walk.hugetlb_entry = NULL;
2318 	mm_walk.test_walk = NULL;
2319 	mm_walk.vma = migrate->vma;
2320 	mm_walk.mm = migrate->vma->vm_mm;
2321 	mm_walk.private = migrate;
2322 
2323 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2324 					    migrate->start,
2325 					    migrate->end);
2326 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2327 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2328 					  migrate->start,
2329 					  migrate->end);
2330 
2331 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2332 }
2333 
2334 /*
2335  * migrate_vma_check_page() - check if page is pinned or not
2336  * @page: struct page to check
2337  *
2338  * Pinned pages cannot be migrated. This is the same test as in
2339  * migrate_page_move_mapping(), except that here we allow migration of a
2340  * ZONE_DEVICE page.
2341  */
2342 static bool migrate_vma_check_page(struct page *page)
2343 {
2344 	/*
2345 	 * One extra ref because caller holds an extra reference, either from
2346 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2347 	 * a device page.
2348 	 */
2349 	int extra = 1;
2350 
2351 	/*
2352 	 * FIXME support THP (transparent huge page), it is bit more complex to
2353 	 * check them than regular pages, because they can be mapped with a pmd
2354 	 * or with a pte (split pte mapping).
2355 	 */
2356 	if (PageCompound(page))
2357 		return false;
2358 
2359 	/* Page from ZONE_DEVICE have one extra reference */
2360 	if (is_zone_device_page(page)) {
2361 		/*
2362 		 * Private page can never be pin as they have no valid pte and
2363 		 * GUP will fail for those. Yet if there is a pending migration
2364 		 * a thread might try to wait on the pte migration entry and
2365 		 * will bump the page reference count. Sadly there is no way to
2366 		 * differentiate a regular pin from migration wait. Hence to
2367 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2368 		 * infinite loop (one stoping migration because the other is
2369 		 * waiting on pte migration entry). We always return true here.
2370 		 *
2371 		 * FIXME proper solution is to rework migration_entry_wait() so
2372 		 * it does not need to take a reference on page.
2373 		 */
2374 		if (is_device_private_page(page))
2375 			return true;
2376 
2377 		/*
2378 		 * Only allow device public page to be migrated and account for
2379 		 * the extra reference count imply by ZONE_DEVICE pages.
2380 		 */
2381 		if (!is_device_public_page(page))
2382 			return false;
2383 		extra++;
2384 	}
2385 
2386 	/* For file back page */
2387 	if (page_mapping(page))
2388 		extra += 1 + page_has_private(page);
2389 
2390 	if ((page_count(page) - extra) > page_mapcount(page))
2391 		return false;
2392 
2393 	return true;
2394 }
2395 
2396 /*
2397  * migrate_vma_prepare() - lock pages and isolate them from the lru
2398  * @migrate: migrate struct containing all migration information
2399  *
2400  * This locks pages that have been collected by migrate_vma_collect(). Once each
2401  * page is locked it is isolated from the lru (for non-device pages). Finally,
2402  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2403  * migrated by concurrent kernel threads.
2404  */
2405 static void migrate_vma_prepare(struct migrate_vma *migrate)
2406 {
2407 	const unsigned long npages = migrate->npages;
2408 	const unsigned long start = migrate->start;
2409 	unsigned long addr, i, restore = 0;
2410 	bool allow_drain = true;
2411 
2412 	lru_add_drain();
2413 
2414 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2415 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2416 		bool remap = true;
2417 
2418 		if (!page)
2419 			continue;
2420 
2421 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2422 			/*
2423 			 * Because we are migrating several pages there can be
2424 			 * a deadlock between 2 concurrent migration where each
2425 			 * are waiting on each other page lock.
2426 			 *
2427 			 * Make migrate_vma() a best effort thing and backoff
2428 			 * for any page we can not lock right away.
2429 			 */
2430 			if (!trylock_page(page)) {
2431 				migrate->src[i] = 0;
2432 				migrate->cpages--;
2433 				put_page(page);
2434 				continue;
2435 			}
2436 			remap = false;
2437 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2438 		}
2439 
2440 		/* ZONE_DEVICE pages are not on LRU */
2441 		if (!is_zone_device_page(page)) {
2442 			if (!PageLRU(page) && allow_drain) {
2443 				/* Drain CPU's pagevec */
2444 				lru_add_drain_all();
2445 				allow_drain = false;
2446 			}
2447 
2448 			if (isolate_lru_page(page)) {
2449 				if (remap) {
2450 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2451 					migrate->cpages--;
2452 					restore++;
2453 				} else {
2454 					migrate->src[i] = 0;
2455 					unlock_page(page);
2456 					migrate->cpages--;
2457 					put_page(page);
2458 				}
2459 				continue;
2460 			}
2461 
2462 			/* Drop the reference we took in collect */
2463 			put_page(page);
2464 		}
2465 
2466 		if (!migrate_vma_check_page(page)) {
2467 			if (remap) {
2468 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469 				migrate->cpages--;
2470 				restore++;
2471 
2472 				if (!is_zone_device_page(page)) {
2473 					get_page(page);
2474 					putback_lru_page(page);
2475 				}
2476 			} else {
2477 				migrate->src[i] = 0;
2478 				unlock_page(page);
2479 				migrate->cpages--;
2480 
2481 				if (!is_zone_device_page(page))
2482 					putback_lru_page(page);
2483 				else
2484 					put_page(page);
2485 			}
2486 		}
2487 	}
2488 
2489 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2490 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2491 
2492 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2493 			continue;
2494 
2495 		remove_migration_pte(page, migrate->vma, addr, page);
2496 
2497 		migrate->src[i] = 0;
2498 		unlock_page(page);
2499 		put_page(page);
2500 		restore--;
2501 	}
2502 }
2503 
2504 /*
2505  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2506  * @migrate: migrate struct containing all migration information
2507  *
2508  * Replace page mapping (CPU page table pte) with a special migration pte entry
2509  * and check again if it has been pinned. Pinned pages are restored because we
2510  * cannot migrate them.
2511  *
2512  * This is the last step before we call the device driver callback to allocate
2513  * destination memory and copy contents of original page over to new page.
2514  */
2515 static void migrate_vma_unmap(struct migrate_vma *migrate)
2516 {
2517 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2518 	const unsigned long npages = migrate->npages;
2519 	const unsigned long start = migrate->start;
2520 	unsigned long addr, i, restore = 0;
2521 
2522 	for (i = 0; i < npages; i++) {
2523 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2524 
2525 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526 			continue;
2527 
2528 		if (page_mapped(page)) {
2529 			try_to_unmap(page, flags);
2530 			if (page_mapped(page))
2531 				goto restore;
2532 		}
2533 
2534 		if (migrate_vma_check_page(page))
2535 			continue;
2536 
2537 restore:
2538 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539 		migrate->cpages--;
2540 		restore++;
2541 	}
2542 
2543 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2544 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545 
2546 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 			continue;
2548 
2549 		remove_migration_ptes(page, page, false);
2550 
2551 		migrate->src[i] = 0;
2552 		unlock_page(page);
2553 		restore--;
2554 
2555 		if (is_zone_device_page(page))
2556 			put_page(page);
2557 		else
2558 			putback_lru_page(page);
2559 	}
2560 }
2561 
2562 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2563 				    unsigned long addr,
2564 				    struct page *page,
2565 				    unsigned long *src,
2566 				    unsigned long *dst)
2567 {
2568 	struct vm_area_struct *vma = migrate->vma;
2569 	struct mm_struct *mm = vma->vm_mm;
2570 	struct mem_cgroup *memcg;
2571 	bool flush = false;
2572 	spinlock_t *ptl;
2573 	pte_t entry;
2574 	pgd_t *pgdp;
2575 	p4d_t *p4dp;
2576 	pud_t *pudp;
2577 	pmd_t *pmdp;
2578 	pte_t *ptep;
2579 
2580 	/* Only allow populating anonymous memory */
2581 	if (!vma_is_anonymous(vma))
2582 		goto abort;
2583 
2584 	pgdp = pgd_offset(mm, addr);
2585 	p4dp = p4d_alloc(mm, pgdp, addr);
2586 	if (!p4dp)
2587 		goto abort;
2588 	pudp = pud_alloc(mm, p4dp, addr);
2589 	if (!pudp)
2590 		goto abort;
2591 	pmdp = pmd_alloc(mm, pudp, addr);
2592 	if (!pmdp)
2593 		goto abort;
2594 
2595 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2596 		goto abort;
2597 
2598 	/*
2599 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2600 	 * pte_offset_map() on pmds where a huge pmd might be created
2601 	 * from a different thread.
2602 	 *
2603 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2604 	 * parallel threads are excluded by other means.
2605 	 *
2606 	 * Here we only have down_read(mmap_sem).
2607 	 */
2608 	if (pte_alloc(mm, pmdp, addr))
2609 		goto abort;
2610 
2611 	/* See the comment in pte_alloc_one_map() */
2612 	if (unlikely(pmd_trans_unstable(pmdp)))
2613 		goto abort;
2614 
2615 	if (unlikely(anon_vma_prepare(vma)))
2616 		goto abort;
2617 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2618 		goto abort;
2619 
2620 	/*
2621 	 * The memory barrier inside __SetPageUptodate makes sure that
2622 	 * preceding stores to the page contents become visible before
2623 	 * the set_pte_at() write.
2624 	 */
2625 	__SetPageUptodate(page);
2626 
2627 	if (is_zone_device_page(page)) {
2628 		if (is_device_private_page(page)) {
2629 			swp_entry_t swp_entry;
2630 
2631 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2632 			entry = swp_entry_to_pte(swp_entry);
2633 		} else if (is_device_public_page(page)) {
2634 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2635 			if (vma->vm_flags & VM_WRITE)
2636 				entry = pte_mkwrite(pte_mkdirty(entry));
2637 			entry = pte_mkdevmap(entry);
2638 		}
2639 	} else {
2640 		entry = mk_pte(page, vma->vm_page_prot);
2641 		if (vma->vm_flags & VM_WRITE)
2642 			entry = pte_mkwrite(pte_mkdirty(entry));
2643 	}
2644 
2645 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2646 
2647 	if (pte_present(*ptep)) {
2648 		unsigned long pfn = pte_pfn(*ptep);
2649 
2650 		if (!is_zero_pfn(pfn)) {
2651 			pte_unmap_unlock(ptep, ptl);
2652 			mem_cgroup_cancel_charge(page, memcg, false);
2653 			goto abort;
2654 		}
2655 		flush = true;
2656 	} else if (!pte_none(*ptep)) {
2657 		pte_unmap_unlock(ptep, ptl);
2658 		mem_cgroup_cancel_charge(page, memcg, false);
2659 		goto abort;
2660 	}
2661 
2662 	/*
2663 	 * Check for usefaultfd but do not deliver the fault. Instead,
2664 	 * just back off.
2665 	 */
2666 	if (userfaultfd_missing(vma)) {
2667 		pte_unmap_unlock(ptep, ptl);
2668 		mem_cgroup_cancel_charge(page, memcg, false);
2669 		goto abort;
2670 	}
2671 
2672 	inc_mm_counter(mm, MM_ANONPAGES);
2673 	page_add_new_anon_rmap(page, vma, addr, false);
2674 	mem_cgroup_commit_charge(page, memcg, false, false);
2675 	if (!is_zone_device_page(page))
2676 		lru_cache_add_active_or_unevictable(page, vma);
2677 	get_page(page);
2678 
2679 	if (flush) {
2680 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2681 		ptep_clear_flush_notify(vma, addr, ptep);
2682 		set_pte_at_notify(mm, addr, ptep, entry);
2683 		update_mmu_cache(vma, addr, ptep);
2684 	} else {
2685 		/* No need to invalidate - it was non-present before */
2686 		set_pte_at(mm, addr, ptep, entry);
2687 		update_mmu_cache(vma, addr, ptep);
2688 	}
2689 
2690 	pte_unmap_unlock(ptep, ptl);
2691 	*src = MIGRATE_PFN_MIGRATE;
2692 	return;
2693 
2694 abort:
2695 	*src &= ~MIGRATE_PFN_MIGRATE;
2696 }
2697 
2698 /*
2699  * migrate_vma_pages() - migrate meta-data from src page to dst page
2700  * @migrate: migrate struct containing all migration information
2701  *
2702  * This migrates struct page meta-data from source struct page to destination
2703  * struct page. This effectively finishes the migration from source page to the
2704  * destination page.
2705  */
2706 static void migrate_vma_pages(struct migrate_vma *migrate)
2707 {
2708 	const unsigned long npages = migrate->npages;
2709 	const unsigned long start = migrate->start;
2710 	struct vm_area_struct *vma = migrate->vma;
2711 	struct mm_struct *mm = vma->vm_mm;
2712 	unsigned long addr, i, mmu_start;
2713 	bool notified = false;
2714 
2715 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2716 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2717 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718 		struct address_space *mapping;
2719 		int r;
2720 
2721 		if (!newpage) {
2722 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2723 			continue;
2724 		}
2725 
2726 		if (!page) {
2727 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2728 				continue;
2729 			}
2730 			if (!notified) {
2731 				mmu_start = addr;
2732 				notified = true;
2733 				mmu_notifier_invalidate_range_start(mm,
2734 								mmu_start,
2735 								migrate->end);
2736 			}
2737 			migrate_vma_insert_page(migrate, addr, newpage,
2738 						&migrate->src[i],
2739 						&migrate->dst[i]);
2740 			continue;
2741 		}
2742 
2743 		mapping = page_mapping(page);
2744 
2745 		if (is_zone_device_page(newpage)) {
2746 			if (is_device_private_page(newpage)) {
2747 				/*
2748 				 * For now only support private anonymous when
2749 				 * migrating to un-addressable device memory.
2750 				 */
2751 				if (mapping) {
2752 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2753 					continue;
2754 				}
2755 			} else if (!is_device_public_page(newpage)) {
2756 				/*
2757 				 * Other types of ZONE_DEVICE page are not
2758 				 * supported.
2759 				 */
2760 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2761 				continue;
2762 			}
2763 		}
2764 
2765 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2766 		if (r != MIGRATEPAGE_SUCCESS)
2767 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768 	}
2769 
2770 	/*
2771 	 * No need to double call mmu_notifier->invalidate_range() callback as
2772 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2773 	 * did already call it.
2774 	 */
2775 	if (notified)
2776 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2777 						       migrate->end);
2778 }
2779 
2780 /*
2781  * migrate_vma_finalize() - restore CPU page table entry
2782  * @migrate: migrate struct containing all migration information
2783  *
2784  * This replaces the special migration pte entry with either a mapping to the
2785  * new page if migration was successful for that page, or to the original page
2786  * otherwise.
2787  *
2788  * This also unlocks the pages and puts them back on the lru, or drops the extra
2789  * refcount, for device pages.
2790  */
2791 static void migrate_vma_finalize(struct migrate_vma *migrate)
2792 {
2793 	const unsigned long npages = migrate->npages;
2794 	unsigned long i;
2795 
2796 	for (i = 0; i < npages; i++) {
2797 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2798 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2799 
2800 		if (!page) {
2801 			if (newpage) {
2802 				unlock_page(newpage);
2803 				put_page(newpage);
2804 			}
2805 			continue;
2806 		}
2807 
2808 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2809 			if (newpage) {
2810 				unlock_page(newpage);
2811 				put_page(newpage);
2812 			}
2813 			newpage = page;
2814 		}
2815 
2816 		remove_migration_ptes(page, newpage, false);
2817 		unlock_page(page);
2818 		migrate->cpages--;
2819 
2820 		if (is_zone_device_page(page))
2821 			put_page(page);
2822 		else
2823 			putback_lru_page(page);
2824 
2825 		if (newpage != page) {
2826 			unlock_page(newpage);
2827 			if (is_zone_device_page(newpage))
2828 				put_page(newpage);
2829 			else
2830 				putback_lru_page(newpage);
2831 		}
2832 	}
2833 }
2834 
2835 /*
2836  * migrate_vma() - migrate a range of memory inside vma
2837  *
2838  * @ops: migration callback for allocating destination memory and copying
2839  * @vma: virtual memory area containing the range to be migrated
2840  * @start: start address of the range to migrate (inclusive)
2841  * @end: end address of the range to migrate (exclusive)
2842  * @src: array of hmm_pfn_t containing source pfns
2843  * @dst: array of hmm_pfn_t containing destination pfns
2844  * @private: pointer passed back to each of the callback
2845  * Returns: 0 on success, error code otherwise
2846  *
2847  * This function tries to migrate a range of memory virtual address range, using
2848  * callbacks to allocate and copy memory from source to destination. First it
2849  * collects all the pages backing each virtual address in the range, saving this
2850  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2851  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2852  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2853  * in the corresponding src array entry. It then restores any pages that are
2854  * pinned, by remapping and unlocking those pages.
2855  *
2856  * At this point it calls the alloc_and_copy() callback. For documentation on
2857  * what is expected from that callback, see struct migrate_vma_ops comments in
2858  * include/linux/migrate.h
2859  *
2860  * After the alloc_and_copy() callback, this function goes over each entry in
2861  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2862  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2863  * then the function tries to migrate struct page information from the source
2864  * struct page to the destination struct page. If it fails to migrate the struct
2865  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2866  * array.
2867  *
2868  * At this point all successfully migrated pages have an entry in the src
2869  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2870  * array entry with MIGRATE_PFN_VALID flag set.
2871  *
2872  * It then calls the finalize_and_map() callback. See comments for "struct
2873  * migrate_vma_ops", in include/linux/migrate.h for details about
2874  * finalize_and_map() behavior.
2875  *
2876  * After the finalize_and_map() callback, for successfully migrated pages, this
2877  * function updates the CPU page table to point to new pages, otherwise it
2878  * restores the CPU page table to point to the original source pages.
2879  *
2880  * Function returns 0 after the above steps, even if no pages were migrated
2881  * (The function only returns an error if any of the arguments are invalid.)
2882  *
2883  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2884  * unsigned long entries.
2885  */
2886 int migrate_vma(const struct migrate_vma_ops *ops,
2887 		struct vm_area_struct *vma,
2888 		unsigned long start,
2889 		unsigned long end,
2890 		unsigned long *src,
2891 		unsigned long *dst,
2892 		void *private)
2893 {
2894 	struct migrate_vma migrate;
2895 
2896 	/* Sanity check the arguments */
2897 	start &= PAGE_MASK;
2898 	end &= PAGE_MASK;
2899 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2900 			vma_is_dax(vma))
2901 		return -EINVAL;
2902 	if (start < vma->vm_start || start >= vma->vm_end)
2903 		return -EINVAL;
2904 	if (end <= vma->vm_start || end > vma->vm_end)
2905 		return -EINVAL;
2906 	if (!ops || !src || !dst || start >= end)
2907 		return -EINVAL;
2908 
2909 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2910 	migrate.src = src;
2911 	migrate.dst = dst;
2912 	migrate.start = start;
2913 	migrate.npages = 0;
2914 	migrate.cpages = 0;
2915 	migrate.end = end;
2916 	migrate.vma = vma;
2917 
2918 	/* Collect, and try to unmap source pages */
2919 	migrate_vma_collect(&migrate);
2920 	if (!migrate.cpages)
2921 		return 0;
2922 
2923 	/* Lock and isolate page */
2924 	migrate_vma_prepare(&migrate);
2925 	if (!migrate.cpages)
2926 		return 0;
2927 
2928 	/* Unmap pages */
2929 	migrate_vma_unmap(&migrate);
2930 	if (!migrate.cpages)
2931 		return 0;
2932 
2933 	/*
2934 	 * At this point pages are locked and unmapped, and thus they have
2935 	 * stable content and can safely be copied to destination memory that
2936 	 * is allocated by the callback.
2937 	 *
2938 	 * Note that migration can fail in migrate_vma_struct_page() for each
2939 	 * individual page.
2940 	 */
2941 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2942 
2943 	/* This does the real migration of struct page */
2944 	migrate_vma_pages(&migrate);
2945 
2946 	ops->finalize_and_map(vma, src, dst, start, end, private);
2947 
2948 	/* Unlock and remap pages */
2949 	migrate_vma_finalize(&migrate);
2950 
2951 	return 0;
2952 }
2953 EXPORT_SYMBOL(migrate_vma);
2954 #endif /* defined(MIGRATE_VMA_HELPER) */
2955