1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 #include <linux/page_owner.h> 42 43 #include <asm/tlbflush.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/migrate.h> 47 48 #include "internal.h" 49 50 /* 51 * migrate_prep() needs to be called before we start compiling a list of pages 52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 53 * undesirable, use migrate_prep_local() 54 */ 55 int migrate_prep(void) 56 { 57 /* 58 * Clear the LRU lists so pages can be isolated. 59 * Note that pages may be moved off the LRU after we have 60 * drained them. Those pages will fail to migrate like other 61 * pages that may be busy. 62 */ 63 lru_add_drain_all(); 64 65 return 0; 66 } 67 68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 69 int migrate_prep_local(void) 70 { 71 lru_add_drain(); 72 73 return 0; 74 } 75 76 /* 77 * Put previously isolated pages back onto the appropriate lists 78 * from where they were once taken off for compaction/migration. 79 * 80 * This function shall be used whenever the isolated pageset has been 81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 82 * and isolate_huge_page(). 83 */ 84 void putback_movable_pages(struct list_head *l) 85 { 86 struct page *page; 87 struct page *page2; 88 89 list_for_each_entry_safe(page, page2, l, lru) { 90 if (unlikely(PageHuge(page))) { 91 putback_active_hugepage(page); 92 continue; 93 } 94 list_del(&page->lru); 95 dec_zone_page_state(page, NR_ISOLATED_ANON + 96 page_is_file_cache(page)); 97 if (unlikely(isolated_balloon_page(page))) 98 balloon_page_putback(page); 99 else 100 putback_lru_page(page); 101 } 102 } 103 104 /* 105 * Restore a potential migration pte to a working pte entry 106 */ 107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 108 unsigned long addr, void *old) 109 { 110 struct mm_struct *mm = vma->vm_mm; 111 swp_entry_t entry; 112 pmd_t *pmd; 113 pte_t *ptep, pte; 114 spinlock_t *ptl; 115 116 if (unlikely(PageHuge(new))) { 117 ptep = huge_pte_offset(mm, addr); 118 if (!ptep) 119 goto out; 120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 121 } else { 122 pmd = mm_find_pmd(mm, addr); 123 if (!pmd) 124 goto out; 125 126 ptep = pte_offset_map(pmd, addr); 127 128 /* 129 * Peek to check is_swap_pte() before taking ptlock? No, we 130 * can race mremap's move_ptes(), which skips anon_vma lock. 131 */ 132 133 ptl = pte_lockptr(mm, pmd); 134 } 135 136 spin_lock(ptl); 137 pte = *ptep; 138 if (!is_swap_pte(pte)) 139 goto unlock; 140 141 entry = pte_to_swp_entry(pte); 142 143 if (!is_migration_entry(entry) || 144 migration_entry_to_page(entry) != old) 145 goto unlock; 146 147 get_page(new); 148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 149 if (pte_swp_soft_dirty(*ptep)) 150 pte = pte_mksoft_dirty(pte); 151 152 /* Recheck VMA as permissions can change since migration started */ 153 if (is_write_migration_entry(entry)) 154 pte = maybe_mkwrite(pte, vma); 155 156 #ifdef CONFIG_HUGETLB_PAGE 157 if (PageHuge(new)) { 158 pte = pte_mkhuge(pte); 159 pte = arch_make_huge_pte(pte, vma, new, 0); 160 } 161 #endif 162 flush_dcache_page(new); 163 set_pte_at(mm, addr, ptep, pte); 164 165 if (PageHuge(new)) { 166 if (PageAnon(new)) 167 hugepage_add_anon_rmap(new, vma, addr); 168 else 169 page_dup_rmap(new, true); 170 } else if (PageAnon(new)) 171 page_add_anon_rmap(new, vma, addr, false); 172 else 173 page_add_file_rmap(new); 174 175 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 176 mlock_vma_page(new); 177 178 /* No need to invalidate - it was non-present before */ 179 update_mmu_cache(vma, addr, ptep); 180 unlock: 181 pte_unmap_unlock(ptep, ptl); 182 out: 183 return SWAP_AGAIN; 184 } 185 186 /* 187 * Get rid of all migration entries and replace them by 188 * references to the indicated page. 189 */ 190 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 191 { 192 struct rmap_walk_control rwc = { 193 .rmap_one = remove_migration_pte, 194 .arg = old, 195 }; 196 197 if (locked) 198 rmap_walk_locked(new, &rwc); 199 else 200 rmap_walk(new, &rwc); 201 } 202 203 /* 204 * Something used the pte of a page under migration. We need to 205 * get to the page and wait until migration is finished. 206 * When we return from this function the fault will be retried. 207 */ 208 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 209 spinlock_t *ptl) 210 { 211 pte_t pte; 212 swp_entry_t entry; 213 struct page *page; 214 215 spin_lock(ptl); 216 pte = *ptep; 217 if (!is_swap_pte(pte)) 218 goto out; 219 220 entry = pte_to_swp_entry(pte); 221 if (!is_migration_entry(entry)) 222 goto out; 223 224 page = migration_entry_to_page(entry); 225 226 /* 227 * Once radix-tree replacement of page migration started, page_count 228 * *must* be zero. And, we don't want to call wait_on_page_locked() 229 * against a page without get_page(). 230 * So, we use get_page_unless_zero(), here. Even failed, page fault 231 * will occur again. 232 */ 233 if (!get_page_unless_zero(page)) 234 goto out; 235 pte_unmap_unlock(ptep, ptl); 236 wait_on_page_locked(page); 237 put_page(page); 238 return; 239 out: 240 pte_unmap_unlock(ptep, ptl); 241 } 242 243 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 244 unsigned long address) 245 { 246 spinlock_t *ptl = pte_lockptr(mm, pmd); 247 pte_t *ptep = pte_offset_map(pmd, address); 248 __migration_entry_wait(mm, ptep, ptl); 249 } 250 251 void migration_entry_wait_huge(struct vm_area_struct *vma, 252 struct mm_struct *mm, pte_t *pte) 253 { 254 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 255 __migration_entry_wait(mm, pte, ptl); 256 } 257 258 #ifdef CONFIG_BLOCK 259 /* Returns true if all buffers are successfully locked */ 260 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 261 enum migrate_mode mode) 262 { 263 struct buffer_head *bh = head; 264 265 /* Simple case, sync compaction */ 266 if (mode != MIGRATE_ASYNC) { 267 do { 268 get_bh(bh); 269 lock_buffer(bh); 270 bh = bh->b_this_page; 271 272 } while (bh != head); 273 274 return true; 275 } 276 277 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 278 do { 279 get_bh(bh); 280 if (!trylock_buffer(bh)) { 281 /* 282 * We failed to lock the buffer and cannot stall in 283 * async migration. Release the taken locks 284 */ 285 struct buffer_head *failed_bh = bh; 286 put_bh(failed_bh); 287 bh = head; 288 while (bh != failed_bh) { 289 unlock_buffer(bh); 290 put_bh(bh); 291 bh = bh->b_this_page; 292 } 293 return false; 294 } 295 296 bh = bh->b_this_page; 297 } while (bh != head); 298 return true; 299 } 300 #else 301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 302 enum migrate_mode mode) 303 { 304 return true; 305 } 306 #endif /* CONFIG_BLOCK */ 307 308 /* 309 * Replace the page in the mapping. 310 * 311 * The number of remaining references must be: 312 * 1 for anonymous pages without a mapping 313 * 2 for pages with a mapping 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 315 */ 316 int migrate_page_move_mapping(struct address_space *mapping, 317 struct page *newpage, struct page *page, 318 struct buffer_head *head, enum migrate_mode mode, 319 int extra_count) 320 { 321 struct zone *oldzone, *newzone; 322 int dirty; 323 int expected_count = 1 + extra_count; 324 void **pslot; 325 326 if (!mapping) { 327 /* Anonymous page without mapping */ 328 if (page_count(page) != expected_count) 329 return -EAGAIN; 330 331 /* No turning back from here */ 332 newpage->index = page->index; 333 newpage->mapping = page->mapping; 334 if (PageSwapBacked(page)) 335 __SetPageSwapBacked(newpage); 336 337 return MIGRATEPAGE_SUCCESS; 338 } 339 340 oldzone = page_zone(page); 341 newzone = page_zone(newpage); 342 343 spin_lock_irq(&mapping->tree_lock); 344 345 pslot = radix_tree_lookup_slot(&mapping->page_tree, 346 page_index(page)); 347 348 expected_count += 1 + page_has_private(page); 349 if (page_count(page) != expected_count || 350 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 351 spin_unlock_irq(&mapping->tree_lock); 352 return -EAGAIN; 353 } 354 355 if (!page_ref_freeze(page, expected_count)) { 356 spin_unlock_irq(&mapping->tree_lock); 357 return -EAGAIN; 358 } 359 360 /* 361 * In the async migration case of moving a page with buffers, lock the 362 * buffers using trylock before the mapping is moved. If the mapping 363 * was moved, we later failed to lock the buffers and could not move 364 * the mapping back due to an elevated page count, we would have to 365 * block waiting on other references to be dropped. 366 */ 367 if (mode == MIGRATE_ASYNC && head && 368 !buffer_migrate_lock_buffers(head, mode)) { 369 page_ref_unfreeze(page, expected_count); 370 spin_unlock_irq(&mapping->tree_lock); 371 return -EAGAIN; 372 } 373 374 /* 375 * Now we know that no one else is looking at the page: 376 * no turning back from here. 377 */ 378 newpage->index = page->index; 379 newpage->mapping = page->mapping; 380 if (PageSwapBacked(page)) 381 __SetPageSwapBacked(newpage); 382 383 get_page(newpage); /* add cache reference */ 384 if (PageSwapCache(page)) { 385 SetPageSwapCache(newpage); 386 set_page_private(newpage, page_private(page)); 387 } 388 389 /* Move dirty while page refs frozen and newpage not yet exposed */ 390 dirty = PageDirty(page); 391 if (dirty) { 392 ClearPageDirty(page); 393 SetPageDirty(newpage); 394 } 395 396 radix_tree_replace_slot(pslot, newpage); 397 398 /* 399 * Drop cache reference from old page by unfreezing 400 * to one less reference. 401 * We know this isn't the last reference. 402 */ 403 page_ref_unfreeze(page, expected_count - 1); 404 405 spin_unlock(&mapping->tree_lock); 406 /* Leave irq disabled to prevent preemption while updating stats */ 407 408 /* 409 * If moved to a different zone then also account 410 * the page for that zone. Other VM counters will be 411 * taken care of when we establish references to the 412 * new page and drop references to the old page. 413 * 414 * Note that anonymous pages are accounted for 415 * via NR_FILE_PAGES and NR_ANON_PAGES if they 416 * are mapped to swap space. 417 */ 418 if (newzone != oldzone) { 419 __dec_zone_state(oldzone, NR_FILE_PAGES); 420 __inc_zone_state(newzone, NR_FILE_PAGES); 421 if (PageSwapBacked(page) && !PageSwapCache(page)) { 422 __dec_zone_state(oldzone, NR_SHMEM); 423 __inc_zone_state(newzone, NR_SHMEM); 424 } 425 if (dirty && mapping_cap_account_dirty(mapping)) { 426 __dec_zone_state(oldzone, NR_FILE_DIRTY); 427 __inc_zone_state(newzone, NR_FILE_DIRTY); 428 } 429 } 430 local_irq_enable(); 431 432 return MIGRATEPAGE_SUCCESS; 433 } 434 EXPORT_SYMBOL(migrate_page_move_mapping); 435 436 /* 437 * The expected number of remaining references is the same as that 438 * of migrate_page_move_mapping(). 439 */ 440 int migrate_huge_page_move_mapping(struct address_space *mapping, 441 struct page *newpage, struct page *page) 442 { 443 int expected_count; 444 void **pslot; 445 446 spin_lock_irq(&mapping->tree_lock); 447 448 pslot = radix_tree_lookup_slot(&mapping->page_tree, 449 page_index(page)); 450 451 expected_count = 2 + page_has_private(page); 452 if (page_count(page) != expected_count || 453 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 454 spin_unlock_irq(&mapping->tree_lock); 455 return -EAGAIN; 456 } 457 458 if (!page_ref_freeze(page, expected_count)) { 459 spin_unlock_irq(&mapping->tree_lock); 460 return -EAGAIN; 461 } 462 463 newpage->index = page->index; 464 newpage->mapping = page->mapping; 465 466 get_page(newpage); 467 468 radix_tree_replace_slot(pslot, newpage); 469 470 page_ref_unfreeze(page, expected_count - 1); 471 472 spin_unlock_irq(&mapping->tree_lock); 473 474 return MIGRATEPAGE_SUCCESS; 475 } 476 477 /* 478 * Gigantic pages are so large that we do not guarantee that page++ pointer 479 * arithmetic will work across the entire page. We need something more 480 * specialized. 481 */ 482 static void __copy_gigantic_page(struct page *dst, struct page *src, 483 int nr_pages) 484 { 485 int i; 486 struct page *dst_base = dst; 487 struct page *src_base = src; 488 489 for (i = 0; i < nr_pages; ) { 490 cond_resched(); 491 copy_highpage(dst, src); 492 493 i++; 494 dst = mem_map_next(dst, dst_base, i); 495 src = mem_map_next(src, src_base, i); 496 } 497 } 498 499 static void copy_huge_page(struct page *dst, struct page *src) 500 { 501 int i; 502 int nr_pages; 503 504 if (PageHuge(src)) { 505 /* hugetlbfs page */ 506 struct hstate *h = page_hstate(src); 507 nr_pages = pages_per_huge_page(h); 508 509 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 510 __copy_gigantic_page(dst, src, nr_pages); 511 return; 512 } 513 } else { 514 /* thp page */ 515 BUG_ON(!PageTransHuge(src)); 516 nr_pages = hpage_nr_pages(src); 517 } 518 519 for (i = 0; i < nr_pages; i++) { 520 cond_resched(); 521 copy_highpage(dst + i, src + i); 522 } 523 } 524 525 /* 526 * Copy the page to its new location 527 */ 528 void migrate_page_copy(struct page *newpage, struct page *page) 529 { 530 int cpupid; 531 532 if (PageHuge(page) || PageTransHuge(page)) 533 copy_huge_page(newpage, page); 534 else 535 copy_highpage(newpage, page); 536 537 if (PageError(page)) 538 SetPageError(newpage); 539 if (PageReferenced(page)) 540 SetPageReferenced(newpage); 541 if (PageUptodate(page)) 542 SetPageUptodate(newpage); 543 if (TestClearPageActive(page)) { 544 VM_BUG_ON_PAGE(PageUnevictable(page), page); 545 SetPageActive(newpage); 546 } else if (TestClearPageUnevictable(page)) 547 SetPageUnevictable(newpage); 548 if (PageChecked(page)) 549 SetPageChecked(newpage); 550 if (PageMappedToDisk(page)) 551 SetPageMappedToDisk(newpage); 552 553 /* Move dirty on pages not done by migrate_page_move_mapping() */ 554 if (PageDirty(page)) 555 SetPageDirty(newpage); 556 557 if (page_is_young(page)) 558 set_page_young(newpage); 559 if (page_is_idle(page)) 560 set_page_idle(newpage); 561 562 /* 563 * Copy NUMA information to the new page, to prevent over-eager 564 * future migrations of this same page. 565 */ 566 cpupid = page_cpupid_xchg_last(page, -1); 567 page_cpupid_xchg_last(newpage, cpupid); 568 569 ksm_migrate_page(newpage, page); 570 /* 571 * Please do not reorder this without considering how mm/ksm.c's 572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 573 */ 574 if (PageSwapCache(page)) 575 ClearPageSwapCache(page); 576 ClearPagePrivate(page); 577 set_page_private(page, 0); 578 579 /* 580 * If any waiters have accumulated on the new page then 581 * wake them up. 582 */ 583 if (PageWriteback(newpage)) 584 end_page_writeback(newpage); 585 586 copy_page_owner(page, newpage); 587 588 mem_cgroup_migrate(page, newpage); 589 } 590 EXPORT_SYMBOL(migrate_page_copy); 591 592 /************************************************************ 593 * Migration functions 594 ***********************************************************/ 595 596 /* 597 * Common logic to directly migrate a single page suitable for 598 * pages that do not use PagePrivate/PagePrivate2. 599 * 600 * Pages are locked upon entry and exit. 601 */ 602 int migrate_page(struct address_space *mapping, 603 struct page *newpage, struct page *page, 604 enum migrate_mode mode) 605 { 606 int rc; 607 608 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 609 610 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 611 612 if (rc != MIGRATEPAGE_SUCCESS) 613 return rc; 614 615 migrate_page_copy(newpage, page); 616 return MIGRATEPAGE_SUCCESS; 617 } 618 EXPORT_SYMBOL(migrate_page); 619 620 #ifdef CONFIG_BLOCK 621 /* 622 * Migration function for pages with buffers. This function can only be used 623 * if the underlying filesystem guarantees that no other references to "page" 624 * exist. 625 */ 626 int buffer_migrate_page(struct address_space *mapping, 627 struct page *newpage, struct page *page, enum migrate_mode mode) 628 { 629 struct buffer_head *bh, *head; 630 int rc; 631 632 if (!page_has_buffers(page)) 633 return migrate_page(mapping, newpage, page, mode); 634 635 head = page_buffers(page); 636 637 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 638 639 if (rc != MIGRATEPAGE_SUCCESS) 640 return rc; 641 642 /* 643 * In the async case, migrate_page_move_mapping locked the buffers 644 * with an IRQ-safe spinlock held. In the sync case, the buffers 645 * need to be locked now 646 */ 647 if (mode != MIGRATE_ASYNC) 648 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 649 650 ClearPagePrivate(page); 651 set_page_private(newpage, page_private(page)); 652 set_page_private(page, 0); 653 put_page(page); 654 get_page(newpage); 655 656 bh = head; 657 do { 658 set_bh_page(bh, newpage, bh_offset(bh)); 659 bh = bh->b_this_page; 660 661 } while (bh != head); 662 663 SetPagePrivate(newpage); 664 665 migrate_page_copy(newpage, page); 666 667 bh = head; 668 do { 669 unlock_buffer(bh); 670 put_bh(bh); 671 bh = bh->b_this_page; 672 673 } while (bh != head); 674 675 return MIGRATEPAGE_SUCCESS; 676 } 677 EXPORT_SYMBOL(buffer_migrate_page); 678 #endif 679 680 /* 681 * Writeback a page to clean the dirty state 682 */ 683 static int writeout(struct address_space *mapping, struct page *page) 684 { 685 struct writeback_control wbc = { 686 .sync_mode = WB_SYNC_NONE, 687 .nr_to_write = 1, 688 .range_start = 0, 689 .range_end = LLONG_MAX, 690 .for_reclaim = 1 691 }; 692 int rc; 693 694 if (!mapping->a_ops->writepage) 695 /* No write method for the address space */ 696 return -EINVAL; 697 698 if (!clear_page_dirty_for_io(page)) 699 /* Someone else already triggered a write */ 700 return -EAGAIN; 701 702 /* 703 * A dirty page may imply that the underlying filesystem has 704 * the page on some queue. So the page must be clean for 705 * migration. Writeout may mean we loose the lock and the 706 * page state is no longer what we checked for earlier. 707 * At this point we know that the migration attempt cannot 708 * be successful. 709 */ 710 remove_migration_ptes(page, page, false); 711 712 rc = mapping->a_ops->writepage(page, &wbc); 713 714 if (rc != AOP_WRITEPAGE_ACTIVATE) 715 /* unlocked. Relock */ 716 lock_page(page); 717 718 return (rc < 0) ? -EIO : -EAGAIN; 719 } 720 721 /* 722 * Default handling if a filesystem does not provide a migration function. 723 */ 724 static int fallback_migrate_page(struct address_space *mapping, 725 struct page *newpage, struct page *page, enum migrate_mode mode) 726 { 727 if (PageDirty(page)) { 728 /* Only writeback pages in full synchronous migration */ 729 if (mode != MIGRATE_SYNC) 730 return -EBUSY; 731 return writeout(mapping, page); 732 } 733 734 /* 735 * Buffers may be managed in a filesystem specific way. 736 * We must have no buffers or drop them. 737 */ 738 if (page_has_private(page) && 739 !try_to_release_page(page, GFP_KERNEL)) 740 return -EAGAIN; 741 742 return migrate_page(mapping, newpage, page, mode); 743 } 744 745 /* 746 * Move a page to a newly allocated page 747 * The page is locked and all ptes have been successfully removed. 748 * 749 * The new page will have replaced the old page if this function 750 * is successful. 751 * 752 * Return value: 753 * < 0 - error code 754 * MIGRATEPAGE_SUCCESS - success 755 */ 756 static int move_to_new_page(struct page *newpage, struct page *page, 757 enum migrate_mode mode) 758 { 759 struct address_space *mapping; 760 int rc; 761 762 VM_BUG_ON_PAGE(!PageLocked(page), page); 763 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 764 765 mapping = page_mapping(page); 766 if (!mapping) 767 rc = migrate_page(mapping, newpage, page, mode); 768 else if (mapping->a_ops->migratepage) 769 /* 770 * Most pages have a mapping and most filesystems provide a 771 * migratepage callback. Anonymous pages are part of swap 772 * space which also has its own migratepage callback. This 773 * is the most common path for page migration. 774 */ 775 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode); 776 else 777 rc = fallback_migrate_page(mapping, newpage, page, mode); 778 779 /* 780 * When successful, old pagecache page->mapping must be cleared before 781 * page is freed; but stats require that PageAnon be left as PageAnon. 782 */ 783 if (rc == MIGRATEPAGE_SUCCESS) { 784 if (!PageAnon(page)) 785 page->mapping = NULL; 786 } 787 return rc; 788 } 789 790 static int __unmap_and_move(struct page *page, struct page *newpage, 791 int force, enum migrate_mode mode) 792 { 793 int rc = -EAGAIN; 794 int page_was_mapped = 0; 795 struct anon_vma *anon_vma = NULL; 796 797 if (!trylock_page(page)) { 798 if (!force || mode == MIGRATE_ASYNC) 799 goto out; 800 801 /* 802 * It's not safe for direct compaction to call lock_page. 803 * For example, during page readahead pages are added locked 804 * to the LRU. Later, when the IO completes the pages are 805 * marked uptodate and unlocked. However, the queueing 806 * could be merging multiple pages for one bio (e.g. 807 * mpage_readpages). If an allocation happens for the 808 * second or third page, the process can end up locking 809 * the same page twice and deadlocking. Rather than 810 * trying to be clever about what pages can be locked, 811 * avoid the use of lock_page for direct compaction 812 * altogether. 813 */ 814 if (current->flags & PF_MEMALLOC) 815 goto out; 816 817 lock_page(page); 818 } 819 820 if (PageWriteback(page)) { 821 /* 822 * Only in the case of a full synchronous migration is it 823 * necessary to wait for PageWriteback. In the async case, 824 * the retry loop is too short and in the sync-light case, 825 * the overhead of stalling is too much 826 */ 827 if (mode != MIGRATE_SYNC) { 828 rc = -EBUSY; 829 goto out_unlock; 830 } 831 if (!force) 832 goto out_unlock; 833 wait_on_page_writeback(page); 834 } 835 836 /* 837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 838 * we cannot notice that anon_vma is freed while we migrates a page. 839 * This get_anon_vma() delays freeing anon_vma pointer until the end 840 * of migration. File cache pages are no problem because of page_lock() 841 * File Caches may use write_page() or lock_page() in migration, then, 842 * just care Anon page here. 843 * 844 * Only page_get_anon_vma() understands the subtleties of 845 * getting a hold on an anon_vma from outside one of its mms. 846 * But if we cannot get anon_vma, then we won't need it anyway, 847 * because that implies that the anon page is no longer mapped 848 * (and cannot be remapped so long as we hold the page lock). 849 */ 850 if (PageAnon(page) && !PageKsm(page)) 851 anon_vma = page_get_anon_vma(page); 852 853 /* 854 * Block others from accessing the new page when we get around to 855 * establishing additional references. We are usually the only one 856 * holding a reference to newpage at this point. We used to have a BUG 857 * here if trylock_page(newpage) fails, but would like to allow for 858 * cases where there might be a race with the previous use of newpage. 859 * This is much like races on refcount of oldpage: just don't BUG(). 860 */ 861 if (unlikely(!trylock_page(newpage))) 862 goto out_unlock; 863 864 if (unlikely(isolated_balloon_page(page))) { 865 /* 866 * A ballooned page does not need any special attention from 867 * physical to virtual reverse mapping procedures. 868 * Skip any attempt to unmap PTEs or to remap swap cache, 869 * in order to avoid burning cycles at rmap level, and perform 870 * the page migration right away (proteced by page lock). 871 */ 872 rc = balloon_page_migrate(newpage, page, mode); 873 goto out_unlock_both; 874 } 875 876 /* 877 * Corner case handling: 878 * 1. When a new swap-cache page is read into, it is added to the LRU 879 * and treated as swapcache but it has no rmap yet. 880 * Calling try_to_unmap() against a page->mapping==NULL page will 881 * trigger a BUG. So handle it here. 882 * 2. An orphaned page (see truncate_complete_page) might have 883 * fs-private metadata. The page can be picked up due to memory 884 * offlining. Everywhere else except page reclaim, the page is 885 * invisible to the vm, so the page can not be migrated. So try to 886 * free the metadata, so the page can be freed. 887 */ 888 if (!page->mapping) { 889 VM_BUG_ON_PAGE(PageAnon(page), page); 890 if (page_has_private(page)) { 891 try_to_free_buffers(page); 892 goto out_unlock_both; 893 } 894 } else if (page_mapped(page)) { 895 /* Establish migration ptes */ 896 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 897 page); 898 try_to_unmap(page, 899 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 900 page_was_mapped = 1; 901 } 902 903 if (!page_mapped(page)) 904 rc = move_to_new_page(newpage, page, mode); 905 906 if (page_was_mapped) 907 remove_migration_ptes(page, 908 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 909 910 out_unlock_both: 911 unlock_page(newpage); 912 out_unlock: 913 /* Drop an anon_vma reference if we took one */ 914 if (anon_vma) 915 put_anon_vma(anon_vma); 916 unlock_page(page); 917 out: 918 return rc; 919 } 920 921 /* 922 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 923 * around it. 924 */ 925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 926 #define ICE_noinline noinline 927 #else 928 #define ICE_noinline 929 #endif 930 931 /* 932 * Obtain the lock on page, remove all ptes and migrate the page 933 * to the newly allocated page in newpage. 934 */ 935 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 936 free_page_t put_new_page, 937 unsigned long private, struct page *page, 938 int force, enum migrate_mode mode, 939 enum migrate_reason reason) 940 { 941 int rc = MIGRATEPAGE_SUCCESS; 942 int *result = NULL; 943 struct page *newpage; 944 945 newpage = get_new_page(page, private, &result); 946 if (!newpage) 947 return -ENOMEM; 948 949 if (page_count(page) == 1) { 950 /* page was freed from under us. So we are done. */ 951 goto out; 952 } 953 954 if (unlikely(PageTransHuge(page))) { 955 lock_page(page); 956 rc = split_huge_page(page); 957 unlock_page(page); 958 if (rc) 959 goto out; 960 } 961 962 rc = __unmap_and_move(page, newpage, force, mode); 963 if (rc == MIGRATEPAGE_SUCCESS) { 964 put_new_page = NULL; 965 set_page_owner_migrate_reason(newpage, reason); 966 } 967 968 out: 969 if (rc != -EAGAIN) { 970 /* 971 * A page that has been migrated has all references 972 * removed and will be freed. A page that has not been 973 * migrated will have kepts its references and be 974 * restored. 975 */ 976 list_del(&page->lru); 977 dec_zone_page_state(page, NR_ISOLATED_ANON + 978 page_is_file_cache(page)); 979 /* Soft-offlined page shouldn't go through lru cache list */ 980 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) { 981 /* 982 * With this release, we free successfully migrated 983 * page and set PG_HWPoison on just freed page 984 * intentionally. Although it's rather weird, it's how 985 * HWPoison flag works at the moment. 986 */ 987 put_page(page); 988 if (!test_set_page_hwpoison(page)) 989 num_poisoned_pages_inc(); 990 } else 991 putback_lru_page(page); 992 } 993 994 /* 995 * If migration was not successful and there's a freeing callback, use 996 * it. Otherwise, putback_lru_page() will drop the reference grabbed 997 * during isolation. 998 */ 999 if (put_new_page) 1000 put_new_page(newpage, private); 1001 else if (unlikely(__is_movable_balloon_page(newpage))) { 1002 /* drop our reference, page already in the balloon */ 1003 put_page(newpage); 1004 } else 1005 putback_lru_page(newpage); 1006 1007 if (result) { 1008 if (rc) 1009 *result = rc; 1010 else 1011 *result = page_to_nid(newpage); 1012 } 1013 return rc; 1014 } 1015 1016 /* 1017 * Counterpart of unmap_and_move_page() for hugepage migration. 1018 * 1019 * This function doesn't wait the completion of hugepage I/O 1020 * because there is no race between I/O and migration for hugepage. 1021 * Note that currently hugepage I/O occurs only in direct I/O 1022 * where no lock is held and PG_writeback is irrelevant, 1023 * and writeback status of all subpages are counted in the reference 1024 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1025 * under direct I/O, the reference of the head page is 512 and a bit more.) 1026 * This means that when we try to migrate hugepage whose subpages are 1027 * doing direct I/O, some references remain after try_to_unmap() and 1028 * hugepage migration fails without data corruption. 1029 * 1030 * There is also no race when direct I/O is issued on the page under migration, 1031 * because then pte is replaced with migration swap entry and direct I/O code 1032 * will wait in the page fault for migration to complete. 1033 */ 1034 static int unmap_and_move_huge_page(new_page_t get_new_page, 1035 free_page_t put_new_page, unsigned long private, 1036 struct page *hpage, int force, 1037 enum migrate_mode mode, int reason) 1038 { 1039 int rc = -EAGAIN; 1040 int *result = NULL; 1041 int page_was_mapped = 0; 1042 struct page *new_hpage; 1043 struct anon_vma *anon_vma = NULL; 1044 1045 /* 1046 * Movability of hugepages depends on architectures and hugepage size. 1047 * This check is necessary because some callers of hugepage migration 1048 * like soft offline and memory hotremove don't walk through page 1049 * tables or check whether the hugepage is pmd-based or not before 1050 * kicking migration. 1051 */ 1052 if (!hugepage_migration_supported(page_hstate(hpage))) { 1053 putback_active_hugepage(hpage); 1054 return -ENOSYS; 1055 } 1056 1057 new_hpage = get_new_page(hpage, private, &result); 1058 if (!new_hpage) 1059 return -ENOMEM; 1060 1061 if (!trylock_page(hpage)) { 1062 if (!force || mode != MIGRATE_SYNC) 1063 goto out; 1064 lock_page(hpage); 1065 } 1066 1067 if (PageAnon(hpage)) 1068 anon_vma = page_get_anon_vma(hpage); 1069 1070 if (unlikely(!trylock_page(new_hpage))) 1071 goto put_anon; 1072 1073 if (page_mapped(hpage)) { 1074 try_to_unmap(hpage, 1075 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1076 page_was_mapped = 1; 1077 } 1078 1079 if (!page_mapped(hpage)) 1080 rc = move_to_new_page(new_hpage, hpage, mode); 1081 1082 if (page_was_mapped) 1083 remove_migration_ptes(hpage, 1084 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1085 1086 unlock_page(new_hpage); 1087 1088 put_anon: 1089 if (anon_vma) 1090 put_anon_vma(anon_vma); 1091 1092 if (rc == MIGRATEPAGE_SUCCESS) { 1093 hugetlb_cgroup_migrate(hpage, new_hpage); 1094 put_new_page = NULL; 1095 set_page_owner_migrate_reason(new_hpage, reason); 1096 } 1097 1098 unlock_page(hpage); 1099 out: 1100 if (rc != -EAGAIN) 1101 putback_active_hugepage(hpage); 1102 1103 /* 1104 * If migration was not successful and there's a freeing callback, use 1105 * it. Otherwise, put_page() will drop the reference grabbed during 1106 * isolation. 1107 */ 1108 if (put_new_page) 1109 put_new_page(new_hpage, private); 1110 else 1111 putback_active_hugepage(new_hpage); 1112 1113 if (result) { 1114 if (rc) 1115 *result = rc; 1116 else 1117 *result = page_to_nid(new_hpage); 1118 } 1119 return rc; 1120 } 1121 1122 /* 1123 * migrate_pages - migrate the pages specified in a list, to the free pages 1124 * supplied as the target for the page migration 1125 * 1126 * @from: The list of pages to be migrated. 1127 * @get_new_page: The function used to allocate free pages to be used 1128 * as the target of the page migration. 1129 * @put_new_page: The function used to free target pages if migration 1130 * fails, or NULL if no special handling is necessary. 1131 * @private: Private data to be passed on to get_new_page() 1132 * @mode: The migration mode that specifies the constraints for 1133 * page migration, if any. 1134 * @reason: The reason for page migration. 1135 * 1136 * The function returns after 10 attempts or if no pages are movable any more 1137 * because the list has become empty or no retryable pages exist any more. 1138 * The caller should call putback_movable_pages() to return pages to the LRU 1139 * or free list only if ret != 0. 1140 * 1141 * Returns the number of pages that were not migrated, or an error code. 1142 */ 1143 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1144 free_page_t put_new_page, unsigned long private, 1145 enum migrate_mode mode, int reason) 1146 { 1147 int retry = 1; 1148 int nr_failed = 0; 1149 int nr_succeeded = 0; 1150 int pass = 0; 1151 struct page *page; 1152 struct page *page2; 1153 int swapwrite = current->flags & PF_SWAPWRITE; 1154 int rc; 1155 1156 if (!swapwrite) 1157 current->flags |= PF_SWAPWRITE; 1158 1159 for(pass = 0; pass < 10 && retry; pass++) { 1160 retry = 0; 1161 1162 list_for_each_entry_safe(page, page2, from, lru) { 1163 cond_resched(); 1164 1165 if (PageHuge(page)) 1166 rc = unmap_and_move_huge_page(get_new_page, 1167 put_new_page, private, page, 1168 pass > 2, mode, reason); 1169 else 1170 rc = unmap_and_move(get_new_page, put_new_page, 1171 private, page, pass > 2, mode, 1172 reason); 1173 1174 switch(rc) { 1175 case -ENOMEM: 1176 nr_failed++; 1177 goto out; 1178 case -EAGAIN: 1179 retry++; 1180 break; 1181 case MIGRATEPAGE_SUCCESS: 1182 nr_succeeded++; 1183 break; 1184 default: 1185 /* 1186 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1187 * unlike -EAGAIN case, the failed page is 1188 * removed from migration page list and not 1189 * retried in the next outer loop. 1190 */ 1191 nr_failed++; 1192 break; 1193 } 1194 } 1195 } 1196 nr_failed += retry; 1197 rc = nr_failed; 1198 out: 1199 if (nr_succeeded) 1200 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1201 if (nr_failed) 1202 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1203 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1204 1205 if (!swapwrite) 1206 current->flags &= ~PF_SWAPWRITE; 1207 1208 return rc; 1209 } 1210 1211 #ifdef CONFIG_NUMA 1212 /* 1213 * Move a list of individual pages 1214 */ 1215 struct page_to_node { 1216 unsigned long addr; 1217 struct page *page; 1218 int node; 1219 int status; 1220 }; 1221 1222 static struct page *new_page_node(struct page *p, unsigned long private, 1223 int **result) 1224 { 1225 struct page_to_node *pm = (struct page_to_node *)private; 1226 1227 while (pm->node != MAX_NUMNODES && pm->page != p) 1228 pm++; 1229 1230 if (pm->node == MAX_NUMNODES) 1231 return NULL; 1232 1233 *result = &pm->status; 1234 1235 if (PageHuge(p)) 1236 return alloc_huge_page_node(page_hstate(compound_head(p)), 1237 pm->node); 1238 else 1239 return __alloc_pages_node(pm->node, 1240 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1241 } 1242 1243 /* 1244 * Move a set of pages as indicated in the pm array. The addr 1245 * field must be set to the virtual address of the page to be moved 1246 * and the node number must contain a valid target node. 1247 * The pm array ends with node = MAX_NUMNODES. 1248 */ 1249 static int do_move_page_to_node_array(struct mm_struct *mm, 1250 struct page_to_node *pm, 1251 int migrate_all) 1252 { 1253 int err; 1254 struct page_to_node *pp; 1255 LIST_HEAD(pagelist); 1256 1257 down_read(&mm->mmap_sem); 1258 1259 /* 1260 * Build a list of pages to migrate 1261 */ 1262 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1263 struct vm_area_struct *vma; 1264 struct page *page; 1265 1266 err = -EFAULT; 1267 vma = find_vma(mm, pp->addr); 1268 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1269 goto set_status; 1270 1271 /* FOLL_DUMP to ignore special (like zero) pages */ 1272 page = follow_page(vma, pp->addr, 1273 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1274 1275 err = PTR_ERR(page); 1276 if (IS_ERR(page)) 1277 goto set_status; 1278 1279 err = -ENOENT; 1280 if (!page) 1281 goto set_status; 1282 1283 pp->page = page; 1284 err = page_to_nid(page); 1285 1286 if (err == pp->node) 1287 /* 1288 * Node already in the right place 1289 */ 1290 goto put_and_set; 1291 1292 err = -EACCES; 1293 if (page_mapcount(page) > 1 && 1294 !migrate_all) 1295 goto put_and_set; 1296 1297 if (PageHuge(page)) { 1298 if (PageHead(page)) 1299 isolate_huge_page(page, &pagelist); 1300 goto put_and_set; 1301 } 1302 1303 err = isolate_lru_page(page); 1304 if (!err) { 1305 list_add_tail(&page->lru, &pagelist); 1306 inc_zone_page_state(page, NR_ISOLATED_ANON + 1307 page_is_file_cache(page)); 1308 } 1309 put_and_set: 1310 /* 1311 * Either remove the duplicate refcount from 1312 * isolate_lru_page() or drop the page ref if it was 1313 * not isolated. 1314 */ 1315 put_page(page); 1316 set_status: 1317 pp->status = err; 1318 } 1319 1320 err = 0; 1321 if (!list_empty(&pagelist)) { 1322 err = migrate_pages(&pagelist, new_page_node, NULL, 1323 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1324 if (err) 1325 putback_movable_pages(&pagelist); 1326 } 1327 1328 up_read(&mm->mmap_sem); 1329 return err; 1330 } 1331 1332 /* 1333 * Migrate an array of page address onto an array of nodes and fill 1334 * the corresponding array of status. 1335 */ 1336 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1337 unsigned long nr_pages, 1338 const void __user * __user *pages, 1339 const int __user *nodes, 1340 int __user *status, int flags) 1341 { 1342 struct page_to_node *pm; 1343 unsigned long chunk_nr_pages; 1344 unsigned long chunk_start; 1345 int err; 1346 1347 err = -ENOMEM; 1348 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1349 if (!pm) 1350 goto out; 1351 1352 migrate_prep(); 1353 1354 /* 1355 * Store a chunk of page_to_node array in a page, 1356 * but keep the last one as a marker 1357 */ 1358 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1359 1360 for (chunk_start = 0; 1361 chunk_start < nr_pages; 1362 chunk_start += chunk_nr_pages) { 1363 int j; 1364 1365 if (chunk_start + chunk_nr_pages > nr_pages) 1366 chunk_nr_pages = nr_pages - chunk_start; 1367 1368 /* fill the chunk pm with addrs and nodes from user-space */ 1369 for (j = 0; j < chunk_nr_pages; j++) { 1370 const void __user *p; 1371 int node; 1372 1373 err = -EFAULT; 1374 if (get_user(p, pages + j + chunk_start)) 1375 goto out_pm; 1376 pm[j].addr = (unsigned long) p; 1377 1378 if (get_user(node, nodes + j + chunk_start)) 1379 goto out_pm; 1380 1381 err = -ENODEV; 1382 if (node < 0 || node >= MAX_NUMNODES) 1383 goto out_pm; 1384 1385 if (!node_state(node, N_MEMORY)) 1386 goto out_pm; 1387 1388 err = -EACCES; 1389 if (!node_isset(node, task_nodes)) 1390 goto out_pm; 1391 1392 pm[j].node = node; 1393 } 1394 1395 /* End marker for this chunk */ 1396 pm[chunk_nr_pages].node = MAX_NUMNODES; 1397 1398 /* Migrate this chunk */ 1399 err = do_move_page_to_node_array(mm, pm, 1400 flags & MPOL_MF_MOVE_ALL); 1401 if (err < 0) 1402 goto out_pm; 1403 1404 /* Return status information */ 1405 for (j = 0; j < chunk_nr_pages; j++) 1406 if (put_user(pm[j].status, status + j + chunk_start)) { 1407 err = -EFAULT; 1408 goto out_pm; 1409 } 1410 } 1411 err = 0; 1412 1413 out_pm: 1414 free_page((unsigned long)pm); 1415 out: 1416 return err; 1417 } 1418 1419 /* 1420 * Determine the nodes of an array of pages and store it in an array of status. 1421 */ 1422 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1423 const void __user **pages, int *status) 1424 { 1425 unsigned long i; 1426 1427 down_read(&mm->mmap_sem); 1428 1429 for (i = 0; i < nr_pages; i++) { 1430 unsigned long addr = (unsigned long)(*pages); 1431 struct vm_area_struct *vma; 1432 struct page *page; 1433 int err = -EFAULT; 1434 1435 vma = find_vma(mm, addr); 1436 if (!vma || addr < vma->vm_start) 1437 goto set_status; 1438 1439 /* FOLL_DUMP to ignore special (like zero) pages */ 1440 page = follow_page(vma, addr, FOLL_DUMP); 1441 1442 err = PTR_ERR(page); 1443 if (IS_ERR(page)) 1444 goto set_status; 1445 1446 err = page ? page_to_nid(page) : -ENOENT; 1447 set_status: 1448 *status = err; 1449 1450 pages++; 1451 status++; 1452 } 1453 1454 up_read(&mm->mmap_sem); 1455 } 1456 1457 /* 1458 * Determine the nodes of a user array of pages and store it in 1459 * a user array of status. 1460 */ 1461 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1462 const void __user * __user *pages, 1463 int __user *status) 1464 { 1465 #define DO_PAGES_STAT_CHUNK_NR 16 1466 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1467 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1468 1469 while (nr_pages) { 1470 unsigned long chunk_nr; 1471 1472 chunk_nr = nr_pages; 1473 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1474 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1475 1476 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1477 break; 1478 1479 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1480 1481 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1482 break; 1483 1484 pages += chunk_nr; 1485 status += chunk_nr; 1486 nr_pages -= chunk_nr; 1487 } 1488 return nr_pages ? -EFAULT : 0; 1489 } 1490 1491 /* 1492 * Move a list of pages in the address space of the currently executing 1493 * process. 1494 */ 1495 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1496 const void __user * __user *, pages, 1497 const int __user *, nodes, 1498 int __user *, status, int, flags) 1499 { 1500 const struct cred *cred = current_cred(), *tcred; 1501 struct task_struct *task; 1502 struct mm_struct *mm; 1503 int err; 1504 nodemask_t task_nodes; 1505 1506 /* Check flags */ 1507 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1508 return -EINVAL; 1509 1510 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1511 return -EPERM; 1512 1513 /* Find the mm_struct */ 1514 rcu_read_lock(); 1515 task = pid ? find_task_by_vpid(pid) : current; 1516 if (!task) { 1517 rcu_read_unlock(); 1518 return -ESRCH; 1519 } 1520 get_task_struct(task); 1521 1522 /* 1523 * Check if this process has the right to modify the specified 1524 * process. The right exists if the process has administrative 1525 * capabilities, superuser privileges or the same 1526 * userid as the target process. 1527 */ 1528 tcred = __task_cred(task); 1529 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1530 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1531 !capable(CAP_SYS_NICE)) { 1532 rcu_read_unlock(); 1533 err = -EPERM; 1534 goto out; 1535 } 1536 rcu_read_unlock(); 1537 1538 err = security_task_movememory(task); 1539 if (err) 1540 goto out; 1541 1542 task_nodes = cpuset_mems_allowed(task); 1543 mm = get_task_mm(task); 1544 put_task_struct(task); 1545 1546 if (!mm) 1547 return -EINVAL; 1548 1549 if (nodes) 1550 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1551 nodes, status, flags); 1552 else 1553 err = do_pages_stat(mm, nr_pages, pages, status); 1554 1555 mmput(mm); 1556 return err; 1557 1558 out: 1559 put_task_struct(task); 1560 return err; 1561 } 1562 1563 #ifdef CONFIG_NUMA_BALANCING 1564 /* 1565 * Returns true if this is a safe migration target node for misplaced NUMA 1566 * pages. Currently it only checks the watermarks which crude 1567 */ 1568 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1569 unsigned long nr_migrate_pages) 1570 { 1571 int z; 1572 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1573 struct zone *zone = pgdat->node_zones + z; 1574 1575 if (!populated_zone(zone)) 1576 continue; 1577 1578 if (!zone_reclaimable(zone)) 1579 continue; 1580 1581 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1582 if (!zone_watermark_ok(zone, 0, 1583 high_wmark_pages(zone) + 1584 nr_migrate_pages, 1585 0, 0)) 1586 continue; 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 static struct page *alloc_misplaced_dst_page(struct page *page, 1593 unsigned long data, 1594 int **result) 1595 { 1596 int nid = (int) data; 1597 struct page *newpage; 1598 1599 newpage = __alloc_pages_node(nid, 1600 (GFP_HIGHUSER_MOVABLE | 1601 __GFP_THISNODE | __GFP_NOMEMALLOC | 1602 __GFP_NORETRY | __GFP_NOWARN) & 1603 ~__GFP_RECLAIM, 0); 1604 1605 return newpage; 1606 } 1607 1608 /* 1609 * page migration rate limiting control. 1610 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1611 * window of time. Default here says do not migrate more than 1280M per second. 1612 */ 1613 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1614 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1615 1616 /* Returns true if the node is migrate rate-limited after the update */ 1617 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1618 unsigned long nr_pages) 1619 { 1620 /* 1621 * Rate-limit the amount of data that is being migrated to a node. 1622 * Optimal placement is no good if the memory bus is saturated and 1623 * all the time is being spent migrating! 1624 */ 1625 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1626 spin_lock(&pgdat->numabalancing_migrate_lock); 1627 pgdat->numabalancing_migrate_nr_pages = 0; 1628 pgdat->numabalancing_migrate_next_window = jiffies + 1629 msecs_to_jiffies(migrate_interval_millisecs); 1630 spin_unlock(&pgdat->numabalancing_migrate_lock); 1631 } 1632 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1633 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1634 nr_pages); 1635 return true; 1636 } 1637 1638 /* 1639 * This is an unlocked non-atomic update so errors are possible. 1640 * The consequences are failing to migrate when we potentiall should 1641 * have which is not severe enough to warrant locking. If it is ever 1642 * a problem, it can be converted to a per-cpu counter. 1643 */ 1644 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1645 return false; 1646 } 1647 1648 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1649 { 1650 int page_lru; 1651 1652 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1653 1654 /* Avoid migrating to a node that is nearly full */ 1655 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1656 return 0; 1657 1658 if (isolate_lru_page(page)) 1659 return 0; 1660 1661 /* 1662 * migrate_misplaced_transhuge_page() skips page migration's usual 1663 * check on page_count(), so we must do it here, now that the page 1664 * has been isolated: a GUP pin, or any other pin, prevents migration. 1665 * The expected page count is 3: 1 for page's mapcount and 1 for the 1666 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1667 */ 1668 if (PageTransHuge(page) && page_count(page) != 3) { 1669 putback_lru_page(page); 1670 return 0; 1671 } 1672 1673 page_lru = page_is_file_cache(page); 1674 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1675 hpage_nr_pages(page)); 1676 1677 /* 1678 * Isolating the page has taken another reference, so the 1679 * caller's reference can be safely dropped without the page 1680 * disappearing underneath us during migration. 1681 */ 1682 put_page(page); 1683 return 1; 1684 } 1685 1686 bool pmd_trans_migrating(pmd_t pmd) 1687 { 1688 struct page *page = pmd_page(pmd); 1689 return PageLocked(page); 1690 } 1691 1692 /* 1693 * Attempt to migrate a misplaced page to the specified destination 1694 * node. Caller is expected to have an elevated reference count on 1695 * the page that will be dropped by this function before returning. 1696 */ 1697 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1698 int node) 1699 { 1700 pg_data_t *pgdat = NODE_DATA(node); 1701 int isolated; 1702 int nr_remaining; 1703 LIST_HEAD(migratepages); 1704 1705 /* 1706 * Don't migrate file pages that are mapped in multiple processes 1707 * with execute permissions as they are probably shared libraries. 1708 */ 1709 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1710 (vma->vm_flags & VM_EXEC)) 1711 goto out; 1712 1713 /* 1714 * Rate-limit the amount of data that is being migrated to a node. 1715 * Optimal placement is no good if the memory bus is saturated and 1716 * all the time is being spent migrating! 1717 */ 1718 if (numamigrate_update_ratelimit(pgdat, 1)) 1719 goto out; 1720 1721 isolated = numamigrate_isolate_page(pgdat, page); 1722 if (!isolated) 1723 goto out; 1724 1725 list_add(&page->lru, &migratepages); 1726 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1727 NULL, node, MIGRATE_ASYNC, 1728 MR_NUMA_MISPLACED); 1729 if (nr_remaining) { 1730 if (!list_empty(&migratepages)) { 1731 list_del(&page->lru); 1732 dec_zone_page_state(page, NR_ISOLATED_ANON + 1733 page_is_file_cache(page)); 1734 putback_lru_page(page); 1735 } 1736 isolated = 0; 1737 } else 1738 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1739 BUG_ON(!list_empty(&migratepages)); 1740 return isolated; 1741 1742 out: 1743 put_page(page); 1744 return 0; 1745 } 1746 #endif /* CONFIG_NUMA_BALANCING */ 1747 1748 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1749 /* 1750 * Migrates a THP to a given target node. page must be locked and is unlocked 1751 * before returning. 1752 */ 1753 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1754 struct vm_area_struct *vma, 1755 pmd_t *pmd, pmd_t entry, 1756 unsigned long address, 1757 struct page *page, int node) 1758 { 1759 spinlock_t *ptl; 1760 pg_data_t *pgdat = NODE_DATA(node); 1761 int isolated = 0; 1762 struct page *new_page = NULL; 1763 int page_lru = page_is_file_cache(page); 1764 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1765 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1766 pmd_t orig_entry; 1767 1768 /* 1769 * Rate-limit the amount of data that is being migrated to a node. 1770 * Optimal placement is no good if the memory bus is saturated and 1771 * all the time is being spent migrating! 1772 */ 1773 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1774 goto out_dropref; 1775 1776 new_page = alloc_pages_node(node, 1777 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1778 HPAGE_PMD_ORDER); 1779 if (!new_page) 1780 goto out_fail; 1781 prep_transhuge_page(new_page); 1782 1783 isolated = numamigrate_isolate_page(pgdat, page); 1784 if (!isolated) { 1785 put_page(new_page); 1786 goto out_fail; 1787 } 1788 /* 1789 * We are not sure a pending tlb flush here is for a huge page 1790 * mapping or not. Hence use the tlb range variant 1791 */ 1792 if (mm_tlb_flush_pending(mm)) 1793 flush_tlb_range(vma, mmun_start, mmun_end); 1794 1795 /* Prepare a page as a migration target */ 1796 __SetPageLocked(new_page); 1797 __SetPageSwapBacked(new_page); 1798 1799 /* anon mapping, we can simply copy page->mapping to the new page: */ 1800 new_page->mapping = page->mapping; 1801 new_page->index = page->index; 1802 migrate_page_copy(new_page, page); 1803 WARN_ON(PageLRU(new_page)); 1804 1805 /* Recheck the target PMD */ 1806 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1807 ptl = pmd_lock(mm, pmd); 1808 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1809 fail_putback: 1810 spin_unlock(ptl); 1811 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1812 1813 /* Reverse changes made by migrate_page_copy() */ 1814 if (TestClearPageActive(new_page)) 1815 SetPageActive(page); 1816 if (TestClearPageUnevictable(new_page)) 1817 SetPageUnevictable(page); 1818 1819 unlock_page(new_page); 1820 put_page(new_page); /* Free it */ 1821 1822 /* Retake the callers reference and putback on LRU */ 1823 get_page(page); 1824 putback_lru_page(page); 1825 mod_zone_page_state(page_zone(page), 1826 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1827 1828 goto out_unlock; 1829 } 1830 1831 orig_entry = *pmd; 1832 entry = mk_pmd(new_page, vma->vm_page_prot); 1833 entry = pmd_mkhuge(entry); 1834 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1835 1836 /* 1837 * Clear the old entry under pagetable lock and establish the new PTE. 1838 * Any parallel GUP will either observe the old page blocking on the 1839 * page lock, block on the page table lock or observe the new page. 1840 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1841 * guarantee the copy is visible before the pagetable update. 1842 */ 1843 flush_cache_range(vma, mmun_start, mmun_end); 1844 page_add_anon_rmap(new_page, vma, mmun_start, true); 1845 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1846 set_pmd_at(mm, mmun_start, pmd, entry); 1847 update_mmu_cache_pmd(vma, address, &entry); 1848 1849 if (page_count(page) != 2) { 1850 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1851 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 1852 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1853 update_mmu_cache_pmd(vma, address, &entry); 1854 page_remove_rmap(new_page, true); 1855 goto fail_putback; 1856 } 1857 1858 mlock_migrate_page(new_page, page); 1859 page_remove_rmap(page, true); 1860 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 1861 1862 spin_unlock(ptl); 1863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1864 1865 /* Take an "isolate" reference and put new page on the LRU. */ 1866 get_page(new_page); 1867 putback_lru_page(new_page); 1868 1869 unlock_page(new_page); 1870 unlock_page(page); 1871 put_page(page); /* Drop the rmap reference */ 1872 put_page(page); /* Drop the LRU isolation reference */ 1873 1874 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1875 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1876 1877 mod_zone_page_state(page_zone(page), 1878 NR_ISOLATED_ANON + page_lru, 1879 -HPAGE_PMD_NR); 1880 return isolated; 1881 1882 out_fail: 1883 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1884 out_dropref: 1885 ptl = pmd_lock(mm, pmd); 1886 if (pmd_same(*pmd, entry)) { 1887 entry = pmd_modify(entry, vma->vm_page_prot); 1888 set_pmd_at(mm, mmun_start, pmd, entry); 1889 update_mmu_cache_pmd(vma, address, &entry); 1890 } 1891 spin_unlock(ptl); 1892 1893 out_unlock: 1894 unlock_page(page); 1895 put_page(page); 1896 return 0; 1897 } 1898 #endif /* CONFIG_NUMA_BALANCING */ 1899 1900 #endif /* CONFIG_NUMA */ 1901