xref: /openbmc/linux/mm/migrate.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once page cache replacement of page migration started, page_count
330 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 	 * against a page without get_page().
332 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 	 * will occur again.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	wait_on_page_locked(page);
339 	put_page(page);
340 	return;
341 out:
342 	pte_unmap_unlock(ptep, ptl);
343 }
344 
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 				unsigned long address)
347 {
348 	spinlock_t *ptl = pte_lockptr(mm, pmd);
349 	pte_t *ptep = pte_offset_map(pmd, address);
350 	__migration_entry_wait(mm, ptep, ptl);
351 }
352 
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 		struct mm_struct *mm, pte_t *pte)
355 {
356 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 	__migration_entry_wait(mm, pte, ptl);
358 }
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 	struct page *page;
365 
366 	ptl = pmd_lock(mm, pmd);
367 	if (!is_pmd_migration_entry(*pmd))
368 		goto unlock;
369 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 	if (!get_page_unless_zero(page))
371 		goto unlock;
372 	spin_unlock(ptl);
373 	wait_on_page_locked(page);
374 	put_page(page);
375 	return;
376 unlock:
377 	spin_unlock(ptl);
378 }
379 #endif
380 
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 							enum migrate_mode mode)
385 {
386 	struct buffer_head *bh = head;
387 
388 	/* Simple case, sync compaction */
389 	if (mode != MIGRATE_ASYNC) {
390 		do {
391 			get_bh(bh);
392 			lock_buffer(bh);
393 			bh = bh->b_this_page;
394 
395 		} while (bh != head);
396 
397 		return true;
398 	}
399 
400 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
401 	do {
402 		get_bh(bh);
403 		if (!trylock_buffer(bh)) {
404 			/*
405 			 * We failed to lock the buffer and cannot stall in
406 			 * async migration. Release the taken locks
407 			 */
408 			struct buffer_head *failed_bh = bh;
409 			put_bh(failed_bh);
410 			bh = head;
411 			while (bh != failed_bh) {
412 				unlock_buffer(bh);
413 				put_bh(bh);
414 				bh = bh->b_this_page;
415 			}
416 			return false;
417 		}
418 
419 		bh = bh->b_this_page;
420 	} while (bh != head);
421 	return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 							enum migrate_mode mode)
426 {
427 	return true;
428 }
429 #endif /* CONFIG_BLOCK */
430 
431 /*
432  * Replace the page in the mapping.
433  *
434  * The number of remaining references must be:
435  * 1 for anonymous pages without a mapping
436  * 2 for pages with a mapping
437  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438  */
439 int migrate_page_move_mapping(struct address_space *mapping,
440 		struct page *newpage, struct page *page,
441 		struct buffer_head *head, enum migrate_mode mode,
442 		int extra_count)
443 {
444 	XA_STATE(xas, &mapping->i_pages, page_index(page));
445 	struct zone *oldzone, *newzone;
446 	int dirty;
447 	int expected_count = 1 + extra_count;
448 
449 	/*
450 	 * Device public or private pages have an extra refcount as they are
451 	 * ZONE_DEVICE pages.
452 	 */
453 	expected_count += is_device_private_page(page);
454 	expected_count += is_device_public_page(page);
455 
456 	if (!mapping) {
457 		/* Anonymous page without mapping */
458 		if (page_count(page) != expected_count)
459 			return -EAGAIN;
460 
461 		/* No turning back from here */
462 		newpage->index = page->index;
463 		newpage->mapping = page->mapping;
464 		if (PageSwapBacked(page))
465 			__SetPageSwapBacked(newpage);
466 
467 		return MIGRATEPAGE_SUCCESS;
468 	}
469 
470 	oldzone = page_zone(page);
471 	newzone = page_zone(newpage);
472 
473 	xas_lock_irq(&xas);
474 
475 	expected_count += hpage_nr_pages(page) + page_has_private(page);
476 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
477 		xas_unlock_irq(&xas);
478 		return -EAGAIN;
479 	}
480 
481 	if (!page_ref_freeze(page, expected_count)) {
482 		xas_unlock_irq(&xas);
483 		return -EAGAIN;
484 	}
485 
486 	/*
487 	 * In the async migration case of moving a page with buffers, lock the
488 	 * buffers using trylock before the mapping is moved. If the mapping
489 	 * was moved, we later failed to lock the buffers and could not move
490 	 * the mapping back due to an elevated page count, we would have to
491 	 * block waiting on other references to be dropped.
492 	 */
493 	if (mode == MIGRATE_ASYNC && head &&
494 			!buffer_migrate_lock_buffers(head, mode)) {
495 		page_ref_unfreeze(page, expected_count);
496 		xas_unlock_irq(&xas);
497 		return -EAGAIN;
498 	}
499 
500 	/*
501 	 * Now we know that no one else is looking at the page:
502 	 * no turning back from here.
503 	 */
504 	newpage->index = page->index;
505 	newpage->mapping = page->mapping;
506 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
507 	if (PageSwapBacked(page)) {
508 		__SetPageSwapBacked(newpage);
509 		if (PageSwapCache(page)) {
510 			SetPageSwapCache(newpage);
511 			set_page_private(newpage, page_private(page));
512 		}
513 	} else {
514 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
515 	}
516 
517 	/* Move dirty while page refs frozen and newpage not yet exposed */
518 	dirty = PageDirty(page);
519 	if (dirty) {
520 		ClearPageDirty(page);
521 		SetPageDirty(newpage);
522 	}
523 
524 	xas_store(&xas, newpage);
525 	if (PageTransHuge(page)) {
526 		int i;
527 
528 		for (i = 1; i < HPAGE_PMD_NR; i++) {
529 			xas_next(&xas);
530 			xas_store(&xas, newpage + i);
531 		}
532 	}
533 
534 	/*
535 	 * Drop cache reference from old page by unfreezing
536 	 * to one less reference.
537 	 * We know this isn't the last reference.
538 	 */
539 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
540 
541 	xas_unlock(&xas);
542 	/* Leave irq disabled to prevent preemption while updating stats */
543 
544 	/*
545 	 * If moved to a different zone then also account
546 	 * the page for that zone. Other VM counters will be
547 	 * taken care of when we establish references to the
548 	 * new page and drop references to the old page.
549 	 *
550 	 * Note that anonymous pages are accounted for
551 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
552 	 * are mapped to swap space.
553 	 */
554 	if (newzone != oldzone) {
555 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
556 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
557 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
558 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
559 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
560 		}
561 		if (dirty && mapping_cap_account_dirty(mapping)) {
562 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
563 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
564 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
565 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
566 		}
567 	}
568 	local_irq_enable();
569 
570 	return MIGRATEPAGE_SUCCESS;
571 }
572 EXPORT_SYMBOL(migrate_page_move_mapping);
573 
574 /*
575  * The expected number of remaining references is the same as that
576  * of migrate_page_move_mapping().
577  */
578 int migrate_huge_page_move_mapping(struct address_space *mapping,
579 				   struct page *newpage, struct page *page)
580 {
581 	XA_STATE(xas, &mapping->i_pages, page_index(page));
582 	int expected_count;
583 
584 	xas_lock_irq(&xas);
585 	expected_count = 2 + page_has_private(page);
586 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
587 		xas_unlock_irq(&xas);
588 		return -EAGAIN;
589 	}
590 
591 	if (!page_ref_freeze(page, expected_count)) {
592 		xas_unlock_irq(&xas);
593 		return -EAGAIN;
594 	}
595 
596 	newpage->index = page->index;
597 	newpage->mapping = page->mapping;
598 
599 	get_page(newpage);
600 
601 	xas_store(&xas, newpage);
602 
603 	page_ref_unfreeze(page, expected_count - 1);
604 
605 	xas_unlock_irq(&xas);
606 
607 	return MIGRATEPAGE_SUCCESS;
608 }
609 
610 /*
611  * Gigantic pages are so large that we do not guarantee that page++ pointer
612  * arithmetic will work across the entire page.  We need something more
613  * specialized.
614  */
615 static void __copy_gigantic_page(struct page *dst, struct page *src,
616 				int nr_pages)
617 {
618 	int i;
619 	struct page *dst_base = dst;
620 	struct page *src_base = src;
621 
622 	for (i = 0; i < nr_pages; ) {
623 		cond_resched();
624 		copy_highpage(dst, src);
625 
626 		i++;
627 		dst = mem_map_next(dst, dst_base, i);
628 		src = mem_map_next(src, src_base, i);
629 	}
630 }
631 
632 static void copy_huge_page(struct page *dst, struct page *src)
633 {
634 	int i;
635 	int nr_pages;
636 
637 	if (PageHuge(src)) {
638 		/* hugetlbfs page */
639 		struct hstate *h = page_hstate(src);
640 		nr_pages = pages_per_huge_page(h);
641 
642 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
643 			__copy_gigantic_page(dst, src, nr_pages);
644 			return;
645 		}
646 	} else {
647 		/* thp page */
648 		BUG_ON(!PageTransHuge(src));
649 		nr_pages = hpage_nr_pages(src);
650 	}
651 
652 	for (i = 0; i < nr_pages; i++) {
653 		cond_resched();
654 		copy_highpage(dst + i, src + i);
655 	}
656 }
657 
658 /*
659  * Copy the page to its new location
660  */
661 void migrate_page_states(struct page *newpage, struct page *page)
662 {
663 	int cpupid;
664 
665 	if (PageError(page))
666 		SetPageError(newpage);
667 	if (PageReferenced(page))
668 		SetPageReferenced(newpage);
669 	if (PageUptodate(page))
670 		SetPageUptodate(newpage);
671 	if (TestClearPageActive(page)) {
672 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
673 		SetPageActive(newpage);
674 	} else if (TestClearPageUnevictable(page))
675 		SetPageUnevictable(newpage);
676 	if (PageWorkingset(page))
677 		SetPageWorkingset(newpage);
678 	if (PageChecked(page))
679 		SetPageChecked(newpage);
680 	if (PageMappedToDisk(page))
681 		SetPageMappedToDisk(newpage);
682 
683 	/* Move dirty on pages not done by migrate_page_move_mapping() */
684 	if (PageDirty(page))
685 		SetPageDirty(newpage);
686 
687 	if (page_is_young(page))
688 		set_page_young(newpage);
689 	if (page_is_idle(page))
690 		set_page_idle(newpage);
691 
692 	/*
693 	 * Copy NUMA information to the new page, to prevent over-eager
694 	 * future migrations of this same page.
695 	 */
696 	cpupid = page_cpupid_xchg_last(page, -1);
697 	page_cpupid_xchg_last(newpage, cpupid);
698 
699 	ksm_migrate_page(newpage, page);
700 	/*
701 	 * Please do not reorder this without considering how mm/ksm.c's
702 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
703 	 */
704 	if (PageSwapCache(page))
705 		ClearPageSwapCache(page);
706 	ClearPagePrivate(page);
707 	set_page_private(page, 0);
708 
709 	/*
710 	 * If any waiters have accumulated on the new page then
711 	 * wake them up.
712 	 */
713 	if (PageWriteback(newpage))
714 		end_page_writeback(newpage);
715 
716 	copy_page_owner(page, newpage);
717 
718 	mem_cgroup_migrate(page, newpage);
719 }
720 EXPORT_SYMBOL(migrate_page_states);
721 
722 void migrate_page_copy(struct page *newpage, struct page *page)
723 {
724 	if (PageHuge(page) || PageTransHuge(page))
725 		copy_huge_page(newpage, page);
726 	else
727 		copy_highpage(newpage, page);
728 
729 	migrate_page_states(newpage, page);
730 }
731 EXPORT_SYMBOL(migrate_page_copy);
732 
733 /************************************************************
734  *                    Migration functions
735  ***********************************************************/
736 
737 /*
738  * Common logic to directly migrate a single LRU page suitable for
739  * pages that do not use PagePrivate/PagePrivate2.
740  *
741  * Pages are locked upon entry and exit.
742  */
743 int migrate_page(struct address_space *mapping,
744 		struct page *newpage, struct page *page,
745 		enum migrate_mode mode)
746 {
747 	int rc;
748 
749 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
750 
751 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
752 
753 	if (rc != MIGRATEPAGE_SUCCESS)
754 		return rc;
755 
756 	if (mode != MIGRATE_SYNC_NO_COPY)
757 		migrate_page_copy(newpage, page);
758 	else
759 		migrate_page_states(newpage, page);
760 	return MIGRATEPAGE_SUCCESS;
761 }
762 EXPORT_SYMBOL(migrate_page);
763 
764 #ifdef CONFIG_BLOCK
765 /*
766  * Migration function for pages with buffers. This function can only be used
767  * if the underlying filesystem guarantees that no other references to "page"
768  * exist.
769  */
770 int buffer_migrate_page(struct address_space *mapping,
771 		struct page *newpage, struct page *page, enum migrate_mode mode)
772 {
773 	struct buffer_head *bh, *head;
774 	int rc;
775 
776 	if (!page_has_buffers(page))
777 		return migrate_page(mapping, newpage, page, mode);
778 
779 	head = page_buffers(page);
780 
781 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
782 
783 	if (rc != MIGRATEPAGE_SUCCESS)
784 		return rc;
785 
786 	/*
787 	 * In the async case, migrate_page_move_mapping locked the buffers
788 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
789 	 * need to be locked now
790 	 */
791 	if (mode != MIGRATE_ASYNC)
792 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
793 
794 	ClearPagePrivate(page);
795 	set_page_private(newpage, page_private(page));
796 	set_page_private(page, 0);
797 	put_page(page);
798 	get_page(newpage);
799 
800 	bh = head;
801 	do {
802 		set_bh_page(bh, newpage, bh_offset(bh));
803 		bh = bh->b_this_page;
804 
805 	} while (bh != head);
806 
807 	SetPagePrivate(newpage);
808 
809 	if (mode != MIGRATE_SYNC_NO_COPY)
810 		migrate_page_copy(newpage, page);
811 	else
812 		migrate_page_states(newpage, page);
813 
814 	bh = head;
815 	do {
816 		unlock_buffer(bh);
817 		put_bh(bh);
818 		bh = bh->b_this_page;
819 
820 	} while (bh != head);
821 
822 	return MIGRATEPAGE_SUCCESS;
823 }
824 EXPORT_SYMBOL(buffer_migrate_page);
825 #endif
826 
827 /*
828  * Writeback a page to clean the dirty state
829  */
830 static int writeout(struct address_space *mapping, struct page *page)
831 {
832 	struct writeback_control wbc = {
833 		.sync_mode = WB_SYNC_NONE,
834 		.nr_to_write = 1,
835 		.range_start = 0,
836 		.range_end = LLONG_MAX,
837 		.for_reclaim = 1
838 	};
839 	int rc;
840 
841 	if (!mapping->a_ops->writepage)
842 		/* No write method for the address space */
843 		return -EINVAL;
844 
845 	if (!clear_page_dirty_for_io(page))
846 		/* Someone else already triggered a write */
847 		return -EAGAIN;
848 
849 	/*
850 	 * A dirty page may imply that the underlying filesystem has
851 	 * the page on some queue. So the page must be clean for
852 	 * migration. Writeout may mean we loose the lock and the
853 	 * page state is no longer what we checked for earlier.
854 	 * At this point we know that the migration attempt cannot
855 	 * be successful.
856 	 */
857 	remove_migration_ptes(page, page, false);
858 
859 	rc = mapping->a_ops->writepage(page, &wbc);
860 
861 	if (rc != AOP_WRITEPAGE_ACTIVATE)
862 		/* unlocked. Relock */
863 		lock_page(page);
864 
865 	return (rc < 0) ? -EIO : -EAGAIN;
866 }
867 
868 /*
869  * Default handling if a filesystem does not provide a migration function.
870  */
871 static int fallback_migrate_page(struct address_space *mapping,
872 	struct page *newpage, struct page *page, enum migrate_mode mode)
873 {
874 	if (PageDirty(page)) {
875 		/* Only writeback pages in full synchronous migration */
876 		switch (mode) {
877 		case MIGRATE_SYNC:
878 		case MIGRATE_SYNC_NO_COPY:
879 			break;
880 		default:
881 			return -EBUSY;
882 		}
883 		return writeout(mapping, page);
884 	}
885 
886 	/*
887 	 * Buffers may be managed in a filesystem specific way.
888 	 * We must have no buffers or drop them.
889 	 */
890 	if (page_has_private(page) &&
891 	    !try_to_release_page(page, GFP_KERNEL))
892 		return -EAGAIN;
893 
894 	return migrate_page(mapping, newpage, page, mode);
895 }
896 
897 /*
898  * Move a page to a newly allocated page
899  * The page is locked and all ptes have been successfully removed.
900  *
901  * The new page will have replaced the old page if this function
902  * is successful.
903  *
904  * Return value:
905  *   < 0 - error code
906  *  MIGRATEPAGE_SUCCESS - success
907  */
908 static int move_to_new_page(struct page *newpage, struct page *page,
909 				enum migrate_mode mode)
910 {
911 	struct address_space *mapping;
912 	int rc = -EAGAIN;
913 	bool is_lru = !__PageMovable(page);
914 
915 	VM_BUG_ON_PAGE(!PageLocked(page), page);
916 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
917 
918 	mapping = page_mapping(page);
919 
920 	if (likely(is_lru)) {
921 		if (!mapping)
922 			rc = migrate_page(mapping, newpage, page, mode);
923 		else if (mapping->a_ops->migratepage)
924 			/*
925 			 * Most pages have a mapping and most filesystems
926 			 * provide a migratepage callback. Anonymous pages
927 			 * are part of swap space which also has its own
928 			 * migratepage callback. This is the most common path
929 			 * for page migration.
930 			 */
931 			rc = mapping->a_ops->migratepage(mapping, newpage,
932 							page, mode);
933 		else
934 			rc = fallback_migrate_page(mapping, newpage,
935 							page, mode);
936 	} else {
937 		/*
938 		 * In case of non-lru page, it could be released after
939 		 * isolation step. In that case, we shouldn't try migration.
940 		 */
941 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
942 		if (!PageMovable(page)) {
943 			rc = MIGRATEPAGE_SUCCESS;
944 			__ClearPageIsolated(page);
945 			goto out;
946 		}
947 
948 		rc = mapping->a_ops->migratepage(mapping, newpage,
949 						page, mode);
950 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
951 			!PageIsolated(page));
952 	}
953 
954 	/*
955 	 * When successful, old pagecache page->mapping must be cleared before
956 	 * page is freed; but stats require that PageAnon be left as PageAnon.
957 	 */
958 	if (rc == MIGRATEPAGE_SUCCESS) {
959 		if (__PageMovable(page)) {
960 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
961 
962 			/*
963 			 * We clear PG_movable under page_lock so any compactor
964 			 * cannot try to migrate this page.
965 			 */
966 			__ClearPageIsolated(page);
967 		}
968 
969 		/*
970 		 * Anonymous and movable page->mapping will be cleard by
971 		 * free_pages_prepare so don't reset it here for keeping
972 		 * the type to work PageAnon, for example.
973 		 */
974 		if (!PageMappingFlags(page))
975 			page->mapping = NULL;
976 	}
977 out:
978 	return rc;
979 }
980 
981 static int __unmap_and_move(struct page *page, struct page *newpage,
982 				int force, enum migrate_mode mode)
983 {
984 	int rc = -EAGAIN;
985 	int page_was_mapped = 0;
986 	struct anon_vma *anon_vma = NULL;
987 	bool is_lru = !__PageMovable(page);
988 
989 	if (!trylock_page(page)) {
990 		if (!force || mode == MIGRATE_ASYNC)
991 			goto out;
992 
993 		/*
994 		 * It's not safe for direct compaction to call lock_page.
995 		 * For example, during page readahead pages are added locked
996 		 * to the LRU. Later, when the IO completes the pages are
997 		 * marked uptodate and unlocked. However, the queueing
998 		 * could be merging multiple pages for one bio (e.g.
999 		 * mpage_readpages). If an allocation happens for the
1000 		 * second or third page, the process can end up locking
1001 		 * the same page twice and deadlocking. Rather than
1002 		 * trying to be clever about what pages can be locked,
1003 		 * avoid the use of lock_page for direct compaction
1004 		 * altogether.
1005 		 */
1006 		if (current->flags & PF_MEMALLOC)
1007 			goto out;
1008 
1009 		lock_page(page);
1010 	}
1011 
1012 	if (PageWriteback(page)) {
1013 		/*
1014 		 * Only in the case of a full synchronous migration is it
1015 		 * necessary to wait for PageWriteback. In the async case,
1016 		 * the retry loop is too short and in the sync-light case,
1017 		 * the overhead of stalling is too much
1018 		 */
1019 		switch (mode) {
1020 		case MIGRATE_SYNC:
1021 		case MIGRATE_SYNC_NO_COPY:
1022 			break;
1023 		default:
1024 			rc = -EBUSY;
1025 			goto out_unlock;
1026 		}
1027 		if (!force)
1028 			goto out_unlock;
1029 		wait_on_page_writeback(page);
1030 	}
1031 
1032 	/*
1033 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1034 	 * we cannot notice that anon_vma is freed while we migrates a page.
1035 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 	 * of migration. File cache pages are no problem because of page_lock()
1037 	 * File Caches may use write_page() or lock_page() in migration, then,
1038 	 * just care Anon page here.
1039 	 *
1040 	 * Only page_get_anon_vma() understands the subtleties of
1041 	 * getting a hold on an anon_vma from outside one of its mms.
1042 	 * But if we cannot get anon_vma, then we won't need it anyway,
1043 	 * because that implies that the anon page is no longer mapped
1044 	 * (and cannot be remapped so long as we hold the page lock).
1045 	 */
1046 	if (PageAnon(page) && !PageKsm(page))
1047 		anon_vma = page_get_anon_vma(page);
1048 
1049 	/*
1050 	 * Block others from accessing the new page when we get around to
1051 	 * establishing additional references. We are usually the only one
1052 	 * holding a reference to newpage at this point. We used to have a BUG
1053 	 * here if trylock_page(newpage) fails, but would like to allow for
1054 	 * cases where there might be a race with the previous use of newpage.
1055 	 * This is much like races on refcount of oldpage: just don't BUG().
1056 	 */
1057 	if (unlikely(!trylock_page(newpage)))
1058 		goto out_unlock;
1059 
1060 	if (unlikely(!is_lru)) {
1061 		rc = move_to_new_page(newpage, page, mode);
1062 		goto out_unlock_both;
1063 	}
1064 
1065 	/*
1066 	 * Corner case handling:
1067 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 	 * and treated as swapcache but it has no rmap yet.
1069 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 	 * trigger a BUG.  So handle it here.
1071 	 * 2. An orphaned page (see truncate_complete_page) might have
1072 	 * fs-private metadata. The page can be picked up due to memory
1073 	 * offlining.  Everywhere else except page reclaim, the page is
1074 	 * invisible to the vm, so the page can not be migrated.  So try to
1075 	 * free the metadata, so the page can be freed.
1076 	 */
1077 	if (!page->mapping) {
1078 		VM_BUG_ON_PAGE(PageAnon(page), page);
1079 		if (page_has_private(page)) {
1080 			try_to_free_buffers(page);
1081 			goto out_unlock_both;
1082 		}
1083 	} else if (page_mapped(page)) {
1084 		/* Establish migration ptes */
1085 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 				page);
1087 		try_to_unmap(page,
1088 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1089 		page_was_mapped = 1;
1090 	}
1091 
1092 	if (!page_mapped(page))
1093 		rc = move_to_new_page(newpage, page, mode);
1094 
1095 	if (page_was_mapped)
1096 		remove_migration_ptes(page,
1097 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1098 
1099 out_unlock_both:
1100 	unlock_page(newpage);
1101 out_unlock:
1102 	/* Drop an anon_vma reference if we took one */
1103 	if (anon_vma)
1104 		put_anon_vma(anon_vma);
1105 	unlock_page(page);
1106 out:
1107 	/*
1108 	 * If migration is successful, decrease refcount of the newpage
1109 	 * which will not free the page because new page owner increased
1110 	 * refcounter. As well, if it is LRU page, add the page to LRU
1111 	 * list in here.
1112 	 */
1113 	if (rc == MIGRATEPAGE_SUCCESS) {
1114 		if (unlikely(__PageMovable(newpage)))
1115 			put_page(newpage);
1116 		else
1117 			putback_lru_page(newpage);
1118 	}
1119 
1120 	return rc;
1121 }
1122 
1123 /*
1124  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1125  * around it.
1126  */
1127 #if defined(CONFIG_ARM) && \
1128 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1129 #define ICE_noinline noinline
1130 #else
1131 #define ICE_noinline
1132 #endif
1133 
1134 /*
1135  * Obtain the lock on page, remove all ptes and migrate the page
1136  * to the newly allocated page in newpage.
1137  */
1138 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1139 				   free_page_t put_new_page,
1140 				   unsigned long private, struct page *page,
1141 				   int force, enum migrate_mode mode,
1142 				   enum migrate_reason reason)
1143 {
1144 	int rc = MIGRATEPAGE_SUCCESS;
1145 	struct page *newpage;
1146 
1147 	if (!thp_migration_supported() && PageTransHuge(page))
1148 		return -ENOMEM;
1149 
1150 	newpage = get_new_page(page, private);
1151 	if (!newpage)
1152 		return -ENOMEM;
1153 
1154 	if (page_count(page) == 1) {
1155 		/* page was freed from under us. So we are done. */
1156 		ClearPageActive(page);
1157 		ClearPageUnevictable(page);
1158 		if (unlikely(__PageMovable(page))) {
1159 			lock_page(page);
1160 			if (!PageMovable(page))
1161 				__ClearPageIsolated(page);
1162 			unlock_page(page);
1163 		}
1164 		if (put_new_page)
1165 			put_new_page(newpage, private);
1166 		else
1167 			put_page(newpage);
1168 		goto out;
1169 	}
1170 
1171 	rc = __unmap_and_move(page, newpage, force, mode);
1172 	if (rc == MIGRATEPAGE_SUCCESS)
1173 		set_page_owner_migrate_reason(newpage, reason);
1174 
1175 out:
1176 	if (rc != -EAGAIN) {
1177 		/*
1178 		 * A page that has been migrated has all references
1179 		 * removed and will be freed. A page that has not been
1180 		 * migrated will have kepts its references and be
1181 		 * restored.
1182 		 */
1183 		list_del(&page->lru);
1184 
1185 		/*
1186 		 * Compaction can migrate also non-LRU pages which are
1187 		 * not accounted to NR_ISOLATED_*. They can be recognized
1188 		 * as __PageMovable
1189 		 */
1190 		if (likely(!__PageMovable(page)))
1191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1192 					page_is_file_cache(page), -hpage_nr_pages(page));
1193 	}
1194 
1195 	/*
1196 	 * If migration is successful, releases reference grabbed during
1197 	 * isolation. Otherwise, restore the page to right list unless
1198 	 * we want to retry.
1199 	 */
1200 	if (rc == MIGRATEPAGE_SUCCESS) {
1201 		put_page(page);
1202 		if (reason == MR_MEMORY_FAILURE) {
1203 			/*
1204 			 * Set PG_HWPoison on just freed page
1205 			 * intentionally. Although it's rather weird,
1206 			 * it's how HWPoison flag works at the moment.
1207 			 */
1208 			if (set_hwpoison_free_buddy_page(page))
1209 				num_poisoned_pages_inc();
1210 		}
1211 	} else {
1212 		if (rc != -EAGAIN) {
1213 			if (likely(!__PageMovable(page))) {
1214 				putback_lru_page(page);
1215 				goto put_new;
1216 			}
1217 
1218 			lock_page(page);
1219 			if (PageMovable(page))
1220 				putback_movable_page(page);
1221 			else
1222 				__ClearPageIsolated(page);
1223 			unlock_page(page);
1224 			put_page(page);
1225 		}
1226 put_new:
1227 		if (put_new_page)
1228 			put_new_page(newpage, private);
1229 		else
1230 			put_page(newpage);
1231 	}
1232 
1233 	return rc;
1234 }
1235 
1236 /*
1237  * Counterpart of unmap_and_move_page() for hugepage migration.
1238  *
1239  * This function doesn't wait the completion of hugepage I/O
1240  * because there is no race between I/O and migration for hugepage.
1241  * Note that currently hugepage I/O occurs only in direct I/O
1242  * where no lock is held and PG_writeback is irrelevant,
1243  * and writeback status of all subpages are counted in the reference
1244  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245  * under direct I/O, the reference of the head page is 512 and a bit more.)
1246  * This means that when we try to migrate hugepage whose subpages are
1247  * doing direct I/O, some references remain after try_to_unmap() and
1248  * hugepage migration fails without data corruption.
1249  *
1250  * There is also no race when direct I/O is issued on the page under migration,
1251  * because then pte is replaced with migration swap entry and direct I/O code
1252  * will wait in the page fault for migration to complete.
1253  */
1254 static int unmap_and_move_huge_page(new_page_t get_new_page,
1255 				free_page_t put_new_page, unsigned long private,
1256 				struct page *hpage, int force,
1257 				enum migrate_mode mode, int reason)
1258 {
1259 	int rc = -EAGAIN;
1260 	int page_was_mapped = 0;
1261 	struct page *new_hpage;
1262 	struct anon_vma *anon_vma = NULL;
1263 
1264 	/*
1265 	 * Movability of hugepages depends on architectures and hugepage size.
1266 	 * This check is necessary because some callers of hugepage migration
1267 	 * like soft offline and memory hotremove don't walk through page
1268 	 * tables or check whether the hugepage is pmd-based or not before
1269 	 * kicking migration.
1270 	 */
1271 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1272 		putback_active_hugepage(hpage);
1273 		return -ENOSYS;
1274 	}
1275 
1276 	new_hpage = get_new_page(hpage, private);
1277 	if (!new_hpage)
1278 		return -ENOMEM;
1279 
1280 	if (!trylock_page(hpage)) {
1281 		if (!force)
1282 			goto out;
1283 		switch (mode) {
1284 		case MIGRATE_SYNC:
1285 		case MIGRATE_SYNC_NO_COPY:
1286 			break;
1287 		default:
1288 			goto out;
1289 		}
1290 		lock_page(hpage);
1291 	}
1292 
1293 	if (PageAnon(hpage))
1294 		anon_vma = page_get_anon_vma(hpage);
1295 
1296 	if (unlikely(!trylock_page(new_hpage)))
1297 		goto put_anon;
1298 
1299 	if (page_mapped(hpage)) {
1300 		try_to_unmap(hpage,
1301 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1302 		page_was_mapped = 1;
1303 	}
1304 
1305 	if (!page_mapped(hpage))
1306 		rc = move_to_new_page(new_hpage, hpage, mode);
1307 
1308 	if (page_was_mapped)
1309 		remove_migration_ptes(hpage,
1310 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1311 
1312 	unlock_page(new_hpage);
1313 
1314 put_anon:
1315 	if (anon_vma)
1316 		put_anon_vma(anon_vma);
1317 
1318 	if (rc == MIGRATEPAGE_SUCCESS) {
1319 		move_hugetlb_state(hpage, new_hpage, reason);
1320 		put_new_page = NULL;
1321 	}
1322 
1323 	unlock_page(hpage);
1324 out:
1325 	if (rc != -EAGAIN)
1326 		putback_active_hugepage(hpage);
1327 
1328 	/*
1329 	 * If migration was not successful and there's a freeing callback, use
1330 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1331 	 * isolation.
1332 	 */
1333 	if (put_new_page)
1334 		put_new_page(new_hpage, private);
1335 	else
1336 		putback_active_hugepage(new_hpage);
1337 
1338 	return rc;
1339 }
1340 
1341 /*
1342  * migrate_pages - migrate the pages specified in a list, to the free pages
1343  *		   supplied as the target for the page migration
1344  *
1345  * @from:		The list of pages to be migrated.
1346  * @get_new_page:	The function used to allocate free pages to be used
1347  *			as the target of the page migration.
1348  * @put_new_page:	The function used to free target pages if migration
1349  *			fails, or NULL if no special handling is necessary.
1350  * @private:		Private data to be passed on to get_new_page()
1351  * @mode:		The migration mode that specifies the constraints for
1352  *			page migration, if any.
1353  * @reason:		The reason for page migration.
1354  *
1355  * The function returns after 10 attempts or if no pages are movable any more
1356  * because the list has become empty or no retryable pages exist any more.
1357  * The caller should call putback_movable_pages() to return pages to the LRU
1358  * or free list only if ret != 0.
1359  *
1360  * Returns the number of pages that were not migrated, or an error code.
1361  */
1362 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1363 		free_page_t put_new_page, unsigned long private,
1364 		enum migrate_mode mode, int reason)
1365 {
1366 	int retry = 1;
1367 	int nr_failed = 0;
1368 	int nr_succeeded = 0;
1369 	int pass = 0;
1370 	struct page *page;
1371 	struct page *page2;
1372 	int swapwrite = current->flags & PF_SWAPWRITE;
1373 	int rc;
1374 
1375 	if (!swapwrite)
1376 		current->flags |= PF_SWAPWRITE;
1377 
1378 	for(pass = 0; pass < 10 && retry; pass++) {
1379 		retry = 0;
1380 
1381 		list_for_each_entry_safe(page, page2, from, lru) {
1382 retry:
1383 			cond_resched();
1384 
1385 			if (PageHuge(page))
1386 				rc = unmap_and_move_huge_page(get_new_page,
1387 						put_new_page, private, page,
1388 						pass > 2, mode, reason);
1389 			else
1390 				rc = unmap_and_move(get_new_page, put_new_page,
1391 						private, page, pass > 2, mode,
1392 						reason);
1393 
1394 			switch(rc) {
1395 			case -ENOMEM:
1396 				/*
1397 				 * THP migration might be unsupported or the
1398 				 * allocation could've failed so we should
1399 				 * retry on the same page with the THP split
1400 				 * to base pages.
1401 				 *
1402 				 * Head page is retried immediately and tail
1403 				 * pages are added to the tail of the list so
1404 				 * we encounter them after the rest of the list
1405 				 * is processed.
1406 				 */
1407 				if (PageTransHuge(page) && !PageHuge(page)) {
1408 					lock_page(page);
1409 					rc = split_huge_page_to_list(page, from);
1410 					unlock_page(page);
1411 					if (!rc) {
1412 						list_safe_reset_next(page, page2, lru);
1413 						goto retry;
1414 					}
1415 				}
1416 				nr_failed++;
1417 				goto out;
1418 			case -EAGAIN:
1419 				retry++;
1420 				break;
1421 			case MIGRATEPAGE_SUCCESS:
1422 				nr_succeeded++;
1423 				break;
1424 			default:
1425 				/*
1426 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1427 				 * unlike -EAGAIN case, the failed page is
1428 				 * removed from migration page list and not
1429 				 * retried in the next outer loop.
1430 				 */
1431 				nr_failed++;
1432 				break;
1433 			}
1434 		}
1435 	}
1436 	nr_failed += retry;
1437 	rc = nr_failed;
1438 out:
1439 	if (nr_succeeded)
1440 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1441 	if (nr_failed)
1442 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1443 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1444 
1445 	if (!swapwrite)
1446 		current->flags &= ~PF_SWAPWRITE;
1447 
1448 	return rc;
1449 }
1450 
1451 #ifdef CONFIG_NUMA
1452 
1453 static int store_status(int __user *status, int start, int value, int nr)
1454 {
1455 	while (nr-- > 0) {
1456 		if (put_user(value, status + start))
1457 			return -EFAULT;
1458 		start++;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int do_move_pages_to_node(struct mm_struct *mm,
1465 		struct list_head *pagelist, int node)
1466 {
1467 	int err;
1468 
1469 	if (list_empty(pagelist))
1470 		return 0;
1471 
1472 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1473 			MIGRATE_SYNC, MR_SYSCALL);
1474 	if (err)
1475 		putback_movable_pages(pagelist);
1476 	return err;
1477 }
1478 
1479 /*
1480  * Resolves the given address to a struct page, isolates it from the LRU and
1481  * puts it to the given pagelist.
1482  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1483  * queued or the page doesn't need to be migrated because it is already on
1484  * the target node
1485  */
1486 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1487 		int node, struct list_head *pagelist, bool migrate_all)
1488 {
1489 	struct vm_area_struct *vma;
1490 	struct page *page;
1491 	unsigned int follflags;
1492 	int err;
1493 
1494 	down_read(&mm->mmap_sem);
1495 	err = -EFAULT;
1496 	vma = find_vma(mm, addr);
1497 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1498 		goto out;
1499 
1500 	/* FOLL_DUMP to ignore special (like zero) pages */
1501 	follflags = FOLL_GET | FOLL_DUMP;
1502 	page = follow_page(vma, addr, follflags);
1503 
1504 	err = PTR_ERR(page);
1505 	if (IS_ERR(page))
1506 		goto out;
1507 
1508 	err = -ENOENT;
1509 	if (!page)
1510 		goto out;
1511 
1512 	err = 0;
1513 	if (page_to_nid(page) == node)
1514 		goto out_putpage;
1515 
1516 	err = -EACCES;
1517 	if (page_mapcount(page) > 1 && !migrate_all)
1518 		goto out_putpage;
1519 
1520 	if (PageHuge(page)) {
1521 		if (PageHead(page)) {
1522 			isolate_huge_page(page, pagelist);
1523 			err = 0;
1524 		}
1525 	} else {
1526 		struct page *head;
1527 
1528 		head = compound_head(page);
1529 		err = isolate_lru_page(head);
1530 		if (err)
1531 			goto out_putpage;
1532 
1533 		err = 0;
1534 		list_add_tail(&head->lru, pagelist);
1535 		mod_node_page_state(page_pgdat(head),
1536 			NR_ISOLATED_ANON + page_is_file_cache(head),
1537 			hpage_nr_pages(head));
1538 	}
1539 out_putpage:
1540 	/*
1541 	 * Either remove the duplicate refcount from
1542 	 * isolate_lru_page() or drop the page ref if it was
1543 	 * not isolated.
1544 	 */
1545 	put_page(page);
1546 out:
1547 	up_read(&mm->mmap_sem);
1548 	return err;
1549 }
1550 
1551 /*
1552  * Migrate an array of page address onto an array of nodes and fill
1553  * the corresponding array of status.
1554  */
1555 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1556 			 unsigned long nr_pages,
1557 			 const void __user * __user *pages,
1558 			 const int __user *nodes,
1559 			 int __user *status, int flags)
1560 {
1561 	int current_node = NUMA_NO_NODE;
1562 	LIST_HEAD(pagelist);
1563 	int start, i;
1564 	int err = 0, err1;
1565 
1566 	migrate_prep();
1567 
1568 	for (i = start = 0; i < nr_pages; i++) {
1569 		const void __user *p;
1570 		unsigned long addr;
1571 		int node;
1572 
1573 		err = -EFAULT;
1574 		if (get_user(p, pages + i))
1575 			goto out_flush;
1576 		if (get_user(node, nodes + i))
1577 			goto out_flush;
1578 		addr = (unsigned long)p;
1579 
1580 		err = -ENODEV;
1581 		if (node < 0 || node >= MAX_NUMNODES)
1582 			goto out_flush;
1583 		if (!node_state(node, N_MEMORY))
1584 			goto out_flush;
1585 
1586 		err = -EACCES;
1587 		if (!node_isset(node, task_nodes))
1588 			goto out_flush;
1589 
1590 		if (current_node == NUMA_NO_NODE) {
1591 			current_node = node;
1592 			start = i;
1593 		} else if (node != current_node) {
1594 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1595 			if (err)
1596 				goto out;
1597 			err = store_status(status, start, current_node, i - start);
1598 			if (err)
1599 				goto out;
1600 			start = i;
1601 			current_node = node;
1602 		}
1603 
1604 		/*
1605 		 * Errors in the page lookup or isolation are not fatal and we simply
1606 		 * report them via status
1607 		 */
1608 		err = add_page_for_migration(mm, addr, current_node,
1609 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1610 		if (!err)
1611 			continue;
1612 
1613 		err = store_status(status, i, err, 1);
1614 		if (err)
1615 			goto out_flush;
1616 
1617 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1618 		if (err)
1619 			goto out;
1620 		if (i > start) {
1621 			err = store_status(status, start, current_node, i - start);
1622 			if (err)
1623 				goto out;
1624 		}
1625 		current_node = NUMA_NO_NODE;
1626 	}
1627 out_flush:
1628 	if (list_empty(&pagelist))
1629 		return err;
1630 
1631 	/* Make sure we do not overwrite the existing error */
1632 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1633 	if (!err1)
1634 		err1 = store_status(status, start, current_node, i - start);
1635 	if (!err)
1636 		err = err1;
1637 out:
1638 	return err;
1639 }
1640 
1641 /*
1642  * Determine the nodes of an array of pages and store it in an array of status.
1643  */
1644 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1645 				const void __user **pages, int *status)
1646 {
1647 	unsigned long i;
1648 
1649 	down_read(&mm->mmap_sem);
1650 
1651 	for (i = 0; i < nr_pages; i++) {
1652 		unsigned long addr = (unsigned long)(*pages);
1653 		struct vm_area_struct *vma;
1654 		struct page *page;
1655 		int err = -EFAULT;
1656 
1657 		vma = find_vma(mm, addr);
1658 		if (!vma || addr < vma->vm_start)
1659 			goto set_status;
1660 
1661 		/* FOLL_DUMP to ignore special (like zero) pages */
1662 		page = follow_page(vma, addr, FOLL_DUMP);
1663 
1664 		err = PTR_ERR(page);
1665 		if (IS_ERR(page))
1666 			goto set_status;
1667 
1668 		err = page ? page_to_nid(page) : -ENOENT;
1669 set_status:
1670 		*status = err;
1671 
1672 		pages++;
1673 		status++;
1674 	}
1675 
1676 	up_read(&mm->mmap_sem);
1677 }
1678 
1679 /*
1680  * Determine the nodes of a user array of pages and store it in
1681  * a user array of status.
1682  */
1683 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1684 			 const void __user * __user *pages,
1685 			 int __user *status)
1686 {
1687 #define DO_PAGES_STAT_CHUNK_NR 16
1688 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1689 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1690 
1691 	while (nr_pages) {
1692 		unsigned long chunk_nr;
1693 
1694 		chunk_nr = nr_pages;
1695 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1696 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1697 
1698 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1699 			break;
1700 
1701 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1702 
1703 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1704 			break;
1705 
1706 		pages += chunk_nr;
1707 		status += chunk_nr;
1708 		nr_pages -= chunk_nr;
1709 	}
1710 	return nr_pages ? -EFAULT : 0;
1711 }
1712 
1713 /*
1714  * Move a list of pages in the address space of the currently executing
1715  * process.
1716  */
1717 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1718 			     const void __user * __user *pages,
1719 			     const int __user *nodes,
1720 			     int __user *status, int flags)
1721 {
1722 	struct task_struct *task;
1723 	struct mm_struct *mm;
1724 	int err;
1725 	nodemask_t task_nodes;
1726 
1727 	/* Check flags */
1728 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1729 		return -EINVAL;
1730 
1731 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1732 		return -EPERM;
1733 
1734 	/* Find the mm_struct */
1735 	rcu_read_lock();
1736 	task = pid ? find_task_by_vpid(pid) : current;
1737 	if (!task) {
1738 		rcu_read_unlock();
1739 		return -ESRCH;
1740 	}
1741 	get_task_struct(task);
1742 
1743 	/*
1744 	 * Check if this process has the right to modify the specified
1745 	 * process. Use the regular "ptrace_may_access()" checks.
1746 	 */
1747 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1748 		rcu_read_unlock();
1749 		err = -EPERM;
1750 		goto out;
1751 	}
1752 	rcu_read_unlock();
1753 
1754  	err = security_task_movememory(task);
1755  	if (err)
1756 		goto out;
1757 
1758 	task_nodes = cpuset_mems_allowed(task);
1759 	mm = get_task_mm(task);
1760 	put_task_struct(task);
1761 
1762 	if (!mm)
1763 		return -EINVAL;
1764 
1765 	if (nodes)
1766 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1767 				    nodes, status, flags);
1768 	else
1769 		err = do_pages_stat(mm, nr_pages, pages, status);
1770 
1771 	mmput(mm);
1772 	return err;
1773 
1774 out:
1775 	put_task_struct(task);
1776 	return err;
1777 }
1778 
1779 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1780 		const void __user * __user *, pages,
1781 		const int __user *, nodes,
1782 		int __user *, status, int, flags)
1783 {
1784 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1785 }
1786 
1787 #ifdef CONFIG_COMPAT
1788 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1789 		       compat_uptr_t __user *, pages32,
1790 		       const int __user *, nodes,
1791 		       int __user *, status,
1792 		       int, flags)
1793 {
1794 	const void __user * __user *pages;
1795 	int i;
1796 
1797 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1798 	for (i = 0; i < nr_pages; i++) {
1799 		compat_uptr_t p;
1800 
1801 		if (get_user(p, pages32 + i) ||
1802 			put_user(compat_ptr(p), pages + i))
1803 			return -EFAULT;
1804 	}
1805 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1806 }
1807 #endif /* CONFIG_COMPAT */
1808 
1809 #ifdef CONFIG_NUMA_BALANCING
1810 /*
1811  * Returns true if this is a safe migration target node for misplaced NUMA
1812  * pages. Currently it only checks the watermarks which crude
1813  */
1814 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1815 				   unsigned long nr_migrate_pages)
1816 {
1817 	int z;
1818 
1819 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 		struct zone *zone = pgdat->node_zones + z;
1821 
1822 		if (!populated_zone(zone))
1823 			continue;
1824 
1825 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1826 		if (!zone_watermark_ok(zone, 0,
1827 				       high_wmark_pages(zone) +
1828 				       nr_migrate_pages,
1829 				       0, 0))
1830 			continue;
1831 		return true;
1832 	}
1833 	return false;
1834 }
1835 
1836 static struct page *alloc_misplaced_dst_page(struct page *page,
1837 					   unsigned long data)
1838 {
1839 	int nid = (int) data;
1840 	struct page *newpage;
1841 
1842 	newpage = __alloc_pages_node(nid,
1843 					 (GFP_HIGHUSER_MOVABLE |
1844 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1845 					  __GFP_NORETRY | __GFP_NOWARN) &
1846 					 ~__GFP_RECLAIM, 0);
1847 
1848 	return newpage;
1849 }
1850 
1851 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1852 {
1853 	int page_lru;
1854 
1855 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1856 
1857 	/* Avoid migrating to a node that is nearly full */
1858 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1859 		return 0;
1860 
1861 	if (isolate_lru_page(page))
1862 		return 0;
1863 
1864 	/*
1865 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1866 	 * check on page_count(), so we must do it here, now that the page
1867 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1868 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1869 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1870 	 */
1871 	if (PageTransHuge(page) && page_count(page) != 3) {
1872 		putback_lru_page(page);
1873 		return 0;
1874 	}
1875 
1876 	page_lru = page_is_file_cache(page);
1877 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1878 				hpage_nr_pages(page));
1879 
1880 	/*
1881 	 * Isolating the page has taken another reference, so the
1882 	 * caller's reference can be safely dropped without the page
1883 	 * disappearing underneath us during migration.
1884 	 */
1885 	put_page(page);
1886 	return 1;
1887 }
1888 
1889 bool pmd_trans_migrating(pmd_t pmd)
1890 {
1891 	struct page *page = pmd_page(pmd);
1892 	return PageLocked(page);
1893 }
1894 
1895 /*
1896  * Attempt to migrate a misplaced page to the specified destination
1897  * node. Caller is expected to have an elevated reference count on
1898  * the page that will be dropped by this function before returning.
1899  */
1900 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1901 			   int node)
1902 {
1903 	pg_data_t *pgdat = NODE_DATA(node);
1904 	int isolated;
1905 	int nr_remaining;
1906 	LIST_HEAD(migratepages);
1907 
1908 	/*
1909 	 * Don't migrate file pages that are mapped in multiple processes
1910 	 * with execute permissions as they are probably shared libraries.
1911 	 */
1912 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1913 	    (vma->vm_flags & VM_EXEC))
1914 		goto out;
1915 
1916 	/*
1917 	 * Also do not migrate dirty pages as not all filesystems can move
1918 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1919 	 */
1920 	if (page_is_file_cache(page) && PageDirty(page))
1921 		goto out;
1922 
1923 	isolated = numamigrate_isolate_page(pgdat, page);
1924 	if (!isolated)
1925 		goto out;
1926 
1927 	list_add(&page->lru, &migratepages);
1928 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1929 				     NULL, node, MIGRATE_ASYNC,
1930 				     MR_NUMA_MISPLACED);
1931 	if (nr_remaining) {
1932 		if (!list_empty(&migratepages)) {
1933 			list_del(&page->lru);
1934 			dec_node_page_state(page, NR_ISOLATED_ANON +
1935 					page_is_file_cache(page));
1936 			putback_lru_page(page);
1937 		}
1938 		isolated = 0;
1939 	} else
1940 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1941 	BUG_ON(!list_empty(&migratepages));
1942 	return isolated;
1943 
1944 out:
1945 	put_page(page);
1946 	return 0;
1947 }
1948 #endif /* CONFIG_NUMA_BALANCING */
1949 
1950 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1951 /*
1952  * Migrates a THP to a given target node. page must be locked and is unlocked
1953  * before returning.
1954  */
1955 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1956 				struct vm_area_struct *vma,
1957 				pmd_t *pmd, pmd_t entry,
1958 				unsigned long address,
1959 				struct page *page, int node)
1960 {
1961 	spinlock_t *ptl;
1962 	pg_data_t *pgdat = NODE_DATA(node);
1963 	int isolated = 0;
1964 	struct page *new_page = NULL;
1965 	int page_lru = page_is_file_cache(page);
1966 	unsigned long start = address & HPAGE_PMD_MASK;
1967 
1968 	new_page = alloc_pages_node(node,
1969 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1970 		HPAGE_PMD_ORDER);
1971 	if (!new_page)
1972 		goto out_fail;
1973 	prep_transhuge_page(new_page);
1974 
1975 	isolated = numamigrate_isolate_page(pgdat, page);
1976 	if (!isolated) {
1977 		put_page(new_page);
1978 		goto out_fail;
1979 	}
1980 
1981 	/* Prepare a page as a migration target */
1982 	__SetPageLocked(new_page);
1983 	if (PageSwapBacked(page))
1984 		__SetPageSwapBacked(new_page);
1985 
1986 	/* anon mapping, we can simply copy page->mapping to the new page: */
1987 	new_page->mapping = page->mapping;
1988 	new_page->index = page->index;
1989 	/* flush the cache before copying using the kernel virtual address */
1990 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1991 	migrate_page_copy(new_page, page);
1992 	WARN_ON(PageLRU(new_page));
1993 
1994 	/* Recheck the target PMD */
1995 	ptl = pmd_lock(mm, pmd);
1996 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1997 		spin_unlock(ptl);
1998 
1999 		/* Reverse changes made by migrate_page_copy() */
2000 		if (TestClearPageActive(new_page))
2001 			SetPageActive(page);
2002 		if (TestClearPageUnevictable(new_page))
2003 			SetPageUnevictable(page);
2004 
2005 		unlock_page(new_page);
2006 		put_page(new_page);		/* Free it */
2007 
2008 		/* Retake the callers reference and putback on LRU */
2009 		get_page(page);
2010 		putback_lru_page(page);
2011 		mod_node_page_state(page_pgdat(page),
2012 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2013 
2014 		goto out_unlock;
2015 	}
2016 
2017 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2018 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2019 
2020 	/*
2021 	 * Overwrite the old entry under pagetable lock and establish
2022 	 * the new PTE. Any parallel GUP will either observe the old
2023 	 * page blocking on the page lock, block on the page table
2024 	 * lock or observe the new page. The SetPageUptodate on the
2025 	 * new page and page_add_new_anon_rmap guarantee the copy is
2026 	 * visible before the pagetable update.
2027 	 */
2028 	page_add_anon_rmap(new_page, vma, start, true);
2029 	/*
2030 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2031 	 * has already been flushed globally.  So no TLB can be currently
2032 	 * caching this non present pmd mapping.  There's no need to clear the
2033 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2034 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2035 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2036 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2037 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2038 	 * pmd.
2039 	 */
2040 	set_pmd_at(mm, start, pmd, entry);
2041 	update_mmu_cache_pmd(vma, address, &entry);
2042 
2043 	page_ref_unfreeze(page, 2);
2044 	mlock_migrate_page(new_page, page);
2045 	page_remove_rmap(page, true);
2046 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2047 
2048 	spin_unlock(ptl);
2049 
2050 	/* Take an "isolate" reference and put new page on the LRU. */
2051 	get_page(new_page);
2052 	putback_lru_page(new_page);
2053 
2054 	unlock_page(new_page);
2055 	unlock_page(page);
2056 	put_page(page);			/* Drop the rmap reference */
2057 	put_page(page);			/* Drop the LRU isolation reference */
2058 
2059 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2060 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2061 
2062 	mod_node_page_state(page_pgdat(page),
2063 			NR_ISOLATED_ANON + page_lru,
2064 			-HPAGE_PMD_NR);
2065 	return isolated;
2066 
2067 out_fail:
2068 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2069 	ptl = pmd_lock(mm, pmd);
2070 	if (pmd_same(*pmd, entry)) {
2071 		entry = pmd_modify(entry, vma->vm_page_prot);
2072 		set_pmd_at(mm, start, pmd, entry);
2073 		update_mmu_cache_pmd(vma, address, &entry);
2074 	}
2075 	spin_unlock(ptl);
2076 
2077 out_unlock:
2078 	unlock_page(page);
2079 	put_page(page);
2080 	return 0;
2081 }
2082 #endif /* CONFIG_NUMA_BALANCING */
2083 
2084 #endif /* CONFIG_NUMA */
2085 
2086 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2087 struct migrate_vma {
2088 	struct vm_area_struct	*vma;
2089 	unsigned long		*dst;
2090 	unsigned long		*src;
2091 	unsigned long		cpages;
2092 	unsigned long		npages;
2093 	unsigned long		start;
2094 	unsigned long		end;
2095 };
2096 
2097 static int migrate_vma_collect_hole(unsigned long start,
2098 				    unsigned long end,
2099 				    struct mm_walk *walk)
2100 {
2101 	struct migrate_vma *migrate = walk->private;
2102 	unsigned long addr;
2103 
2104 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2105 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2106 		migrate->dst[migrate->npages] = 0;
2107 		migrate->npages++;
2108 		migrate->cpages++;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static int migrate_vma_collect_skip(unsigned long start,
2115 				    unsigned long end,
2116 				    struct mm_walk *walk)
2117 {
2118 	struct migrate_vma *migrate = walk->private;
2119 	unsigned long addr;
2120 
2121 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2122 		migrate->dst[migrate->npages] = 0;
2123 		migrate->src[migrate->npages++] = 0;
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2130 				   unsigned long start,
2131 				   unsigned long end,
2132 				   struct mm_walk *walk)
2133 {
2134 	struct migrate_vma *migrate = walk->private;
2135 	struct vm_area_struct *vma = walk->vma;
2136 	struct mm_struct *mm = vma->vm_mm;
2137 	unsigned long addr = start, unmapped = 0;
2138 	spinlock_t *ptl;
2139 	pte_t *ptep;
2140 
2141 again:
2142 	if (pmd_none(*pmdp))
2143 		return migrate_vma_collect_hole(start, end, walk);
2144 
2145 	if (pmd_trans_huge(*pmdp)) {
2146 		struct page *page;
2147 
2148 		ptl = pmd_lock(mm, pmdp);
2149 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2150 			spin_unlock(ptl);
2151 			goto again;
2152 		}
2153 
2154 		page = pmd_page(*pmdp);
2155 		if (is_huge_zero_page(page)) {
2156 			spin_unlock(ptl);
2157 			split_huge_pmd(vma, pmdp, addr);
2158 			if (pmd_trans_unstable(pmdp))
2159 				return migrate_vma_collect_skip(start, end,
2160 								walk);
2161 		} else {
2162 			int ret;
2163 
2164 			get_page(page);
2165 			spin_unlock(ptl);
2166 			if (unlikely(!trylock_page(page)))
2167 				return migrate_vma_collect_skip(start, end,
2168 								walk);
2169 			ret = split_huge_page(page);
2170 			unlock_page(page);
2171 			put_page(page);
2172 			if (ret)
2173 				return migrate_vma_collect_skip(start, end,
2174 								walk);
2175 			if (pmd_none(*pmdp))
2176 				return migrate_vma_collect_hole(start, end,
2177 								walk);
2178 		}
2179 	}
2180 
2181 	if (unlikely(pmd_bad(*pmdp)))
2182 		return migrate_vma_collect_skip(start, end, walk);
2183 
2184 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2185 	arch_enter_lazy_mmu_mode();
2186 
2187 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2188 		unsigned long mpfn, pfn;
2189 		struct page *page;
2190 		swp_entry_t entry;
2191 		pte_t pte;
2192 
2193 		pte = *ptep;
2194 		pfn = pte_pfn(pte);
2195 
2196 		if (pte_none(pte)) {
2197 			mpfn = MIGRATE_PFN_MIGRATE;
2198 			migrate->cpages++;
2199 			pfn = 0;
2200 			goto next;
2201 		}
2202 
2203 		if (!pte_present(pte)) {
2204 			mpfn = pfn = 0;
2205 
2206 			/*
2207 			 * Only care about unaddressable device page special
2208 			 * page table entry. Other special swap entries are not
2209 			 * migratable, and we ignore regular swapped page.
2210 			 */
2211 			entry = pte_to_swp_entry(pte);
2212 			if (!is_device_private_entry(entry))
2213 				goto next;
2214 
2215 			page = device_private_entry_to_page(entry);
2216 			mpfn = migrate_pfn(page_to_pfn(page))|
2217 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2218 			if (is_write_device_private_entry(entry))
2219 				mpfn |= MIGRATE_PFN_WRITE;
2220 		} else {
2221 			if (is_zero_pfn(pfn)) {
2222 				mpfn = MIGRATE_PFN_MIGRATE;
2223 				migrate->cpages++;
2224 				pfn = 0;
2225 				goto next;
2226 			}
2227 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2228 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2229 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2230 		}
2231 
2232 		/* FIXME support THP */
2233 		if (!page || !page->mapping || PageTransCompound(page)) {
2234 			mpfn = pfn = 0;
2235 			goto next;
2236 		}
2237 		pfn = page_to_pfn(page);
2238 
2239 		/*
2240 		 * By getting a reference on the page we pin it and that blocks
2241 		 * any kind of migration. Side effect is that it "freezes" the
2242 		 * pte.
2243 		 *
2244 		 * We drop this reference after isolating the page from the lru
2245 		 * for non device page (device page are not on the lru and thus
2246 		 * can't be dropped from it).
2247 		 */
2248 		get_page(page);
2249 		migrate->cpages++;
2250 
2251 		/*
2252 		 * Optimize for the common case where page is only mapped once
2253 		 * in one process. If we can lock the page, then we can safely
2254 		 * set up a special migration page table entry now.
2255 		 */
2256 		if (trylock_page(page)) {
2257 			pte_t swp_pte;
2258 
2259 			mpfn |= MIGRATE_PFN_LOCKED;
2260 			ptep_get_and_clear(mm, addr, ptep);
2261 
2262 			/* Setup special migration page table entry */
2263 			entry = make_migration_entry(page, mpfn &
2264 						     MIGRATE_PFN_WRITE);
2265 			swp_pte = swp_entry_to_pte(entry);
2266 			if (pte_soft_dirty(pte))
2267 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2268 			set_pte_at(mm, addr, ptep, swp_pte);
2269 
2270 			/*
2271 			 * This is like regular unmap: we remove the rmap and
2272 			 * drop page refcount. Page won't be freed, as we took
2273 			 * a reference just above.
2274 			 */
2275 			page_remove_rmap(page, false);
2276 			put_page(page);
2277 
2278 			if (pte_present(pte))
2279 				unmapped++;
2280 		}
2281 
2282 next:
2283 		migrate->dst[migrate->npages] = 0;
2284 		migrate->src[migrate->npages++] = mpfn;
2285 	}
2286 	arch_leave_lazy_mmu_mode();
2287 	pte_unmap_unlock(ptep - 1, ptl);
2288 
2289 	/* Only flush the TLB if we actually modified any entries */
2290 	if (unmapped)
2291 		flush_tlb_range(walk->vma, start, end);
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * migrate_vma_collect() - collect pages over a range of virtual addresses
2298  * @migrate: migrate struct containing all migration information
2299  *
2300  * This will walk the CPU page table. For each virtual address backed by a
2301  * valid page, it updates the src array and takes a reference on the page, in
2302  * order to pin the page until we lock it and unmap it.
2303  */
2304 static void migrate_vma_collect(struct migrate_vma *migrate)
2305 {
2306 	struct mm_walk mm_walk;
2307 
2308 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2309 	mm_walk.pte_entry = NULL;
2310 	mm_walk.pte_hole = migrate_vma_collect_hole;
2311 	mm_walk.hugetlb_entry = NULL;
2312 	mm_walk.test_walk = NULL;
2313 	mm_walk.vma = migrate->vma;
2314 	mm_walk.mm = migrate->vma->vm_mm;
2315 	mm_walk.private = migrate;
2316 
2317 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2318 					    migrate->start,
2319 					    migrate->end);
2320 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2321 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2322 					  migrate->start,
2323 					  migrate->end);
2324 
2325 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2326 }
2327 
2328 /*
2329  * migrate_vma_check_page() - check if page is pinned or not
2330  * @page: struct page to check
2331  *
2332  * Pinned pages cannot be migrated. This is the same test as in
2333  * migrate_page_move_mapping(), except that here we allow migration of a
2334  * ZONE_DEVICE page.
2335  */
2336 static bool migrate_vma_check_page(struct page *page)
2337 {
2338 	/*
2339 	 * One extra ref because caller holds an extra reference, either from
2340 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2341 	 * a device page.
2342 	 */
2343 	int extra = 1;
2344 
2345 	/*
2346 	 * FIXME support THP (transparent huge page), it is bit more complex to
2347 	 * check them than regular pages, because they can be mapped with a pmd
2348 	 * or with a pte (split pte mapping).
2349 	 */
2350 	if (PageCompound(page))
2351 		return false;
2352 
2353 	/* Page from ZONE_DEVICE have one extra reference */
2354 	if (is_zone_device_page(page)) {
2355 		/*
2356 		 * Private page can never be pin as they have no valid pte and
2357 		 * GUP will fail for those. Yet if there is a pending migration
2358 		 * a thread might try to wait on the pte migration entry and
2359 		 * will bump the page reference count. Sadly there is no way to
2360 		 * differentiate a regular pin from migration wait. Hence to
2361 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2362 		 * infinite loop (one stoping migration because the other is
2363 		 * waiting on pte migration entry). We always return true here.
2364 		 *
2365 		 * FIXME proper solution is to rework migration_entry_wait() so
2366 		 * it does not need to take a reference on page.
2367 		 */
2368 		if (is_device_private_page(page))
2369 			return true;
2370 
2371 		/*
2372 		 * Only allow device public page to be migrated and account for
2373 		 * the extra reference count imply by ZONE_DEVICE pages.
2374 		 */
2375 		if (!is_device_public_page(page))
2376 			return false;
2377 		extra++;
2378 	}
2379 
2380 	/* For file back page */
2381 	if (page_mapping(page))
2382 		extra += 1 + page_has_private(page);
2383 
2384 	if ((page_count(page) - extra) > page_mapcount(page))
2385 		return false;
2386 
2387 	return true;
2388 }
2389 
2390 /*
2391  * migrate_vma_prepare() - lock pages and isolate them from the lru
2392  * @migrate: migrate struct containing all migration information
2393  *
2394  * This locks pages that have been collected by migrate_vma_collect(). Once each
2395  * page is locked it is isolated from the lru (for non-device pages). Finally,
2396  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2397  * migrated by concurrent kernel threads.
2398  */
2399 static void migrate_vma_prepare(struct migrate_vma *migrate)
2400 {
2401 	const unsigned long npages = migrate->npages;
2402 	const unsigned long start = migrate->start;
2403 	unsigned long addr, i, restore = 0;
2404 	bool allow_drain = true;
2405 
2406 	lru_add_drain();
2407 
2408 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2409 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2410 		bool remap = true;
2411 
2412 		if (!page)
2413 			continue;
2414 
2415 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2416 			/*
2417 			 * Because we are migrating several pages there can be
2418 			 * a deadlock between 2 concurrent migration where each
2419 			 * are waiting on each other page lock.
2420 			 *
2421 			 * Make migrate_vma() a best effort thing and backoff
2422 			 * for any page we can not lock right away.
2423 			 */
2424 			if (!trylock_page(page)) {
2425 				migrate->src[i] = 0;
2426 				migrate->cpages--;
2427 				put_page(page);
2428 				continue;
2429 			}
2430 			remap = false;
2431 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2432 		}
2433 
2434 		/* ZONE_DEVICE pages are not on LRU */
2435 		if (!is_zone_device_page(page)) {
2436 			if (!PageLRU(page) && allow_drain) {
2437 				/* Drain CPU's pagevec */
2438 				lru_add_drain_all();
2439 				allow_drain = false;
2440 			}
2441 
2442 			if (isolate_lru_page(page)) {
2443 				if (remap) {
2444 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2445 					migrate->cpages--;
2446 					restore++;
2447 				} else {
2448 					migrate->src[i] = 0;
2449 					unlock_page(page);
2450 					migrate->cpages--;
2451 					put_page(page);
2452 				}
2453 				continue;
2454 			}
2455 
2456 			/* Drop the reference we took in collect */
2457 			put_page(page);
2458 		}
2459 
2460 		if (!migrate_vma_check_page(page)) {
2461 			if (remap) {
2462 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2463 				migrate->cpages--;
2464 				restore++;
2465 
2466 				if (!is_zone_device_page(page)) {
2467 					get_page(page);
2468 					putback_lru_page(page);
2469 				}
2470 			} else {
2471 				migrate->src[i] = 0;
2472 				unlock_page(page);
2473 				migrate->cpages--;
2474 
2475 				if (!is_zone_device_page(page))
2476 					putback_lru_page(page);
2477 				else
2478 					put_page(page);
2479 			}
2480 		}
2481 	}
2482 
2483 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2484 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2485 
2486 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2487 			continue;
2488 
2489 		remove_migration_pte(page, migrate->vma, addr, page);
2490 
2491 		migrate->src[i] = 0;
2492 		unlock_page(page);
2493 		put_page(page);
2494 		restore--;
2495 	}
2496 }
2497 
2498 /*
2499  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2500  * @migrate: migrate struct containing all migration information
2501  *
2502  * Replace page mapping (CPU page table pte) with a special migration pte entry
2503  * and check again if it has been pinned. Pinned pages are restored because we
2504  * cannot migrate them.
2505  *
2506  * This is the last step before we call the device driver callback to allocate
2507  * destination memory and copy contents of original page over to new page.
2508  */
2509 static void migrate_vma_unmap(struct migrate_vma *migrate)
2510 {
2511 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2512 	const unsigned long npages = migrate->npages;
2513 	const unsigned long start = migrate->start;
2514 	unsigned long addr, i, restore = 0;
2515 
2516 	for (i = 0; i < npages; i++) {
2517 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2518 
2519 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2520 			continue;
2521 
2522 		if (page_mapped(page)) {
2523 			try_to_unmap(page, flags);
2524 			if (page_mapped(page))
2525 				goto restore;
2526 		}
2527 
2528 		if (migrate_vma_check_page(page))
2529 			continue;
2530 
2531 restore:
2532 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2533 		migrate->cpages--;
2534 		restore++;
2535 	}
2536 
2537 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2538 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2539 
2540 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2541 			continue;
2542 
2543 		remove_migration_ptes(page, page, false);
2544 
2545 		migrate->src[i] = 0;
2546 		unlock_page(page);
2547 		restore--;
2548 
2549 		if (is_zone_device_page(page))
2550 			put_page(page);
2551 		else
2552 			putback_lru_page(page);
2553 	}
2554 }
2555 
2556 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2557 				    unsigned long addr,
2558 				    struct page *page,
2559 				    unsigned long *src,
2560 				    unsigned long *dst)
2561 {
2562 	struct vm_area_struct *vma = migrate->vma;
2563 	struct mm_struct *mm = vma->vm_mm;
2564 	struct mem_cgroup *memcg;
2565 	bool flush = false;
2566 	spinlock_t *ptl;
2567 	pte_t entry;
2568 	pgd_t *pgdp;
2569 	p4d_t *p4dp;
2570 	pud_t *pudp;
2571 	pmd_t *pmdp;
2572 	pte_t *ptep;
2573 
2574 	/* Only allow populating anonymous memory */
2575 	if (!vma_is_anonymous(vma))
2576 		goto abort;
2577 
2578 	pgdp = pgd_offset(mm, addr);
2579 	p4dp = p4d_alloc(mm, pgdp, addr);
2580 	if (!p4dp)
2581 		goto abort;
2582 	pudp = pud_alloc(mm, p4dp, addr);
2583 	if (!pudp)
2584 		goto abort;
2585 	pmdp = pmd_alloc(mm, pudp, addr);
2586 	if (!pmdp)
2587 		goto abort;
2588 
2589 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2590 		goto abort;
2591 
2592 	/*
2593 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2594 	 * pte_offset_map() on pmds where a huge pmd might be created
2595 	 * from a different thread.
2596 	 *
2597 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2598 	 * parallel threads are excluded by other means.
2599 	 *
2600 	 * Here we only have down_read(mmap_sem).
2601 	 */
2602 	if (pte_alloc(mm, pmdp, addr))
2603 		goto abort;
2604 
2605 	/* See the comment in pte_alloc_one_map() */
2606 	if (unlikely(pmd_trans_unstable(pmdp)))
2607 		goto abort;
2608 
2609 	if (unlikely(anon_vma_prepare(vma)))
2610 		goto abort;
2611 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2612 		goto abort;
2613 
2614 	/*
2615 	 * The memory barrier inside __SetPageUptodate makes sure that
2616 	 * preceding stores to the page contents become visible before
2617 	 * the set_pte_at() write.
2618 	 */
2619 	__SetPageUptodate(page);
2620 
2621 	if (is_zone_device_page(page)) {
2622 		if (is_device_private_page(page)) {
2623 			swp_entry_t swp_entry;
2624 
2625 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2626 			entry = swp_entry_to_pte(swp_entry);
2627 		} else if (is_device_public_page(page)) {
2628 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2629 			if (vma->vm_flags & VM_WRITE)
2630 				entry = pte_mkwrite(pte_mkdirty(entry));
2631 			entry = pte_mkdevmap(entry);
2632 		}
2633 	} else {
2634 		entry = mk_pte(page, vma->vm_page_prot);
2635 		if (vma->vm_flags & VM_WRITE)
2636 			entry = pte_mkwrite(pte_mkdirty(entry));
2637 	}
2638 
2639 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2640 
2641 	if (pte_present(*ptep)) {
2642 		unsigned long pfn = pte_pfn(*ptep);
2643 
2644 		if (!is_zero_pfn(pfn)) {
2645 			pte_unmap_unlock(ptep, ptl);
2646 			mem_cgroup_cancel_charge(page, memcg, false);
2647 			goto abort;
2648 		}
2649 		flush = true;
2650 	} else if (!pte_none(*ptep)) {
2651 		pte_unmap_unlock(ptep, ptl);
2652 		mem_cgroup_cancel_charge(page, memcg, false);
2653 		goto abort;
2654 	}
2655 
2656 	/*
2657 	 * Check for usefaultfd but do not deliver the fault. Instead,
2658 	 * just back off.
2659 	 */
2660 	if (userfaultfd_missing(vma)) {
2661 		pte_unmap_unlock(ptep, ptl);
2662 		mem_cgroup_cancel_charge(page, memcg, false);
2663 		goto abort;
2664 	}
2665 
2666 	inc_mm_counter(mm, MM_ANONPAGES);
2667 	page_add_new_anon_rmap(page, vma, addr, false);
2668 	mem_cgroup_commit_charge(page, memcg, false, false);
2669 	if (!is_zone_device_page(page))
2670 		lru_cache_add_active_or_unevictable(page, vma);
2671 	get_page(page);
2672 
2673 	if (flush) {
2674 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2675 		ptep_clear_flush_notify(vma, addr, ptep);
2676 		set_pte_at_notify(mm, addr, ptep, entry);
2677 		update_mmu_cache(vma, addr, ptep);
2678 	} else {
2679 		/* No need to invalidate - it was non-present before */
2680 		set_pte_at(mm, addr, ptep, entry);
2681 		update_mmu_cache(vma, addr, ptep);
2682 	}
2683 
2684 	pte_unmap_unlock(ptep, ptl);
2685 	*src = MIGRATE_PFN_MIGRATE;
2686 	return;
2687 
2688 abort:
2689 	*src &= ~MIGRATE_PFN_MIGRATE;
2690 }
2691 
2692 /*
2693  * migrate_vma_pages() - migrate meta-data from src page to dst page
2694  * @migrate: migrate struct containing all migration information
2695  *
2696  * This migrates struct page meta-data from source struct page to destination
2697  * struct page. This effectively finishes the migration from source page to the
2698  * destination page.
2699  */
2700 static void migrate_vma_pages(struct migrate_vma *migrate)
2701 {
2702 	const unsigned long npages = migrate->npages;
2703 	const unsigned long start = migrate->start;
2704 	struct vm_area_struct *vma = migrate->vma;
2705 	struct mm_struct *mm = vma->vm_mm;
2706 	unsigned long addr, i, mmu_start;
2707 	bool notified = false;
2708 
2709 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2710 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2711 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2712 		struct address_space *mapping;
2713 		int r;
2714 
2715 		if (!newpage) {
2716 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2717 			continue;
2718 		}
2719 
2720 		if (!page) {
2721 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2722 				continue;
2723 			}
2724 			if (!notified) {
2725 				mmu_start = addr;
2726 				notified = true;
2727 				mmu_notifier_invalidate_range_start(mm,
2728 								mmu_start,
2729 								migrate->end);
2730 			}
2731 			migrate_vma_insert_page(migrate, addr, newpage,
2732 						&migrate->src[i],
2733 						&migrate->dst[i]);
2734 			continue;
2735 		}
2736 
2737 		mapping = page_mapping(page);
2738 
2739 		if (is_zone_device_page(newpage)) {
2740 			if (is_device_private_page(newpage)) {
2741 				/*
2742 				 * For now only support private anonymous when
2743 				 * migrating to un-addressable device memory.
2744 				 */
2745 				if (mapping) {
2746 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2747 					continue;
2748 				}
2749 			} else if (!is_device_public_page(newpage)) {
2750 				/*
2751 				 * Other types of ZONE_DEVICE page are not
2752 				 * supported.
2753 				 */
2754 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2755 				continue;
2756 			}
2757 		}
2758 
2759 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2760 		if (r != MIGRATEPAGE_SUCCESS)
2761 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2762 	}
2763 
2764 	/*
2765 	 * No need to double call mmu_notifier->invalidate_range() callback as
2766 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2767 	 * did already call it.
2768 	 */
2769 	if (notified)
2770 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2771 						       migrate->end);
2772 }
2773 
2774 /*
2775  * migrate_vma_finalize() - restore CPU page table entry
2776  * @migrate: migrate struct containing all migration information
2777  *
2778  * This replaces the special migration pte entry with either a mapping to the
2779  * new page if migration was successful for that page, or to the original page
2780  * otherwise.
2781  *
2782  * This also unlocks the pages and puts them back on the lru, or drops the extra
2783  * refcount, for device pages.
2784  */
2785 static void migrate_vma_finalize(struct migrate_vma *migrate)
2786 {
2787 	const unsigned long npages = migrate->npages;
2788 	unsigned long i;
2789 
2790 	for (i = 0; i < npages; i++) {
2791 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2792 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2793 
2794 		if (!page) {
2795 			if (newpage) {
2796 				unlock_page(newpage);
2797 				put_page(newpage);
2798 			}
2799 			continue;
2800 		}
2801 
2802 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2803 			if (newpage) {
2804 				unlock_page(newpage);
2805 				put_page(newpage);
2806 			}
2807 			newpage = page;
2808 		}
2809 
2810 		remove_migration_ptes(page, newpage, false);
2811 		unlock_page(page);
2812 		migrate->cpages--;
2813 
2814 		if (is_zone_device_page(page))
2815 			put_page(page);
2816 		else
2817 			putback_lru_page(page);
2818 
2819 		if (newpage != page) {
2820 			unlock_page(newpage);
2821 			if (is_zone_device_page(newpage))
2822 				put_page(newpage);
2823 			else
2824 				putback_lru_page(newpage);
2825 		}
2826 	}
2827 }
2828 
2829 /*
2830  * migrate_vma() - migrate a range of memory inside vma
2831  *
2832  * @ops: migration callback for allocating destination memory and copying
2833  * @vma: virtual memory area containing the range to be migrated
2834  * @start: start address of the range to migrate (inclusive)
2835  * @end: end address of the range to migrate (exclusive)
2836  * @src: array of hmm_pfn_t containing source pfns
2837  * @dst: array of hmm_pfn_t containing destination pfns
2838  * @private: pointer passed back to each of the callback
2839  * Returns: 0 on success, error code otherwise
2840  *
2841  * This function tries to migrate a range of memory virtual address range, using
2842  * callbacks to allocate and copy memory from source to destination. First it
2843  * collects all the pages backing each virtual address in the range, saving this
2844  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2845  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2846  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2847  * in the corresponding src array entry. It then restores any pages that are
2848  * pinned, by remapping and unlocking those pages.
2849  *
2850  * At this point it calls the alloc_and_copy() callback. For documentation on
2851  * what is expected from that callback, see struct migrate_vma_ops comments in
2852  * include/linux/migrate.h
2853  *
2854  * After the alloc_and_copy() callback, this function goes over each entry in
2855  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2856  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2857  * then the function tries to migrate struct page information from the source
2858  * struct page to the destination struct page. If it fails to migrate the struct
2859  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2860  * array.
2861  *
2862  * At this point all successfully migrated pages have an entry in the src
2863  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2864  * array entry with MIGRATE_PFN_VALID flag set.
2865  *
2866  * It then calls the finalize_and_map() callback. See comments for "struct
2867  * migrate_vma_ops", in include/linux/migrate.h for details about
2868  * finalize_and_map() behavior.
2869  *
2870  * After the finalize_and_map() callback, for successfully migrated pages, this
2871  * function updates the CPU page table to point to new pages, otherwise it
2872  * restores the CPU page table to point to the original source pages.
2873  *
2874  * Function returns 0 after the above steps, even if no pages were migrated
2875  * (The function only returns an error if any of the arguments are invalid.)
2876  *
2877  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2878  * unsigned long entries.
2879  */
2880 int migrate_vma(const struct migrate_vma_ops *ops,
2881 		struct vm_area_struct *vma,
2882 		unsigned long start,
2883 		unsigned long end,
2884 		unsigned long *src,
2885 		unsigned long *dst,
2886 		void *private)
2887 {
2888 	struct migrate_vma migrate;
2889 
2890 	/* Sanity check the arguments */
2891 	start &= PAGE_MASK;
2892 	end &= PAGE_MASK;
2893 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2894 			vma_is_dax(vma))
2895 		return -EINVAL;
2896 	if (start < vma->vm_start || start >= vma->vm_end)
2897 		return -EINVAL;
2898 	if (end <= vma->vm_start || end > vma->vm_end)
2899 		return -EINVAL;
2900 	if (!ops || !src || !dst || start >= end)
2901 		return -EINVAL;
2902 
2903 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2904 	migrate.src = src;
2905 	migrate.dst = dst;
2906 	migrate.start = start;
2907 	migrate.npages = 0;
2908 	migrate.cpages = 0;
2909 	migrate.end = end;
2910 	migrate.vma = vma;
2911 
2912 	/* Collect, and try to unmap source pages */
2913 	migrate_vma_collect(&migrate);
2914 	if (!migrate.cpages)
2915 		return 0;
2916 
2917 	/* Lock and isolate page */
2918 	migrate_vma_prepare(&migrate);
2919 	if (!migrate.cpages)
2920 		return 0;
2921 
2922 	/* Unmap pages */
2923 	migrate_vma_unmap(&migrate);
2924 	if (!migrate.cpages)
2925 		return 0;
2926 
2927 	/*
2928 	 * At this point pages are locked and unmapped, and thus they have
2929 	 * stable content and can safely be copied to destination memory that
2930 	 * is allocated by the callback.
2931 	 *
2932 	 * Note that migration can fail in migrate_vma_struct_page() for each
2933 	 * individual page.
2934 	 */
2935 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2936 
2937 	/* This does the real migration of struct page */
2938 	migrate_vma_pages(&migrate);
2939 
2940 	ops->finalize_and_map(vma, src, dst, start, end, private);
2941 
2942 	/* Unlock and remap pages */
2943 	migrate_vma_finalize(&migrate);
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(migrate_vma);
2948 #endif /* defined(MIGRATE_VMA_HELPER) */
2949