1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __PageMovable because LRU folio's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte, vma); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 struct hstate *h = hstate_vma(vma); 247 unsigned int shift = huge_page_shift(h); 248 unsigned long psize = huge_page_size(h); 249 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 257 psize); 258 } else 259 #endif 260 { 261 if (folio_test_anon(folio)) 262 page_add_anon_rmap(new, vma, pvmw.address, 263 rmap_flags); 264 else 265 page_add_file_rmap(new, vma, false); 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 } 268 if (vma->vm_flags & VM_LOCKED) 269 mlock_drain_local(); 270 271 trace_remove_migration_pte(pvmw.address, pte_val(pte), 272 compound_order(new)); 273 274 /* No need to invalidate - it was non-present before */ 275 update_mmu_cache(vma, pvmw.address, pvmw.pte); 276 } 277 278 return true; 279 } 280 281 /* 282 * Get rid of all migration entries and replace them by 283 * references to the indicated page. 284 */ 285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 286 { 287 struct rmap_walk_control rwc = { 288 .rmap_one = remove_migration_pte, 289 .arg = src, 290 }; 291 292 if (locked) 293 rmap_walk_locked(dst, &rwc); 294 else 295 rmap_walk(dst, &rwc); 296 } 297 298 /* 299 * Something used the pte of a page under migration. We need to 300 * get to the page and wait until migration is finished. 301 * When we return from this function the fault will be retried. 302 */ 303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 304 unsigned long address) 305 { 306 spinlock_t *ptl; 307 pte_t *ptep; 308 pte_t pte; 309 swp_entry_t entry; 310 311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 312 if (!ptep) 313 return; 314 315 pte = ptep_get(ptep); 316 pte_unmap(ptep); 317 318 if (!is_swap_pte(pte)) 319 goto out; 320 321 entry = pte_to_swp_entry(pte); 322 if (!is_migration_entry(entry)) 323 goto out; 324 325 migration_entry_wait_on_locked(entry, ptl); 326 return; 327 out: 328 spin_unlock(ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 339 { 340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 359 } 360 } 361 #endif 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 365 { 366 spinlock_t *ptl; 367 368 ptl = pmd_lock(mm, pmd); 369 if (!is_pmd_migration_entry(*pmd)) 370 goto unlock; 371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 static int folio_expected_refs(struct address_space *mapping, 379 struct folio *folio) 380 { 381 int refs = 1; 382 if (!mapping) 383 return refs; 384 385 refs += folio_nr_pages(folio); 386 if (folio_test_private(folio)) 387 refs++; 388 389 return refs; 390 } 391 392 /* 393 * Replace the page in the mapping. 394 * 395 * The number of remaining references must be: 396 * 1 for anonymous pages without a mapping 397 * 2 for pages with a mapping 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 399 */ 400 int folio_migrate_mapping(struct address_space *mapping, 401 struct folio *newfolio, struct folio *folio, int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 407 long nr = folio_nr_pages(folio); 408 long entries, i; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (folio_ref_count(folio) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 if (folio_test_swapbacked(folio)) 419 __folio_set_swapbacked(newfolio); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = folio_zone(folio); 425 newzone = folio_zone(newfolio); 426 427 xas_lock_irq(&xas); 428 if (!folio_ref_freeze(folio, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the folio: 435 * no turning back from here. 436 */ 437 newfolio->index = folio->index; 438 newfolio->mapping = folio->mapping; 439 folio_ref_add(newfolio, nr); /* add cache reference */ 440 if (folio_test_swapbacked(folio)) 441 __folio_set_swapbacked(newfolio); 442 if (folio_test_swapcache(folio)) { 443 folio_set_swapcache(newfolio); 444 newfolio->private = folio_get_private(folio); 445 entries = nr; 446 } else { 447 entries = 1; 448 } 449 450 /* Move dirty while page refs frozen and newpage not yet exposed */ 451 dirty = folio_test_dirty(folio); 452 if (dirty) { 453 folio_clear_dirty(folio); 454 folio_set_dirty(newfolio); 455 } 456 457 /* Swap cache still stores N entries instead of a high-order entry */ 458 for (i = 0; i < entries; i++) { 459 xas_store(&xas, newfolio); 460 xas_next(&xas); 461 } 462 463 /* 464 * Drop cache reference from old page by unfreezing 465 * to one less reference. 466 * We know this isn't the last reference. 467 */ 468 folio_ref_unfreeze(folio, expected_count - nr); 469 470 xas_unlock(&xas); 471 /* Leave irq disabled to prevent preemption while updating stats */ 472 473 /* 474 * If moved to a different zone then also account 475 * the page for that zone. Other VM counters will be 476 * taken care of when we establish references to the 477 * new page and drop references to the old page. 478 * 479 * Note that anonymous pages are accounted for 480 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 481 * are mapped to swap space. 482 */ 483 if (newzone != oldzone) { 484 struct lruvec *old_lruvec, *new_lruvec; 485 struct mem_cgroup *memcg; 486 487 memcg = folio_memcg(folio); 488 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 489 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 490 491 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 492 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 493 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 494 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 495 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 496 497 if (folio_test_pmd_mappable(folio)) { 498 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 499 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 500 } 501 } 502 #ifdef CONFIG_SWAP 503 if (folio_test_swapcache(folio)) { 504 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 505 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 506 } 507 #endif 508 if (dirty && mapping_can_writeback(mapping)) { 509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 513 } 514 } 515 local_irq_enable(); 516 517 return MIGRATEPAGE_SUCCESS; 518 } 519 EXPORT_SYMBOL(folio_migrate_mapping); 520 521 /* 522 * The expected number of remaining references is the same as that 523 * of folio_migrate_mapping(). 524 */ 525 int migrate_huge_page_move_mapping(struct address_space *mapping, 526 struct folio *dst, struct folio *src) 527 { 528 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 529 int expected_count; 530 531 xas_lock_irq(&xas); 532 expected_count = 2 + folio_has_private(src); 533 if (!folio_ref_freeze(src, expected_count)) { 534 xas_unlock_irq(&xas); 535 return -EAGAIN; 536 } 537 538 dst->index = src->index; 539 dst->mapping = src->mapping; 540 541 folio_get(dst); 542 543 xas_store(&xas, dst); 544 545 folio_ref_unfreeze(src, expected_count - 1); 546 547 xas_unlock_irq(&xas); 548 549 return MIGRATEPAGE_SUCCESS; 550 } 551 552 /* 553 * Copy the flags and some other ancillary information 554 */ 555 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 556 { 557 int cpupid; 558 559 if (folio_test_error(folio)) 560 folio_set_error(newfolio); 561 if (folio_test_referenced(folio)) 562 folio_set_referenced(newfolio); 563 if (folio_test_uptodate(folio)) 564 folio_mark_uptodate(newfolio); 565 if (folio_test_clear_active(folio)) { 566 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 567 folio_set_active(newfolio); 568 } else if (folio_test_clear_unevictable(folio)) 569 folio_set_unevictable(newfolio); 570 if (folio_test_workingset(folio)) 571 folio_set_workingset(newfolio); 572 if (folio_test_checked(folio)) 573 folio_set_checked(newfolio); 574 /* 575 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 576 * migration entries. We can still have PG_anon_exclusive set on an 577 * effectively unmapped and unreferenced first sub-pages of an 578 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 579 */ 580 if (folio_test_mappedtodisk(folio)) 581 folio_set_mappedtodisk(newfolio); 582 583 /* Move dirty on pages not done by folio_migrate_mapping() */ 584 if (folio_test_dirty(folio)) 585 folio_set_dirty(newfolio); 586 587 if (folio_test_young(folio)) 588 folio_set_young(newfolio); 589 if (folio_test_idle(folio)) 590 folio_set_idle(newfolio); 591 592 /* 593 * Copy NUMA information to the new page, to prevent over-eager 594 * future migrations of this same page. 595 */ 596 cpupid = page_cpupid_xchg_last(&folio->page, -1); 597 /* 598 * For memory tiering mode, when migrate between slow and fast 599 * memory node, reset cpupid, because that is used to record 600 * page access time in slow memory node. 601 */ 602 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 603 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 604 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 605 606 if (f_toptier != t_toptier) 607 cpupid = -1; 608 } 609 page_cpupid_xchg_last(&newfolio->page, cpupid); 610 611 folio_migrate_ksm(newfolio, folio); 612 /* 613 * Please do not reorder this without considering how mm/ksm.c's 614 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 615 */ 616 if (folio_test_swapcache(folio)) 617 folio_clear_swapcache(folio); 618 folio_clear_private(folio); 619 620 /* page->private contains hugetlb specific flags */ 621 if (!folio_test_hugetlb(folio)) 622 folio->private = NULL; 623 624 /* 625 * If any waiters have accumulated on the new page then 626 * wake them up. 627 */ 628 if (folio_test_writeback(newfolio)) 629 folio_end_writeback(newfolio); 630 631 /* 632 * PG_readahead shares the same bit with PG_reclaim. The above 633 * end_page_writeback() may clear PG_readahead mistakenly, so set the 634 * bit after that. 635 */ 636 if (folio_test_readahead(folio)) 637 folio_set_readahead(newfolio); 638 639 folio_copy_owner(newfolio, folio); 640 641 if (!folio_test_hugetlb(folio)) 642 mem_cgroup_migrate(folio, newfolio); 643 } 644 EXPORT_SYMBOL(folio_migrate_flags); 645 646 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 647 { 648 folio_copy(newfolio, folio); 649 folio_migrate_flags(newfolio, folio); 650 } 651 EXPORT_SYMBOL(folio_migrate_copy); 652 653 /************************************************************ 654 * Migration functions 655 ***********************************************************/ 656 657 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 658 struct folio *src, enum migrate_mode mode, int extra_count) 659 { 660 int rc; 661 662 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 663 664 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 665 666 if (rc != MIGRATEPAGE_SUCCESS) 667 return rc; 668 669 if (mode != MIGRATE_SYNC_NO_COPY) 670 folio_migrate_copy(dst, src); 671 else 672 folio_migrate_flags(dst, src); 673 return MIGRATEPAGE_SUCCESS; 674 } 675 676 /** 677 * migrate_folio() - Simple folio migration. 678 * @mapping: The address_space containing the folio. 679 * @dst: The folio to migrate the data to. 680 * @src: The folio containing the current data. 681 * @mode: How to migrate the page. 682 * 683 * Common logic to directly migrate a single LRU folio suitable for 684 * folios that do not use PagePrivate/PagePrivate2. 685 * 686 * Folios are locked upon entry and exit. 687 */ 688 int migrate_folio(struct address_space *mapping, struct folio *dst, 689 struct folio *src, enum migrate_mode mode) 690 { 691 return migrate_folio_extra(mapping, dst, src, mode, 0); 692 } 693 EXPORT_SYMBOL(migrate_folio); 694 695 #ifdef CONFIG_BUFFER_HEAD 696 /* Returns true if all buffers are successfully locked */ 697 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 698 enum migrate_mode mode) 699 { 700 struct buffer_head *bh = head; 701 struct buffer_head *failed_bh; 702 703 do { 704 if (!trylock_buffer(bh)) { 705 if (mode == MIGRATE_ASYNC) 706 goto unlock; 707 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 708 goto unlock; 709 lock_buffer(bh); 710 } 711 712 bh = bh->b_this_page; 713 } while (bh != head); 714 715 return true; 716 717 unlock: 718 /* We failed to lock the buffer and cannot stall. */ 719 failed_bh = bh; 720 bh = head; 721 while (bh != failed_bh) { 722 unlock_buffer(bh); 723 bh = bh->b_this_page; 724 } 725 726 return false; 727 } 728 729 static int __buffer_migrate_folio(struct address_space *mapping, 730 struct folio *dst, struct folio *src, enum migrate_mode mode, 731 bool check_refs) 732 { 733 struct buffer_head *bh, *head; 734 int rc; 735 int expected_count; 736 737 head = folio_buffers(src); 738 if (!head) 739 return migrate_folio(mapping, dst, src, mode); 740 741 /* Check whether page does not have extra refs before we do more work */ 742 expected_count = folio_expected_refs(mapping, src); 743 if (folio_ref_count(src) != expected_count) 744 return -EAGAIN; 745 746 if (!buffer_migrate_lock_buffers(head, mode)) 747 return -EAGAIN; 748 749 if (check_refs) { 750 bool busy; 751 bool invalidated = false; 752 753 recheck_buffers: 754 busy = false; 755 spin_lock(&mapping->private_lock); 756 bh = head; 757 do { 758 if (atomic_read(&bh->b_count)) { 759 busy = true; 760 break; 761 } 762 bh = bh->b_this_page; 763 } while (bh != head); 764 if (busy) { 765 if (invalidated) { 766 rc = -EAGAIN; 767 goto unlock_buffers; 768 } 769 spin_unlock(&mapping->private_lock); 770 invalidate_bh_lrus(); 771 invalidated = true; 772 goto recheck_buffers; 773 } 774 } 775 776 rc = folio_migrate_mapping(mapping, dst, src, 0); 777 if (rc != MIGRATEPAGE_SUCCESS) 778 goto unlock_buffers; 779 780 folio_attach_private(dst, folio_detach_private(src)); 781 782 bh = head; 783 do { 784 folio_set_bh(bh, dst, bh_offset(bh)); 785 bh = bh->b_this_page; 786 } while (bh != head); 787 788 if (mode != MIGRATE_SYNC_NO_COPY) 789 folio_migrate_copy(dst, src); 790 else 791 folio_migrate_flags(dst, src); 792 793 rc = MIGRATEPAGE_SUCCESS; 794 unlock_buffers: 795 if (check_refs) 796 spin_unlock(&mapping->private_lock); 797 bh = head; 798 do { 799 unlock_buffer(bh); 800 bh = bh->b_this_page; 801 } while (bh != head); 802 803 return rc; 804 } 805 806 /** 807 * buffer_migrate_folio() - Migration function for folios with buffers. 808 * @mapping: The address space containing @src. 809 * @dst: The folio to migrate to. 810 * @src: The folio to migrate from. 811 * @mode: How to migrate the folio. 812 * 813 * This function can only be used if the underlying filesystem guarantees 814 * that no other references to @src exist. For example attached buffer 815 * heads are accessed only under the folio lock. If your filesystem cannot 816 * provide this guarantee, buffer_migrate_folio_norefs() may be more 817 * appropriate. 818 * 819 * Return: 0 on success or a negative errno on failure. 820 */ 821 int buffer_migrate_folio(struct address_space *mapping, 822 struct folio *dst, struct folio *src, enum migrate_mode mode) 823 { 824 return __buffer_migrate_folio(mapping, dst, src, mode, false); 825 } 826 EXPORT_SYMBOL(buffer_migrate_folio); 827 828 /** 829 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 830 * @mapping: The address space containing @src. 831 * @dst: The folio to migrate to. 832 * @src: The folio to migrate from. 833 * @mode: How to migrate the folio. 834 * 835 * Like buffer_migrate_folio() except that this variant is more careful 836 * and checks that there are also no buffer head references. This function 837 * is the right one for mappings where buffer heads are directly looked 838 * up and referenced (such as block device mappings). 839 * 840 * Return: 0 on success or a negative errno on failure. 841 */ 842 int buffer_migrate_folio_norefs(struct address_space *mapping, 843 struct folio *dst, struct folio *src, enum migrate_mode mode) 844 { 845 return __buffer_migrate_folio(mapping, dst, src, mode, true); 846 } 847 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 848 #endif /* CONFIG_BUFFER_HEAD */ 849 850 int filemap_migrate_folio(struct address_space *mapping, 851 struct folio *dst, struct folio *src, enum migrate_mode mode) 852 { 853 int ret; 854 855 ret = folio_migrate_mapping(mapping, dst, src, 0); 856 if (ret != MIGRATEPAGE_SUCCESS) 857 return ret; 858 859 if (folio_get_private(src)) 860 folio_attach_private(dst, folio_detach_private(src)); 861 862 if (mode != MIGRATE_SYNC_NO_COPY) 863 folio_migrate_copy(dst, src); 864 else 865 folio_migrate_flags(dst, src); 866 return MIGRATEPAGE_SUCCESS; 867 } 868 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 869 870 /* 871 * Writeback a folio to clean the dirty state 872 */ 873 static int writeout(struct address_space *mapping, struct folio *folio) 874 { 875 struct writeback_control wbc = { 876 .sync_mode = WB_SYNC_NONE, 877 .nr_to_write = 1, 878 .range_start = 0, 879 .range_end = LLONG_MAX, 880 .for_reclaim = 1 881 }; 882 int rc; 883 884 if (!mapping->a_ops->writepage) 885 /* No write method for the address space */ 886 return -EINVAL; 887 888 if (!folio_clear_dirty_for_io(folio)) 889 /* Someone else already triggered a write */ 890 return -EAGAIN; 891 892 /* 893 * A dirty folio may imply that the underlying filesystem has 894 * the folio on some queue. So the folio must be clean for 895 * migration. Writeout may mean we lose the lock and the 896 * folio state is no longer what we checked for earlier. 897 * At this point we know that the migration attempt cannot 898 * be successful. 899 */ 900 remove_migration_ptes(folio, folio, false); 901 902 rc = mapping->a_ops->writepage(&folio->page, &wbc); 903 904 if (rc != AOP_WRITEPAGE_ACTIVATE) 905 /* unlocked. Relock */ 906 folio_lock(folio); 907 908 return (rc < 0) ? -EIO : -EAGAIN; 909 } 910 911 /* 912 * Default handling if a filesystem does not provide a migration function. 913 */ 914 static int fallback_migrate_folio(struct address_space *mapping, 915 struct folio *dst, struct folio *src, enum migrate_mode mode) 916 { 917 if (folio_test_dirty(src)) { 918 /* Only writeback folios in full synchronous migration */ 919 switch (mode) { 920 case MIGRATE_SYNC: 921 case MIGRATE_SYNC_NO_COPY: 922 break; 923 default: 924 return -EBUSY; 925 } 926 return writeout(mapping, src); 927 } 928 929 /* 930 * Buffers may be managed in a filesystem specific way. 931 * We must have no buffers or drop them. 932 */ 933 if (!filemap_release_folio(src, GFP_KERNEL)) 934 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 935 936 return migrate_folio(mapping, dst, src, mode); 937 } 938 939 /* 940 * Move a page to a newly allocated page 941 * The page is locked and all ptes have been successfully removed. 942 * 943 * The new page will have replaced the old page if this function 944 * is successful. 945 * 946 * Return value: 947 * < 0 - error code 948 * MIGRATEPAGE_SUCCESS - success 949 */ 950 static int move_to_new_folio(struct folio *dst, struct folio *src, 951 enum migrate_mode mode) 952 { 953 int rc = -EAGAIN; 954 bool is_lru = !__PageMovable(&src->page); 955 956 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 957 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 958 959 if (likely(is_lru)) { 960 struct address_space *mapping = folio_mapping(src); 961 962 if (!mapping) 963 rc = migrate_folio(mapping, dst, src, mode); 964 else if (mapping->a_ops->migrate_folio) 965 /* 966 * Most folios have a mapping and most filesystems 967 * provide a migrate_folio callback. Anonymous folios 968 * are part of swap space which also has its own 969 * migrate_folio callback. This is the most common path 970 * for page migration. 971 */ 972 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 973 mode); 974 else 975 rc = fallback_migrate_folio(mapping, dst, src, mode); 976 } else { 977 const struct movable_operations *mops; 978 979 /* 980 * In case of non-lru page, it could be released after 981 * isolation step. In that case, we shouldn't try migration. 982 */ 983 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 984 if (!folio_test_movable(src)) { 985 rc = MIGRATEPAGE_SUCCESS; 986 folio_clear_isolated(src); 987 goto out; 988 } 989 990 mops = folio_movable_ops(src); 991 rc = mops->migrate_page(&dst->page, &src->page, mode); 992 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 993 !folio_test_isolated(src)); 994 } 995 996 /* 997 * When successful, old pagecache src->mapping must be cleared before 998 * src is freed; but stats require that PageAnon be left as PageAnon. 999 */ 1000 if (rc == MIGRATEPAGE_SUCCESS) { 1001 if (__PageMovable(&src->page)) { 1002 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1003 1004 /* 1005 * We clear PG_movable under page_lock so any compactor 1006 * cannot try to migrate this page. 1007 */ 1008 folio_clear_isolated(src); 1009 } 1010 1011 /* 1012 * Anonymous and movable src->mapping will be cleared by 1013 * free_pages_prepare so don't reset it here for keeping 1014 * the type to work PageAnon, for example. 1015 */ 1016 if (!folio_mapping_flags(src)) 1017 src->mapping = NULL; 1018 1019 if (likely(!folio_is_zone_device(dst))) 1020 flush_dcache_folio(dst); 1021 } 1022 out: 1023 return rc; 1024 } 1025 1026 /* 1027 * To record some information during migration, we use unused private 1028 * field of struct folio of the newly allocated destination folio. 1029 * This is safe because nobody is using it except us. 1030 */ 1031 enum { 1032 PAGE_WAS_MAPPED = BIT(0), 1033 PAGE_WAS_MLOCKED = BIT(1), 1034 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1035 }; 1036 1037 static void __migrate_folio_record(struct folio *dst, 1038 int old_page_state, 1039 struct anon_vma *anon_vma) 1040 { 1041 dst->private = (void *)anon_vma + old_page_state; 1042 } 1043 1044 static void __migrate_folio_extract(struct folio *dst, 1045 int *old_page_state, 1046 struct anon_vma **anon_vmap) 1047 { 1048 unsigned long private = (unsigned long)dst->private; 1049 1050 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1051 *old_page_state = private & PAGE_OLD_STATES; 1052 dst->private = NULL; 1053 } 1054 1055 /* Restore the source folio to the original state upon failure */ 1056 static void migrate_folio_undo_src(struct folio *src, 1057 int page_was_mapped, 1058 struct anon_vma *anon_vma, 1059 bool locked, 1060 struct list_head *ret) 1061 { 1062 if (page_was_mapped) 1063 remove_migration_ptes(src, src, false); 1064 /* Drop an anon_vma reference if we took one */ 1065 if (anon_vma) 1066 put_anon_vma(anon_vma); 1067 if (locked) 1068 folio_unlock(src); 1069 if (ret) 1070 list_move_tail(&src->lru, ret); 1071 } 1072 1073 /* Restore the destination folio to the original state upon failure */ 1074 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1075 free_folio_t put_new_folio, unsigned long private) 1076 { 1077 if (locked) 1078 folio_unlock(dst); 1079 if (put_new_folio) 1080 put_new_folio(dst, private); 1081 else 1082 folio_put(dst); 1083 } 1084 1085 /* Cleanup src folio upon migration success */ 1086 static void migrate_folio_done(struct folio *src, 1087 enum migrate_reason reason) 1088 { 1089 /* 1090 * Compaction can migrate also non-LRU pages which are 1091 * not accounted to NR_ISOLATED_*. They can be recognized 1092 * as __PageMovable 1093 */ 1094 if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION) 1095 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1096 folio_is_file_lru(src), -folio_nr_pages(src)); 1097 1098 if (reason != MR_MEMORY_FAILURE) 1099 /* We release the page in page_handle_poison. */ 1100 folio_put(src); 1101 } 1102 1103 /* Obtain the lock on page, remove all ptes. */ 1104 static int migrate_folio_unmap(new_folio_t get_new_folio, 1105 free_folio_t put_new_folio, unsigned long private, 1106 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1107 enum migrate_reason reason, struct list_head *ret) 1108 { 1109 struct folio *dst; 1110 int rc = -EAGAIN; 1111 int old_page_state = 0; 1112 struct anon_vma *anon_vma = NULL; 1113 bool is_lru = !__PageMovable(&src->page); 1114 bool locked = false; 1115 bool dst_locked = false; 1116 1117 if (folio_ref_count(src) == 1) { 1118 /* Folio was freed from under us. So we are done. */ 1119 folio_clear_active(src); 1120 folio_clear_unevictable(src); 1121 /* free_pages_prepare() will clear PG_isolated. */ 1122 list_del(&src->lru); 1123 migrate_folio_done(src, reason); 1124 return MIGRATEPAGE_SUCCESS; 1125 } 1126 1127 dst = get_new_folio(src, private); 1128 if (!dst) 1129 return -ENOMEM; 1130 *dstp = dst; 1131 1132 dst->private = NULL; 1133 1134 if (!folio_trylock(src)) { 1135 if (mode == MIGRATE_ASYNC) 1136 goto out; 1137 1138 /* 1139 * It's not safe for direct compaction to call lock_page. 1140 * For example, during page readahead pages are added locked 1141 * to the LRU. Later, when the IO completes the pages are 1142 * marked uptodate and unlocked. However, the queueing 1143 * could be merging multiple pages for one bio (e.g. 1144 * mpage_readahead). If an allocation happens for the 1145 * second or third page, the process can end up locking 1146 * the same page twice and deadlocking. Rather than 1147 * trying to be clever about what pages can be locked, 1148 * avoid the use of lock_page for direct compaction 1149 * altogether. 1150 */ 1151 if (current->flags & PF_MEMALLOC) 1152 goto out; 1153 1154 /* 1155 * In "light" mode, we can wait for transient locks (eg 1156 * inserting a page into the page table), but it's not 1157 * worth waiting for I/O. 1158 */ 1159 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1160 goto out; 1161 1162 folio_lock(src); 1163 } 1164 locked = true; 1165 if (folio_test_mlocked(src)) 1166 old_page_state |= PAGE_WAS_MLOCKED; 1167 1168 if (folio_test_writeback(src)) { 1169 /* 1170 * Only in the case of a full synchronous migration is it 1171 * necessary to wait for PageWriteback. In the async case, 1172 * the retry loop is too short and in the sync-light case, 1173 * the overhead of stalling is too much 1174 */ 1175 switch (mode) { 1176 case MIGRATE_SYNC: 1177 case MIGRATE_SYNC_NO_COPY: 1178 break; 1179 default: 1180 rc = -EBUSY; 1181 goto out; 1182 } 1183 folio_wait_writeback(src); 1184 } 1185 1186 /* 1187 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1188 * we cannot notice that anon_vma is freed while we migrate a page. 1189 * This get_anon_vma() delays freeing anon_vma pointer until the end 1190 * of migration. File cache pages are no problem because of page_lock() 1191 * File Caches may use write_page() or lock_page() in migration, then, 1192 * just care Anon page here. 1193 * 1194 * Only folio_get_anon_vma() understands the subtleties of 1195 * getting a hold on an anon_vma from outside one of its mms. 1196 * But if we cannot get anon_vma, then we won't need it anyway, 1197 * because that implies that the anon page is no longer mapped 1198 * (and cannot be remapped so long as we hold the page lock). 1199 */ 1200 if (folio_test_anon(src) && !folio_test_ksm(src)) 1201 anon_vma = folio_get_anon_vma(src); 1202 1203 /* 1204 * Block others from accessing the new page when we get around to 1205 * establishing additional references. We are usually the only one 1206 * holding a reference to dst at this point. We used to have a BUG 1207 * here if folio_trylock(dst) fails, but would like to allow for 1208 * cases where there might be a race with the previous use of dst. 1209 * This is much like races on refcount of oldpage: just don't BUG(). 1210 */ 1211 if (unlikely(!folio_trylock(dst))) 1212 goto out; 1213 dst_locked = true; 1214 1215 if (unlikely(!is_lru)) { 1216 __migrate_folio_record(dst, old_page_state, anon_vma); 1217 return MIGRATEPAGE_UNMAP; 1218 } 1219 1220 /* 1221 * Corner case handling: 1222 * 1. When a new swap-cache page is read into, it is added to the LRU 1223 * and treated as swapcache but it has no rmap yet. 1224 * Calling try_to_unmap() against a src->mapping==NULL page will 1225 * trigger a BUG. So handle it here. 1226 * 2. An orphaned page (see truncate_cleanup_page) might have 1227 * fs-private metadata. The page can be picked up due to memory 1228 * offlining. Everywhere else except page reclaim, the page is 1229 * invisible to the vm, so the page can not be migrated. So try to 1230 * free the metadata, so the page can be freed. 1231 */ 1232 if (!src->mapping) { 1233 if (folio_test_private(src)) { 1234 try_to_free_buffers(src); 1235 goto out; 1236 } 1237 } else if (folio_mapped(src)) { 1238 /* Establish migration ptes */ 1239 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1240 !folio_test_ksm(src) && !anon_vma, src); 1241 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1242 old_page_state |= PAGE_WAS_MAPPED; 1243 } 1244 1245 if (!folio_mapped(src)) { 1246 __migrate_folio_record(dst, old_page_state, anon_vma); 1247 return MIGRATEPAGE_UNMAP; 1248 } 1249 1250 out: 1251 /* 1252 * A folio that has not been unmapped will be restored to 1253 * right list unless we want to retry. 1254 */ 1255 if (rc == -EAGAIN) 1256 ret = NULL; 1257 1258 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1259 anon_vma, locked, ret); 1260 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1261 1262 return rc; 1263 } 1264 1265 /* Migrate the folio to the newly allocated folio in dst. */ 1266 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1267 struct folio *src, struct folio *dst, 1268 enum migrate_mode mode, enum migrate_reason reason, 1269 struct list_head *ret) 1270 { 1271 int rc; 1272 int old_page_state = 0; 1273 struct anon_vma *anon_vma = NULL; 1274 bool is_lru = !__PageMovable(&src->page); 1275 struct list_head *prev; 1276 1277 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1278 prev = dst->lru.prev; 1279 list_del(&dst->lru); 1280 1281 rc = move_to_new_folio(dst, src, mode); 1282 if (rc) 1283 goto out; 1284 1285 if (unlikely(!is_lru)) 1286 goto out_unlock_both; 1287 1288 /* 1289 * When successful, push dst to LRU immediately: so that if it 1290 * turns out to be an mlocked page, remove_migration_ptes() will 1291 * automatically build up the correct dst->mlock_count for it. 1292 * 1293 * We would like to do something similar for the old page, when 1294 * unsuccessful, and other cases when a page has been temporarily 1295 * isolated from the unevictable LRU: but this case is the easiest. 1296 */ 1297 folio_add_lru(dst); 1298 if (old_page_state & PAGE_WAS_MLOCKED) 1299 lru_add_drain(); 1300 1301 if (old_page_state & PAGE_WAS_MAPPED) 1302 remove_migration_ptes(src, dst, false); 1303 1304 out_unlock_both: 1305 folio_unlock(dst); 1306 set_page_owner_migrate_reason(&dst->page, reason); 1307 /* 1308 * If migration is successful, decrease refcount of dst, 1309 * which will not free the page because new page owner increased 1310 * refcounter. 1311 */ 1312 folio_put(dst); 1313 1314 /* 1315 * A folio that has been migrated has all references removed 1316 * and will be freed. 1317 */ 1318 list_del(&src->lru); 1319 /* Drop an anon_vma reference if we took one */ 1320 if (anon_vma) 1321 put_anon_vma(anon_vma); 1322 folio_unlock(src); 1323 migrate_folio_done(src, reason); 1324 1325 return rc; 1326 out: 1327 /* 1328 * A folio that has not been migrated will be restored to 1329 * right list unless we want to retry. 1330 */ 1331 if (rc == -EAGAIN) { 1332 list_add(&dst->lru, prev); 1333 __migrate_folio_record(dst, old_page_state, anon_vma); 1334 return rc; 1335 } 1336 1337 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1338 anon_vma, true, ret); 1339 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1340 1341 return rc; 1342 } 1343 1344 /* 1345 * Counterpart of unmap_and_move_page() for hugepage migration. 1346 * 1347 * This function doesn't wait the completion of hugepage I/O 1348 * because there is no race between I/O and migration for hugepage. 1349 * Note that currently hugepage I/O occurs only in direct I/O 1350 * where no lock is held and PG_writeback is irrelevant, 1351 * and writeback status of all subpages are counted in the reference 1352 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1353 * under direct I/O, the reference of the head page is 512 and a bit more.) 1354 * This means that when we try to migrate hugepage whose subpages are 1355 * doing direct I/O, some references remain after try_to_unmap() and 1356 * hugepage migration fails without data corruption. 1357 * 1358 * There is also no race when direct I/O is issued on the page under migration, 1359 * because then pte is replaced with migration swap entry and direct I/O code 1360 * will wait in the page fault for migration to complete. 1361 */ 1362 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1363 free_folio_t put_new_folio, unsigned long private, 1364 struct folio *src, int force, enum migrate_mode mode, 1365 int reason, struct list_head *ret) 1366 { 1367 struct folio *dst; 1368 int rc = -EAGAIN; 1369 int page_was_mapped = 0; 1370 struct anon_vma *anon_vma = NULL; 1371 struct address_space *mapping = NULL; 1372 1373 if (folio_ref_count(src) == 1) { 1374 /* page was freed from under us. So we are done. */ 1375 folio_putback_active_hugetlb(src); 1376 return MIGRATEPAGE_SUCCESS; 1377 } 1378 1379 dst = get_new_folio(src, private); 1380 if (!dst) 1381 return -ENOMEM; 1382 1383 if (!folio_trylock(src)) { 1384 if (!force) 1385 goto out; 1386 switch (mode) { 1387 case MIGRATE_SYNC: 1388 case MIGRATE_SYNC_NO_COPY: 1389 break; 1390 default: 1391 goto out; 1392 } 1393 folio_lock(src); 1394 } 1395 1396 /* 1397 * Check for pages which are in the process of being freed. Without 1398 * folio_mapping() set, hugetlbfs specific move page routine will not 1399 * be called and we could leak usage counts for subpools. 1400 */ 1401 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1402 rc = -EBUSY; 1403 goto out_unlock; 1404 } 1405 1406 if (folio_test_anon(src)) 1407 anon_vma = folio_get_anon_vma(src); 1408 1409 if (unlikely(!folio_trylock(dst))) 1410 goto put_anon; 1411 1412 if (folio_mapped(src)) { 1413 enum ttu_flags ttu = 0; 1414 1415 if (!folio_test_anon(src)) { 1416 /* 1417 * In shared mappings, try_to_unmap could potentially 1418 * call huge_pmd_unshare. Because of this, take 1419 * semaphore in write mode here and set TTU_RMAP_LOCKED 1420 * to let lower levels know we have taken the lock. 1421 */ 1422 mapping = hugetlb_page_mapping_lock_write(&src->page); 1423 if (unlikely(!mapping)) 1424 goto unlock_put_anon; 1425 1426 ttu = TTU_RMAP_LOCKED; 1427 } 1428 1429 try_to_migrate(src, ttu); 1430 page_was_mapped = 1; 1431 1432 if (ttu & TTU_RMAP_LOCKED) 1433 i_mmap_unlock_write(mapping); 1434 } 1435 1436 if (!folio_mapped(src)) 1437 rc = move_to_new_folio(dst, src, mode); 1438 1439 if (page_was_mapped) 1440 remove_migration_ptes(src, 1441 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1442 1443 unlock_put_anon: 1444 folio_unlock(dst); 1445 1446 put_anon: 1447 if (anon_vma) 1448 put_anon_vma(anon_vma); 1449 1450 if (rc == MIGRATEPAGE_SUCCESS) { 1451 move_hugetlb_state(src, dst, reason); 1452 put_new_folio = NULL; 1453 } 1454 1455 out_unlock: 1456 folio_unlock(src); 1457 out: 1458 if (rc == MIGRATEPAGE_SUCCESS) 1459 folio_putback_active_hugetlb(src); 1460 else if (rc != -EAGAIN) 1461 list_move_tail(&src->lru, ret); 1462 1463 /* 1464 * If migration was not successful and there's a freeing callback, use 1465 * it. Otherwise, put_page() will drop the reference grabbed during 1466 * isolation. 1467 */ 1468 if (put_new_folio) 1469 put_new_folio(dst, private); 1470 else 1471 folio_putback_active_hugetlb(dst); 1472 1473 return rc; 1474 } 1475 1476 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1477 { 1478 int rc; 1479 1480 folio_lock(folio); 1481 rc = split_folio_to_list(folio, split_folios); 1482 folio_unlock(folio); 1483 if (!rc) 1484 list_move_tail(&folio->lru, split_folios); 1485 1486 return rc; 1487 } 1488 1489 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1490 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1491 #else 1492 #define NR_MAX_BATCHED_MIGRATION 512 1493 #endif 1494 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1495 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1496 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1497 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1498 1499 struct migrate_pages_stats { 1500 int nr_succeeded; /* Normal and large folios migrated successfully, in 1501 units of base pages */ 1502 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1503 units of base pages. Untried folios aren't counted */ 1504 int nr_thp_succeeded; /* THP migrated successfully */ 1505 int nr_thp_failed; /* THP failed to be migrated */ 1506 int nr_thp_split; /* THP split before migrating */ 1507 }; 1508 1509 /* 1510 * Returns the number of hugetlb folios that were not migrated, or an error code 1511 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1512 * any more because the list has become empty or no retryable hugetlb folios 1513 * exist any more. It is caller's responsibility to call putback_movable_pages() 1514 * only if ret != 0. 1515 */ 1516 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1517 free_folio_t put_new_folio, unsigned long private, 1518 enum migrate_mode mode, int reason, 1519 struct migrate_pages_stats *stats, 1520 struct list_head *ret_folios) 1521 { 1522 int retry = 1; 1523 int nr_failed = 0; 1524 int nr_retry_pages = 0; 1525 int pass = 0; 1526 struct folio *folio, *folio2; 1527 int rc, nr_pages; 1528 1529 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1530 retry = 0; 1531 nr_retry_pages = 0; 1532 1533 list_for_each_entry_safe(folio, folio2, from, lru) { 1534 if (!folio_test_hugetlb(folio)) 1535 continue; 1536 1537 nr_pages = folio_nr_pages(folio); 1538 1539 cond_resched(); 1540 1541 /* 1542 * Migratability of hugepages depends on architectures and 1543 * their size. This check is necessary because some callers 1544 * of hugepage migration like soft offline and memory 1545 * hotremove don't walk through page tables or check whether 1546 * the hugepage is pmd-based or not before kicking migration. 1547 */ 1548 if (!hugepage_migration_supported(folio_hstate(folio))) { 1549 nr_failed++; 1550 stats->nr_failed_pages += nr_pages; 1551 list_move_tail(&folio->lru, ret_folios); 1552 continue; 1553 } 1554 1555 rc = unmap_and_move_huge_page(get_new_folio, 1556 put_new_folio, private, 1557 folio, pass > 2, mode, 1558 reason, ret_folios); 1559 /* 1560 * The rules are: 1561 * Success: hugetlb folio will be put back 1562 * -EAGAIN: stay on the from list 1563 * -ENOMEM: stay on the from list 1564 * Other errno: put on ret_folios list 1565 */ 1566 switch(rc) { 1567 case -ENOMEM: 1568 /* 1569 * When memory is low, don't bother to try to migrate 1570 * other folios, just exit. 1571 */ 1572 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1573 return -ENOMEM; 1574 case -EAGAIN: 1575 retry++; 1576 nr_retry_pages += nr_pages; 1577 break; 1578 case MIGRATEPAGE_SUCCESS: 1579 stats->nr_succeeded += nr_pages; 1580 break; 1581 default: 1582 /* 1583 * Permanent failure (-EBUSY, etc.): 1584 * unlike -EAGAIN case, the failed folio is 1585 * removed from migration folio list and not 1586 * retried in the next outer loop. 1587 */ 1588 nr_failed++; 1589 stats->nr_failed_pages += nr_pages; 1590 break; 1591 } 1592 } 1593 } 1594 /* 1595 * nr_failed is number of hugetlb folios failed to be migrated. After 1596 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1597 * folios as failed. 1598 */ 1599 nr_failed += retry; 1600 stats->nr_failed_pages += nr_retry_pages; 1601 1602 return nr_failed; 1603 } 1604 1605 /* 1606 * migrate_pages_batch() first unmaps folios in the from list as many as 1607 * possible, then move the unmapped folios. 1608 * 1609 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1610 * lock or bit when we have locked more than one folio. Which may cause 1611 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1612 * length of the from list must be <= 1. 1613 */ 1614 static int migrate_pages_batch(struct list_head *from, 1615 new_folio_t get_new_folio, free_folio_t put_new_folio, 1616 unsigned long private, enum migrate_mode mode, int reason, 1617 struct list_head *ret_folios, struct list_head *split_folios, 1618 struct migrate_pages_stats *stats, int nr_pass) 1619 { 1620 int retry = 1; 1621 int thp_retry = 1; 1622 int nr_failed = 0; 1623 int nr_retry_pages = 0; 1624 int pass = 0; 1625 bool is_thp = false; 1626 struct folio *folio, *folio2, *dst = NULL, *dst2; 1627 int rc, rc_saved = 0, nr_pages; 1628 LIST_HEAD(unmap_folios); 1629 LIST_HEAD(dst_folios); 1630 bool nosplit = (reason == MR_NUMA_MISPLACED); 1631 1632 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1633 !list_empty(from) && !list_is_singular(from)); 1634 1635 for (pass = 0; pass < nr_pass && retry; pass++) { 1636 retry = 0; 1637 thp_retry = 0; 1638 nr_retry_pages = 0; 1639 1640 list_for_each_entry_safe(folio, folio2, from, lru) { 1641 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1642 nr_pages = folio_nr_pages(folio); 1643 1644 cond_resched(); 1645 1646 /* 1647 * Large folio migration might be unsupported or 1648 * the allocation might be failed so we should retry 1649 * on the same folio with the large folio split 1650 * to normal folios. 1651 * 1652 * Split folios are put in split_folios, and 1653 * we will migrate them after the rest of the 1654 * list is processed. 1655 */ 1656 if (!thp_migration_supported() && is_thp) { 1657 nr_failed++; 1658 stats->nr_thp_failed++; 1659 if (!try_split_folio(folio, split_folios)) { 1660 stats->nr_thp_split++; 1661 continue; 1662 } 1663 stats->nr_failed_pages += nr_pages; 1664 list_move_tail(&folio->lru, ret_folios); 1665 continue; 1666 } 1667 1668 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1669 private, folio, &dst, mode, reason, 1670 ret_folios); 1671 /* 1672 * The rules are: 1673 * Success: folio will be freed 1674 * Unmap: folio will be put on unmap_folios list, 1675 * dst folio put on dst_folios list 1676 * -EAGAIN: stay on the from list 1677 * -ENOMEM: stay on the from list 1678 * Other errno: put on ret_folios list 1679 */ 1680 switch(rc) { 1681 case -ENOMEM: 1682 /* 1683 * When memory is low, don't bother to try to migrate 1684 * other folios, move unmapped folios, then exit. 1685 */ 1686 nr_failed++; 1687 stats->nr_thp_failed += is_thp; 1688 /* Large folio NUMA faulting doesn't split to retry. */ 1689 if (folio_test_large(folio) && !nosplit) { 1690 int ret = try_split_folio(folio, split_folios); 1691 1692 if (!ret) { 1693 stats->nr_thp_split += is_thp; 1694 break; 1695 } else if (reason == MR_LONGTERM_PIN && 1696 ret == -EAGAIN) { 1697 /* 1698 * Try again to split large folio to 1699 * mitigate the failure of longterm pinning. 1700 */ 1701 retry++; 1702 thp_retry += is_thp; 1703 nr_retry_pages += nr_pages; 1704 /* Undo duplicated failure counting. */ 1705 nr_failed--; 1706 stats->nr_thp_failed -= is_thp; 1707 break; 1708 } 1709 } 1710 1711 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1712 /* nr_failed isn't updated for not used */ 1713 stats->nr_thp_failed += thp_retry; 1714 rc_saved = rc; 1715 if (list_empty(&unmap_folios)) 1716 goto out; 1717 else 1718 goto move; 1719 case -EAGAIN: 1720 retry++; 1721 thp_retry += is_thp; 1722 nr_retry_pages += nr_pages; 1723 break; 1724 case MIGRATEPAGE_SUCCESS: 1725 stats->nr_succeeded += nr_pages; 1726 stats->nr_thp_succeeded += is_thp; 1727 break; 1728 case MIGRATEPAGE_UNMAP: 1729 list_move_tail(&folio->lru, &unmap_folios); 1730 list_add_tail(&dst->lru, &dst_folios); 1731 break; 1732 default: 1733 /* 1734 * Permanent failure (-EBUSY, etc.): 1735 * unlike -EAGAIN case, the failed folio is 1736 * removed from migration folio list and not 1737 * retried in the next outer loop. 1738 */ 1739 nr_failed++; 1740 stats->nr_thp_failed += is_thp; 1741 stats->nr_failed_pages += nr_pages; 1742 break; 1743 } 1744 } 1745 } 1746 nr_failed += retry; 1747 stats->nr_thp_failed += thp_retry; 1748 stats->nr_failed_pages += nr_retry_pages; 1749 move: 1750 /* Flush TLBs for all unmapped folios */ 1751 try_to_unmap_flush(); 1752 1753 retry = 1; 1754 for (pass = 0; pass < nr_pass && retry; pass++) { 1755 retry = 0; 1756 thp_retry = 0; 1757 nr_retry_pages = 0; 1758 1759 dst = list_first_entry(&dst_folios, struct folio, lru); 1760 dst2 = list_next_entry(dst, lru); 1761 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1762 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1763 nr_pages = folio_nr_pages(folio); 1764 1765 cond_resched(); 1766 1767 rc = migrate_folio_move(put_new_folio, private, 1768 folio, dst, mode, 1769 reason, ret_folios); 1770 /* 1771 * The rules are: 1772 * Success: folio will be freed 1773 * -EAGAIN: stay on the unmap_folios list 1774 * Other errno: put on ret_folios list 1775 */ 1776 switch(rc) { 1777 case -EAGAIN: 1778 retry++; 1779 thp_retry += is_thp; 1780 nr_retry_pages += nr_pages; 1781 break; 1782 case MIGRATEPAGE_SUCCESS: 1783 stats->nr_succeeded += nr_pages; 1784 stats->nr_thp_succeeded += is_thp; 1785 break; 1786 default: 1787 nr_failed++; 1788 stats->nr_thp_failed += is_thp; 1789 stats->nr_failed_pages += nr_pages; 1790 break; 1791 } 1792 dst = dst2; 1793 dst2 = list_next_entry(dst, lru); 1794 } 1795 } 1796 nr_failed += retry; 1797 stats->nr_thp_failed += thp_retry; 1798 stats->nr_failed_pages += nr_retry_pages; 1799 1800 rc = rc_saved ? : nr_failed; 1801 out: 1802 /* Cleanup remaining folios */ 1803 dst = list_first_entry(&dst_folios, struct folio, lru); 1804 dst2 = list_next_entry(dst, lru); 1805 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1806 int old_page_state = 0; 1807 struct anon_vma *anon_vma = NULL; 1808 1809 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1810 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1811 anon_vma, true, ret_folios); 1812 list_del(&dst->lru); 1813 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1814 dst = dst2; 1815 dst2 = list_next_entry(dst, lru); 1816 } 1817 1818 return rc; 1819 } 1820 1821 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1822 free_folio_t put_new_folio, unsigned long private, 1823 enum migrate_mode mode, int reason, 1824 struct list_head *ret_folios, struct list_head *split_folios, 1825 struct migrate_pages_stats *stats) 1826 { 1827 int rc, nr_failed = 0; 1828 LIST_HEAD(folios); 1829 struct migrate_pages_stats astats; 1830 1831 memset(&astats, 0, sizeof(astats)); 1832 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1833 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1834 reason, &folios, split_folios, &astats, 1835 NR_MAX_MIGRATE_ASYNC_RETRY); 1836 stats->nr_succeeded += astats.nr_succeeded; 1837 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1838 stats->nr_thp_split += astats.nr_thp_split; 1839 if (rc < 0) { 1840 stats->nr_failed_pages += astats.nr_failed_pages; 1841 stats->nr_thp_failed += astats.nr_thp_failed; 1842 list_splice_tail(&folios, ret_folios); 1843 return rc; 1844 } 1845 stats->nr_thp_failed += astats.nr_thp_split; 1846 nr_failed += astats.nr_thp_split; 1847 /* 1848 * Fall back to migrate all failed folios one by one synchronously. All 1849 * failed folios except split THPs will be retried, so their failure 1850 * isn't counted 1851 */ 1852 list_splice_tail_init(&folios, from); 1853 while (!list_empty(from)) { 1854 list_move(from->next, &folios); 1855 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1856 private, mode, reason, ret_folios, 1857 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1858 list_splice_tail_init(&folios, ret_folios); 1859 if (rc < 0) 1860 return rc; 1861 nr_failed += rc; 1862 } 1863 1864 return nr_failed; 1865 } 1866 1867 /* 1868 * migrate_pages - migrate the folios specified in a list, to the free folios 1869 * supplied as the target for the page migration 1870 * 1871 * @from: The list of folios to be migrated. 1872 * @get_new_folio: The function used to allocate free folios to be used 1873 * as the target of the folio migration. 1874 * @put_new_folio: The function used to free target folios if migration 1875 * fails, or NULL if no special handling is necessary. 1876 * @private: Private data to be passed on to get_new_folio() 1877 * @mode: The migration mode that specifies the constraints for 1878 * folio migration, if any. 1879 * @reason: The reason for folio migration. 1880 * @ret_succeeded: Set to the number of folios migrated successfully if 1881 * the caller passes a non-NULL pointer. 1882 * 1883 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1884 * are movable any more because the list has become empty or no retryable folios 1885 * exist any more. It is caller's responsibility to call putback_movable_pages() 1886 * only if ret != 0. 1887 * 1888 * Returns the number of {normal folio, large folio, hugetlb} that were not 1889 * migrated, or an error code. The number of large folio splits will be 1890 * considered as the number of non-migrated large folio, no matter how many 1891 * split folios of the large folio are migrated successfully. 1892 */ 1893 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1894 free_folio_t put_new_folio, unsigned long private, 1895 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1896 { 1897 int rc, rc_gather; 1898 int nr_pages; 1899 struct folio *folio, *folio2; 1900 LIST_HEAD(folios); 1901 LIST_HEAD(ret_folios); 1902 LIST_HEAD(split_folios); 1903 struct migrate_pages_stats stats; 1904 1905 trace_mm_migrate_pages_start(mode, reason); 1906 1907 memset(&stats, 0, sizeof(stats)); 1908 1909 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1910 mode, reason, &stats, &ret_folios); 1911 if (rc_gather < 0) 1912 goto out; 1913 1914 again: 1915 nr_pages = 0; 1916 list_for_each_entry_safe(folio, folio2, from, lru) { 1917 /* Retried hugetlb folios will be kept in list */ 1918 if (folio_test_hugetlb(folio)) { 1919 list_move_tail(&folio->lru, &ret_folios); 1920 continue; 1921 } 1922 1923 nr_pages += folio_nr_pages(folio); 1924 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1925 break; 1926 } 1927 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1928 list_cut_before(&folios, from, &folio2->lru); 1929 else 1930 list_splice_init(from, &folios); 1931 if (mode == MIGRATE_ASYNC) 1932 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1933 private, mode, reason, &ret_folios, 1934 &split_folios, &stats, 1935 NR_MAX_MIGRATE_PAGES_RETRY); 1936 else 1937 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1938 private, mode, reason, &ret_folios, 1939 &split_folios, &stats); 1940 list_splice_tail_init(&folios, &ret_folios); 1941 if (rc < 0) { 1942 rc_gather = rc; 1943 list_splice_tail(&split_folios, &ret_folios); 1944 goto out; 1945 } 1946 if (!list_empty(&split_folios)) { 1947 /* 1948 * Failure isn't counted since all split folios of a large folio 1949 * is counted as 1 failure already. And, we only try to migrate 1950 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1951 */ 1952 migrate_pages_batch(&split_folios, get_new_folio, 1953 put_new_folio, private, MIGRATE_ASYNC, reason, 1954 &ret_folios, NULL, &stats, 1); 1955 list_splice_tail_init(&split_folios, &ret_folios); 1956 } 1957 rc_gather += rc; 1958 if (!list_empty(from)) 1959 goto again; 1960 out: 1961 /* 1962 * Put the permanent failure folio back to migration list, they 1963 * will be put back to the right list by the caller. 1964 */ 1965 list_splice(&ret_folios, from); 1966 1967 /* 1968 * Return 0 in case all split folios of fail-to-migrate large folios 1969 * are migrated successfully. 1970 */ 1971 if (list_empty(from)) 1972 rc_gather = 0; 1973 1974 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1975 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1976 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1977 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1978 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1979 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1980 stats.nr_thp_succeeded, stats.nr_thp_failed, 1981 stats.nr_thp_split, mode, reason); 1982 1983 if (ret_succeeded) 1984 *ret_succeeded = stats.nr_succeeded; 1985 1986 return rc_gather; 1987 } 1988 1989 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 1990 { 1991 struct migration_target_control *mtc; 1992 gfp_t gfp_mask; 1993 unsigned int order = 0; 1994 int nid; 1995 int zidx; 1996 1997 mtc = (struct migration_target_control *)private; 1998 gfp_mask = mtc->gfp_mask; 1999 nid = mtc->nid; 2000 if (nid == NUMA_NO_NODE) 2001 nid = folio_nid(src); 2002 2003 if (folio_test_hugetlb(src)) { 2004 struct hstate *h = folio_hstate(src); 2005 2006 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2007 return alloc_hugetlb_folio_nodemask(h, nid, 2008 mtc->nmask, gfp_mask); 2009 } 2010 2011 if (folio_test_large(src)) { 2012 /* 2013 * clear __GFP_RECLAIM to make the migration callback 2014 * consistent with regular THP allocations. 2015 */ 2016 gfp_mask &= ~__GFP_RECLAIM; 2017 gfp_mask |= GFP_TRANSHUGE; 2018 order = folio_order(src); 2019 } 2020 zidx = zone_idx(folio_zone(src)); 2021 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2022 gfp_mask |= __GFP_HIGHMEM; 2023 2024 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2025 } 2026 2027 #ifdef CONFIG_NUMA 2028 2029 static int store_status(int __user *status, int start, int value, int nr) 2030 { 2031 while (nr-- > 0) { 2032 if (put_user(value, status + start)) 2033 return -EFAULT; 2034 start++; 2035 } 2036 2037 return 0; 2038 } 2039 2040 static int do_move_pages_to_node(struct mm_struct *mm, 2041 struct list_head *pagelist, int node) 2042 { 2043 int err; 2044 struct migration_target_control mtc = { 2045 .nid = node, 2046 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2047 }; 2048 2049 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2050 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2051 if (err) 2052 putback_movable_pages(pagelist); 2053 return err; 2054 } 2055 2056 /* 2057 * Resolves the given address to a struct page, isolates it from the LRU and 2058 * puts it to the given pagelist. 2059 * Returns: 2060 * errno - if the page cannot be found/isolated 2061 * 0 - when it doesn't have to be migrated because it is already on the 2062 * target node 2063 * 1 - when it has been queued 2064 */ 2065 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2066 int node, struct list_head *pagelist, bool migrate_all) 2067 { 2068 struct vm_area_struct *vma; 2069 unsigned long addr; 2070 struct page *page; 2071 int err; 2072 bool isolated; 2073 2074 mmap_read_lock(mm); 2075 addr = (unsigned long)untagged_addr_remote(mm, p); 2076 2077 err = -EFAULT; 2078 vma = vma_lookup(mm, addr); 2079 if (!vma || !vma_migratable(vma)) 2080 goto out; 2081 2082 /* FOLL_DUMP to ignore special (like zero) pages */ 2083 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2084 2085 err = PTR_ERR(page); 2086 if (IS_ERR(page)) 2087 goto out; 2088 2089 err = -ENOENT; 2090 if (!page) 2091 goto out; 2092 2093 if (is_zone_device_page(page)) 2094 goto out_putpage; 2095 2096 err = 0; 2097 if (page_to_nid(page) == node) 2098 goto out_putpage; 2099 2100 err = -EACCES; 2101 if (page_mapcount(page) > 1 && !migrate_all) 2102 goto out_putpage; 2103 2104 if (PageHuge(page)) { 2105 if (PageHead(page)) { 2106 isolated = isolate_hugetlb(page_folio(page), pagelist); 2107 err = isolated ? 1 : -EBUSY; 2108 } 2109 } else { 2110 struct page *head; 2111 2112 head = compound_head(page); 2113 isolated = isolate_lru_page(head); 2114 if (!isolated) { 2115 err = -EBUSY; 2116 goto out_putpage; 2117 } 2118 2119 err = 1; 2120 list_add_tail(&head->lru, pagelist); 2121 mod_node_page_state(page_pgdat(head), 2122 NR_ISOLATED_ANON + page_is_file_lru(head), 2123 thp_nr_pages(head)); 2124 } 2125 out_putpage: 2126 /* 2127 * Either remove the duplicate refcount from 2128 * isolate_lru_page() or drop the page ref if it was 2129 * not isolated. 2130 */ 2131 put_page(page); 2132 out: 2133 mmap_read_unlock(mm); 2134 return err; 2135 } 2136 2137 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2138 struct list_head *pagelist, int __user *status, 2139 int start, int i, unsigned long nr_pages) 2140 { 2141 int err; 2142 2143 if (list_empty(pagelist)) 2144 return 0; 2145 2146 err = do_move_pages_to_node(mm, pagelist, node); 2147 if (err) { 2148 /* 2149 * Positive err means the number of failed 2150 * pages to migrate. Since we are going to 2151 * abort and return the number of non-migrated 2152 * pages, so need to include the rest of the 2153 * nr_pages that have not been attempted as 2154 * well. 2155 */ 2156 if (err > 0) 2157 err += nr_pages - i; 2158 return err; 2159 } 2160 return store_status(status, start, node, i - start); 2161 } 2162 2163 /* 2164 * Migrate an array of page address onto an array of nodes and fill 2165 * the corresponding array of status. 2166 */ 2167 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2168 unsigned long nr_pages, 2169 const void __user * __user *pages, 2170 const int __user *nodes, 2171 int __user *status, int flags) 2172 { 2173 compat_uptr_t __user *compat_pages = (void __user *)pages; 2174 int current_node = NUMA_NO_NODE; 2175 LIST_HEAD(pagelist); 2176 int start, i; 2177 int err = 0, err1; 2178 2179 lru_cache_disable(); 2180 2181 for (i = start = 0; i < nr_pages; i++) { 2182 const void __user *p; 2183 int node; 2184 2185 err = -EFAULT; 2186 if (in_compat_syscall()) { 2187 compat_uptr_t cp; 2188 2189 if (get_user(cp, compat_pages + i)) 2190 goto out_flush; 2191 2192 p = compat_ptr(cp); 2193 } else { 2194 if (get_user(p, pages + i)) 2195 goto out_flush; 2196 } 2197 if (get_user(node, nodes + i)) 2198 goto out_flush; 2199 2200 err = -ENODEV; 2201 if (node < 0 || node >= MAX_NUMNODES) 2202 goto out_flush; 2203 if (!node_state(node, N_MEMORY)) 2204 goto out_flush; 2205 2206 err = -EACCES; 2207 if (!node_isset(node, task_nodes)) 2208 goto out_flush; 2209 2210 if (current_node == NUMA_NO_NODE) { 2211 current_node = node; 2212 start = i; 2213 } else if (node != current_node) { 2214 err = move_pages_and_store_status(mm, current_node, 2215 &pagelist, status, start, i, nr_pages); 2216 if (err) 2217 goto out; 2218 start = i; 2219 current_node = node; 2220 } 2221 2222 /* 2223 * Errors in the page lookup or isolation are not fatal and we simply 2224 * report them via status 2225 */ 2226 err = add_page_for_migration(mm, p, current_node, &pagelist, 2227 flags & MPOL_MF_MOVE_ALL); 2228 2229 if (err > 0) { 2230 /* The page is successfully queued for migration */ 2231 continue; 2232 } 2233 2234 /* 2235 * The move_pages() man page does not have an -EEXIST choice, so 2236 * use -EFAULT instead. 2237 */ 2238 if (err == -EEXIST) 2239 err = -EFAULT; 2240 2241 /* 2242 * If the page is already on the target node (!err), store the 2243 * node, otherwise, store the err. 2244 */ 2245 err = store_status(status, i, err ? : current_node, 1); 2246 if (err) 2247 goto out_flush; 2248 2249 err = move_pages_and_store_status(mm, current_node, &pagelist, 2250 status, start, i, nr_pages); 2251 if (err) { 2252 /* We have accounted for page i */ 2253 if (err > 0) 2254 err--; 2255 goto out; 2256 } 2257 current_node = NUMA_NO_NODE; 2258 } 2259 out_flush: 2260 /* Make sure we do not overwrite the existing error */ 2261 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2262 status, start, i, nr_pages); 2263 if (err >= 0) 2264 err = err1; 2265 out: 2266 lru_cache_enable(); 2267 return err; 2268 } 2269 2270 /* 2271 * Determine the nodes of an array of pages and store it in an array of status. 2272 */ 2273 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2274 const void __user **pages, int *status) 2275 { 2276 unsigned long i; 2277 2278 mmap_read_lock(mm); 2279 2280 for (i = 0; i < nr_pages; i++) { 2281 unsigned long addr = (unsigned long)(*pages); 2282 struct vm_area_struct *vma; 2283 struct page *page; 2284 int err = -EFAULT; 2285 2286 vma = vma_lookup(mm, addr); 2287 if (!vma) 2288 goto set_status; 2289 2290 /* FOLL_DUMP to ignore special (like zero) pages */ 2291 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2292 2293 err = PTR_ERR(page); 2294 if (IS_ERR(page)) 2295 goto set_status; 2296 2297 err = -ENOENT; 2298 if (!page) 2299 goto set_status; 2300 2301 if (!is_zone_device_page(page)) 2302 err = page_to_nid(page); 2303 2304 put_page(page); 2305 set_status: 2306 *status = err; 2307 2308 pages++; 2309 status++; 2310 } 2311 2312 mmap_read_unlock(mm); 2313 } 2314 2315 static int get_compat_pages_array(const void __user *chunk_pages[], 2316 const void __user * __user *pages, 2317 unsigned long chunk_nr) 2318 { 2319 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2320 compat_uptr_t p; 2321 int i; 2322 2323 for (i = 0; i < chunk_nr; i++) { 2324 if (get_user(p, pages32 + i)) 2325 return -EFAULT; 2326 chunk_pages[i] = compat_ptr(p); 2327 } 2328 2329 return 0; 2330 } 2331 2332 /* 2333 * Determine the nodes of a user array of pages and store it in 2334 * a user array of status. 2335 */ 2336 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2337 const void __user * __user *pages, 2338 int __user *status) 2339 { 2340 #define DO_PAGES_STAT_CHUNK_NR 16UL 2341 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2342 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2343 2344 while (nr_pages) { 2345 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2346 2347 if (in_compat_syscall()) { 2348 if (get_compat_pages_array(chunk_pages, pages, 2349 chunk_nr)) 2350 break; 2351 } else { 2352 if (copy_from_user(chunk_pages, pages, 2353 chunk_nr * sizeof(*chunk_pages))) 2354 break; 2355 } 2356 2357 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2358 2359 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2360 break; 2361 2362 pages += chunk_nr; 2363 status += chunk_nr; 2364 nr_pages -= chunk_nr; 2365 } 2366 return nr_pages ? -EFAULT : 0; 2367 } 2368 2369 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2370 { 2371 struct task_struct *task; 2372 struct mm_struct *mm; 2373 2374 /* 2375 * There is no need to check if current process has the right to modify 2376 * the specified process when they are same. 2377 */ 2378 if (!pid) { 2379 mmget(current->mm); 2380 *mem_nodes = cpuset_mems_allowed(current); 2381 return current->mm; 2382 } 2383 2384 /* Find the mm_struct */ 2385 rcu_read_lock(); 2386 task = find_task_by_vpid(pid); 2387 if (!task) { 2388 rcu_read_unlock(); 2389 return ERR_PTR(-ESRCH); 2390 } 2391 get_task_struct(task); 2392 2393 /* 2394 * Check if this process has the right to modify the specified 2395 * process. Use the regular "ptrace_may_access()" checks. 2396 */ 2397 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2398 rcu_read_unlock(); 2399 mm = ERR_PTR(-EPERM); 2400 goto out; 2401 } 2402 rcu_read_unlock(); 2403 2404 mm = ERR_PTR(security_task_movememory(task)); 2405 if (IS_ERR(mm)) 2406 goto out; 2407 *mem_nodes = cpuset_mems_allowed(task); 2408 mm = get_task_mm(task); 2409 out: 2410 put_task_struct(task); 2411 if (!mm) 2412 mm = ERR_PTR(-EINVAL); 2413 return mm; 2414 } 2415 2416 /* 2417 * Move a list of pages in the address space of the currently executing 2418 * process. 2419 */ 2420 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2421 const void __user * __user *pages, 2422 const int __user *nodes, 2423 int __user *status, int flags) 2424 { 2425 struct mm_struct *mm; 2426 int err; 2427 nodemask_t task_nodes; 2428 2429 /* Check flags */ 2430 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2431 return -EINVAL; 2432 2433 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2434 return -EPERM; 2435 2436 mm = find_mm_struct(pid, &task_nodes); 2437 if (IS_ERR(mm)) 2438 return PTR_ERR(mm); 2439 2440 if (nodes) 2441 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2442 nodes, status, flags); 2443 else 2444 err = do_pages_stat(mm, nr_pages, pages, status); 2445 2446 mmput(mm); 2447 return err; 2448 } 2449 2450 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2451 const void __user * __user *, pages, 2452 const int __user *, nodes, 2453 int __user *, status, int, flags) 2454 { 2455 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2456 } 2457 2458 #ifdef CONFIG_NUMA_BALANCING 2459 /* 2460 * Returns true if this is a safe migration target node for misplaced NUMA 2461 * pages. Currently it only checks the watermarks which is crude. 2462 */ 2463 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2464 unsigned long nr_migrate_pages) 2465 { 2466 int z; 2467 2468 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2469 struct zone *zone = pgdat->node_zones + z; 2470 2471 if (!managed_zone(zone)) 2472 continue; 2473 2474 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2475 if (!zone_watermark_ok(zone, 0, 2476 high_wmark_pages(zone) + 2477 nr_migrate_pages, 2478 ZONE_MOVABLE, 0)) 2479 continue; 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2486 unsigned long data) 2487 { 2488 int nid = (int) data; 2489 int order = folio_order(src); 2490 gfp_t gfp = __GFP_THISNODE; 2491 2492 if (order > 0) 2493 gfp |= GFP_TRANSHUGE_LIGHT; 2494 else { 2495 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2496 __GFP_NOWARN; 2497 gfp &= ~__GFP_RECLAIM; 2498 } 2499 return __folio_alloc_node(gfp, order, nid); 2500 } 2501 2502 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2503 { 2504 int nr_pages = thp_nr_pages(page); 2505 int order = compound_order(page); 2506 2507 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2508 2509 /* Do not migrate THP mapped by multiple processes */ 2510 if (PageTransHuge(page) && total_mapcount(page) > 1) 2511 return 0; 2512 2513 /* Avoid migrating to a node that is nearly full */ 2514 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2515 int z; 2516 2517 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2518 return 0; 2519 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2520 if (managed_zone(pgdat->node_zones + z)) 2521 break; 2522 } 2523 2524 /* 2525 * If there are no managed zones, it should not proceed 2526 * further. 2527 */ 2528 if (z < 0) 2529 return 0; 2530 2531 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2532 return 0; 2533 } 2534 2535 if (!isolate_lru_page(page)) 2536 return 0; 2537 2538 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2539 nr_pages); 2540 2541 /* 2542 * Isolating the page has taken another reference, so the 2543 * caller's reference can be safely dropped without the page 2544 * disappearing underneath us during migration. 2545 */ 2546 put_page(page); 2547 return 1; 2548 } 2549 2550 /* 2551 * Attempt to migrate a misplaced page to the specified destination 2552 * node. Caller is expected to have an elevated reference count on 2553 * the page that will be dropped by this function before returning. 2554 */ 2555 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2556 int node) 2557 { 2558 pg_data_t *pgdat = NODE_DATA(node); 2559 int isolated; 2560 int nr_remaining; 2561 unsigned int nr_succeeded; 2562 LIST_HEAD(migratepages); 2563 int nr_pages = thp_nr_pages(page); 2564 2565 /* 2566 * Don't migrate file pages that are mapped in multiple processes 2567 * with execute permissions as they are probably shared libraries. 2568 */ 2569 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2570 (vma->vm_flags & VM_EXEC)) 2571 goto out; 2572 2573 /* 2574 * Also do not migrate dirty pages as not all filesystems can move 2575 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2576 */ 2577 if (page_is_file_lru(page) && PageDirty(page)) 2578 goto out; 2579 2580 isolated = numamigrate_isolate_page(pgdat, page); 2581 if (!isolated) 2582 goto out; 2583 2584 list_add(&page->lru, &migratepages); 2585 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2586 NULL, node, MIGRATE_ASYNC, 2587 MR_NUMA_MISPLACED, &nr_succeeded); 2588 if (nr_remaining) { 2589 if (!list_empty(&migratepages)) { 2590 list_del(&page->lru); 2591 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2592 page_is_file_lru(page), -nr_pages); 2593 putback_lru_page(page); 2594 } 2595 isolated = 0; 2596 } 2597 if (nr_succeeded) { 2598 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2599 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2600 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2601 nr_succeeded); 2602 } 2603 BUG_ON(!list_empty(&migratepages)); 2604 return isolated; 2605 2606 out: 2607 put_page(page); 2608 return 0; 2609 } 2610 #endif /* CONFIG_NUMA_BALANCING */ 2611 #endif /* CONFIG_NUMA */ 2612