1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154 #ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159 #endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 /* No need to invalidate - it was non-present before */ 174 update_mmu_cache(vma, addr, ptep); 175 unlock: 176 pte_unmap_unlock(ptep, ptl); 177 out: 178 return SWAP_AGAIN; 179 } 180 181 /* 182 * Get rid of all migration entries and replace them by 183 * references to the indicated page. 184 */ 185 static void remove_migration_ptes(struct page *old, struct page *new) 186 { 187 struct rmap_walk_control rwc = { 188 .rmap_one = remove_migration_pte, 189 .arg = old, 190 }; 191 192 rmap_walk(new, &rwc); 193 } 194 195 /* 196 * Something used the pte of a page under migration. We need to 197 * get to the page and wait until migration is finished. 198 * When we return from this function the fault will be retried. 199 */ 200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 201 spinlock_t *ptl) 202 { 203 pte_t pte; 204 swp_entry_t entry; 205 struct page *page; 206 207 spin_lock(ptl); 208 pte = *ptep; 209 if (!is_swap_pte(pte)) 210 goto out; 211 212 entry = pte_to_swp_entry(pte); 213 if (!is_migration_entry(entry)) 214 goto out; 215 216 page = migration_entry_to_page(entry); 217 218 /* 219 * Once radix-tree replacement of page migration started, page_count 220 * *must* be zero. And, we don't want to call wait_on_page_locked() 221 * against a page without get_page(). 222 * So, we use get_page_unless_zero(), here. Even failed, page fault 223 * will occur again. 224 */ 225 if (!get_page_unless_zero(page)) 226 goto out; 227 pte_unmap_unlock(ptep, ptl); 228 wait_on_page_locked(page); 229 put_page(page); 230 return; 231 out: 232 pte_unmap_unlock(ptep, ptl); 233 } 234 235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 236 unsigned long address) 237 { 238 spinlock_t *ptl = pte_lockptr(mm, pmd); 239 pte_t *ptep = pte_offset_map(pmd, address); 240 __migration_entry_wait(mm, ptep, ptl); 241 } 242 243 void migration_entry_wait_huge(struct vm_area_struct *vma, 244 struct mm_struct *mm, pte_t *pte) 245 { 246 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 247 __migration_entry_wait(mm, pte, ptl); 248 } 249 250 #ifdef CONFIG_BLOCK 251 /* Returns true if all buffers are successfully locked */ 252 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 253 enum migrate_mode mode) 254 { 255 struct buffer_head *bh = head; 256 257 /* Simple case, sync compaction */ 258 if (mode != MIGRATE_ASYNC) { 259 do { 260 get_bh(bh); 261 lock_buffer(bh); 262 bh = bh->b_this_page; 263 264 } while (bh != head); 265 266 return true; 267 } 268 269 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 270 do { 271 get_bh(bh); 272 if (!trylock_buffer(bh)) { 273 /* 274 * We failed to lock the buffer and cannot stall in 275 * async migration. Release the taken locks 276 */ 277 struct buffer_head *failed_bh = bh; 278 put_bh(failed_bh); 279 bh = head; 280 while (bh != failed_bh) { 281 unlock_buffer(bh); 282 put_bh(bh); 283 bh = bh->b_this_page; 284 } 285 return false; 286 } 287 288 bh = bh->b_this_page; 289 } while (bh != head); 290 return true; 291 } 292 #else 293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 294 enum migrate_mode mode) 295 { 296 return true; 297 } 298 #endif /* CONFIG_BLOCK */ 299 300 /* 301 * Replace the page in the mapping. 302 * 303 * The number of remaining references must be: 304 * 1 for anonymous pages without a mapping 305 * 2 for pages with a mapping 306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 307 */ 308 int migrate_page_move_mapping(struct address_space *mapping, 309 struct page *newpage, struct page *page, 310 struct buffer_head *head, enum migrate_mode mode, 311 int extra_count) 312 { 313 int expected_count = 1 + extra_count; 314 void **pslot; 315 316 if (!mapping) { 317 /* Anonymous page without mapping */ 318 if (page_count(page) != expected_count) 319 return -EAGAIN; 320 return MIGRATEPAGE_SUCCESS; 321 } 322 323 spin_lock_irq(&mapping->tree_lock); 324 325 pslot = radix_tree_lookup_slot(&mapping->page_tree, 326 page_index(page)); 327 328 expected_count += 1 + page_has_private(page); 329 if (page_count(page) != expected_count || 330 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 331 spin_unlock_irq(&mapping->tree_lock); 332 return -EAGAIN; 333 } 334 335 if (!page_freeze_refs(page, expected_count)) { 336 spin_unlock_irq(&mapping->tree_lock); 337 return -EAGAIN; 338 } 339 340 /* 341 * In the async migration case of moving a page with buffers, lock the 342 * buffers using trylock before the mapping is moved. If the mapping 343 * was moved, we later failed to lock the buffers and could not move 344 * the mapping back due to an elevated page count, we would have to 345 * block waiting on other references to be dropped. 346 */ 347 if (mode == MIGRATE_ASYNC && head && 348 !buffer_migrate_lock_buffers(head, mode)) { 349 page_unfreeze_refs(page, expected_count); 350 spin_unlock_irq(&mapping->tree_lock); 351 return -EAGAIN; 352 } 353 354 /* 355 * Now we know that no one else is looking at the page. 356 */ 357 get_page(newpage); /* add cache reference */ 358 if (PageSwapCache(page)) { 359 SetPageSwapCache(newpage); 360 set_page_private(newpage, page_private(page)); 361 } 362 363 radix_tree_replace_slot(pslot, newpage); 364 365 /* 366 * Drop cache reference from old page by unfreezing 367 * to one less reference. 368 * We know this isn't the last reference. 369 */ 370 page_unfreeze_refs(page, expected_count - 1); 371 372 /* 373 * If moved to a different zone then also account 374 * the page for that zone. Other VM counters will be 375 * taken care of when we establish references to the 376 * new page and drop references to the old page. 377 * 378 * Note that anonymous pages are accounted for 379 * via NR_FILE_PAGES and NR_ANON_PAGES if they 380 * are mapped to swap space. 381 */ 382 __dec_zone_page_state(page, NR_FILE_PAGES); 383 __inc_zone_page_state(newpage, NR_FILE_PAGES); 384 if (!PageSwapCache(page) && PageSwapBacked(page)) { 385 __dec_zone_page_state(page, NR_SHMEM); 386 __inc_zone_page_state(newpage, NR_SHMEM); 387 } 388 spin_unlock_irq(&mapping->tree_lock); 389 390 return MIGRATEPAGE_SUCCESS; 391 } 392 393 /* 394 * The expected number of remaining references is the same as that 395 * of migrate_page_move_mapping(). 396 */ 397 int migrate_huge_page_move_mapping(struct address_space *mapping, 398 struct page *newpage, struct page *page) 399 { 400 int expected_count; 401 void **pslot; 402 403 if (!mapping) { 404 if (page_count(page) != 1) 405 return -EAGAIN; 406 return MIGRATEPAGE_SUCCESS; 407 } 408 409 spin_lock_irq(&mapping->tree_lock); 410 411 pslot = radix_tree_lookup_slot(&mapping->page_tree, 412 page_index(page)); 413 414 expected_count = 2 + page_has_private(page); 415 if (page_count(page) != expected_count || 416 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 417 spin_unlock_irq(&mapping->tree_lock); 418 return -EAGAIN; 419 } 420 421 if (!page_freeze_refs(page, expected_count)) { 422 spin_unlock_irq(&mapping->tree_lock); 423 return -EAGAIN; 424 } 425 426 get_page(newpage); 427 428 radix_tree_replace_slot(pslot, newpage); 429 430 page_unfreeze_refs(page, expected_count - 1); 431 432 spin_unlock_irq(&mapping->tree_lock); 433 return MIGRATEPAGE_SUCCESS; 434 } 435 436 /* 437 * Gigantic pages are so large that we do not guarantee that page++ pointer 438 * arithmetic will work across the entire page. We need something more 439 * specialized. 440 */ 441 static void __copy_gigantic_page(struct page *dst, struct page *src, 442 int nr_pages) 443 { 444 int i; 445 struct page *dst_base = dst; 446 struct page *src_base = src; 447 448 for (i = 0; i < nr_pages; ) { 449 cond_resched(); 450 copy_highpage(dst, src); 451 452 i++; 453 dst = mem_map_next(dst, dst_base, i); 454 src = mem_map_next(src, src_base, i); 455 } 456 } 457 458 static void copy_huge_page(struct page *dst, struct page *src) 459 { 460 int i; 461 int nr_pages; 462 463 if (PageHuge(src)) { 464 /* hugetlbfs page */ 465 struct hstate *h = page_hstate(src); 466 nr_pages = pages_per_huge_page(h); 467 468 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 469 __copy_gigantic_page(dst, src, nr_pages); 470 return; 471 } 472 } else { 473 /* thp page */ 474 BUG_ON(!PageTransHuge(src)); 475 nr_pages = hpage_nr_pages(src); 476 } 477 478 for (i = 0; i < nr_pages; i++) { 479 cond_resched(); 480 copy_highpage(dst + i, src + i); 481 } 482 } 483 484 /* 485 * Copy the page to its new location 486 */ 487 void migrate_page_copy(struct page *newpage, struct page *page) 488 { 489 int cpupid; 490 491 if (PageHuge(page) || PageTransHuge(page)) 492 copy_huge_page(newpage, page); 493 else 494 copy_highpage(newpage, page); 495 496 if (PageError(page)) 497 SetPageError(newpage); 498 if (PageReferenced(page)) 499 SetPageReferenced(newpage); 500 if (PageUptodate(page)) 501 SetPageUptodate(newpage); 502 if (TestClearPageActive(page)) { 503 VM_BUG_ON_PAGE(PageUnevictable(page), page); 504 SetPageActive(newpage); 505 } else if (TestClearPageUnevictable(page)) 506 SetPageUnevictable(newpage); 507 if (PageChecked(page)) 508 SetPageChecked(newpage); 509 if (PageMappedToDisk(page)) 510 SetPageMappedToDisk(newpage); 511 512 if (PageDirty(page)) { 513 clear_page_dirty_for_io(page); 514 /* 515 * Want to mark the page and the radix tree as dirty, and 516 * redo the accounting that clear_page_dirty_for_io undid, 517 * but we can't use set_page_dirty because that function 518 * is actually a signal that all of the page has become dirty. 519 * Whereas only part of our page may be dirty. 520 */ 521 if (PageSwapBacked(page)) 522 SetPageDirty(newpage); 523 else 524 __set_page_dirty_nobuffers(newpage); 525 } 526 527 /* 528 * Copy NUMA information to the new page, to prevent over-eager 529 * future migrations of this same page. 530 */ 531 cpupid = page_cpupid_xchg_last(page, -1); 532 page_cpupid_xchg_last(newpage, cpupid); 533 534 mlock_migrate_page(newpage, page); 535 ksm_migrate_page(newpage, page); 536 /* 537 * Please do not reorder this without considering how mm/ksm.c's 538 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 539 */ 540 ClearPageSwapCache(page); 541 ClearPagePrivate(page); 542 set_page_private(page, 0); 543 544 /* 545 * If any waiters have accumulated on the new page then 546 * wake them up. 547 */ 548 if (PageWriteback(newpage)) 549 end_page_writeback(newpage); 550 } 551 552 /************************************************************ 553 * Migration functions 554 ***********************************************************/ 555 556 /* 557 * Common logic to directly migrate a single page suitable for 558 * pages that do not use PagePrivate/PagePrivate2. 559 * 560 * Pages are locked upon entry and exit. 561 */ 562 int migrate_page(struct address_space *mapping, 563 struct page *newpage, struct page *page, 564 enum migrate_mode mode) 565 { 566 int rc; 567 568 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 569 570 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 571 572 if (rc != MIGRATEPAGE_SUCCESS) 573 return rc; 574 575 migrate_page_copy(newpage, page); 576 return MIGRATEPAGE_SUCCESS; 577 } 578 EXPORT_SYMBOL(migrate_page); 579 580 #ifdef CONFIG_BLOCK 581 /* 582 * Migration function for pages with buffers. This function can only be used 583 * if the underlying filesystem guarantees that no other references to "page" 584 * exist. 585 */ 586 int buffer_migrate_page(struct address_space *mapping, 587 struct page *newpage, struct page *page, enum migrate_mode mode) 588 { 589 struct buffer_head *bh, *head; 590 int rc; 591 592 if (!page_has_buffers(page)) 593 return migrate_page(mapping, newpage, page, mode); 594 595 head = page_buffers(page); 596 597 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 598 599 if (rc != MIGRATEPAGE_SUCCESS) 600 return rc; 601 602 /* 603 * In the async case, migrate_page_move_mapping locked the buffers 604 * with an IRQ-safe spinlock held. In the sync case, the buffers 605 * need to be locked now 606 */ 607 if (mode != MIGRATE_ASYNC) 608 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 609 610 ClearPagePrivate(page); 611 set_page_private(newpage, page_private(page)); 612 set_page_private(page, 0); 613 put_page(page); 614 get_page(newpage); 615 616 bh = head; 617 do { 618 set_bh_page(bh, newpage, bh_offset(bh)); 619 bh = bh->b_this_page; 620 621 } while (bh != head); 622 623 SetPagePrivate(newpage); 624 625 migrate_page_copy(newpage, page); 626 627 bh = head; 628 do { 629 unlock_buffer(bh); 630 put_bh(bh); 631 bh = bh->b_this_page; 632 633 } while (bh != head); 634 635 return MIGRATEPAGE_SUCCESS; 636 } 637 EXPORT_SYMBOL(buffer_migrate_page); 638 #endif 639 640 /* 641 * Writeback a page to clean the dirty state 642 */ 643 static int writeout(struct address_space *mapping, struct page *page) 644 { 645 struct writeback_control wbc = { 646 .sync_mode = WB_SYNC_NONE, 647 .nr_to_write = 1, 648 .range_start = 0, 649 .range_end = LLONG_MAX, 650 .for_reclaim = 1 651 }; 652 int rc; 653 654 if (!mapping->a_ops->writepage) 655 /* No write method for the address space */ 656 return -EINVAL; 657 658 if (!clear_page_dirty_for_io(page)) 659 /* Someone else already triggered a write */ 660 return -EAGAIN; 661 662 /* 663 * A dirty page may imply that the underlying filesystem has 664 * the page on some queue. So the page must be clean for 665 * migration. Writeout may mean we loose the lock and the 666 * page state is no longer what we checked for earlier. 667 * At this point we know that the migration attempt cannot 668 * be successful. 669 */ 670 remove_migration_ptes(page, page); 671 672 rc = mapping->a_ops->writepage(page, &wbc); 673 674 if (rc != AOP_WRITEPAGE_ACTIVATE) 675 /* unlocked. Relock */ 676 lock_page(page); 677 678 return (rc < 0) ? -EIO : -EAGAIN; 679 } 680 681 /* 682 * Default handling if a filesystem does not provide a migration function. 683 */ 684 static int fallback_migrate_page(struct address_space *mapping, 685 struct page *newpage, struct page *page, enum migrate_mode mode) 686 { 687 if (PageDirty(page)) { 688 /* Only writeback pages in full synchronous migration */ 689 if (mode != MIGRATE_SYNC) 690 return -EBUSY; 691 return writeout(mapping, page); 692 } 693 694 /* 695 * Buffers may be managed in a filesystem specific way. 696 * We must have no buffers or drop them. 697 */ 698 if (page_has_private(page) && 699 !try_to_release_page(page, GFP_KERNEL)) 700 return -EAGAIN; 701 702 return migrate_page(mapping, newpage, page, mode); 703 } 704 705 /* 706 * Move a page to a newly allocated page 707 * The page is locked and all ptes have been successfully removed. 708 * 709 * The new page will have replaced the old page if this function 710 * is successful. 711 * 712 * Return value: 713 * < 0 - error code 714 * MIGRATEPAGE_SUCCESS - success 715 */ 716 static int move_to_new_page(struct page *newpage, struct page *page, 717 int page_was_mapped, enum migrate_mode mode) 718 { 719 struct address_space *mapping; 720 int rc; 721 722 /* 723 * Block others from accessing the page when we get around to 724 * establishing additional references. We are the only one 725 * holding a reference to the new page at this point. 726 */ 727 if (!trylock_page(newpage)) 728 BUG(); 729 730 /* Prepare mapping for the new page.*/ 731 newpage->index = page->index; 732 newpage->mapping = page->mapping; 733 if (PageSwapBacked(page)) 734 SetPageSwapBacked(newpage); 735 736 mapping = page_mapping(page); 737 if (!mapping) 738 rc = migrate_page(mapping, newpage, page, mode); 739 else if (mapping->a_ops->migratepage) 740 /* 741 * Most pages have a mapping and most filesystems provide a 742 * migratepage callback. Anonymous pages are part of swap 743 * space which also has its own migratepage callback. This 744 * is the most common path for page migration. 745 */ 746 rc = mapping->a_ops->migratepage(mapping, 747 newpage, page, mode); 748 else 749 rc = fallback_migrate_page(mapping, newpage, page, mode); 750 751 if (rc != MIGRATEPAGE_SUCCESS) { 752 newpage->mapping = NULL; 753 } else { 754 mem_cgroup_migrate(page, newpage, false); 755 if (page_was_mapped) 756 remove_migration_ptes(page, newpage); 757 page->mapping = NULL; 758 } 759 760 unlock_page(newpage); 761 762 return rc; 763 } 764 765 static int __unmap_and_move(struct page *page, struct page *newpage, 766 int force, enum migrate_mode mode) 767 { 768 int rc = -EAGAIN; 769 int page_was_mapped = 0; 770 struct anon_vma *anon_vma = NULL; 771 772 if (!trylock_page(page)) { 773 if (!force || mode == MIGRATE_ASYNC) 774 goto out; 775 776 /* 777 * It's not safe for direct compaction to call lock_page. 778 * For example, during page readahead pages are added locked 779 * to the LRU. Later, when the IO completes the pages are 780 * marked uptodate and unlocked. However, the queueing 781 * could be merging multiple pages for one bio (e.g. 782 * mpage_readpages). If an allocation happens for the 783 * second or third page, the process can end up locking 784 * the same page twice and deadlocking. Rather than 785 * trying to be clever about what pages can be locked, 786 * avoid the use of lock_page for direct compaction 787 * altogether. 788 */ 789 if (current->flags & PF_MEMALLOC) 790 goto out; 791 792 lock_page(page); 793 } 794 795 if (PageWriteback(page)) { 796 /* 797 * Only in the case of a full synchronous migration is it 798 * necessary to wait for PageWriteback. In the async case, 799 * the retry loop is too short and in the sync-light case, 800 * the overhead of stalling is too much 801 */ 802 if (mode != MIGRATE_SYNC) { 803 rc = -EBUSY; 804 goto out_unlock; 805 } 806 if (!force) 807 goto out_unlock; 808 wait_on_page_writeback(page); 809 } 810 /* 811 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 812 * we cannot notice that anon_vma is freed while we migrates a page. 813 * This get_anon_vma() delays freeing anon_vma pointer until the end 814 * of migration. File cache pages are no problem because of page_lock() 815 * File Caches may use write_page() or lock_page() in migration, then, 816 * just care Anon page here. 817 */ 818 if (PageAnon(page) && !PageKsm(page)) { 819 /* 820 * Only page_lock_anon_vma_read() understands the subtleties of 821 * getting a hold on an anon_vma from outside one of its mms. 822 */ 823 anon_vma = page_get_anon_vma(page); 824 if (anon_vma) { 825 /* 826 * Anon page 827 */ 828 } else if (PageSwapCache(page)) { 829 /* 830 * We cannot be sure that the anon_vma of an unmapped 831 * swapcache page is safe to use because we don't 832 * know in advance if the VMA that this page belonged 833 * to still exists. If the VMA and others sharing the 834 * data have been freed, then the anon_vma could 835 * already be invalid. 836 * 837 * To avoid this possibility, swapcache pages get 838 * migrated but are not remapped when migration 839 * completes 840 */ 841 } else { 842 goto out_unlock; 843 } 844 } 845 846 if (unlikely(isolated_balloon_page(page))) { 847 /* 848 * A ballooned page does not need any special attention from 849 * physical to virtual reverse mapping procedures. 850 * Skip any attempt to unmap PTEs or to remap swap cache, 851 * in order to avoid burning cycles at rmap level, and perform 852 * the page migration right away (proteced by page lock). 853 */ 854 rc = balloon_page_migrate(newpage, page, mode); 855 goto out_unlock; 856 } 857 858 /* 859 * Corner case handling: 860 * 1. When a new swap-cache page is read into, it is added to the LRU 861 * and treated as swapcache but it has no rmap yet. 862 * Calling try_to_unmap() against a page->mapping==NULL page will 863 * trigger a BUG. So handle it here. 864 * 2. An orphaned page (see truncate_complete_page) might have 865 * fs-private metadata. The page can be picked up due to memory 866 * offlining. Everywhere else except page reclaim, the page is 867 * invisible to the vm, so the page can not be migrated. So try to 868 * free the metadata, so the page can be freed. 869 */ 870 if (!page->mapping) { 871 VM_BUG_ON_PAGE(PageAnon(page), page); 872 if (page_has_private(page)) { 873 try_to_free_buffers(page); 874 goto out_unlock; 875 } 876 goto skip_unmap; 877 } 878 879 /* Establish migration ptes or remove ptes */ 880 if (page_mapped(page)) { 881 try_to_unmap(page, 882 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 883 page_was_mapped = 1; 884 } 885 886 skip_unmap: 887 if (!page_mapped(page)) 888 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 889 890 if (rc && page_was_mapped) 891 remove_migration_ptes(page, page); 892 893 /* Drop an anon_vma reference if we took one */ 894 if (anon_vma) 895 put_anon_vma(anon_vma); 896 897 out_unlock: 898 unlock_page(page); 899 out: 900 return rc; 901 } 902 903 /* 904 * Obtain the lock on page, remove all ptes and migrate the page 905 * to the newly allocated page in newpage. 906 */ 907 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page, 908 unsigned long private, struct page *page, int force, 909 enum migrate_mode mode) 910 { 911 int rc = 0; 912 int *result = NULL; 913 struct page *newpage = get_new_page(page, private, &result); 914 915 if (!newpage) 916 return -ENOMEM; 917 918 if (page_count(page) == 1) { 919 /* page was freed from under us. So we are done. */ 920 goto out; 921 } 922 923 if (unlikely(PageTransHuge(page))) 924 if (unlikely(split_huge_page(page))) 925 goto out; 926 927 rc = __unmap_and_move(page, newpage, force, mode); 928 929 out: 930 if (rc != -EAGAIN) { 931 /* 932 * A page that has been migrated has all references 933 * removed and will be freed. A page that has not been 934 * migrated will have kepts its references and be 935 * restored. 936 */ 937 list_del(&page->lru); 938 dec_zone_page_state(page, NR_ISOLATED_ANON + 939 page_is_file_cache(page)); 940 putback_lru_page(page); 941 } 942 943 /* 944 * If migration was not successful and there's a freeing callback, use 945 * it. Otherwise, putback_lru_page() will drop the reference grabbed 946 * during isolation. 947 */ 948 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 949 ClearPageSwapBacked(newpage); 950 put_new_page(newpage, private); 951 } else if (unlikely(__is_movable_balloon_page(newpage))) { 952 /* drop our reference, page already in the balloon */ 953 put_page(newpage); 954 } else 955 putback_lru_page(newpage); 956 957 if (result) { 958 if (rc) 959 *result = rc; 960 else 961 *result = page_to_nid(newpage); 962 } 963 return rc; 964 } 965 966 /* 967 * Counterpart of unmap_and_move_page() for hugepage migration. 968 * 969 * This function doesn't wait the completion of hugepage I/O 970 * because there is no race between I/O and migration for hugepage. 971 * Note that currently hugepage I/O occurs only in direct I/O 972 * where no lock is held and PG_writeback is irrelevant, 973 * and writeback status of all subpages are counted in the reference 974 * count of the head page (i.e. if all subpages of a 2MB hugepage are 975 * under direct I/O, the reference of the head page is 512 and a bit more.) 976 * This means that when we try to migrate hugepage whose subpages are 977 * doing direct I/O, some references remain after try_to_unmap() and 978 * hugepage migration fails without data corruption. 979 * 980 * There is also no race when direct I/O is issued on the page under migration, 981 * because then pte is replaced with migration swap entry and direct I/O code 982 * will wait in the page fault for migration to complete. 983 */ 984 static int unmap_and_move_huge_page(new_page_t get_new_page, 985 free_page_t put_new_page, unsigned long private, 986 struct page *hpage, int force, 987 enum migrate_mode mode) 988 { 989 int rc = 0; 990 int *result = NULL; 991 int page_was_mapped = 0; 992 struct page *new_hpage; 993 struct anon_vma *anon_vma = NULL; 994 995 /* 996 * Movability of hugepages depends on architectures and hugepage size. 997 * This check is necessary because some callers of hugepage migration 998 * like soft offline and memory hotremove don't walk through page 999 * tables or check whether the hugepage is pmd-based or not before 1000 * kicking migration. 1001 */ 1002 if (!hugepage_migration_supported(page_hstate(hpage))) { 1003 putback_active_hugepage(hpage); 1004 return -ENOSYS; 1005 } 1006 1007 new_hpage = get_new_page(hpage, private, &result); 1008 if (!new_hpage) 1009 return -ENOMEM; 1010 1011 rc = -EAGAIN; 1012 1013 if (!trylock_page(hpage)) { 1014 if (!force || mode != MIGRATE_SYNC) 1015 goto out; 1016 lock_page(hpage); 1017 } 1018 1019 if (PageAnon(hpage)) 1020 anon_vma = page_get_anon_vma(hpage); 1021 1022 if (page_mapped(hpage)) { 1023 try_to_unmap(hpage, 1024 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1025 page_was_mapped = 1; 1026 } 1027 1028 if (!page_mapped(hpage)) 1029 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1030 1031 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1032 remove_migration_ptes(hpage, hpage); 1033 1034 if (anon_vma) 1035 put_anon_vma(anon_vma); 1036 1037 if (rc == MIGRATEPAGE_SUCCESS) 1038 hugetlb_cgroup_migrate(hpage, new_hpage); 1039 1040 unlock_page(hpage); 1041 out: 1042 if (rc != -EAGAIN) 1043 putback_active_hugepage(hpage); 1044 1045 /* 1046 * If migration was not successful and there's a freeing callback, use 1047 * it. Otherwise, put_page() will drop the reference grabbed during 1048 * isolation. 1049 */ 1050 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1051 put_new_page(new_hpage, private); 1052 else 1053 put_page(new_hpage); 1054 1055 if (result) { 1056 if (rc) 1057 *result = rc; 1058 else 1059 *result = page_to_nid(new_hpage); 1060 } 1061 return rc; 1062 } 1063 1064 /* 1065 * migrate_pages - migrate the pages specified in a list, to the free pages 1066 * supplied as the target for the page migration 1067 * 1068 * @from: The list of pages to be migrated. 1069 * @get_new_page: The function used to allocate free pages to be used 1070 * as the target of the page migration. 1071 * @put_new_page: The function used to free target pages if migration 1072 * fails, or NULL if no special handling is necessary. 1073 * @private: Private data to be passed on to get_new_page() 1074 * @mode: The migration mode that specifies the constraints for 1075 * page migration, if any. 1076 * @reason: The reason for page migration. 1077 * 1078 * The function returns after 10 attempts or if no pages are movable any more 1079 * because the list has become empty or no retryable pages exist any more. 1080 * The caller should call putback_lru_pages() to return pages to the LRU 1081 * or free list only if ret != 0. 1082 * 1083 * Returns the number of pages that were not migrated, or an error code. 1084 */ 1085 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1086 free_page_t put_new_page, unsigned long private, 1087 enum migrate_mode mode, int reason) 1088 { 1089 int retry = 1; 1090 int nr_failed = 0; 1091 int nr_succeeded = 0; 1092 int pass = 0; 1093 struct page *page; 1094 struct page *page2; 1095 int swapwrite = current->flags & PF_SWAPWRITE; 1096 int rc; 1097 1098 if (!swapwrite) 1099 current->flags |= PF_SWAPWRITE; 1100 1101 for(pass = 0; pass < 10 && retry; pass++) { 1102 retry = 0; 1103 1104 list_for_each_entry_safe(page, page2, from, lru) { 1105 cond_resched(); 1106 1107 if (PageHuge(page)) 1108 rc = unmap_and_move_huge_page(get_new_page, 1109 put_new_page, private, page, 1110 pass > 2, mode); 1111 else 1112 rc = unmap_and_move(get_new_page, put_new_page, 1113 private, page, pass > 2, mode); 1114 1115 switch(rc) { 1116 case -ENOMEM: 1117 goto out; 1118 case -EAGAIN: 1119 retry++; 1120 break; 1121 case MIGRATEPAGE_SUCCESS: 1122 nr_succeeded++; 1123 break; 1124 default: 1125 /* 1126 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1127 * unlike -EAGAIN case, the failed page is 1128 * removed from migration page list and not 1129 * retried in the next outer loop. 1130 */ 1131 nr_failed++; 1132 break; 1133 } 1134 } 1135 } 1136 rc = nr_failed + retry; 1137 out: 1138 if (nr_succeeded) 1139 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1140 if (nr_failed) 1141 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1142 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1143 1144 if (!swapwrite) 1145 current->flags &= ~PF_SWAPWRITE; 1146 1147 return rc; 1148 } 1149 1150 #ifdef CONFIG_NUMA 1151 /* 1152 * Move a list of individual pages 1153 */ 1154 struct page_to_node { 1155 unsigned long addr; 1156 struct page *page; 1157 int node; 1158 int status; 1159 }; 1160 1161 static struct page *new_page_node(struct page *p, unsigned long private, 1162 int **result) 1163 { 1164 struct page_to_node *pm = (struct page_to_node *)private; 1165 1166 while (pm->node != MAX_NUMNODES && pm->page != p) 1167 pm++; 1168 1169 if (pm->node == MAX_NUMNODES) 1170 return NULL; 1171 1172 *result = &pm->status; 1173 1174 if (PageHuge(p)) 1175 return alloc_huge_page_node(page_hstate(compound_head(p)), 1176 pm->node); 1177 else 1178 return alloc_pages_exact_node(pm->node, 1179 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1180 } 1181 1182 /* 1183 * Move a set of pages as indicated in the pm array. The addr 1184 * field must be set to the virtual address of the page to be moved 1185 * and the node number must contain a valid target node. 1186 * The pm array ends with node = MAX_NUMNODES. 1187 */ 1188 static int do_move_page_to_node_array(struct mm_struct *mm, 1189 struct page_to_node *pm, 1190 int migrate_all) 1191 { 1192 int err; 1193 struct page_to_node *pp; 1194 LIST_HEAD(pagelist); 1195 1196 down_read(&mm->mmap_sem); 1197 1198 /* 1199 * Build a list of pages to migrate 1200 */ 1201 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1202 struct vm_area_struct *vma; 1203 struct page *page; 1204 1205 err = -EFAULT; 1206 vma = find_vma(mm, pp->addr); 1207 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1208 goto set_status; 1209 1210 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1211 1212 err = PTR_ERR(page); 1213 if (IS_ERR(page)) 1214 goto set_status; 1215 1216 err = -ENOENT; 1217 if (!page) 1218 goto set_status; 1219 1220 /* Use PageReserved to check for zero page */ 1221 if (PageReserved(page)) 1222 goto put_and_set; 1223 1224 pp->page = page; 1225 err = page_to_nid(page); 1226 1227 if (err == pp->node) 1228 /* 1229 * Node already in the right place 1230 */ 1231 goto put_and_set; 1232 1233 err = -EACCES; 1234 if (page_mapcount(page) > 1 && 1235 !migrate_all) 1236 goto put_and_set; 1237 1238 if (PageHuge(page)) { 1239 if (PageHead(page)) 1240 isolate_huge_page(page, &pagelist); 1241 goto put_and_set; 1242 } 1243 1244 err = isolate_lru_page(page); 1245 if (!err) { 1246 list_add_tail(&page->lru, &pagelist); 1247 inc_zone_page_state(page, NR_ISOLATED_ANON + 1248 page_is_file_cache(page)); 1249 } 1250 put_and_set: 1251 /* 1252 * Either remove the duplicate refcount from 1253 * isolate_lru_page() or drop the page ref if it was 1254 * not isolated. 1255 */ 1256 put_page(page); 1257 set_status: 1258 pp->status = err; 1259 } 1260 1261 err = 0; 1262 if (!list_empty(&pagelist)) { 1263 err = migrate_pages(&pagelist, new_page_node, NULL, 1264 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1265 if (err) 1266 putback_movable_pages(&pagelist); 1267 } 1268 1269 up_read(&mm->mmap_sem); 1270 return err; 1271 } 1272 1273 /* 1274 * Migrate an array of page address onto an array of nodes and fill 1275 * the corresponding array of status. 1276 */ 1277 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1278 unsigned long nr_pages, 1279 const void __user * __user *pages, 1280 const int __user *nodes, 1281 int __user *status, int flags) 1282 { 1283 struct page_to_node *pm; 1284 unsigned long chunk_nr_pages; 1285 unsigned long chunk_start; 1286 int err; 1287 1288 err = -ENOMEM; 1289 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1290 if (!pm) 1291 goto out; 1292 1293 migrate_prep(); 1294 1295 /* 1296 * Store a chunk of page_to_node array in a page, 1297 * but keep the last one as a marker 1298 */ 1299 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1300 1301 for (chunk_start = 0; 1302 chunk_start < nr_pages; 1303 chunk_start += chunk_nr_pages) { 1304 int j; 1305 1306 if (chunk_start + chunk_nr_pages > nr_pages) 1307 chunk_nr_pages = nr_pages - chunk_start; 1308 1309 /* fill the chunk pm with addrs and nodes from user-space */ 1310 for (j = 0; j < chunk_nr_pages; j++) { 1311 const void __user *p; 1312 int node; 1313 1314 err = -EFAULT; 1315 if (get_user(p, pages + j + chunk_start)) 1316 goto out_pm; 1317 pm[j].addr = (unsigned long) p; 1318 1319 if (get_user(node, nodes + j + chunk_start)) 1320 goto out_pm; 1321 1322 err = -ENODEV; 1323 if (node < 0 || node >= MAX_NUMNODES) 1324 goto out_pm; 1325 1326 if (!node_state(node, N_MEMORY)) 1327 goto out_pm; 1328 1329 err = -EACCES; 1330 if (!node_isset(node, task_nodes)) 1331 goto out_pm; 1332 1333 pm[j].node = node; 1334 } 1335 1336 /* End marker for this chunk */ 1337 pm[chunk_nr_pages].node = MAX_NUMNODES; 1338 1339 /* Migrate this chunk */ 1340 err = do_move_page_to_node_array(mm, pm, 1341 flags & MPOL_MF_MOVE_ALL); 1342 if (err < 0) 1343 goto out_pm; 1344 1345 /* Return status information */ 1346 for (j = 0; j < chunk_nr_pages; j++) 1347 if (put_user(pm[j].status, status + j + chunk_start)) { 1348 err = -EFAULT; 1349 goto out_pm; 1350 } 1351 } 1352 err = 0; 1353 1354 out_pm: 1355 free_page((unsigned long)pm); 1356 out: 1357 return err; 1358 } 1359 1360 /* 1361 * Determine the nodes of an array of pages and store it in an array of status. 1362 */ 1363 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1364 const void __user **pages, int *status) 1365 { 1366 unsigned long i; 1367 1368 down_read(&mm->mmap_sem); 1369 1370 for (i = 0; i < nr_pages; i++) { 1371 unsigned long addr = (unsigned long)(*pages); 1372 struct vm_area_struct *vma; 1373 struct page *page; 1374 int err = -EFAULT; 1375 1376 vma = find_vma(mm, addr); 1377 if (!vma || addr < vma->vm_start) 1378 goto set_status; 1379 1380 page = follow_page(vma, addr, 0); 1381 1382 err = PTR_ERR(page); 1383 if (IS_ERR(page)) 1384 goto set_status; 1385 1386 err = -ENOENT; 1387 /* Use PageReserved to check for zero page */ 1388 if (!page || PageReserved(page)) 1389 goto set_status; 1390 1391 err = page_to_nid(page); 1392 set_status: 1393 *status = err; 1394 1395 pages++; 1396 status++; 1397 } 1398 1399 up_read(&mm->mmap_sem); 1400 } 1401 1402 /* 1403 * Determine the nodes of a user array of pages and store it in 1404 * a user array of status. 1405 */ 1406 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1407 const void __user * __user *pages, 1408 int __user *status) 1409 { 1410 #define DO_PAGES_STAT_CHUNK_NR 16 1411 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1412 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1413 1414 while (nr_pages) { 1415 unsigned long chunk_nr; 1416 1417 chunk_nr = nr_pages; 1418 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1419 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1420 1421 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1422 break; 1423 1424 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1425 1426 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1427 break; 1428 1429 pages += chunk_nr; 1430 status += chunk_nr; 1431 nr_pages -= chunk_nr; 1432 } 1433 return nr_pages ? -EFAULT : 0; 1434 } 1435 1436 /* 1437 * Move a list of pages in the address space of the currently executing 1438 * process. 1439 */ 1440 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1441 const void __user * __user *, pages, 1442 const int __user *, nodes, 1443 int __user *, status, int, flags) 1444 { 1445 const struct cred *cred = current_cred(), *tcred; 1446 struct task_struct *task; 1447 struct mm_struct *mm; 1448 int err; 1449 nodemask_t task_nodes; 1450 1451 /* Check flags */ 1452 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1453 return -EINVAL; 1454 1455 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1456 return -EPERM; 1457 1458 /* Find the mm_struct */ 1459 rcu_read_lock(); 1460 task = pid ? find_task_by_vpid(pid) : current; 1461 if (!task) { 1462 rcu_read_unlock(); 1463 return -ESRCH; 1464 } 1465 get_task_struct(task); 1466 1467 /* 1468 * Check if this process has the right to modify the specified 1469 * process. The right exists if the process has administrative 1470 * capabilities, superuser privileges or the same 1471 * userid as the target process. 1472 */ 1473 tcred = __task_cred(task); 1474 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1475 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1476 !capable(CAP_SYS_NICE)) { 1477 rcu_read_unlock(); 1478 err = -EPERM; 1479 goto out; 1480 } 1481 rcu_read_unlock(); 1482 1483 err = security_task_movememory(task); 1484 if (err) 1485 goto out; 1486 1487 task_nodes = cpuset_mems_allowed(task); 1488 mm = get_task_mm(task); 1489 put_task_struct(task); 1490 1491 if (!mm) 1492 return -EINVAL; 1493 1494 if (nodes) 1495 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1496 nodes, status, flags); 1497 else 1498 err = do_pages_stat(mm, nr_pages, pages, status); 1499 1500 mmput(mm); 1501 return err; 1502 1503 out: 1504 put_task_struct(task); 1505 return err; 1506 } 1507 1508 #ifdef CONFIG_NUMA_BALANCING 1509 /* 1510 * Returns true if this is a safe migration target node for misplaced NUMA 1511 * pages. Currently it only checks the watermarks which crude 1512 */ 1513 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1514 unsigned long nr_migrate_pages) 1515 { 1516 int z; 1517 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1518 struct zone *zone = pgdat->node_zones + z; 1519 1520 if (!populated_zone(zone)) 1521 continue; 1522 1523 if (!zone_reclaimable(zone)) 1524 continue; 1525 1526 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1527 if (!zone_watermark_ok(zone, 0, 1528 high_wmark_pages(zone) + 1529 nr_migrate_pages, 1530 0, 0)) 1531 continue; 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 static struct page *alloc_misplaced_dst_page(struct page *page, 1538 unsigned long data, 1539 int **result) 1540 { 1541 int nid = (int) data; 1542 struct page *newpage; 1543 1544 newpage = alloc_pages_exact_node(nid, 1545 (GFP_HIGHUSER_MOVABLE | 1546 __GFP_THISNODE | __GFP_NOMEMALLOC | 1547 __GFP_NORETRY | __GFP_NOWARN) & 1548 ~GFP_IOFS, 0); 1549 1550 return newpage; 1551 } 1552 1553 /* 1554 * page migration rate limiting control. 1555 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1556 * window of time. Default here says do not migrate more than 1280M per second. 1557 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1558 * as it is faults that reset the window, pte updates will happen unconditionally 1559 * if there has not been a fault since @pteupdate_interval_millisecs after the 1560 * throttle window closed. 1561 */ 1562 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1563 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1564 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1565 1566 /* Returns true if NUMA migration is currently rate limited */ 1567 bool migrate_ratelimited(int node) 1568 { 1569 pg_data_t *pgdat = NODE_DATA(node); 1570 1571 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1572 msecs_to_jiffies(pteupdate_interval_millisecs))) 1573 return false; 1574 1575 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1576 return false; 1577 1578 return true; 1579 } 1580 1581 /* Returns true if the node is migrate rate-limited after the update */ 1582 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1583 unsigned long nr_pages) 1584 { 1585 /* 1586 * Rate-limit the amount of data that is being migrated to a node. 1587 * Optimal placement is no good if the memory bus is saturated and 1588 * all the time is being spent migrating! 1589 */ 1590 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1591 spin_lock(&pgdat->numabalancing_migrate_lock); 1592 pgdat->numabalancing_migrate_nr_pages = 0; 1593 pgdat->numabalancing_migrate_next_window = jiffies + 1594 msecs_to_jiffies(migrate_interval_millisecs); 1595 spin_unlock(&pgdat->numabalancing_migrate_lock); 1596 } 1597 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1598 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1599 nr_pages); 1600 return true; 1601 } 1602 1603 /* 1604 * This is an unlocked non-atomic update so errors are possible. 1605 * The consequences are failing to migrate when we potentiall should 1606 * have which is not severe enough to warrant locking. If it is ever 1607 * a problem, it can be converted to a per-cpu counter. 1608 */ 1609 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1610 return false; 1611 } 1612 1613 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1614 { 1615 int page_lru; 1616 1617 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1618 1619 /* Avoid migrating to a node that is nearly full */ 1620 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1621 return 0; 1622 1623 if (isolate_lru_page(page)) 1624 return 0; 1625 1626 /* 1627 * migrate_misplaced_transhuge_page() skips page migration's usual 1628 * check on page_count(), so we must do it here, now that the page 1629 * has been isolated: a GUP pin, or any other pin, prevents migration. 1630 * The expected page count is 3: 1 for page's mapcount and 1 for the 1631 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1632 */ 1633 if (PageTransHuge(page) && page_count(page) != 3) { 1634 putback_lru_page(page); 1635 return 0; 1636 } 1637 1638 page_lru = page_is_file_cache(page); 1639 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1640 hpage_nr_pages(page)); 1641 1642 /* 1643 * Isolating the page has taken another reference, so the 1644 * caller's reference can be safely dropped without the page 1645 * disappearing underneath us during migration. 1646 */ 1647 put_page(page); 1648 return 1; 1649 } 1650 1651 bool pmd_trans_migrating(pmd_t pmd) 1652 { 1653 struct page *page = pmd_page(pmd); 1654 return PageLocked(page); 1655 } 1656 1657 /* 1658 * Attempt to migrate a misplaced page to the specified destination 1659 * node. Caller is expected to have an elevated reference count on 1660 * the page that will be dropped by this function before returning. 1661 */ 1662 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1663 int node) 1664 { 1665 pg_data_t *pgdat = NODE_DATA(node); 1666 int isolated; 1667 int nr_remaining; 1668 LIST_HEAD(migratepages); 1669 1670 /* 1671 * Don't migrate file pages that are mapped in multiple processes 1672 * with execute permissions as they are probably shared libraries. 1673 */ 1674 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1675 (vma->vm_flags & VM_EXEC)) 1676 goto out; 1677 1678 /* 1679 * Rate-limit the amount of data that is being migrated to a node. 1680 * Optimal placement is no good if the memory bus is saturated and 1681 * all the time is being spent migrating! 1682 */ 1683 if (numamigrate_update_ratelimit(pgdat, 1)) 1684 goto out; 1685 1686 isolated = numamigrate_isolate_page(pgdat, page); 1687 if (!isolated) 1688 goto out; 1689 1690 list_add(&page->lru, &migratepages); 1691 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1692 NULL, node, MIGRATE_ASYNC, 1693 MR_NUMA_MISPLACED); 1694 if (nr_remaining) { 1695 if (!list_empty(&migratepages)) { 1696 list_del(&page->lru); 1697 dec_zone_page_state(page, NR_ISOLATED_ANON + 1698 page_is_file_cache(page)); 1699 putback_lru_page(page); 1700 } 1701 isolated = 0; 1702 } else 1703 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1704 BUG_ON(!list_empty(&migratepages)); 1705 return isolated; 1706 1707 out: 1708 put_page(page); 1709 return 0; 1710 } 1711 #endif /* CONFIG_NUMA_BALANCING */ 1712 1713 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1714 /* 1715 * Migrates a THP to a given target node. page must be locked and is unlocked 1716 * before returning. 1717 */ 1718 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1719 struct vm_area_struct *vma, 1720 pmd_t *pmd, pmd_t entry, 1721 unsigned long address, 1722 struct page *page, int node) 1723 { 1724 spinlock_t *ptl; 1725 pg_data_t *pgdat = NODE_DATA(node); 1726 int isolated = 0; 1727 struct page *new_page = NULL; 1728 int page_lru = page_is_file_cache(page); 1729 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1730 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1731 pmd_t orig_entry; 1732 1733 /* 1734 * Rate-limit the amount of data that is being migrated to a node. 1735 * Optimal placement is no good if the memory bus is saturated and 1736 * all the time is being spent migrating! 1737 */ 1738 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1739 goto out_dropref; 1740 1741 new_page = alloc_pages_node(node, 1742 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1743 HPAGE_PMD_ORDER); 1744 if (!new_page) 1745 goto out_fail; 1746 1747 isolated = numamigrate_isolate_page(pgdat, page); 1748 if (!isolated) { 1749 put_page(new_page); 1750 goto out_fail; 1751 } 1752 1753 if (mm_tlb_flush_pending(mm)) 1754 flush_tlb_range(vma, mmun_start, mmun_end); 1755 1756 /* Prepare a page as a migration target */ 1757 __set_page_locked(new_page); 1758 SetPageSwapBacked(new_page); 1759 1760 /* anon mapping, we can simply copy page->mapping to the new page: */ 1761 new_page->mapping = page->mapping; 1762 new_page->index = page->index; 1763 migrate_page_copy(new_page, page); 1764 WARN_ON(PageLRU(new_page)); 1765 1766 /* Recheck the target PMD */ 1767 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1768 ptl = pmd_lock(mm, pmd); 1769 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1770 fail_putback: 1771 spin_unlock(ptl); 1772 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1773 1774 /* Reverse changes made by migrate_page_copy() */ 1775 if (TestClearPageActive(new_page)) 1776 SetPageActive(page); 1777 if (TestClearPageUnevictable(new_page)) 1778 SetPageUnevictable(page); 1779 mlock_migrate_page(page, new_page); 1780 1781 unlock_page(new_page); 1782 put_page(new_page); /* Free it */ 1783 1784 /* Retake the callers reference and putback on LRU */ 1785 get_page(page); 1786 putback_lru_page(page); 1787 mod_zone_page_state(page_zone(page), 1788 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1789 1790 goto out_unlock; 1791 } 1792 1793 orig_entry = *pmd; 1794 entry = mk_pmd(new_page, vma->vm_page_prot); 1795 entry = pmd_mkhuge(entry); 1796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1797 1798 /* 1799 * Clear the old entry under pagetable lock and establish the new PTE. 1800 * Any parallel GUP will either observe the old page blocking on the 1801 * page lock, block on the page table lock or observe the new page. 1802 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1803 * guarantee the copy is visible before the pagetable update. 1804 */ 1805 flush_cache_range(vma, mmun_start, mmun_end); 1806 page_add_anon_rmap(new_page, vma, mmun_start); 1807 pmdp_clear_flush_notify(vma, mmun_start, pmd); 1808 set_pmd_at(mm, mmun_start, pmd, entry); 1809 flush_tlb_range(vma, mmun_start, mmun_end); 1810 update_mmu_cache_pmd(vma, address, &entry); 1811 1812 if (page_count(page) != 2) { 1813 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1814 flush_tlb_range(vma, mmun_start, mmun_end); 1815 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1816 update_mmu_cache_pmd(vma, address, &entry); 1817 page_remove_rmap(new_page); 1818 goto fail_putback; 1819 } 1820 1821 mem_cgroup_migrate(page, new_page, false); 1822 1823 page_remove_rmap(page); 1824 1825 spin_unlock(ptl); 1826 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1827 1828 /* Take an "isolate" reference and put new page on the LRU. */ 1829 get_page(new_page); 1830 putback_lru_page(new_page); 1831 1832 unlock_page(new_page); 1833 unlock_page(page); 1834 put_page(page); /* Drop the rmap reference */ 1835 put_page(page); /* Drop the LRU isolation reference */ 1836 1837 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1838 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1839 1840 mod_zone_page_state(page_zone(page), 1841 NR_ISOLATED_ANON + page_lru, 1842 -HPAGE_PMD_NR); 1843 return isolated; 1844 1845 out_fail: 1846 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1847 out_dropref: 1848 ptl = pmd_lock(mm, pmd); 1849 if (pmd_same(*pmd, entry)) { 1850 entry = pmd_modify(entry, vma->vm_page_prot); 1851 set_pmd_at(mm, mmun_start, pmd, entry); 1852 update_mmu_cache_pmd(vma, address, &entry); 1853 } 1854 spin_unlock(ptl); 1855 1856 out_unlock: 1857 unlock_page(page); 1858 put_page(page); 1859 return 0; 1860 } 1861 #endif /* CONFIG_NUMA_BALANCING */ 1862 1863 #endif /* CONFIG_NUMA */ 1864