1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */ 3 #include <linux/device.h> 4 #include <linux/io.h> 5 #include <linux/kasan.h> 6 #include <linux/memory_hotplug.h> 7 #include <linux/memremap.h> 8 #include <linux/pfn_t.h> 9 #include <linux/swap.h> 10 #include <linux/mmzone.h> 11 #include <linux/swapops.h> 12 #include <linux/types.h> 13 #include <linux/wait_bit.h> 14 #include <linux/xarray.h> 15 #include "internal.h" 16 17 static DEFINE_XARRAY(pgmap_array); 18 19 /* 20 * The memremap() and memremap_pages() interfaces are alternately used 21 * to map persistent memory namespaces. These interfaces place different 22 * constraints on the alignment and size of the mapping (namespace). 23 * memremap() can map individual PAGE_SIZE pages. memremap_pages() can 24 * only map subsections (2MB), and at least one architecture (PowerPC) 25 * the minimum mapping granularity of memremap_pages() is 16MB. 26 * 27 * The role of memremap_compat_align() is to communicate the minimum 28 * arch supported alignment of a namespace such that it can freely 29 * switch modes without violating the arch constraint. Namely, do not 30 * allow a namespace to be PAGE_SIZE aligned since that namespace may be 31 * reconfigured into a mode that requires SUBSECTION_SIZE alignment. 32 */ 33 #ifndef CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN 34 unsigned long memremap_compat_align(void) 35 { 36 return SUBSECTION_SIZE; 37 } 38 EXPORT_SYMBOL_GPL(memremap_compat_align); 39 #endif 40 41 #ifdef CONFIG_FS_DAX 42 DEFINE_STATIC_KEY_FALSE(devmap_managed_key); 43 EXPORT_SYMBOL(devmap_managed_key); 44 45 static void devmap_managed_enable_put(struct dev_pagemap *pgmap) 46 { 47 if (pgmap->type == MEMORY_DEVICE_FS_DAX) 48 static_branch_dec(&devmap_managed_key); 49 } 50 51 static void devmap_managed_enable_get(struct dev_pagemap *pgmap) 52 { 53 if (pgmap->type == MEMORY_DEVICE_FS_DAX) 54 static_branch_inc(&devmap_managed_key); 55 } 56 #else 57 static void devmap_managed_enable_get(struct dev_pagemap *pgmap) 58 { 59 } 60 static void devmap_managed_enable_put(struct dev_pagemap *pgmap) 61 { 62 } 63 #endif /* CONFIG_FS_DAX */ 64 65 static void pgmap_array_delete(struct range *range) 66 { 67 xa_store_range(&pgmap_array, PHYS_PFN(range->start), PHYS_PFN(range->end), 68 NULL, GFP_KERNEL); 69 synchronize_rcu(); 70 } 71 72 static unsigned long pfn_first(struct dev_pagemap *pgmap, int range_id) 73 { 74 struct range *range = &pgmap->ranges[range_id]; 75 unsigned long pfn = PHYS_PFN(range->start); 76 77 if (range_id) 78 return pfn; 79 return pfn + vmem_altmap_offset(pgmap_altmap(pgmap)); 80 } 81 82 bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn) 83 { 84 int i; 85 86 for (i = 0; i < pgmap->nr_range; i++) { 87 struct range *range = &pgmap->ranges[i]; 88 89 if (pfn >= PHYS_PFN(range->start) && 90 pfn <= PHYS_PFN(range->end)) 91 return pfn >= pfn_first(pgmap, i); 92 } 93 94 return false; 95 } 96 97 static unsigned long pfn_end(struct dev_pagemap *pgmap, int range_id) 98 { 99 const struct range *range = &pgmap->ranges[range_id]; 100 101 return (range->start + range_len(range)) >> PAGE_SHIFT; 102 } 103 104 static unsigned long pfn_len(struct dev_pagemap *pgmap, unsigned long range_id) 105 { 106 return (pfn_end(pgmap, range_id) - 107 pfn_first(pgmap, range_id)) >> pgmap->vmemmap_shift; 108 } 109 110 static void pageunmap_range(struct dev_pagemap *pgmap, int range_id) 111 { 112 struct range *range = &pgmap->ranges[range_id]; 113 struct page *first_page; 114 115 /* make sure to access a memmap that was actually initialized */ 116 first_page = pfn_to_page(pfn_first(pgmap, range_id)); 117 118 /* pages are dead and unused, undo the arch mapping */ 119 mem_hotplug_begin(); 120 remove_pfn_range_from_zone(page_zone(first_page), PHYS_PFN(range->start), 121 PHYS_PFN(range_len(range))); 122 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 123 __remove_pages(PHYS_PFN(range->start), 124 PHYS_PFN(range_len(range)), NULL); 125 } else { 126 arch_remove_memory(range->start, range_len(range), 127 pgmap_altmap(pgmap)); 128 kasan_remove_zero_shadow(__va(range->start), range_len(range)); 129 } 130 mem_hotplug_done(); 131 132 untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range)); 133 pgmap_array_delete(range); 134 } 135 136 void memunmap_pages(struct dev_pagemap *pgmap) 137 { 138 int i; 139 140 percpu_ref_kill(&pgmap->ref); 141 for (i = 0; i < pgmap->nr_range; i++) 142 percpu_ref_put_many(&pgmap->ref, pfn_len(pgmap, i)); 143 wait_for_completion(&pgmap->done); 144 percpu_ref_exit(&pgmap->ref); 145 146 for (i = 0; i < pgmap->nr_range; i++) 147 pageunmap_range(pgmap, i); 148 149 WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n"); 150 devmap_managed_enable_put(pgmap); 151 } 152 EXPORT_SYMBOL_GPL(memunmap_pages); 153 154 static void devm_memremap_pages_release(void *data) 155 { 156 memunmap_pages(data); 157 } 158 159 static void dev_pagemap_percpu_release(struct percpu_ref *ref) 160 { 161 struct dev_pagemap *pgmap = container_of(ref, struct dev_pagemap, ref); 162 163 complete(&pgmap->done); 164 } 165 166 static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params, 167 int range_id, int nid) 168 { 169 const bool is_private = pgmap->type == MEMORY_DEVICE_PRIVATE; 170 struct range *range = &pgmap->ranges[range_id]; 171 struct dev_pagemap *conflict_pgmap; 172 int error, is_ram; 173 174 if (WARN_ONCE(pgmap_altmap(pgmap) && range_id > 0, 175 "altmap not supported for multiple ranges\n")) 176 return -EINVAL; 177 178 conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->start), NULL); 179 if (conflict_pgmap) { 180 WARN(1, "Conflicting mapping in same section\n"); 181 put_dev_pagemap(conflict_pgmap); 182 return -ENOMEM; 183 } 184 185 conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->end), NULL); 186 if (conflict_pgmap) { 187 WARN(1, "Conflicting mapping in same section\n"); 188 put_dev_pagemap(conflict_pgmap); 189 return -ENOMEM; 190 } 191 192 is_ram = region_intersects(range->start, range_len(range), 193 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); 194 195 if (is_ram != REGION_DISJOINT) { 196 WARN_ONCE(1, "attempted on %s region %#llx-%#llx\n", 197 is_ram == REGION_MIXED ? "mixed" : "ram", 198 range->start, range->end); 199 return -ENXIO; 200 } 201 202 error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(range->start), 203 PHYS_PFN(range->end), pgmap, GFP_KERNEL)); 204 if (error) 205 return error; 206 207 if (nid < 0) 208 nid = numa_mem_id(); 209 210 error = track_pfn_remap(NULL, ¶ms->pgprot, PHYS_PFN(range->start), 0, 211 range_len(range)); 212 if (error) 213 goto err_pfn_remap; 214 215 if (!mhp_range_allowed(range->start, range_len(range), !is_private)) { 216 error = -EINVAL; 217 goto err_kasan; 218 } 219 220 mem_hotplug_begin(); 221 222 /* 223 * For device private memory we call add_pages() as we only need to 224 * allocate and initialize struct page for the device memory. More- 225 * over the device memory is un-accessible thus we do not want to 226 * create a linear mapping for the memory like arch_add_memory() 227 * would do. 228 * 229 * For all other device memory types, which are accessible by 230 * the CPU, we do want the linear mapping and thus use 231 * arch_add_memory(). 232 */ 233 if (is_private) { 234 error = add_pages(nid, PHYS_PFN(range->start), 235 PHYS_PFN(range_len(range)), params); 236 } else { 237 error = kasan_add_zero_shadow(__va(range->start), range_len(range)); 238 if (error) { 239 mem_hotplug_done(); 240 goto err_kasan; 241 } 242 243 error = arch_add_memory(nid, range->start, range_len(range), 244 params); 245 } 246 247 if (!error) { 248 struct zone *zone; 249 250 zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE]; 251 move_pfn_range_to_zone(zone, PHYS_PFN(range->start), 252 PHYS_PFN(range_len(range)), params->altmap, 253 MIGRATE_MOVABLE); 254 } 255 256 mem_hotplug_done(); 257 if (error) 258 goto err_add_memory; 259 260 /* 261 * Initialization of the pages has been deferred until now in order 262 * to allow us to do the work while not holding the hotplug lock. 263 */ 264 memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 265 PHYS_PFN(range->start), 266 PHYS_PFN(range_len(range)), pgmap); 267 percpu_ref_get_many(&pgmap->ref, pfn_len(pgmap, range_id)); 268 return 0; 269 270 err_add_memory: 271 if (!is_private) 272 kasan_remove_zero_shadow(__va(range->start), range_len(range)); 273 err_kasan: 274 untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range)); 275 err_pfn_remap: 276 pgmap_array_delete(range); 277 return error; 278 } 279 280 281 /* 282 * Not device managed version of dev_memremap_pages, undone by 283 * memunmap_pages(). Please use dev_memremap_pages if you have a struct 284 * device available. 285 */ 286 void *memremap_pages(struct dev_pagemap *pgmap, int nid) 287 { 288 struct mhp_params params = { 289 .altmap = pgmap_altmap(pgmap), 290 .pgmap = pgmap, 291 .pgprot = PAGE_KERNEL, 292 }; 293 const int nr_range = pgmap->nr_range; 294 int error, i; 295 296 if (WARN_ONCE(!nr_range, "nr_range must be specified\n")) 297 return ERR_PTR(-EINVAL); 298 299 switch (pgmap->type) { 300 case MEMORY_DEVICE_PRIVATE: 301 if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) { 302 WARN(1, "Device private memory not supported\n"); 303 return ERR_PTR(-EINVAL); 304 } 305 if (!pgmap->ops || !pgmap->ops->migrate_to_ram) { 306 WARN(1, "Missing migrate_to_ram method\n"); 307 return ERR_PTR(-EINVAL); 308 } 309 if (!pgmap->ops->page_free) { 310 WARN(1, "Missing page_free method\n"); 311 return ERR_PTR(-EINVAL); 312 } 313 if (!pgmap->owner) { 314 WARN(1, "Missing owner\n"); 315 return ERR_PTR(-EINVAL); 316 } 317 break; 318 case MEMORY_DEVICE_FS_DAX: 319 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) { 320 WARN(1, "File system DAX not supported\n"); 321 return ERR_PTR(-EINVAL); 322 } 323 break; 324 case MEMORY_DEVICE_GENERIC: 325 break; 326 case MEMORY_DEVICE_PCI_P2PDMA: 327 params.pgprot = pgprot_noncached(params.pgprot); 328 break; 329 default: 330 WARN(1, "Invalid pgmap type %d\n", pgmap->type); 331 break; 332 } 333 334 init_completion(&pgmap->done); 335 error = percpu_ref_init(&pgmap->ref, dev_pagemap_percpu_release, 0, 336 GFP_KERNEL); 337 if (error) 338 return ERR_PTR(error); 339 340 devmap_managed_enable_get(pgmap); 341 342 /* 343 * Clear the pgmap nr_range as it will be incremented for each 344 * successfully processed range. This communicates how many 345 * regions to unwind in the abort case. 346 */ 347 pgmap->nr_range = 0; 348 error = 0; 349 for (i = 0; i < nr_range; i++) { 350 error = pagemap_range(pgmap, ¶ms, i, nid); 351 if (error) 352 break; 353 pgmap->nr_range++; 354 } 355 356 if (i < nr_range) { 357 memunmap_pages(pgmap); 358 pgmap->nr_range = nr_range; 359 return ERR_PTR(error); 360 } 361 362 return __va(pgmap->ranges[0].start); 363 } 364 EXPORT_SYMBOL_GPL(memremap_pages); 365 366 /** 367 * devm_memremap_pages - remap and provide memmap backing for the given resource 368 * @dev: hosting device for @res 369 * @pgmap: pointer to a struct dev_pagemap 370 * 371 * Notes: 372 * 1/ At a minimum the res and type members of @pgmap must be initialized 373 * by the caller before passing it to this function 374 * 375 * 2/ The altmap field may optionally be initialized, in which case 376 * PGMAP_ALTMAP_VALID must be set in pgmap->flags. 377 * 378 * 3/ The ref field may optionally be provided, in which pgmap->ref must be 379 * 'live' on entry and will be killed and reaped at 380 * devm_memremap_pages_release() time, or if this routine fails. 381 * 382 * 4/ range is expected to be a host memory range that could feasibly be 383 * treated as a "System RAM" range, i.e. not a device mmio range, but 384 * this is not enforced. 385 */ 386 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) 387 { 388 int error; 389 void *ret; 390 391 ret = memremap_pages(pgmap, dev_to_node(dev)); 392 if (IS_ERR(ret)) 393 return ret; 394 395 error = devm_add_action_or_reset(dev, devm_memremap_pages_release, 396 pgmap); 397 if (error) 398 return ERR_PTR(error); 399 return ret; 400 } 401 EXPORT_SYMBOL_GPL(devm_memremap_pages); 402 403 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) 404 { 405 devm_release_action(dev, devm_memremap_pages_release, pgmap); 406 } 407 EXPORT_SYMBOL_GPL(devm_memunmap_pages); 408 409 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 410 { 411 /* number of pfns from base where pfn_to_page() is valid */ 412 if (altmap) 413 return altmap->reserve + altmap->free; 414 return 0; 415 } 416 417 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) 418 { 419 altmap->alloc -= nr_pfns; 420 } 421 422 /** 423 * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn 424 * @pfn: page frame number to lookup page_map 425 * @pgmap: optional known pgmap that already has a reference 426 * 427 * If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap 428 * is non-NULL but does not cover @pfn the reference to it will be released. 429 */ 430 struct dev_pagemap *get_dev_pagemap(unsigned long pfn, 431 struct dev_pagemap *pgmap) 432 { 433 resource_size_t phys = PFN_PHYS(pfn); 434 435 /* 436 * In the cached case we're already holding a live reference. 437 */ 438 if (pgmap) { 439 if (phys >= pgmap->range.start && phys <= pgmap->range.end) 440 return pgmap; 441 put_dev_pagemap(pgmap); 442 } 443 444 /* fall back to slow path lookup */ 445 rcu_read_lock(); 446 pgmap = xa_load(&pgmap_array, PHYS_PFN(phys)); 447 if (pgmap && !percpu_ref_tryget_live(&pgmap->ref)) 448 pgmap = NULL; 449 rcu_read_unlock(); 450 451 return pgmap; 452 } 453 EXPORT_SYMBOL_GPL(get_dev_pagemap); 454 455 void free_zone_device_page(struct page *page) 456 { 457 if (WARN_ON_ONCE(!page->pgmap->ops || !page->pgmap->ops->page_free)) 458 return; 459 460 mem_cgroup_uncharge(page_folio(page)); 461 462 /* 463 * Note: we don't expect anonymous compound pages yet. Once supported 464 * and we could PTE-map them similar to THP, we'd have to clear 465 * PG_anon_exclusive on all tail pages. 466 */ 467 VM_BUG_ON_PAGE(PageAnon(page) && PageCompound(page), page); 468 if (PageAnon(page)) 469 __ClearPageAnonExclusive(page); 470 471 /* 472 * When a device managed page is freed, the page->mapping field 473 * may still contain a (stale) mapping value. For example, the 474 * lower bits of page->mapping may still identify the page as an 475 * anonymous page. Ultimately, this entire field is just stale 476 * and wrong, and it will cause errors if not cleared. One 477 * example is: 478 * 479 * migrate_vma_pages() 480 * migrate_vma_insert_page() 481 * page_add_new_anon_rmap() 482 * __page_set_anon_rmap() 483 * ...checks page->mapping, via PageAnon(page) call, 484 * and incorrectly concludes that the page is an 485 * anonymous page. Therefore, it incorrectly, 486 * silently fails to set up the new anon rmap. 487 * 488 * For other types of ZONE_DEVICE pages, migration is either 489 * handled differently or not done at all, so there is no need 490 * to clear page->mapping. 491 */ 492 page->mapping = NULL; 493 page->pgmap->ops->page_free(page); 494 495 /* 496 * Reset the page count to 1 to prepare for handing out the page again. 497 */ 498 set_page_count(page, 1); 499 } 500 501 #ifdef CONFIG_FS_DAX 502 bool __put_devmap_managed_page(struct page *page) 503 { 504 if (page->pgmap->type != MEMORY_DEVICE_FS_DAX) 505 return false; 506 507 /* 508 * fsdax page refcounts are 1-based, rather than 0-based: if 509 * refcount is 1, then the page is free and the refcount is 510 * stable because nobody holds a reference on the page. 511 */ 512 if (page_ref_dec_return(page) == 1) 513 wake_up_var(&page->_refcount); 514 return true; 515 } 516 EXPORT_SYMBOL(__put_devmap_managed_page); 517 #endif /* CONFIG_FS_DAX */ 518