xref: /openbmc/linux/mm/mempool.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/mempool.c
4  *
5  *  memory buffer pool support. Such pools are mostly used
6  *  for guaranteed, deadlock-free memory allocations during
7  *  extreme VM load.
8  *
9  *  started by Ingo Molnar, Copyright (C) 2001
10  *  debugging by David Rientjes, Copyright (C) 2015
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include "slab.h"
23 
24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
25 static void poison_error(mempool_t *pool, void *element, size_t size,
26 			 size_t byte)
27 {
28 	const int nr = pool->curr_nr;
29 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
30 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
31 	int i;
32 
33 	pr_err("BUG: mempool element poison mismatch\n");
34 	pr_err("Mempool %p size %zu\n", pool, size);
35 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
36 	for (i = start; i < end; i++)
37 		pr_cont("%x ", *(u8 *)(element + i));
38 	pr_cont("%s\n", end < size ? "..." : "");
39 	dump_stack();
40 }
41 
42 static void __check_element(mempool_t *pool, void *element, size_t size)
43 {
44 	u8 *obj = element;
45 	size_t i;
46 
47 	for (i = 0; i < size; i++) {
48 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
49 
50 		if (obj[i] != exp) {
51 			poison_error(pool, element, size, i);
52 			return;
53 		}
54 	}
55 	memset(obj, POISON_INUSE, size);
56 }
57 
58 static void check_element(mempool_t *pool, void *element)
59 {
60 	/* Mempools backed by slab allocator */
61 	if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
62 		__check_element(pool, element, ksize(element));
63 	} else if (pool->free == mempool_free_pages) {
64 		/* Mempools backed by page allocator */
65 		int order = (int)(long)pool->pool_data;
66 		void *addr = kmap_atomic((struct page *)element);
67 
68 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69 		kunmap_atomic(addr);
70 	}
71 }
72 
73 static void __poison_element(void *element, size_t size)
74 {
75 	u8 *obj = element;
76 
77 	memset(obj, POISON_FREE, size - 1);
78 	obj[size - 1] = POISON_END;
79 }
80 
81 static void poison_element(mempool_t *pool, void *element)
82 {
83 	/* Mempools backed by slab allocator */
84 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
85 		__poison_element(element, ksize(element));
86 	} else if (pool->alloc == mempool_alloc_pages) {
87 		/* Mempools backed by page allocator */
88 		int order = (int)(long)pool->pool_data;
89 		void *addr = kmap_atomic((struct page *)element);
90 
91 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
92 		kunmap_atomic(addr);
93 	}
94 }
95 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
96 static inline void check_element(mempool_t *pool, void *element)
97 {
98 }
99 static inline void poison_element(mempool_t *pool, void *element)
100 {
101 }
102 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
103 
104 static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
105 {
106 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
107 		kasan_slab_free_mempool(element);
108 	else if (pool->alloc == mempool_alloc_pages)
109 		kasan_poison_pages(element, (unsigned long)pool->pool_data,
110 				   false);
111 }
112 
113 static void kasan_unpoison_element(mempool_t *pool, void *element)
114 {
115 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
116 		kasan_unpoison_range(element, __ksize(element));
117 	else if (pool->alloc == mempool_alloc_pages)
118 		kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
119 				     false);
120 }
121 
122 static __always_inline void add_element(mempool_t *pool, void *element)
123 {
124 	BUG_ON(pool->curr_nr >= pool->min_nr);
125 	poison_element(pool, element);
126 	kasan_poison_element(pool, element);
127 	pool->elements[pool->curr_nr++] = element;
128 }
129 
130 static void *remove_element(mempool_t *pool)
131 {
132 	void *element = pool->elements[--pool->curr_nr];
133 
134 	BUG_ON(pool->curr_nr < 0);
135 	kasan_unpoison_element(pool, element);
136 	check_element(pool, element);
137 	return element;
138 }
139 
140 /**
141  * mempool_exit - exit a mempool initialized with mempool_init()
142  * @pool:      pointer to the memory pool which was initialized with
143  *             mempool_init().
144  *
145  * Free all reserved elements in @pool and @pool itself.  This function
146  * only sleeps if the free_fn() function sleeps.
147  *
148  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
149  * kzalloc()).
150  */
151 void mempool_exit(mempool_t *pool)
152 {
153 	while (pool->curr_nr) {
154 		void *element = remove_element(pool);
155 		pool->free(element, pool->pool_data);
156 	}
157 	kfree(pool->elements);
158 	pool->elements = NULL;
159 }
160 EXPORT_SYMBOL(mempool_exit);
161 
162 /**
163  * mempool_destroy - deallocate a memory pool
164  * @pool:      pointer to the memory pool which was allocated via
165  *             mempool_create().
166  *
167  * Free all reserved elements in @pool and @pool itself.  This function
168  * only sleeps if the free_fn() function sleeps.
169  */
170 void mempool_destroy(mempool_t *pool)
171 {
172 	if (unlikely(!pool))
173 		return;
174 
175 	mempool_exit(pool);
176 	kfree(pool);
177 }
178 EXPORT_SYMBOL(mempool_destroy);
179 
180 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
181 		      mempool_free_t *free_fn, void *pool_data,
182 		      gfp_t gfp_mask, int node_id)
183 {
184 	spin_lock_init(&pool->lock);
185 	pool->min_nr	= min_nr;
186 	pool->pool_data = pool_data;
187 	pool->alloc	= alloc_fn;
188 	pool->free	= free_fn;
189 	init_waitqueue_head(&pool->wait);
190 
191 	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
192 					    gfp_mask, node_id);
193 	if (!pool->elements)
194 		return -ENOMEM;
195 
196 	/*
197 	 * First pre-allocate the guaranteed number of buffers.
198 	 */
199 	while (pool->curr_nr < pool->min_nr) {
200 		void *element;
201 
202 		element = pool->alloc(gfp_mask, pool->pool_data);
203 		if (unlikely(!element)) {
204 			mempool_exit(pool);
205 			return -ENOMEM;
206 		}
207 		add_element(pool, element);
208 	}
209 
210 	return 0;
211 }
212 EXPORT_SYMBOL(mempool_init_node);
213 
214 /**
215  * mempool_init - initialize a memory pool
216  * @pool:      pointer to the memory pool that should be initialized
217  * @min_nr:    the minimum number of elements guaranteed to be
218  *             allocated for this pool.
219  * @alloc_fn:  user-defined element-allocation function.
220  * @free_fn:   user-defined element-freeing function.
221  * @pool_data: optional private data available to the user-defined functions.
222  *
223  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
224  * structure).
225  *
226  * Return: %0 on success, negative error code otherwise.
227  */
228 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
229 		 mempool_free_t *free_fn, void *pool_data)
230 {
231 	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
232 				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
233 
234 }
235 EXPORT_SYMBOL(mempool_init);
236 
237 /**
238  * mempool_create - create a memory pool
239  * @min_nr:    the minimum number of elements guaranteed to be
240  *             allocated for this pool.
241  * @alloc_fn:  user-defined element-allocation function.
242  * @free_fn:   user-defined element-freeing function.
243  * @pool_data: optional private data available to the user-defined functions.
244  *
245  * this function creates and allocates a guaranteed size, preallocated
246  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
247  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
248  * functions might sleep - as long as the mempool_alloc() function is not called
249  * from IRQ contexts.
250  *
251  * Return: pointer to the created memory pool object or %NULL on error.
252  */
253 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
254 				mempool_free_t *free_fn, void *pool_data)
255 {
256 	return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
257 				   GFP_KERNEL, NUMA_NO_NODE);
258 }
259 EXPORT_SYMBOL(mempool_create);
260 
261 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
262 			       mempool_free_t *free_fn, void *pool_data,
263 			       gfp_t gfp_mask, int node_id)
264 {
265 	mempool_t *pool;
266 
267 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
268 	if (!pool)
269 		return NULL;
270 
271 	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
272 			      gfp_mask, node_id)) {
273 		kfree(pool);
274 		return NULL;
275 	}
276 
277 	return pool;
278 }
279 EXPORT_SYMBOL(mempool_create_node);
280 
281 /**
282  * mempool_resize - resize an existing memory pool
283  * @pool:       pointer to the memory pool which was allocated via
284  *              mempool_create().
285  * @new_min_nr: the new minimum number of elements guaranteed to be
286  *              allocated for this pool.
287  *
288  * This function shrinks/grows the pool. In the case of growing,
289  * it cannot be guaranteed that the pool will be grown to the new
290  * size immediately, but new mempool_free() calls will refill it.
291  * This function may sleep.
292  *
293  * Note, the caller must guarantee that no mempool_destroy is called
294  * while this function is running. mempool_alloc() & mempool_free()
295  * might be called (eg. from IRQ contexts) while this function executes.
296  *
297  * Return: %0 on success, negative error code otherwise.
298  */
299 int mempool_resize(mempool_t *pool, int new_min_nr)
300 {
301 	void *element;
302 	void **new_elements;
303 	unsigned long flags;
304 
305 	BUG_ON(new_min_nr <= 0);
306 	might_sleep();
307 
308 	spin_lock_irqsave(&pool->lock, flags);
309 	if (new_min_nr <= pool->min_nr) {
310 		while (new_min_nr < pool->curr_nr) {
311 			element = remove_element(pool);
312 			spin_unlock_irqrestore(&pool->lock, flags);
313 			pool->free(element, pool->pool_data);
314 			spin_lock_irqsave(&pool->lock, flags);
315 		}
316 		pool->min_nr = new_min_nr;
317 		goto out_unlock;
318 	}
319 	spin_unlock_irqrestore(&pool->lock, flags);
320 
321 	/* Grow the pool */
322 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
323 				     GFP_KERNEL);
324 	if (!new_elements)
325 		return -ENOMEM;
326 
327 	spin_lock_irqsave(&pool->lock, flags);
328 	if (unlikely(new_min_nr <= pool->min_nr)) {
329 		/* Raced, other resize will do our work */
330 		spin_unlock_irqrestore(&pool->lock, flags);
331 		kfree(new_elements);
332 		goto out;
333 	}
334 	memcpy(new_elements, pool->elements,
335 			pool->curr_nr * sizeof(*new_elements));
336 	kfree(pool->elements);
337 	pool->elements = new_elements;
338 	pool->min_nr = new_min_nr;
339 
340 	while (pool->curr_nr < pool->min_nr) {
341 		spin_unlock_irqrestore(&pool->lock, flags);
342 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
343 		if (!element)
344 			goto out;
345 		spin_lock_irqsave(&pool->lock, flags);
346 		if (pool->curr_nr < pool->min_nr) {
347 			add_element(pool, element);
348 		} else {
349 			spin_unlock_irqrestore(&pool->lock, flags);
350 			pool->free(element, pool->pool_data);	/* Raced */
351 			goto out;
352 		}
353 	}
354 out_unlock:
355 	spin_unlock_irqrestore(&pool->lock, flags);
356 out:
357 	return 0;
358 }
359 EXPORT_SYMBOL(mempool_resize);
360 
361 /**
362  * mempool_alloc - allocate an element from a specific memory pool
363  * @pool:      pointer to the memory pool which was allocated via
364  *             mempool_create().
365  * @gfp_mask:  the usual allocation bitmask.
366  *
367  * this function only sleeps if the alloc_fn() function sleeps or
368  * returns NULL. Note that due to preallocation, this function
369  * *never* fails when called from process contexts. (it might
370  * fail if called from an IRQ context.)
371  * Note: using __GFP_ZERO is not supported.
372  *
373  * Return: pointer to the allocated element or %NULL on error.
374  */
375 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
376 {
377 	void *element;
378 	unsigned long flags;
379 	wait_queue_entry_t wait;
380 	gfp_t gfp_temp;
381 
382 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
383 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
384 
385 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
386 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
387 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
388 
389 	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
390 
391 repeat_alloc:
392 
393 	element = pool->alloc(gfp_temp, pool->pool_data);
394 	if (likely(element != NULL))
395 		return element;
396 
397 	spin_lock_irqsave(&pool->lock, flags);
398 	if (likely(pool->curr_nr)) {
399 		element = remove_element(pool);
400 		spin_unlock_irqrestore(&pool->lock, flags);
401 		/* paired with rmb in mempool_free(), read comment there */
402 		smp_wmb();
403 		/*
404 		 * Update the allocation stack trace as this is more useful
405 		 * for debugging.
406 		 */
407 		kmemleak_update_trace(element);
408 		return element;
409 	}
410 
411 	/*
412 	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
413 	 * alloc failed with that and @pool was empty, retry immediately.
414 	 */
415 	if (gfp_temp != gfp_mask) {
416 		spin_unlock_irqrestore(&pool->lock, flags);
417 		gfp_temp = gfp_mask;
418 		goto repeat_alloc;
419 	}
420 
421 	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
422 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
423 		spin_unlock_irqrestore(&pool->lock, flags);
424 		return NULL;
425 	}
426 
427 	/* Let's wait for someone else to return an element to @pool */
428 	init_wait(&wait);
429 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
430 
431 	spin_unlock_irqrestore(&pool->lock, flags);
432 
433 	/*
434 	 * FIXME: this should be io_schedule().  The timeout is there as a
435 	 * workaround for some DM problems in 2.6.18.
436 	 */
437 	io_schedule_timeout(5*HZ);
438 
439 	finish_wait(&pool->wait, &wait);
440 	goto repeat_alloc;
441 }
442 EXPORT_SYMBOL(mempool_alloc);
443 
444 /**
445  * mempool_free - return an element to the pool.
446  * @element:   pool element pointer.
447  * @pool:      pointer to the memory pool which was allocated via
448  *             mempool_create().
449  *
450  * this function only sleeps if the free_fn() function sleeps.
451  */
452 void mempool_free(void *element, mempool_t *pool)
453 {
454 	unsigned long flags;
455 
456 	if (unlikely(element == NULL))
457 		return;
458 
459 	/*
460 	 * Paired with the wmb in mempool_alloc().  The preceding read is
461 	 * for @element and the following @pool->curr_nr.  This ensures
462 	 * that the visible value of @pool->curr_nr is from after the
463 	 * allocation of @element.  This is necessary for fringe cases
464 	 * where @element was passed to this task without going through
465 	 * barriers.
466 	 *
467 	 * For example, assume @p is %NULL at the beginning and one task
468 	 * performs "p = mempool_alloc(...);" while another task is doing
469 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
470 	 * may end up using curr_nr value which is from before allocation
471 	 * of @p without the following rmb.
472 	 */
473 	smp_rmb();
474 
475 	/*
476 	 * For correctness, we need a test which is guaranteed to trigger
477 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
478 	 * without locking achieves that and refilling as soon as possible
479 	 * is desirable.
480 	 *
481 	 * Because curr_nr visible here is always a value after the
482 	 * allocation of @element, any task which decremented curr_nr below
483 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
484 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
485 	 * to min_nr after the allocation of @element, the elements
486 	 * allocated after that are subject to the same guarantee.
487 	 *
488 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
489 	 * ensures that there will be frees which return elements to the
490 	 * pool waking up the waiters.
491 	 */
492 	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
493 		spin_lock_irqsave(&pool->lock, flags);
494 		if (likely(pool->curr_nr < pool->min_nr)) {
495 			add_element(pool, element);
496 			spin_unlock_irqrestore(&pool->lock, flags);
497 			wake_up(&pool->wait);
498 			return;
499 		}
500 		spin_unlock_irqrestore(&pool->lock, flags);
501 	}
502 	pool->free(element, pool->pool_data);
503 }
504 EXPORT_SYMBOL(mempool_free);
505 
506 /*
507  * A commonly used alloc and free fn.
508  */
509 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
510 {
511 	struct kmem_cache *mem = pool_data;
512 	VM_BUG_ON(mem->ctor);
513 	return kmem_cache_alloc(mem, gfp_mask);
514 }
515 EXPORT_SYMBOL(mempool_alloc_slab);
516 
517 void mempool_free_slab(void *element, void *pool_data)
518 {
519 	struct kmem_cache *mem = pool_data;
520 	kmem_cache_free(mem, element);
521 }
522 EXPORT_SYMBOL(mempool_free_slab);
523 
524 /*
525  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
526  * specified by pool_data
527  */
528 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
529 {
530 	size_t size = (size_t)pool_data;
531 	return kmalloc(size, gfp_mask);
532 }
533 EXPORT_SYMBOL(mempool_kmalloc);
534 
535 void mempool_kfree(void *element, void *pool_data)
536 {
537 	kfree(element);
538 }
539 EXPORT_SYMBOL(mempool_kfree);
540 
541 /*
542  * A simple mempool-backed page allocator that allocates pages
543  * of the order specified by pool_data.
544  */
545 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
546 {
547 	int order = (int)(long)pool_data;
548 	return alloc_pages(gfp_mask, order);
549 }
550 EXPORT_SYMBOL(mempool_alloc_pages);
551 
552 void mempool_free_pages(void *element, void *pool_data)
553 {
554 	int order = (int)(long)pool_data;
555 	__free_pages(element, order);
556 }
557 EXPORT_SYMBOL(mempool_free_pages);
558