xref: /openbmc/linux/mm/mempool.c (revision c67e8ec0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/mempool.c
4  *
5  *  memory buffer pool support. Such pools are mostly used
6  *  for guaranteed, deadlock-free memory allocations during
7  *  extreme VM load.
8  *
9  *  started by Ingo Molnar, Copyright (C) 2001
10  *  debugging by David Rientjes, Copyright (C) 2015
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include "slab.h"
23 
24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
25 static void poison_error(mempool_t *pool, void *element, size_t size,
26 			 size_t byte)
27 {
28 	const int nr = pool->curr_nr;
29 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
30 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
31 	int i;
32 
33 	pr_err("BUG: mempool element poison mismatch\n");
34 	pr_err("Mempool %p size %zu\n", pool, size);
35 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
36 	for (i = start; i < end; i++)
37 		pr_cont("%x ", *(u8 *)(element + i));
38 	pr_cont("%s\n", end < size ? "..." : "");
39 	dump_stack();
40 }
41 
42 static void __check_element(mempool_t *pool, void *element, size_t size)
43 {
44 	u8 *obj = element;
45 	size_t i;
46 
47 	for (i = 0; i < size; i++) {
48 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
49 
50 		if (obj[i] != exp) {
51 			poison_error(pool, element, size, i);
52 			return;
53 		}
54 	}
55 	memset(obj, POISON_INUSE, size);
56 }
57 
58 static void check_element(mempool_t *pool, void *element)
59 {
60 	/* Mempools backed by slab allocator */
61 	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
62 		__check_element(pool, element, ksize(element));
63 
64 	/* Mempools backed by page allocator */
65 	if (pool->free == mempool_free_pages) {
66 		int order = (int)(long)pool->pool_data;
67 		void *addr = kmap_atomic((struct page *)element);
68 
69 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
70 		kunmap_atomic(addr);
71 	}
72 }
73 
74 static void __poison_element(void *element, size_t size)
75 {
76 	u8 *obj = element;
77 
78 	memset(obj, POISON_FREE, size - 1);
79 	obj[size - 1] = POISON_END;
80 }
81 
82 static void poison_element(mempool_t *pool, void *element)
83 {
84 	/* Mempools backed by slab allocator */
85 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
86 		__poison_element(element, ksize(element));
87 
88 	/* Mempools backed by page allocator */
89 	if (pool->alloc == mempool_alloc_pages) {
90 		int order = (int)(long)pool->pool_data;
91 		void *addr = kmap_atomic((struct page *)element);
92 
93 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
94 		kunmap_atomic(addr);
95 	}
96 }
97 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
98 static inline void check_element(mempool_t *pool, void *element)
99 {
100 }
101 static inline void poison_element(mempool_t *pool, void *element)
102 {
103 }
104 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
105 
106 static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
107 {
108 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
109 		kasan_poison_kfree(element, _RET_IP_);
110 	if (pool->alloc == mempool_alloc_pages)
111 		kasan_free_pages(element, (unsigned long)pool->pool_data);
112 }
113 
114 static void kasan_unpoison_element(mempool_t *pool, void *element)
115 {
116 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
117 		kasan_unpoison_slab(element);
118 	if (pool->alloc == mempool_alloc_pages)
119 		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
120 }
121 
122 static __always_inline void add_element(mempool_t *pool, void *element)
123 {
124 	BUG_ON(pool->curr_nr >= pool->min_nr);
125 	poison_element(pool, element);
126 	kasan_poison_element(pool, element);
127 	pool->elements[pool->curr_nr++] = element;
128 }
129 
130 static void *remove_element(mempool_t *pool)
131 {
132 	void *element = pool->elements[--pool->curr_nr];
133 
134 	BUG_ON(pool->curr_nr < 0);
135 	kasan_unpoison_element(pool, element);
136 	check_element(pool, element);
137 	return element;
138 }
139 
140 /**
141  * mempool_exit - exit a mempool initialized with mempool_init()
142  * @pool:      pointer to the memory pool which was initialized with
143  *             mempool_init().
144  *
145  * Free all reserved elements in @pool and @pool itself.  This function
146  * only sleeps if the free_fn() function sleeps.
147  *
148  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
149  * kzalloc()).
150  */
151 void mempool_exit(mempool_t *pool)
152 {
153 	while (pool->curr_nr) {
154 		void *element = remove_element(pool);
155 		pool->free(element, pool->pool_data);
156 	}
157 	kfree(pool->elements);
158 	pool->elements = NULL;
159 }
160 EXPORT_SYMBOL(mempool_exit);
161 
162 /**
163  * mempool_destroy - deallocate a memory pool
164  * @pool:      pointer to the memory pool which was allocated via
165  *             mempool_create().
166  *
167  * Free all reserved elements in @pool and @pool itself.  This function
168  * only sleeps if the free_fn() function sleeps.
169  */
170 void mempool_destroy(mempool_t *pool)
171 {
172 	if (unlikely(!pool))
173 		return;
174 
175 	mempool_exit(pool);
176 	kfree(pool);
177 }
178 EXPORT_SYMBOL(mempool_destroy);
179 
180 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
181 		      mempool_free_t *free_fn, void *pool_data,
182 		      gfp_t gfp_mask, int node_id)
183 {
184 	spin_lock_init(&pool->lock);
185 	pool->min_nr	= min_nr;
186 	pool->pool_data = pool_data;
187 	pool->alloc	= alloc_fn;
188 	pool->free	= free_fn;
189 	init_waitqueue_head(&pool->wait);
190 
191 	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
192 					    gfp_mask, node_id);
193 	if (!pool->elements)
194 		return -ENOMEM;
195 
196 	/*
197 	 * First pre-allocate the guaranteed number of buffers.
198 	 */
199 	while (pool->curr_nr < pool->min_nr) {
200 		void *element;
201 
202 		element = pool->alloc(gfp_mask, pool->pool_data);
203 		if (unlikely(!element)) {
204 			mempool_exit(pool);
205 			return -ENOMEM;
206 		}
207 		add_element(pool, element);
208 	}
209 
210 	return 0;
211 }
212 EXPORT_SYMBOL(mempool_init_node);
213 
214 /**
215  * mempool_init - initialize a memory pool
216  * @pool:      pointer to the memory pool that should be initialized
217  * @min_nr:    the minimum number of elements guaranteed to be
218  *             allocated for this pool.
219  * @alloc_fn:  user-defined element-allocation function.
220  * @free_fn:   user-defined element-freeing function.
221  * @pool_data: optional private data available to the user-defined functions.
222  *
223  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
224  * structure).
225  */
226 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
227 		 mempool_free_t *free_fn, void *pool_data)
228 {
229 	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
230 				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
231 
232 }
233 EXPORT_SYMBOL(mempool_init);
234 
235 /**
236  * mempool_create - create a memory pool
237  * @min_nr:    the minimum number of elements guaranteed to be
238  *             allocated for this pool.
239  * @alloc_fn:  user-defined element-allocation function.
240  * @free_fn:   user-defined element-freeing function.
241  * @pool_data: optional private data available to the user-defined functions.
242  *
243  * this function creates and allocates a guaranteed size, preallocated
244  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
245  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
246  * functions might sleep - as long as the mempool_alloc() function is not called
247  * from IRQ contexts.
248  */
249 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
250 				mempool_free_t *free_fn, void *pool_data)
251 {
252 	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
253 				   GFP_KERNEL, NUMA_NO_NODE);
254 }
255 EXPORT_SYMBOL(mempool_create);
256 
257 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
258 			       mempool_free_t *free_fn, void *pool_data,
259 			       gfp_t gfp_mask, int node_id)
260 {
261 	mempool_t *pool;
262 
263 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
264 	if (!pool)
265 		return NULL;
266 
267 	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
268 			      gfp_mask, node_id)) {
269 		kfree(pool);
270 		return NULL;
271 	}
272 
273 	return pool;
274 }
275 EXPORT_SYMBOL(mempool_create_node);
276 
277 /**
278  * mempool_resize - resize an existing memory pool
279  * @pool:       pointer to the memory pool which was allocated via
280  *              mempool_create().
281  * @new_min_nr: the new minimum number of elements guaranteed to be
282  *              allocated for this pool.
283  *
284  * This function shrinks/grows the pool. In the case of growing,
285  * it cannot be guaranteed that the pool will be grown to the new
286  * size immediately, but new mempool_free() calls will refill it.
287  * This function may sleep.
288  *
289  * Note, the caller must guarantee that no mempool_destroy is called
290  * while this function is running. mempool_alloc() & mempool_free()
291  * might be called (eg. from IRQ contexts) while this function executes.
292  */
293 int mempool_resize(mempool_t *pool, int new_min_nr)
294 {
295 	void *element;
296 	void **new_elements;
297 	unsigned long flags;
298 
299 	BUG_ON(new_min_nr <= 0);
300 	might_sleep();
301 
302 	spin_lock_irqsave(&pool->lock, flags);
303 	if (new_min_nr <= pool->min_nr) {
304 		while (new_min_nr < pool->curr_nr) {
305 			element = remove_element(pool);
306 			spin_unlock_irqrestore(&pool->lock, flags);
307 			pool->free(element, pool->pool_data);
308 			spin_lock_irqsave(&pool->lock, flags);
309 		}
310 		pool->min_nr = new_min_nr;
311 		goto out_unlock;
312 	}
313 	spin_unlock_irqrestore(&pool->lock, flags);
314 
315 	/* Grow the pool */
316 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
317 				     GFP_KERNEL);
318 	if (!new_elements)
319 		return -ENOMEM;
320 
321 	spin_lock_irqsave(&pool->lock, flags);
322 	if (unlikely(new_min_nr <= pool->min_nr)) {
323 		/* Raced, other resize will do our work */
324 		spin_unlock_irqrestore(&pool->lock, flags);
325 		kfree(new_elements);
326 		goto out;
327 	}
328 	memcpy(new_elements, pool->elements,
329 			pool->curr_nr * sizeof(*new_elements));
330 	kfree(pool->elements);
331 	pool->elements = new_elements;
332 	pool->min_nr = new_min_nr;
333 
334 	while (pool->curr_nr < pool->min_nr) {
335 		spin_unlock_irqrestore(&pool->lock, flags);
336 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
337 		if (!element)
338 			goto out;
339 		spin_lock_irqsave(&pool->lock, flags);
340 		if (pool->curr_nr < pool->min_nr) {
341 			add_element(pool, element);
342 		} else {
343 			spin_unlock_irqrestore(&pool->lock, flags);
344 			pool->free(element, pool->pool_data);	/* Raced */
345 			goto out;
346 		}
347 	}
348 out_unlock:
349 	spin_unlock_irqrestore(&pool->lock, flags);
350 out:
351 	return 0;
352 }
353 EXPORT_SYMBOL(mempool_resize);
354 
355 /**
356  * mempool_alloc - allocate an element from a specific memory pool
357  * @pool:      pointer to the memory pool which was allocated via
358  *             mempool_create().
359  * @gfp_mask:  the usual allocation bitmask.
360  *
361  * this function only sleeps if the alloc_fn() function sleeps or
362  * returns NULL. Note that due to preallocation, this function
363  * *never* fails when called from process contexts. (it might
364  * fail if called from an IRQ context.)
365  * Note: using __GFP_ZERO is not supported.
366  */
367 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
368 {
369 	void *element;
370 	unsigned long flags;
371 	wait_queue_entry_t wait;
372 	gfp_t gfp_temp;
373 
374 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
375 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
376 
377 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
378 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
379 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
380 
381 	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
382 
383 repeat_alloc:
384 
385 	element = pool->alloc(gfp_temp, pool->pool_data);
386 	if (likely(element != NULL))
387 		return element;
388 
389 	spin_lock_irqsave(&pool->lock, flags);
390 	if (likely(pool->curr_nr)) {
391 		element = remove_element(pool);
392 		spin_unlock_irqrestore(&pool->lock, flags);
393 		/* paired with rmb in mempool_free(), read comment there */
394 		smp_wmb();
395 		/*
396 		 * Update the allocation stack trace as this is more useful
397 		 * for debugging.
398 		 */
399 		kmemleak_update_trace(element);
400 		return element;
401 	}
402 
403 	/*
404 	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
405 	 * alloc failed with that and @pool was empty, retry immediately.
406 	 */
407 	if (gfp_temp != gfp_mask) {
408 		spin_unlock_irqrestore(&pool->lock, flags);
409 		gfp_temp = gfp_mask;
410 		goto repeat_alloc;
411 	}
412 
413 	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
414 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
415 		spin_unlock_irqrestore(&pool->lock, flags);
416 		return NULL;
417 	}
418 
419 	/* Let's wait for someone else to return an element to @pool */
420 	init_wait(&wait);
421 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
422 
423 	spin_unlock_irqrestore(&pool->lock, flags);
424 
425 	/*
426 	 * FIXME: this should be io_schedule().  The timeout is there as a
427 	 * workaround for some DM problems in 2.6.18.
428 	 */
429 	io_schedule_timeout(5*HZ);
430 
431 	finish_wait(&pool->wait, &wait);
432 	goto repeat_alloc;
433 }
434 EXPORT_SYMBOL(mempool_alloc);
435 
436 /**
437  * mempool_free - return an element to the pool.
438  * @element:   pool element pointer.
439  * @pool:      pointer to the memory pool which was allocated via
440  *             mempool_create().
441  *
442  * this function only sleeps if the free_fn() function sleeps.
443  */
444 void mempool_free(void *element, mempool_t *pool)
445 {
446 	unsigned long flags;
447 
448 	if (unlikely(element == NULL))
449 		return;
450 
451 	/*
452 	 * Paired with the wmb in mempool_alloc().  The preceding read is
453 	 * for @element and the following @pool->curr_nr.  This ensures
454 	 * that the visible value of @pool->curr_nr is from after the
455 	 * allocation of @element.  This is necessary for fringe cases
456 	 * where @element was passed to this task without going through
457 	 * barriers.
458 	 *
459 	 * For example, assume @p is %NULL at the beginning and one task
460 	 * performs "p = mempool_alloc(...);" while another task is doing
461 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
462 	 * may end up using curr_nr value which is from before allocation
463 	 * of @p without the following rmb.
464 	 */
465 	smp_rmb();
466 
467 	/*
468 	 * For correctness, we need a test which is guaranteed to trigger
469 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
470 	 * without locking achieves that and refilling as soon as possible
471 	 * is desirable.
472 	 *
473 	 * Because curr_nr visible here is always a value after the
474 	 * allocation of @element, any task which decremented curr_nr below
475 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
476 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
477 	 * to min_nr after the allocation of @element, the elements
478 	 * allocated after that are subject to the same guarantee.
479 	 *
480 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
481 	 * ensures that there will be frees which return elements to the
482 	 * pool waking up the waiters.
483 	 */
484 	if (unlikely(pool->curr_nr < pool->min_nr)) {
485 		spin_lock_irqsave(&pool->lock, flags);
486 		if (likely(pool->curr_nr < pool->min_nr)) {
487 			add_element(pool, element);
488 			spin_unlock_irqrestore(&pool->lock, flags);
489 			wake_up(&pool->wait);
490 			return;
491 		}
492 		spin_unlock_irqrestore(&pool->lock, flags);
493 	}
494 	pool->free(element, pool->pool_data);
495 }
496 EXPORT_SYMBOL(mempool_free);
497 
498 /*
499  * A commonly used alloc and free fn.
500  */
501 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
502 {
503 	struct kmem_cache *mem = pool_data;
504 	VM_BUG_ON(mem->ctor);
505 	return kmem_cache_alloc(mem, gfp_mask);
506 }
507 EXPORT_SYMBOL(mempool_alloc_slab);
508 
509 void mempool_free_slab(void *element, void *pool_data)
510 {
511 	struct kmem_cache *mem = pool_data;
512 	kmem_cache_free(mem, element);
513 }
514 EXPORT_SYMBOL(mempool_free_slab);
515 
516 /*
517  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
518  * specified by pool_data
519  */
520 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
521 {
522 	size_t size = (size_t)pool_data;
523 	return kmalloc(size, gfp_mask);
524 }
525 EXPORT_SYMBOL(mempool_kmalloc);
526 
527 void mempool_kfree(void *element, void *pool_data)
528 {
529 	kfree(element);
530 }
531 EXPORT_SYMBOL(mempool_kfree);
532 
533 /*
534  * A simple mempool-backed page allocator that allocates pages
535  * of the order specified by pool_data.
536  */
537 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
538 {
539 	int order = (int)(long)pool_data;
540 	return alloc_pages(gfp_mask, order);
541 }
542 EXPORT_SYMBOL(mempool_alloc_pages);
543 
544 void mempool_free_pages(void *element, void *pool_data)
545 {
546 	int order = (int)(long)pool_data;
547 	__free_pages(element, order);
548 }
549 EXPORT_SYMBOL(mempool_free_pages);
550