1 /* 2 * linux/mm/mempool.c 3 * 4 * memory buffer pool support. Such pools are mostly used 5 * for guaranteed, deadlock-free memory allocations during 6 * extreme VM load. 7 * 8 * started by Ingo Molnar, Copyright (C) 2001 9 * debugging by David Rientjes, Copyright (C) 2015 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/kasan.h> 16 #include <linux/kmemleak.h> 17 #include <linux/export.h> 18 #include <linux/mempool.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include "slab.h" 22 23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 24 static void poison_error(mempool_t *pool, void *element, size_t size, 25 size_t byte) 26 { 27 const int nr = pool->curr_nr; 28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 30 int i; 31 32 pr_err("BUG: mempool element poison mismatch\n"); 33 pr_err("Mempool %p size %zu\n", pool, size); 34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 35 for (i = start; i < end; i++) 36 pr_cont("%x ", *(u8 *)(element + i)); 37 pr_cont("%s\n", end < size ? "..." : ""); 38 dump_stack(); 39 } 40 41 static void __check_element(mempool_t *pool, void *element, size_t size) 42 { 43 u8 *obj = element; 44 size_t i; 45 46 for (i = 0; i < size; i++) { 47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 48 49 if (obj[i] != exp) { 50 poison_error(pool, element, size, i); 51 return; 52 } 53 } 54 memset(obj, POISON_INUSE, size); 55 } 56 57 static void check_element(mempool_t *pool, void *element) 58 { 59 /* Mempools backed by slab allocator */ 60 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) 61 __check_element(pool, element, ksize(element)); 62 63 /* Mempools backed by page allocator */ 64 if (pool->free == mempool_free_pages) { 65 int order = (int)(long)pool->pool_data; 66 void *addr = kmap_atomic((struct page *)element); 67 68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 69 kunmap_atomic(addr); 70 } 71 } 72 73 static void __poison_element(void *element, size_t size) 74 { 75 u8 *obj = element; 76 77 memset(obj, POISON_FREE, size - 1); 78 obj[size - 1] = POISON_END; 79 } 80 81 static void poison_element(mempool_t *pool, void *element) 82 { 83 /* Mempools backed by slab allocator */ 84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 85 __poison_element(element, ksize(element)); 86 87 /* Mempools backed by page allocator */ 88 if (pool->alloc == mempool_alloc_pages) { 89 int order = (int)(long)pool->pool_data; 90 void *addr = kmap_atomic((struct page *)element); 91 92 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 93 kunmap_atomic(addr); 94 } 95 } 96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 97 static inline void check_element(mempool_t *pool, void *element) 98 { 99 } 100 static inline void poison_element(mempool_t *pool, void *element) 101 { 102 } 103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 104 105 static void kasan_poison_element(mempool_t *pool, void *element) 106 { 107 if (pool->alloc == mempool_alloc_slab) 108 kasan_slab_free(pool->pool_data, element); 109 if (pool->alloc == mempool_kmalloc) 110 kasan_kfree(element); 111 if (pool->alloc == mempool_alloc_pages) 112 kasan_free_pages(element, (unsigned long)pool->pool_data); 113 } 114 115 static void kasan_unpoison_element(mempool_t *pool, void *element) 116 { 117 if (pool->alloc == mempool_alloc_slab) 118 kasan_slab_alloc(pool->pool_data, element); 119 if (pool->alloc == mempool_kmalloc) 120 kasan_krealloc(element, (size_t)pool->pool_data); 121 if (pool->alloc == mempool_alloc_pages) 122 kasan_alloc_pages(element, (unsigned long)pool->pool_data); 123 } 124 125 static void add_element(mempool_t *pool, void *element) 126 { 127 BUG_ON(pool->curr_nr >= pool->min_nr); 128 poison_element(pool, element); 129 kasan_poison_element(pool, element); 130 pool->elements[pool->curr_nr++] = element; 131 } 132 133 static void *remove_element(mempool_t *pool) 134 { 135 void *element = pool->elements[--pool->curr_nr]; 136 137 BUG_ON(pool->curr_nr < 0); 138 check_element(pool, element); 139 kasan_unpoison_element(pool, element); 140 return element; 141 } 142 143 /** 144 * mempool_destroy - deallocate a memory pool 145 * @pool: pointer to the memory pool which was allocated via 146 * mempool_create(). 147 * 148 * Free all reserved elements in @pool and @pool itself. This function 149 * only sleeps if the free_fn() function sleeps. 150 */ 151 void mempool_destroy(mempool_t *pool) 152 { 153 if (unlikely(!pool)) 154 return; 155 156 while (pool->curr_nr) { 157 void *element = remove_element(pool); 158 pool->free(element, pool->pool_data); 159 } 160 kfree(pool->elements); 161 kfree(pool); 162 } 163 EXPORT_SYMBOL(mempool_destroy); 164 165 /** 166 * mempool_create - create a memory pool 167 * @min_nr: the minimum number of elements guaranteed to be 168 * allocated for this pool. 169 * @alloc_fn: user-defined element-allocation function. 170 * @free_fn: user-defined element-freeing function. 171 * @pool_data: optional private data available to the user-defined functions. 172 * 173 * this function creates and allocates a guaranteed size, preallocated 174 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 175 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 176 * functions might sleep - as long as the mempool_alloc() function is not called 177 * from IRQ contexts. 178 */ 179 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 180 mempool_free_t *free_fn, void *pool_data) 181 { 182 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, 183 GFP_KERNEL, NUMA_NO_NODE); 184 } 185 EXPORT_SYMBOL(mempool_create); 186 187 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 188 mempool_free_t *free_fn, void *pool_data, 189 gfp_t gfp_mask, int node_id) 190 { 191 mempool_t *pool; 192 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 193 if (!pool) 194 return NULL; 195 pool->elements = kmalloc_node(min_nr * sizeof(void *), 196 gfp_mask, node_id); 197 if (!pool->elements) { 198 kfree(pool); 199 return NULL; 200 } 201 spin_lock_init(&pool->lock); 202 pool->min_nr = min_nr; 203 pool->pool_data = pool_data; 204 init_waitqueue_head(&pool->wait); 205 pool->alloc = alloc_fn; 206 pool->free = free_fn; 207 208 /* 209 * First pre-allocate the guaranteed number of buffers. 210 */ 211 while (pool->curr_nr < pool->min_nr) { 212 void *element; 213 214 element = pool->alloc(gfp_mask, pool->pool_data); 215 if (unlikely(!element)) { 216 mempool_destroy(pool); 217 return NULL; 218 } 219 add_element(pool, element); 220 } 221 return pool; 222 } 223 EXPORT_SYMBOL(mempool_create_node); 224 225 /** 226 * mempool_resize - resize an existing memory pool 227 * @pool: pointer to the memory pool which was allocated via 228 * mempool_create(). 229 * @new_min_nr: the new minimum number of elements guaranteed to be 230 * allocated for this pool. 231 * 232 * This function shrinks/grows the pool. In the case of growing, 233 * it cannot be guaranteed that the pool will be grown to the new 234 * size immediately, but new mempool_free() calls will refill it. 235 * This function may sleep. 236 * 237 * Note, the caller must guarantee that no mempool_destroy is called 238 * while this function is running. mempool_alloc() & mempool_free() 239 * might be called (eg. from IRQ contexts) while this function executes. 240 */ 241 int mempool_resize(mempool_t *pool, int new_min_nr) 242 { 243 void *element; 244 void **new_elements; 245 unsigned long flags; 246 247 BUG_ON(new_min_nr <= 0); 248 might_sleep(); 249 250 spin_lock_irqsave(&pool->lock, flags); 251 if (new_min_nr <= pool->min_nr) { 252 while (new_min_nr < pool->curr_nr) { 253 element = remove_element(pool); 254 spin_unlock_irqrestore(&pool->lock, flags); 255 pool->free(element, pool->pool_data); 256 spin_lock_irqsave(&pool->lock, flags); 257 } 258 pool->min_nr = new_min_nr; 259 goto out_unlock; 260 } 261 spin_unlock_irqrestore(&pool->lock, flags); 262 263 /* Grow the pool */ 264 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 265 GFP_KERNEL); 266 if (!new_elements) 267 return -ENOMEM; 268 269 spin_lock_irqsave(&pool->lock, flags); 270 if (unlikely(new_min_nr <= pool->min_nr)) { 271 /* Raced, other resize will do our work */ 272 spin_unlock_irqrestore(&pool->lock, flags); 273 kfree(new_elements); 274 goto out; 275 } 276 memcpy(new_elements, pool->elements, 277 pool->curr_nr * sizeof(*new_elements)); 278 kfree(pool->elements); 279 pool->elements = new_elements; 280 pool->min_nr = new_min_nr; 281 282 while (pool->curr_nr < pool->min_nr) { 283 spin_unlock_irqrestore(&pool->lock, flags); 284 element = pool->alloc(GFP_KERNEL, pool->pool_data); 285 if (!element) 286 goto out; 287 spin_lock_irqsave(&pool->lock, flags); 288 if (pool->curr_nr < pool->min_nr) { 289 add_element(pool, element); 290 } else { 291 spin_unlock_irqrestore(&pool->lock, flags); 292 pool->free(element, pool->pool_data); /* Raced */ 293 goto out; 294 } 295 } 296 out_unlock: 297 spin_unlock_irqrestore(&pool->lock, flags); 298 out: 299 return 0; 300 } 301 EXPORT_SYMBOL(mempool_resize); 302 303 /** 304 * mempool_alloc - allocate an element from a specific memory pool 305 * @pool: pointer to the memory pool which was allocated via 306 * mempool_create(). 307 * @gfp_mask: the usual allocation bitmask. 308 * 309 * this function only sleeps if the alloc_fn() function sleeps or 310 * returns NULL. Note that due to preallocation, this function 311 * *never* fails when called from process contexts. (it might 312 * fail if called from an IRQ context.) 313 * Note: using __GFP_ZERO is not supported. 314 */ 315 void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 316 { 317 void *element; 318 unsigned long flags; 319 wait_queue_t wait; 320 gfp_t gfp_temp; 321 322 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 323 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 324 325 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 326 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 327 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 328 329 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 330 331 repeat_alloc: 332 333 element = pool->alloc(gfp_temp, pool->pool_data); 334 if (likely(element != NULL)) 335 return element; 336 337 spin_lock_irqsave(&pool->lock, flags); 338 if (likely(pool->curr_nr)) { 339 element = remove_element(pool); 340 spin_unlock_irqrestore(&pool->lock, flags); 341 /* paired with rmb in mempool_free(), read comment there */ 342 smp_wmb(); 343 /* 344 * Update the allocation stack trace as this is more useful 345 * for debugging. 346 */ 347 kmemleak_update_trace(element); 348 return element; 349 } 350 351 /* 352 * We use gfp mask w/o direct reclaim or IO for the first round. If 353 * alloc failed with that and @pool was empty, retry immediately. 354 */ 355 if (gfp_temp != gfp_mask) { 356 spin_unlock_irqrestore(&pool->lock, flags); 357 gfp_temp = gfp_mask; 358 goto repeat_alloc; 359 } 360 361 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 362 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 363 spin_unlock_irqrestore(&pool->lock, flags); 364 return NULL; 365 } 366 367 /* Let's wait for someone else to return an element to @pool */ 368 init_wait(&wait); 369 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 370 371 spin_unlock_irqrestore(&pool->lock, flags); 372 373 /* 374 * FIXME: this should be io_schedule(). The timeout is there as a 375 * workaround for some DM problems in 2.6.18. 376 */ 377 io_schedule_timeout(5*HZ); 378 379 finish_wait(&pool->wait, &wait); 380 goto repeat_alloc; 381 } 382 EXPORT_SYMBOL(mempool_alloc); 383 384 /** 385 * mempool_free - return an element to the pool. 386 * @element: pool element pointer. 387 * @pool: pointer to the memory pool which was allocated via 388 * mempool_create(). 389 * 390 * this function only sleeps if the free_fn() function sleeps. 391 */ 392 void mempool_free(void *element, mempool_t *pool) 393 { 394 unsigned long flags; 395 396 if (unlikely(element == NULL)) 397 return; 398 399 /* 400 * Paired with the wmb in mempool_alloc(). The preceding read is 401 * for @element and the following @pool->curr_nr. This ensures 402 * that the visible value of @pool->curr_nr is from after the 403 * allocation of @element. This is necessary for fringe cases 404 * where @element was passed to this task without going through 405 * barriers. 406 * 407 * For example, assume @p is %NULL at the beginning and one task 408 * performs "p = mempool_alloc(...);" while another task is doing 409 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 410 * may end up using curr_nr value which is from before allocation 411 * of @p without the following rmb. 412 */ 413 smp_rmb(); 414 415 /* 416 * For correctness, we need a test which is guaranteed to trigger 417 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 418 * without locking achieves that and refilling as soon as possible 419 * is desirable. 420 * 421 * Because curr_nr visible here is always a value after the 422 * allocation of @element, any task which decremented curr_nr below 423 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 424 * incremented to min_nr afterwards. If curr_nr gets incremented 425 * to min_nr after the allocation of @element, the elements 426 * allocated after that are subject to the same guarantee. 427 * 428 * Waiters happen iff curr_nr is 0 and the above guarantee also 429 * ensures that there will be frees which return elements to the 430 * pool waking up the waiters. 431 */ 432 if (unlikely(pool->curr_nr < pool->min_nr)) { 433 spin_lock_irqsave(&pool->lock, flags); 434 if (likely(pool->curr_nr < pool->min_nr)) { 435 add_element(pool, element); 436 spin_unlock_irqrestore(&pool->lock, flags); 437 wake_up(&pool->wait); 438 return; 439 } 440 spin_unlock_irqrestore(&pool->lock, flags); 441 } 442 pool->free(element, pool->pool_data); 443 } 444 EXPORT_SYMBOL(mempool_free); 445 446 /* 447 * A commonly used alloc and free fn. 448 */ 449 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 450 { 451 struct kmem_cache *mem = pool_data; 452 VM_BUG_ON(mem->ctor); 453 return kmem_cache_alloc(mem, gfp_mask); 454 } 455 EXPORT_SYMBOL(mempool_alloc_slab); 456 457 void mempool_free_slab(void *element, void *pool_data) 458 { 459 struct kmem_cache *mem = pool_data; 460 kmem_cache_free(mem, element); 461 } 462 EXPORT_SYMBOL(mempool_free_slab); 463 464 /* 465 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 466 * specified by pool_data 467 */ 468 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 469 { 470 size_t size = (size_t)pool_data; 471 return kmalloc(size, gfp_mask); 472 } 473 EXPORT_SYMBOL(mempool_kmalloc); 474 475 void mempool_kfree(void *element, void *pool_data) 476 { 477 kfree(element); 478 } 479 EXPORT_SYMBOL(mempool_kfree); 480 481 /* 482 * A simple mempool-backed page allocator that allocates pages 483 * of the order specified by pool_data. 484 */ 485 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 486 { 487 int order = (int)(long)pool_data; 488 return alloc_pages(gfp_mask, order); 489 } 490 EXPORT_SYMBOL(mempool_alloc_pages); 491 492 void mempool_free_pages(void *element, void *pool_data) 493 { 494 int order = (int)(long)pool_data; 495 __free_pages(element, order); 496 } 497 EXPORT_SYMBOL(mempool_free_pages); 498