1 /* 2 * linux/mm/mempool.c 3 * 4 * memory buffer pool support. Such pools are mostly used 5 * for guaranteed, deadlock-free memory allocations during 6 * extreme VM load. 7 * 8 * started by Ingo Molnar, Copyright (C) 2001 9 * debugging by David Rientjes, Copyright (C) 2015 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/kasan.h> 16 #include <linux/kmemleak.h> 17 #include <linux/export.h> 18 #include <linux/mempool.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include "slab.h" 22 23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 24 static void poison_error(mempool_t *pool, void *element, size_t size, 25 size_t byte) 26 { 27 const int nr = pool->curr_nr; 28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 30 int i; 31 32 pr_err("BUG: mempool element poison mismatch\n"); 33 pr_err("Mempool %p size %zu\n", pool, size); 34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 35 for (i = start; i < end; i++) 36 pr_cont("%x ", *(u8 *)(element + i)); 37 pr_cont("%s\n", end < size ? "..." : ""); 38 dump_stack(); 39 } 40 41 static void __check_element(mempool_t *pool, void *element, size_t size) 42 { 43 u8 *obj = element; 44 size_t i; 45 46 for (i = 0; i < size; i++) { 47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 48 49 if (obj[i] != exp) { 50 poison_error(pool, element, size, i); 51 return; 52 } 53 } 54 memset(obj, POISON_INUSE, size); 55 } 56 57 static void check_element(mempool_t *pool, void *element) 58 { 59 /* Mempools backed by slab allocator */ 60 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) 61 __check_element(pool, element, ksize(element)); 62 63 /* Mempools backed by page allocator */ 64 if (pool->free == mempool_free_pages) { 65 int order = (int)(long)pool->pool_data; 66 void *addr = kmap_atomic((struct page *)element); 67 68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 69 kunmap_atomic(addr); 70 } 71 } 72 73 static void __poison_element(void *element, size_t size) 74 { 75 u8 *obj = element; 76 77 memset(obj, POISON_FREE, size - 1); 78 obj[size - 1] = POISON_END; 79 } 80 81 static void poison_element(mempool_t *pool, void *element) 82 { 83 /* Mempools backed by slab allocator */ 84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 85 __poison_element(element, ksize(element)); 86 87 /* Mempools backed by page allocator */ 88 if (pool->alloc == mempool_alloc_pages) { 89 int order = (int)(long)pool->pool_data; 90 void *addr = kmap_atomic((struct page *)element); 91 92 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 93 kunmap_atomic(addr); 94 } 95 } 96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 97 static inline void check_element(mempool_t *pool, void *element) 98 { 99 } 100 static inline void poison_element(mempool_t *pool, void *element) 101 { 102 } 103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 104 105 static void kasan_poison_element(mempool_t *pool, void *element) 106 { 107 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 108 kasan_poison_kfree(element); 109 if (pool->alloc == mempool_alloc_pages) 110 kasan_free_pages(element, (unsigned long)pool->pool_data); 111 } 112 113 static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags) 114 { 115 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 116 kasan_unpoison_slab(element); 117 if (pool->alloc == mempool_alloc_pages) 118 kasan_alloc_pages(element, (unsigned long)pool->pool_data); 119 } 120 121 static void add_element(mempool_t *pool, void *element) 122 { 123 BUG_ON(pool->curr_nr >= pool->min_nr); 124 poison_element(pool, element); 125 kasan_poison_element(pool, element); 126 pool->elements[pool->curr_nr++] = element; 127 } 128 129 static void *remove_element(mempool_t *pool, gfp_t flags) 130 { 131 void *element = pool->elements[--pool->curr_nr]; 132 133 BUG_ON(pool->curr_nr < 0); 134 kasan_unpoison_element(pool, element, flags); 135 check_element(pool, element); 136 return element; 137 } 138 139 /** 140 * mempool_destroy - deallocate a memory pool 141 * @pool: pointer to the memory pool which was allocated via 142 * mempool_create(). 143 * 144 * Free all reserved elements in @pool and @pool itself. This function 145 * only sleeps if the free_fn() function sleeps. 146 */ 147 void mempool_destroy(mempool_t *pool) 148 { 149 if (unlikely(!pool)) 150 return; 151 152 while (pool->curr_nr) { 153 void *element = remove_element(pool, GFP_KERNEL); 154 pool->free(element, pool->pool_data); 155 } 156 kfree(pool->elements); 157 kfree(pool); 158 } 159 EXPORT_SYMBOL(mempool_destroy); 160 161 /** 162 * mempool_create - create a memory pool 163 * @min_nr: the minimum number of elements guaranteed to be 164 * allocated for this pool. 165 * @alloc_fn: user-defined element-allocation function. 166 * @free_fn: user-defined element-freeing function. 167 * @pool_data: optional private data available to the user-defined functions. 168 * 169 * this function creates and allocates a guaranteed size, preallocated 170 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 171 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 172 * functions might sleep - as long as the mempool_alloc() function is not called 173 * from IRQ contexts. 174 */ 175 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 176 mempool_free_t *free_fn, void *pool_data) 177 { 178 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, 179 GFP_KERNEL, NUMA_NO_NODE); 180 } 181 EXPORT_SYMBOL(mempool_create); 182 183 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 184 mempool_free_t *free_fn, void *pool_data, 185 gfp_t gfp_mask, int node_id) 186 { 187 mempool_t *pool; 188 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 189 if (!pool) 190 return NULL; 191 pool->elements = kmalloc_node(min_nr * sizeof(void *), 192 gfp_mask, node_id); 193 if (!pool->elements) { 194 kfree(pool); 195 return NULL; 196 } 197 spin_lock_init(&pool->lock); 198 pool->min_nr = min_nr; 199 pool->pool_data = pool_data; 200 init_waitqueue_head(&pool->wait); 201 pool->alloc = alloc_fn; 202 pool->free = free_fn; 203 204 /* 205 * First pre-allocate the guaranteed number of buffers. 206 */ 207 while (pool->curr_nr < pool->min_nr) { 208 void *element; 209 210 element = pool->alloc(gfp_mask, pool->pool_data); 211 if (unlikely(!element)) { 212 mempool_destroy(pool); 213 return NULL; 214 } 215 add_element(pool, element); 216 } 217 return pool; 218 } 219 EXPORT_SYMBOL(mempool_create_node); 220 221 /** 222 * mempool_resize - resize an existing memory pool 223 * @pool: pointer to the memory pool which was allocated via 224 * mempool_create(). 225 * @new_min_nr: the new minimum number of elements guaranteed to be 226 * allocated for this pool. 227 * 228 * This function shrinks/grows the pool. In the case of growing, 229 * it cannot be guaranteed that the pool will be grown to the new 230 * size immediately, but new mempool_free() calls will refill it. 231 * This function may sleep. 232 * 233 * Note, the caller must guarantee that no mempool_destroy is called 234 * while this function is running. mempool_alloc() & mempool_free() 235 * might be called (eg. from IRQ contexts) while this function executes. 236 */ 237 int mempool_resize(mempool_t *pool, int new_min_nr) 238 { 239 void *element; 240 void **new_elements; 241 unsigned long flags; 242 243 BUG_ON(new_min_nr <= 0); 244 might_sleep(); 245 246 spin_lock_irqsave(&pool->lock, flags); 247 if (new_min_nr <= pool->min_nr) { 248 while (new_min_nr < pool->curr_nr) { 249 element = remove_element(pool, GFP_KERNEL); 250 spin_unlock_irqrestore(&pool->lock, flags); 251 pool->free(element, pool->pool_data); 252 spin_lock_irqsave(&pool->lock, flags); 253 } 254 pool->min_nr = new_min_nr; 255 goto out_unlock; 256 } 257 spin_unlock_irqrestore(&pool->lock, flags); 258 259 /* Grow the pool */ 260 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 261 GFP_KERNEL); 262 if (!new_elements) 263 return -ENOMEM; 264 265 spin_lock_irqsave(&pool->lock, flags); 266 if (unlikely(new_min_nr <= pool->min_nr)) { 267 /* Raced, other resize will do our work */ 268 spin_unlock_irqrestore(&pool->lock, flags); 269 kfree(new_elements); 270 goto out; 271 } 272 memcpy(new_elements, pool->elements, 273 pool->curr_nr * sizeof(*new_elements)); 274 kfree(pool->elements); 275 pool->elements = new_elements; 276 pool->min_nr = new_min_nr; 277 278 while (pool->curr_nr < pool->min_nr) { 279 spin_unlock_irqrestore(&pool->lock, flags); 280 element = pool->alloc(GFP_KERNEL, pool->pool_data); 281 if (!element) 282 goto out; 283 spin_lock_irqsave(&pool->lock, flags); 284 if (pool->curr_nr < pool->min_nr) { 285 add_element(pool, element); 286 } else { 287 spin_unlock_irqrestore(&pool->lock, flags); 288 pool->free(element, pool->pool_data); /* Raced */ 289 goto out; 290 } 291 } 292 out_unlock: 293 spin_unlock_irqrestore(&pool->lock, flags); 294 out: 295 return 0; 296 } 297 EXPORT_SYMBOL(mempool_resize); 298 299 /** 300 * mempool_alloc - allocate an element from a specific memory pool 301 * @pool: pointer to the memory pool which was allocated via 302 * mempool_create(). 303 * @gfp_mask: the usual allocation bitmask. 304 * 305 * this function only sleeps if the alloc_fn() function sleeps or 306 * returns NULL. Note that due to preallocation, this function 307 * *never* fails when called from process contexts. (it might 308 * fail if called from an IRQ context.) 309 * Note: using __GFP_ZERO is not supported. 310 */ 311 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 312 { 313 void *element; 314 unsigned long flags; 315 wait_queue_entry_t wait; 316 gfp_t gfp_temp; 317 318 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 319 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 320 321 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 322 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 323 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 324 325 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 326 327 repeat_alloc: 328 329 element = pool->alloc(gfp_temp, pool->pool_data); 330 if (likely(element != NULL)) 331 return element; 332 333 spin_lock_irqsave(&pool->lock, flags); 334 if (likely(pool->curr_nr)) { 335 element = remove_element(pool, gfp_temp); 336 spin_unlock_irqrestore(&pool->lock, flags); 337 /* paired with rmb in mempool_free(), read comment there */ 338 smp_wmb(); 339 /* 340 * Update the allocation stack trace as this is more useful 341 * for debugging. 342 */ 343 kmemleak_update_trace(element); 344 return element; 345 } 346 347 /* 348 * We use gfp mask w/o direct reclaim or IO for the first round. If 349 * alloc failed with that and @pool was empty, retry immediately. 350 */ 351 if (gfp_temp != gfp_mask) { 352 spin_unlock_irqrestore(&pool->lock, flags); 353 gfp_temp = gfp_mask; 354 goto repeat_alloc; 355 } 356 357 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 358 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 359 spin_unlock_irqrestore(&pool->lock, flags); 360 return NULL; 361 } 362 363 /* Let's wait for someone else to return an element to @pool */ 364 init_wait(&wait); 365 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 366 367 spin_unlock_irqrestore(&pool->lock, flags); 368 369 /* 370 * FIXME: this should be io_schedule(). The timeout is there as a 371 * workaround for some DM problems in 2.6.18. 372 */ 373 io_schedule_timeout(5*HZ); 374 375 finish_wait(&pool->wait, &wait); 376 goto repeat_alloc; 377 } 378 EXPORT_SYMBOL(mempool_alloc); 379 380 /** 381 * mempool_free - return an element to the pool. 382 * @element: pool element pointer. 383 * @pool: pointer to the memory pool which was allocated via 384 * mempool_create(). 385 * 386 * this function only sleeps if the free_fn() function sleeps. 387 */ 388 void mempool_free(void *element, mempool_t *pool) 389 { 390 unsigned long flags; 391 392 if (unlikely(element == NULL)) 393 return; 394 395 /* 396 * Paired with the wmb in mempool_alloc(). The preceding read is 397 * for @element and the following @pool->curr_nr. This ensures 398 * that the visible value of @pool->curr_nr is from after the 399 * allocation of @element. This is necessary for fringe cases 400 * where @element was passed to this task without going through 401 * barriers. 402 * 403 * For example, assume @p is %NULL at the beginning and one task 404 * performs "p = mempool_alloc(...);" while another task is doing 405 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 406 * may end up using curr_nr value which is from before allocation 407 * of @p without the following rmb. 408 */ 409 smp_rmb(); 410 411 /* 412 * For correctness, we need a test which is guaranteed to trigger 413 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 414 * without locking achieves that and refilling as soon as possible 415 * is desirable. 416 * 417 * Because curr_nr visible here is always a value after the 418 * allocation of @element, any task which decremented curr_nr below 419 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 420 * incremented to min_nr afterwards. If curr_nr gets incremented 421 * to min_nr after the allocation of @element, the elements 422 * allocated after that are subject to the same guarantee. 423 * 424 * Waiters happen iff curr_nr is 0 and the above guarantee also 425 * ensures that there will be frees which return elements to the 426 * pool waking up the waiters. 427 */ 428 if (unlikely(pool->curr_nr < pool->min_nr)) { 429 spin_lock_irqsave(&pool->lock, flags); 430 if (likely(pool->curr_nr < pool->min_nr)) { 431 add_element(pool, element); 432 spin_unlock_irqrestore(&pool->lock, flags); 433 wake_up(&pool->wait); 434 return; 435 } 436 spin_unlock_irqrestore(&pool->lock, flags); 437 } 438 pool->free(element, pool->pool_data); 439 } 440 EXPORT_SYMBOL(mempool_free); 441 442 /* 443 * A commonly used alloc and free fn. 444 */ 445 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 446 { 447 struct kmem_cache *mem = pool_data; 448 VM_BUG_ON(mem->ctor); 449 return kmem_cache_alloc(mem, gfp_mask); 450 } 451 EXPORT_SYMBOL(mempool_alloc_slab); 452 453 void mempool_free_slab(void *element, void *pool_data) 454 { 455 struct kmem_cache *mem = pool_data; 456 kmem_cache_free(mem, element); 457 } 458 EXPORT_SYMBOL(mempool_free_slab); 459 460 /* 461 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 462 * specified by pool_data 463 */ 464 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 465 { 466 size_t size = (size_t)pool_data; 467 return kmalloc(size, gfp_mask); 468 } 469 EXPORT_SYMBOL(mempool_kmalloc); 470 471 void mempool_kfree(void *element, void *pool_data) 472 { 473 kfree(element); 474 } 475 EXPORT_SYMBOL(mempool_kfree); 476 477 /* 478 * A simple mempool-backed page allocator that allocates pages 479 * of the order specified by pool_data. 480 */ 481 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 482 { 483 int order = (int)(long)pool_data; 484 return alloc_pages(gfp_mask, order); 485 } 486 EXPORT_SYMBOL(mempool_alloc_pages); 487 488 void mempool_free_pages(void *element, void *pool_data) 489 { 490 int order = (int)(long)pool_data; 491 __free_pages(element, order); 492 } 493 EXPORT_SYMBOL(mempool_free_pages); 494