1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mempool.c 4 * 5 * memory buffer pool support. Such pools are mostly used 6 * for guaranteed, deadlock-free memory allocations during 7 * extreme VM load. 8 * 9 * started by Ingo Molnar, Copyright (C) 2001 10 * debugging by David Rientjes, Copyright (C) 2015 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kasan.h> 17 #include <linux/kmemleak.h> 18 #include <linux/export.h> 19 #include <linux/mempool.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include "slab.h" 23 24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 25 static void poison_error(mempool_t *pool, void *element, size_t size, 26 size_t byte) 27 { 28 const int nr = pool->curr_nr; 29 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 30 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 31 int i; 32 33 pr_err("BUG: mempool element poison mismatch\n"); 34 pr_err("Mempool %p size %zu\n", pool, size); 35 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 36 for (i = start; i < end; i++) 37 pr_cont("%x ", *(u8 *)(element + i)); 38 pr_cont("%s\n", end < size ? "..." : ""); 39 dump_stack(); 40 } 41 42 static void __check_element(mempool_t *pool, void *element, size_t size) 43 { 44 u8 *obj = element; 45 size_t i; 46 47 for (i = 0; i < size; i++) { 48 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 49 50 if (obj[i] != exp) { 51 poison_error(pool, element, size, i); 52 return; 53 } 54 } 55 memset(obj, POISON_INUSE, size); 56 } 57 58 static void check_element(mempool_t *pool, void *element) 59 { 60 /* Mempools backed by slab allocator */ 61 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) { 62 __check_element(pool, element, ksize(element)); 63 } else if (pool->free == mempool_free_pages) { 64 /* Mempools backed by page allocator */ 65 int order = (int)(long)pool->pool_data; 66 void *addr = kmap_atomic((struct page *)element); 67 68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 69 kunmap_atomic(addr); 70 } 71 } 72 73 static void __poison_element(void *element, size_t size) 74 { 75 u8 *obj = element; 76 77 memset(obj, POISON_FREE, size - 1); 78 obj[size - 1] = POISON_END; 79 } 80 81 static void poison_element(mempool_t *pool, void *element) 82 { 83 /* Mempools backed by slab allocator */ 84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) { 85 __poison_element(element, ksize(element)); 86 } else if (pool->alloc == mempool_alloc_pages) { 87 /* Mempools backed by page allocator */ 88 int order = (int)(long)pool->pool_data; 89 void *addr = kmap_atomic((struct page *)element); 90 91 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 92 kunmap_atomic(addr); 93 } 94 } 95 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 96 static inline void check_element(mempool_t *pool, void *element) 97 { 98 } 99 static inline void poison_element(mempool_t *pool, void *element) 100 { 101 } 102 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 103 104 static __always_inline void kasan_poison_element(mempool_t *pool, void *element) 105 { 106 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 107 kasan_slab_free_mempool(element, _RET_IP_); 108 else if (pool->alloc == mempool_alloc_pages) 109 kasan_free_pages(element, (unsigned long)pool->pool_data); 110 } 111 112 static void kasan_unpoison_element(mempool_t *pool, void *element) 113 { 114 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 115 kasan_unpoison_range(element, __ksize(element)); 116 else if (pool->alloc == mempool_alloc_pages) 117 kasan_alloc_pages(element, (unsigned long)pool->pool_data); 118 } 119 120 static __always_inline void add_element(mempool_t *pool, void *element) 121 { 122 BUG_ON(pool->curr_nr >= pool->min_nr); 123 poison_element(pool, element); 124 kasan_poison_element(pool, element); 125 pool->elements[pool->curr_nr++] = element; 126 } 127 128 static void *remove_element(mempool_t *pool) 129 { 130 void *element = pool->elements[--pool->curr_nr]; 131 132 BUG_ON(pool->curr_nr < 0); 133 kasan_unpoison_element(pool, element); 134 check_element(pool, element); 135 return element; 136 } 137 138 /** 139 * mempool_exit - exit a mempool initialized with mempool_init() 140 * @pool: pointer to the memory pool which was initialized with 141 * mempool_init(). 142 * 143 * Free all reserved elements in @pool and @pool itself. This function 144 * only sleeps if the free_fn() function sleeps. 145 * 146 * May be called on a zeroed but uninitialized mempool (i.e. allocated with 147 * kzalloc()). 148 */ 149 void mempool_exit(mempool_t *pool) 150 { 151 while (pool->curr_nr) { 152 void *element = remove_element(pool); 153 pool->free(element, pool->pool_data); 154 } 155 kfree(pool->elements); 156 pool->elements = NULL; 157 } 158 EXPORT_SYMBOL(mempool_exit); 159 160 /** 161 * mempool_destroy - deallocate a memory pool 162 * @pool: pointer to the memory pool which was allocated via 163 * mempool_create(). 164 * 165 * Free all reserved elements in @pool and @pool itself. This function 166 * only sleeps if the free_fn() function sleeps. 167 */ 168 void mempool_destroy(mempool_t *pool) 169 { 170 if (unlikely(!pool)) 171 return; 172 173 mempool_exit(pool); 174 kfree(pool); 175 } 176 EXPORT_SYMBOL(mempool_destroy); 177 178 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 179 mempool_free_t *free_fn, void *pool_data, 180 gfp_t gfp_mask, int node_id) 181 { 182 spin_lock_init(&pool->lock); 183 pool->min_nr = min_nr; 184 pool->pool_data = pool_data; 185 pool->alloc = alloc_fn; 186 pool->free = free_fn; 187 init_waitqueue_head(&pool->wait); 188 189 pool->elements = kmalloc_array_node(min_nr, sizeof(void *), 190 gfp_mask, node_id); 191 if (!pool->elements) 192 return -ENOMEM; 193 194 /* 195 * First pre-allocate the guaranteed number of buffers. 196 */ 197 while (pool->curr_nr < pool->min_nr) { 198 void *element; 199 200 element = pool->alloc(gfp_mask, pool->pool_data); 201 if (unlikely(!element)) { 202 mempool_exit(pool); 203 return -ENOMEM; 204 } 205 add_element(pool, element); 206 } 207 208 return 0; 209 } 210 EXPORT_SYMBOL(mempool_init_node); 211 212 /** 213 * mempool_init - initialize a memory pool 214 * @pool: pointer to the memory pool that should be initialized 215 * @min_nr: the minimum number of elements guaranteed to be 216 * allocated for this pool. 217 * @alloc_fn: user-defined element-allocation function. 218 * @free_fn: user-defined element-freeing function. 219 * @pool_data: optional private data available to the user-defined functions. 220 * 221 * Like mempool_create(), but initializes the pool in (i.e. embedded in another 222 * structure). 223 * 224 * Return: %0 on success, negative error code otherwise. 225 */ 226 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 227 mempool_free_t *free_fn, void *pool_data) 228 { 229 return mempool_init_node(pool, min_nr, alloc_fn, free_fn, 230 pool_data, GFP_KERNEL, NUMA_NO_NODE); 231 232 } 233 EXPORT_SYMBOL(mempool_init); 234 235 /** 236 * mempool_create - create a memory pool 237 * @min_nr: the minimum number of elements guaranteed to be 238 * allocated for this pool. 239 * @alloc_fn: user-defined element-allocation function. 240 * @free_fn: user-defined element-freeing function. 241 * @pool_data: optional private data available to the user-defined functions. 242 * 243 * this function creates and allocates a guaranteed size, preallocated 244 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 245 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 246 * functions might sleep - as long as the mempool_alloc() function is not called 247 * from IRQ contexts. 248 * 249 * Return: pointer to the created memory pool object or %NULL on error. 250 */ 251 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 252 mempool_free_t *free_fn, void *pool_data) 253 { 254 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, 255 GFP_KERNEL, NUMA_NO_NODE); 256 } 257 EXPORT_SYMBOL(mempool_create); 258 259 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 260 mempool_free_t *free_fn, void *pool_data, 261 gfp_t gfp_mask, int node_id) 262 { 263 mempool_t *pool; 264 265 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 266 if (!pool) 267 return NULL; 268 269 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, 270 gfp_mask, node_id)) { 271 kfree(pool); 272 return NULL; 273 } 274 275 return pool; 276 } 277 EXPORT_SYMBOL(mempool_create_node); 278 279 /** 280 * mempool_resize - resize an existing memory pool 281 * @pool: pointer to the memory pool which was allocated via 282 * mempool_create(). 283 * @new_min_nr: the new minimum number of elements guaranteed to be 284 * allocated for this pool. 285 * 286 * This function shrinks/grows the pool. In the case of growing, 287 * it cannot be guaranteed that the pool will be grown to the new 288 * size immediately, but new mempool_free() calls will refill it. 289 * This function may sleep. 290 * 291 * Note, the caller must guarantee that no mempool_destroy is called 292 * while this function is running. mempool_alloc() & mempool_free() 293 * might be called (eg. from IRQ contexts) while this function executes. 294 * 295 * Return: %0 on success, negative error code otherwise. 296 */ 297 int mempool_resize(mempool_t *pool, int new_min_nr) 298 { 299 void *element; 300 void **new_elements; 301 unsigned long flags; 302 303 BUG_ON(new_min_nr <= 0); 304 might_sleep(); 305 306 spin_lock_irqsave(&pool->lock, flags); 307 if (new_min_nr <= pool->min_nr) { 308 while (new_min_nr < pool->curr_nr) { 309 element = remove_element(pool); 310 spin_unlock_irqrestore(&pool->lock, flags); 311 pool->free(element, pool->pool_data); 312 spin_lock_irqsave(&pool->lock, flags); 313 } 314 pool->min_nr = new_min_nr; 315 goto out_unlock; 316 } 317 spin_unlock_irqrestore(&pool->lock, flags); 318 319 /* Grow the pool */ 320 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 321 GFP_KERNEL); 322 if (!new_elements) 323 return -ENOMEM; 324 325 spin_lock_irqsave(&pool->lock, flags); 326 if (unlikely(new_min_nr <= pool->min_nr)) { 327 /* Raced, other resize will do our work */ 328 spin_unlock_irqrestore(&pool->lock, flags); 329 kfree(new_elements); 330 goto out; 331 } 332 memcpy(new_elements, pool->elements, 333 pool->curr_nr * sizeof(*new_elements)); 334 kfree(pool->elements); 335 pool->elements = new_elements; 336 pool->min_nr = new_min_nr; 337 338 while (pool->curr_nr < pool->min_nr) { 339 spin_unlock_irqrestore(&pool->lock, flags); 340 element = pool->alloc(GFP_KERNEL, pool->pool_data); 341 if (!element) 342 goto out; 343 spin_lock_irqsave(&pool->lock, flags); 344 if (pool->curr_nr < pool->min_nr) { 345 add_element(pool, element); 346 } else { 347 spin_unlock_irqrestore(&pool->lock, flags); 348 pool->free(element, pool->pool_data); /* Raced */ 349 goto out; 350 } 351 } 352 out_unlock: 353 spin_unlock_irqrestore(&pool->lock, flags); 354 out: 355 return 0; 356 } 357 EXPORT_SYMBOL(mempool_resize); 358 359 /** 360 * mempool_alloc - allocate an element from a specific memory pool 361 * @pool: pointer to the memory pool which was allocated via 362 * mempool_create(). 363 * @gfp_mask: the usual allocation bitmask. 364 * 365 * this function only sleeps if the alloc_fn() function sleeps or 366 * returns NULL. Note that due to preallocation, this function 367 * *never* fails when called from process contexts. (it might 368 * fail if called from an IRQ context.) 369 * Note: using __GFP_ZERO is not supported. 370 * 371 * Return: pointer to the allocated element or %NULL on error. 372 */ 373 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 374 { 375 void *element; 376 unsigned long flags; 377 wait_queue_entry_t wait; 378 gfp_t gfp_temp; 379 380 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 381 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 382 383 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 384 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 385 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 386 387 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 388 389 repeat_alloc: 390 391 element = pool->alloc(gfp_temp, pool->pool_data); 392 if (likely(element != NULL)) 393 return element; 394 395 spin_lock_irqsave(&pool->lock, flags); 396 if (likely(pool->curr_nr)) { 397 element = remove_element(pool); 398 spin_unlock_irqrestore(&pool->lock, flags); 399 /* paired with rmb in mempool_free(), read comment there */ 400 smp_wmb(); 401 /* 402 * Update the allocation stack trace as this is more useful 403 * for debugging. 404 */ 405 kmemleak_update_trace(element); 406 return element; 407 } 408 409 /* 410 * We use gfp mask w/o direct reclaim or IO for the first round. If 411 * alloc failed with that and @pool was empty, retry immediately. 412 */ 413 if (gfp_temp != gfp_mask) { 414 spin_unlock_irqrestore(&pool->lock, flags); 415 gfp_temp = gfp_mask; 416 goto repeat_alloc; 417 } 418 419 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 420 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 421 spin_unlock_irqrestore(&pool->lock, flags); 422 return NULL; 423 } 424 425 /* Let's wait for someone else to return an element to @pool */ 426 init_wait(&wait); 427 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 428 429 spin_unlock_irqrestore(&pool->lock, flags); 430 431 /* 432 * FIXME: this should be io_schedule(). The timeout is there as a 433 * workaround for some DM problems in 2.6.18. 434 */ 435 io_schedule_timeout(5*HZ); 436 437 finish_wait(&pool->wait, &wait); 438 goto repeat_alloc; 439 } 440 EXPORT_SYMBOL(mempool_alloc); 441 442 /** 443 * mempool_free - return an element to the pool. 444 * @element: pool element pointer. 445 * @pool: pointer to the memory pool which was allocated via 446 * mempool_create(). 447 * 448 * this function only sleeps if the free_fn() function sleeps. 449 */ 450 void mempool_free(void *element, mempool_t *pool) 451 { 452 unsigned long flags; 453 454 if (unlikely(element == NULL)) 455 return; 456 457 /* 458 * Paired with the wmb in mempool_alloc(). The preceding read is 459 * for @element and the following @pool->curr_nr. This ensures 460 * that the visible value of @pool->curr_nr is from after the 461 * allocation of @element. This is necessary for fringe cases 462 * where @element was passed to this task without going through 463 * barriers. 464 * 465 * For example, assume @p is %NULL at the beginning and one task 466 * performs "p = mempool_alloc(...);" while another task is doing 467 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 468 * may end up using curr_nr value which is from before allocation 469 * of @p without the following rmb. 470 */ 471 smp_rmb(); 472 473 /* 474 * For correctness, we need a test which is guaranteed to trigger 475 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 476 * without locking achieves that and refilling as soon as possible 477 * is desirable. 478 * 479 * Because curr_nr visible here is always a value after the 480 * allocation of @element, any task which decremented curr_nr below 481 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 482 * incremented to min_nr afterwards. If curr_nr gets incremented 483 * to min_nr after the allocation of @element, the elements 484 * allocated after that are subject to the same guarantee. 485 * 486 * Waiters happen iff curr_nr is 0 and the above guarantee also 487 * ensures that there will be frees which return elements to the 488 * pool waking up the waiters. 489 */ 490 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) { 491 spin_lock_irqsave(&pool->lock, flags); 492 if (likely(pool->curr_nr < pool->min_nr)) { 493 add_element(pool, element); 494 spin_unlock_irqrestore(&pool->lock, flags); 495 wake_up(&pool->wait); 496 return; 497 } 498 spin_unlock_irqrestore(&pool->lock, flags); 499 } 500 pool->free(element, pool->pool_data); 501 } 502 EXPORT_SYMBOL(mempool_free); 503 504 /* 505 * A commonly used alloc and free fn. 506 */ 507 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 508 { 509 struct kmem_cache *mem = pool_data; 510 VM_BUG_ON(mem->ctor); 511 return kmem_cache_alloc(mem, gfp_mask); 512 } 513 EXPORT_SYMBOL(mempool_alloc_slab); 514 515 void mempool_free_slab(void *element, void *pool_data) 516 { 517 struct kmem_cache *mem = pool_data; 518 kmem_cache_free(mem, element); 519 } 520 EXPORT_SYMBOL(mempool_free_slab); 521 522 /* 523 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 524 * specified by pool_data 525 */ 526 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 527 { 528 size_t size = (size_t)pool_data; 529 return kmalloc(size, gfp_mask); 530 } 531 EXPORT_SYMBOL(mempool_kmalloc); 532 533 void mempool_kfree(void *element, void *pool_data) 534 { 535 kfree(element); 536 } 537 EXPORT_SYMBOL(mempool_kfree); 538 539 /* 540 * A simple mempool-backed page allocator that allocates pages 541 * of the order specified by pool_data. 542 */ 543 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 544 { 545 int order = (int)(long)pool_data; 546 return alloc_pages(gfp_mask, order); 547 } 548 EXPORT_SYMBOL(mempool_alloc_pages); 549 550 void mempool_free_pages(void *element, void *pool_data) 551 { 552 int order = (int)(long)pool_data; 553 __free_pages(element, order); 554 } 555 EXPORT_SYMBOL(mempool_free_pages); 556