1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mempool.c 4 * 5 * memory buffer pool support. Such pools are mostly used 6 * for guaranteed, deadlock-free memory allocations during 7 * extreme VM load. 8 * 9 * started by Ingo Molnar, Copyright (C) 2001 10 * debugging by David Rientjes, Copyright (C) 2015 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kasan.h> 17 #include <linux/kmemleak.h> 18 #include <linux/export.h> 19 #include <linux/mempool.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include "slab.h" 23 24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 25 static void poison_error(mempool_t *pool, void *element, size_t size, 26 size_t byte) 27 { 28 const int nr = pool->curr_nr; 29 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 30 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 31 int i; 32 33 pr_err("BUG: mempool element poison mismatch\n"); 34 pr_err("Mempool %p size %zu\n", pool, size); 35 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 36 for (i = start; i < end; i++) 37 pr_cont("%x ", *(u8 *)(element + i)); 38 pr_cont("%s\n", end < size ? "..." : ""); 39 dump_stack(); 40 } 41 42 static void __check_element(mempool_t *pool, void *element, size_t size) 43 { 44 u8 *obj = element; 45 size_t i; 46 47 for (i = 0; i < size; i++) { 48 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 49 50 if (obj[i] != exp) { 51 poison_error(pool, element, size, i); 52 return; 53 } 54 } 55 memset(obj, POISON_INUSE, size); 56 } 57 58 static void check_element(mempool_t *pool, void *element) 59 { 60 /* Mempools backed by slab allocator */ 61 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) 62 __check_element(pool, element, ksize(element)); 63 64 /* Mempools backed by page allocator */ 65 if (pool->free == mempool_free_pages) { 66 int order = (int)(long)pool->pool_data; 67 void *addr = kmap_atomic((struct page *)element); 68 69 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 70 kunmap_atomic(addr); 71 } 72 } 73 74 static void __poison_element(void *element, size_t size) 75 { 76 u8 *obj = element; 77 78 memset(obj, POISON_FREE, size - 1); 79 obj[size - 1] = POISON_END; 80 } 81 82 static void poison_element(mempool_t *pool, void *element) 83 { 84 /* Mempools backed by slab allocator */ 85 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 86 __poison_element(element, ksize(element)); 87 88 /* Mempools backed by page allocator */ 89 if (pool->alloc == mempool_alloc_pages) { 90 int order = (int)(long)pool->pool_data; 91 void *addr = kmap_atomic((struct page *)element); 92 93 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 94 kunmap_atomic(addr); 95 } 96 } 97 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 98 static inline void check_element(mempool_t *pool, void *element) 99 { 100 } 101 static inline void poison_element(mempool_t *pool, void *element) 102 { 103 } 104 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 105 106 static __always_inline void kasan_poison_element(mempool_t *pool, void *element) 107 { 108 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 109 kasan_poison_kfree(element, _RET_IP_); 110 if (pool->alloc == mempool_alloc_pages) 111 kasan_free_pages(element, (unsigned long)pool->pool_data); 112 } 113 114 static void kasan_unpoison_element(mempool_t *pool, void *element) 115 { 116 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 117 kasan_unpoison_slab(element); 118 if (pool->alloc == mempool_alloc_pages) 119 kasan_alloc_pages(element, (unsigned long)pool->pool_data); 120 } 121 122 static __always_inline void add_element(mempool_t *pool, void *element) 123 { 124 BUG_ON(pool->curr_nr >= pool->min_nr); 125 poison_element(pool, element); 126 kasan_poison_element(pool, element); 127 pool->elements[pool->curr_nr++] = element; 128 } 129 130 static void *remove_element(mempool_t *pool) 131 { 132 void *element = pool->elements[--pool->curr_nr]; 133 134 BUG_ON(pool->curr_nr < 0); 135 kasan_unpoison_element(pool, element); 136 check_element(pool, element); 137 return element; 138 } 139 140 /** 141 * mempool_exit - exit a mempool initialized with mempool_init() 142 * @pool: pointer to the memory pool which was initialized with 143 * mempool_init(). 144 * 145 * Free all reserved elements in @pool and @pool itself. This function 146 * only sleeps if the free_fn() function sleeps. 147 * 148 * May be called on a zeroed but uninitialized mempool (i.e. allocated with 149 * kzalloc()). 150 */ 151 void mempool_exit(mempool_t *pool) 152 { 153 while (pool->curr_nr) { 154 void *element = remove_element(pool); 155 pool->free(element, pool->pool_data); 156 } 157 kfree(pool->elements); 158 pool->elements = NULL; 159 } 160 EXPORT_SYMBOL(mempool_exit); 161 162 /** 163 * mempool_destroy - deallocate a memory pool 164 * @pool: pointer to the memory pool which was allocated via 165 * mempool_create(). 166 * 167 * Free all reserved elements in @pool and @pool itself. This function 168 * only sleeps if the free_fn() function sleeps. 169 */ 170 void mempool_destroy(mempool_t *pool) 171 { 172 if (unlikely(!pool)) 173 return; 174 175 mempool_exit(pool); 176 kfree(pool); 177 } 178 EXPORT_SYMBOL(mempool_destroy); 179 180 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 181 mempool_free_t *free_fn, void *pool_data, 182 gfp_t gfp_mask, int node_id) 183 { 184 spin_lock_init(&pool->lock); 185 pool->min_nr = min_nr; 186 pool->pool_data = pool_data; 187 pool->alloc = alloc_fn; 188 pool->free = free_fn; 189 init_waitqueue_head(&pool->wait); 190 191 pool->elements = kmalloc_array_node(min_nr, sizeof(void *), 192 gfp_mask, node_id); 193 if (!pool->elements) 194 return -ENOMEM; 195 196 /* 197 * First pre-allocate the guaranteed number of buffers. 198 */ 199 while (pool->curr_nr < pool->min_nr) { 200 void *element; 201 202 element = pool->alloc(gfp_mask, pool->pool_data); 203 if (unlikely(!element)) { 204 mempool_exit(pool); 205 return -ENOMEM; 206 } 207 add_element(pool, element); 208 } 209 210 return 0; 211 } 212 EXPORT_SYMBOL(mempool_init_node); 213 214 /** 215 * mempool_init - initialize a memory pool 216 * @pool: pointer to the memory pool that should be initialized 217 * @min_nr: the minimum number of elements guaranteed to be 218 * allocated for this pool. 219 * @alloc_fn: user-defined element-allocation function. 220 * @free_fn: user-defined element-freeing function. 221 * @pool_data: optional private data available to the user-defined functions. 222 * 223 * Like mempool_create(), but initializes the pool in (i.e. embedded in another 224 * structure). 225 */ 226 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 227 mempool_free_t *free_fn, void *pool_data) 228 { 229 return mempool_init_node(pool, min_nr, alloc_fn, free_fn, 230 pool_data, GFP_KERNEL, NUMA_NO_NODE); 231 232 } 233 EXPORT_SYMBOL(mempool_init); 234 235 /** 236 * mempool_create - create a memory pool 237 * @min_nr: the minimum number of elements guaranteed to be 238 * allocated for this pool. 239 * @alloc_fn: user-defined element-allocation function. 240 * @free_fn: user-defined element-freeing function. 241 * @pool_data: optional private data available to the user-defined functions. 242 * 243 * this function creates and allocates a guaranteed size, preallocated 244 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 245 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 246 * functions might sleep - as long as the mempool_alloc() function is not called 247 * from IRQ contexts. 248 */ 249 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 250 mempool_free_t *free_fn, void *pool_data) 251 { 252 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, 253 GFP_KERNEL, NUMA_NO_NODE); 254 } 255 EXPORT_SYMBOL(mempool_create); 256 257 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 258 mempool_free_t *free_fn, void *pool_data, 259 gfp_t gfp_mask, int node_id) 260 { 261 mempool_t *pool; 262 263 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 264 if (!pool) 265 return NULL; 266 267 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, 268 gfp_mask, node_id)) { 269 kfree(pool); 270 return NULL; 271 } 272 273 return pool; 274 } 275 EXPORT_SYMBOL(mempool_create_node); 276 277 /** 278 * mempool_resize - resize an existing memory pool 279 * @pool: pointer to the memory pool which was allocated via 280 * mempool_create(). 281 * @new_min_nr: the new minimum number of elements guaranteed to be 282 * allocated for this pool. 283 * 284 * This function shrinks/grows the pool. In the case of growing, 285 * it cannot be guaranteed that the pool will be grown to the new 286 * size immediately, but new mempool_free() calls will refill it. 287 * This function may sleep. 288 * 289 * Note, the caller must guarantee that no mempool_destroy is called 290 * while this function is running. mempool_alloc() & mempool_free() 291 * might be called (eg. from IRQ contexts) while this function executes. 292 */ 293 int mempool_resize(mempool_t *pool, int new_min_nr) 294 { 295 void *element; 296 void **new_elements; 297 unsigned long flags; 298 299 BUG_ON(new_min_nr <= 0); 300 might_sleep(); 301 302 spin_lock_irqsave(&pool->lock, flags); 303 if (new_min_nr <= pool->min_nr) { 304 while (new_min_nr < pool->curr_nr) { 305 element = remove_element(pool); 306 spin_unlock_irqrestore(&pool->lock, flags); 307 pool->free(element, pool->pool_data); 308 spin_lock_irqsave(&pool->lock, flags); 309 } 310 pool->min_nr = new_min_nr; 311 goto out_unlock; 312 } 313 spin_unlock_irqrestore(&pool->lock, flags); 314 315 /* Grow the pool */ 316 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 317 GFP_KERNEL); 318 if (!new_elements) 319 return -ENOMEM; 320 321 spin_lock_irqsave(&pool->lock, flags); 322 if (unlikely(new_min_nr <= pool->min_nr)) { 323 /* Raced, other resize will do our work */ 324 spin_unlock_irqrestore(&pool->lock, flags); 325 kfree(new_elements); 326 goto out; 327 } 328 memcpy(new_elements, pool->elements, 329 pool->curr_nr * sizeof(*new_elements)); 330 kfree(pool->elements); 331 pool->elements = new_elements; 332 pool->min_nr = new_min_nr; 333 334 while (pool->curr_nr < pool->min_nr) { 335 spin_unlock_irqrestore(&pool->lock, flags); 336 element = pool->alloc(GFP_KERNEL, pool->pool_data); 337 if (!element) 338 goto out; 339 spin_lock_irqsave(&pool->lock, flags); 340 if (pool->curr_nr < pool->min_nr) { 341 add_element(pool, element); 342 } else { 343 spin_unlock_irqrestore(&pool->lock, flags); 344 pool->free(element, pool->pool_data); /* Raced */ 345 goto out; 346 } 347 } 348 out_unlock: 349 spin_unlock_irqrestore(&pool->lock, flags); 350 out: 351 return 0; 352 } 353 EXPORT_SYMBOL(mempool_resize); 354 355 /** 356 * mempool_alloc - allocate an element from a specific memory pool 357 * @pool: pointer to the memory pool which was allocated via 358 * mempool_create(). 359 * @gfp_mask: the usual allocation bitmask. 360 * 361 * this function only sleeps if the alloc_fn() function sleeps or 362 * returns NULL. Note that due to preallocation, this function 363 * *never* fails when called from process contexts. (it might 364 * fail if called from an IRQ context.) 365 * Note: using __GFP_ZERO is not supported. 366 */ 367 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 368 { 369 void *element; 370 unsigned long flags; 371 wait_queue_entry_t wait; 372 gfp_t gfp_temp; 373 374 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 375 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 376 377 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 378 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 379 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 380 381 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 382 383 repeat_alloc: 384 385 element = pool->alloc(gfp_temp, pool->pool_data); 386 if (likely(element != NULL)) 387 return element; 388 389 spin_lock_irqsave(&pool->lock, flags); 390 if (likely(pool->curr_nr)) { 391 element = remove_element(pool); 392 spin_unlock_irqrestore(&pool->lock, flags); 393 /* paired with rmb in mempool_free(), read comment there */ 394 smp_wmb(); 395 /* 396 * Update the allocation stack trace as this is more useful 397 * for debugging. 398 */ 399 kmemleak_update_trace(element); 400 return element; 401 } 402 403 /* 404 * We use gfp mask w/o direct reclaim or IO for the first round. If 405 * alloc failed with that and @pool was empty, retry immediately. 406 */ 407 if (gfp_temp != gfp_mask) { 408 spin_unlock_irqrestore(&pool->lock, flags); 409 gfp_temp = gfp_mask; 410 goto repeat_alloc; 411 } 412 413 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 414 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 415 spin_unlock_irqrestore(&pool->lock, flags); 416 return NULL; 417 } 418 419 /* Let's wait for someone else to return an element to @pool */ 420 init_wait(&wait); 421 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 422 423 spin_unlock_irqrestore(&pool->lock, flags); 424 425 /* 426 * FIXME: this should be io_schedule(). The timeout is there as a 427 * workaround for some DM problems in 2.6.18. 428 */ 429 io_schedule_timeout(5*HZ); 430 431 finish_wait(&pool->wait, &wait); 432 goto repeat_alloc; 433 } 434 EXPORT_SYMBOL(mempool_alloc); 435 436 /** 437 * mempool_free - return an element to the pool. 438 * @element: pool element pointer. 439 * @pool: pointer to the memory pool which was allocated via 440 * mempool_create(). 441 * 442 * this function only sleeps if the free_fn() function sleeps. 443 */ 444 void mempool_free(void *element, mempool_t *pool) 445 { 446 unsigned long flags; 447 448 if (unlikely(element == NULL)) 449 return; 450 451 /* 452 * Paired with the wmb in mempool_alloc(). The preceding read is 453 * for @element and the following @pool->curr_nr. This ensures 454 * that the visible value of @pool->curr_nr is from after the 455 * allocation of @element. This is necessary for fringe cases 456 * where @element was passed to this task without going through 457 * barriers. 458 * 459 * For example, assume @p is %NULL at the beginning and one task 460 * performs "p = mempool_alloc(...);" while another task is doing 461 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 462 * may end up using curr_nr value which is from before allocation 463 * of @p without the following rmb. 464 */ 465 smp_rmb(); 466 467 /* 468 * For correctness, we need a test which is guaranteed to trigger 469 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 470 * without locking achieves that and refilling as soon as possible 471 * is desirable. 472 * 473 * Because curr_nr visible here is always a value after the 474 * allocation of @element, any task which decremented curr_nr below 475 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 476 * incremented to min_nr afterwards. If curr_nr gets incremented 477 * to min_nr after the allocation of @element, the elements 478 * allocated after that are subject to the same guarantee. 479 * 480 * Waiters happen iff curr_nr is 0 and the above guarantee also 481 * ensures that there will be frees which return elements to the 482 * pool waking up the waiters. 483 */ 484 if (unlikely(pool->curr_nr < pool->min_nr)) { 485 spin_lock_irqsave(&pool->lock, flags); 486 if (likely(pool->curr_nr < pool->min_nr)) { 487 add_element(pool, element); 488 spin_unlock_irqrestore(&pool->lock, flags); 489 wake_up(&pool->wait); 490 return; 491 } 492 spin_unlock_irqrestore(&pool->lock, flags); 493 } 494 pool->free(element, pool->pool_data); 495 } 496 EXPORT_SYMBOL(mempool_free); 497 498 /* 499 * A commonly used alloc and free fn. 500 */ 501 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 502 { 503 struct kmem_cache *mem = pool_data; 504 VM_BUG_ON(mem->ctor); 505 return kmem_cache_alloc(mem, gfp_mask); 506 } 507 EXPORT_SYMBOL(mempool_alloc_slab); 508 509 void mempool_free_slab(void *element, void *pool_data) 510 { 511 struct kmem_cache *mem = pool_data; 512 kmem_cache_free(mem, element); 513 } 514 EXPORT_SYMBOL(mempool_free_slab); 515 516 /* 517 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 518 * specified by pool_data 519 */ 520 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 521 { 522 size_t size = (size_t)pool_data; 523 return kmalloc(size, gfp_mask); 524 } 525 EXPORT_SYMBOL(mempool_kmalloc); 526 527 void mempool_kfree(void *element, void *pool_data) 528 { 529 kfree(element); 530 } 531 EXPORT_SYMBOL(mempool_kfree); 532 533 /* 534 * A simple mempool-backed page allocator that allocates pages 535 * of the order specified by pool_data. 536 */ 537 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 538 { 539 int order = (int)(long)pool_data; 540 return alloc_pages(gfp_mask, order); 541 } 542 EXPORT_SYMBOL(mempool_alloc_pages); 543 544 void mempool_free_pages(void *element, void *pool_data) 545 { 546 int order = (int)(long)pool_data; 547 __free_pages(element, order); 548 } 549 EXPORT_SYMBOL(mempool_free_pages); 550