xref: /openbmc/linux/mm/mempool.c (revision 6008105b4f4e470da0e9159a3a74ca7ff6e869ba)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/mempool.c
4   *
5   *  memory buffer pool support. Such pools are mostly used
6   *  for guaranteed, deadlock-free memory allocations during
7   *  extreme VM load.
8   *
9   *  started by Ingo Molnar, Copyright (C) 2001
10   *  debugging by David Rientjes, Copyright (C) 2015
11   */
12  
13  #include <linux/mm.h>
14  #include <linux/slab.h>
15  #include <linux/highmem.h>
16  #include <linux/kasan.h>
17  #include <linux/kmemleak.h>
18  #include <linux/export.h>
19  #include <linux/mempool.h>
20  #include <linux/writeback.h>
21  #include "slab.h"
22  
23  #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24  static void poison_error(mempool_t *pool, void *element, size_t size,
25  			 size_t byte)
26  {
27  	const int nr = pool->curr_nr;
28  	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29  	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30  	int i;
31  
32  	pr_err("BUG: mempool element poison mismatch\n");
33  	pr_err("Mempool %p size %zu\n", pool, size);
34  	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35  	for (i = start; i < end; i++)
36  		pr_cont("%x ", *(u8 *)(element + i));
37  	pr_cont("%s\n", end < size ? "..." : "");
38  	dump_stack();
39  }
40  
41  static void __check_element(mempool_t *pool, void *element, size_t size)
42  {
43  	u8 *obj = element;
44  	size_t i;
45  
46  	for (i = 0; i < size; i++) {
47  		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48  
49  		if (obj[i] != exp) {
50  			poison_error(pool, element, size, i);
51  			return;
52  		}
53  	}
54  	memset(obj, POISON_INUSE, size);
55  }
56  
57  static void check_element(mempool_t *pool, void *element)
58  {
59  	/* Mempools backed by slab allocator */
60  	if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
61  		__check_element(pool, element, ksize(element));
62  	} else if (pool->free == mempool_free_pages) {
63  		/* Mempools backed by page allocator */
64  		int order = (int)(long)pool->pool_data;
65  		void *addr = kmap_atomic((struct page *)element);
66  
67  		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
68  		kunmap_atomic(addr);
69  	}
70  }
71  
72  static void __poison_element(void *element, size_t size)
73  {
74  	u8 *obj = element;
75  
76  	memset(obj, POISON_FREE, size - 1);
77  	obj[size - 1] = POISON_END;
78  }
79  
80  static void poison_element(mempool_t *pool, void *element)
81  {
82  	/* Mempools backed by slab allocator */
83  	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
84  		__poison_element(element, ksize(element));
85  	} else if (pool->alloc == mempool_alloc_pages) {
86  		/* Mempools backed by page allocator */
87  		int order = (int)(long)pool->pool_data;
88  		void *addr = kmap_atomic((struct page *)element);
89  
90  		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
91  		kunmap_atomic(addr);
92  	}
93  }
94  #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
95  static inline void check_element(mempool_t *pool, void *element)
96  {
97  }
98  static inline void poison_element(mempool_t *pool, void *element)
99  {
100  }
101  #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
102  
103  static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
104  {
105  	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
106  		kasan_slab_free_mempool(element);
107  	else if (pool->alloc == mempool_alloc_pages)
108  		kasan_poison_pages(element, (unsigned long)pool->pool_data,
109  				   false);
110  }
111  
112  static void kasan_unpoison_element(mempool_t *pool, void *element)
113  {
114  	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
115  		kasan_unpoison_range(element, __ksize(element));
116  	else if (pool->alloc == mempool_alloc_pages)
117  		kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
118  				     false);
119  }
120  
121  static __always_inline void add_element(mempool_t *pool, void *element)
122  {
123  	BUG_ON(pool->curr_nr >= pool->min_nr);
124  	poison_element(pool, element);
125  	kasan_poison_element(pool, element);
126  	pool->elements[pool->curr_nr++] = element;
127  }
128  
129  static void *remove_element(mempool_t *pool)
130  {
131  	void *element = pool->elements[--pool->curr_nr];
132  
133  	BUG_ON(pool->curr_nr < 0);
134  	kasan_unpoison_element(pool, element);
135  	check_element(pool, element);
136  	return element;
137  }
138  
139  /**
140   * mempool_exit - exit a mempool initialized with mempool_init()
141   * @pool:      pointer to the memory pool which was initialized with
142   *             mempool_init().
143   *
144   * Free all reserved elements in @pool and @pool itself.  This function
145   * only sleeps if the free_fn() function sleeps.
146   *
147   * May be called on a zeroed but uninitialized mempool (i.e. allocated with
148   * kzalloc()).
149   */
150  void mempool_exit(mempool_t *pool)
151  {
152  	while (pool->curr_nr) {
153  		void *element = remove_element(pool);
154  		pool->free(element, pool->pool_data);
155  	}
156  	kfree(pool->elements);
157  	pool->elements = NULL;
158  }
159  EXPORT_SYMBOL(mempool_exit);
160  
161  /**
162   * mempool_destroy - deallocate a memory pool
163   * @pool:      pointer to the memory pool which was allocated via
164   *             mempool_create().
165   *
166   * Free all reserved elements in @pool and @pool itself.  This function
167   * only sleeps if the free_fn() function sleeps.
168   */
169  void mempool_destroy(mempool_t *pool)
170  {
171  	if (unlikely(!pool))
172  		return;
173  
174  	mempool_exit(pool);
175  	kfree(pool);
176  }
177  EXPORT_SYMBOL(mempool_destroy);
178  
179  int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
180  		      mempool_free_t *free_fn, void *pool_data,
181  		      gfp_t gfp_mask, int node_id)
182  {
183  	spin_lock_init(&pool->lock);
184  	pool->min_nr	= min_nr;
185  	pool->pool_data = pool_data;
186  	pool->alloc	= alloc_fn;
187  	pool->free	= free_fn;
188  	init_waitqueue_head(&pool->wait);
189  
190  	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
191  					    gfp_mask, node_id);
192  	if (!pool->elements)
193  		return -ENOMEM;
194  
195  	/*
196  	 * First pre-allocate the guaranteed number of buffers.
197  	 */
198  	while (pool->curr_nr < pool->min_nr) {
199  		void *element;
200  
201  		element = pool->alloc(gfp_mask, pool->pool_data);
202  		if (unlikely(!element)) {
203  			mempool_exit(pool);
204  			return -ENOMEM;
205  		}
206  		add_element(pool, element);
207  	}
208  
209  	return 0;
210  }
211  EXPORT_SYMBOL(mempool_init_node);
212  
213  /**
214   * mempool_init - initialize a memory pool
215   * @pool:      pointer to the memory pool that should be initialized
216   * @min_nr:    the minimum number of elements guaranteed to be
217   *             allocated for this pool.
218   * @alloc_fn:  user-defined element-allocation function.
219   * @free_fn:   user-defined element-freeing function.
220   * @pool_data: optional private data available to the user-defined functions.
221   *
222   * Like mempool_create(), but initializes the pool in (i.e. embedded in another
223   * structure).
224   *
225   * Return: %0 on success, negative error code otherwise.
226   */
227  int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
228  		 mempool_free_t *free_fn, void *pool_data)
229  {
230  	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
231  				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
232  
233  }
234  EXPORT_SYMBOL(mempool_init);
235  
236  /**
237   * mempool_create - create a memory pool
238   * @min_nr:    the minimum number of elements guaranteed to be
239   *             allocated for this pool.
240   * @alloc_fn:  user-defined element-allocation function.
241   * @free_fn:   user-defined element-freeing function.
242   * @pool_data: optional private data available to the user-defined functions.
243   *
244   * this function creates and allocates a guaranteed size, preallocated
245   * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
246   * functions. This function might sleep. Both the alloc_fn() and the free_fn()
247   * functions might sleep - as long as the mempool_alloc() function is not called
248   * from IRQ contexts.
249   *
250   * Return: pointer to the created memory pool object or %NULL on error.
251   */
252  mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
253  				mempool_free_t *free_fn, void *pool_data)
254  {
255  	return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
256  				   GFP_KERNEL, NUMA_NO_NODE);
257  }
258  EXPORT_SYMBOL(mempool_create);
259  
260  mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
261  			       mempool_free_t *free_fn, void *pool_data,
262  			       gfp_t gfp_mask, int node_id)
263  {
264  	mempool_t *pool;
265  
266  	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
267  	if (!pool)
268  		return NULL;
269  
270  	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
271  			      gfp_mask, node_id)) {
272  		kfree(pool);
273  		return NULL;
274  	}
275  
276  	return pool;
277  }
278  EXPORT_SYMBOL(mempool_create_node);
279  
280  /**
281   * mempool_resize - resize an existing memory pool
282   * @pool:       pointer to the memory pool which was allocated via
283   *              mempool_create().
284   * @new_min_nr: the new minimum number of elements guaranteed to be
285   *              allocated for this pool.
286   *
287   * This function shrinks/grows the pool. In the case of growing,
288   * it cannot be guaranteed that the pool will be grown to the new
289   * size immediately, but new mempool_free() calls will refill it.
290   * This function may sleep.
291   *
292   * Note, the caller must guarantee that no mempool_destroy is called
293   * while this function is running. mempool_alloc() & mempool_free()
294   * might be called (eg. from IRQ contexts) while this function executes.
295   *
296   * Return: %0 on success, negative error code otherwise.
297   */
298  int mempool_resize(mempool_t *pool, int new_min_nr)
299  {
300  	void *element;
301  	void **new_elements;
302  	unsigned long flags;
303  
304  	BUG_ON(new_min_nr <= 0);
305  	might_sleep();
306  
307  	spin_lock_irqsave(&pool->lock, flags);
308  	if (new_min_nr <= pool->min_nr) {
309  		while (new_min_nr < pool->curr_nr) {
310  			element = remove_element(pool);
311  			spin_unlock_irqrestore(&pool->lock, flags);
312  			pool->free(element, pool->pool_data);
313  			spin_lock_irqsave(&pool->lock, flags);
314  		}
315  		pool->min_nr = new_min_nr;
316  		goto out_unlock;
317  	}
318  	spin_unlock_irqrestore(&pool->lock, flags);
319  
320  	/* Grow the pool */
321  	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
322  				     GFP_KERNEL);
323  	if (!new_elements)
324  		return -ENOMEM;
325  
326  	spin_lock_irqsave(&pool->lock, flags);
327  	if (unlikely(new_min_nr <= pool->min_nr)) {
328  		/* Raced, other resize will do our work */
329  		spin_unlock_irqrestore(&pool->lock, flags);
330  		kfree(new_elements);
331  		goto out;
332  	}
333  	memcpy(new_elements, pool->elements,
334  			pool->curr_nr * sizeof(*new_elements));
335  	kfree(pool->elements);
336  	pool->elements = new_elements;
337  	pool->min_nr = new_min_nr;
338  
339  	while (pool->curr_nr < pool->min_nr) {
340  		spin_unlock_irqrestore(&pool->lock, flags);
341  		element = pool->alloc(GFP_KERNEL, pool->pool_data);
342  		if (!element)
343  			goto out;
344  		spin_lock_irqsave(&pool->lock, flags);
345  		if (pool->curr_nr < pool->min_nr) {
346  			add_element(pool, element);
347  		} else {
348  			spin_unlock_irqrestore(&pool->lock, flags);
349  			pool->free(element, pool->pool_data);	/* Raced */
350  			goto out;
351  		}
352  	}
353  out_unlock:
354  	spin_unlock_irqrestore(&pool->lock, flags);
355  out:
356  	return 0;
357  }
358  EXPORT_SYMBOL(mempool_resize);
359  
360  /**
361   * mempool_alloc - allocate an element from a specific memory pool
362   * @pool:      pointer to the memory pool which was allocated via
363   *             mempool_create().
364   * @gfp_mask:  the usual allocation bitmask.
365   *
366   * this function only sleeps if the alloc_fn() function sleeps or
367   * returns NULL. Note that due to preallocation, this function
368   * *never* fails when called from process contexts. (it might
369   * fail if called from an IRQ context.)
370   * Note: using __GFP_ZERO is not supported.
371   *
372   * Return: pointer to the allocated element or %NULL on error.
373   */
374  void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
375  {
376  	void *element;
377  	unsigned long flags;
378  	wait_queue_entry_t wait;
379  	gfp_t gfp_temp;
380  
381  	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
382  	might_alloc(gfp_mask);
383  
384  	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
385  	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
386  	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
387  
388  	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
389  
390  repeat_alloc:
391  
392  	element = pool->alloc(gfp_temp, pool->pool_data);
393  	if (likely(element != NULL))
394  		return element;
395  
396  	spin_lock_irqsave(&pool->lock, flags);
397  	if (likely(pool->curr_nr)) {
398  		element = remove_element(pool);
399  		spin_unlock_irqrestore(&pool->lock, flags);
400  		/* paired with rmb in mempool_free(), read comment there */
401  		smp_wmb();
402  		/*
403  		 * Update the allocation stack trace as this is more useful
404  		 * for debugging.
405  		 */
406  		kmemleak_update_trace(element);
407  		return element;
408  	}
409  
410  	/*
411  	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
412  	 * alloc failed with that and @pool was empty, retry immediately.
413  	 */
414  	if (gfp_temp != gfp_mask) {
415  		spin_unlock_irqrestore(&pool->lock, flags);
416  		gfp_temp = gfp_mask;
417  		goto repeat_alloc;
418  	}
419  
420  	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
421  	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
422  		spin_unlock_irqrestore(&pool->lock, flags);
423  		return NULL;
424  	}
425  
426  	/* Let's wait for someone else to return an element to @pool */
427  	init_wait(&wait);
428  	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
429  
430  	spin_unlock_irqrestore(&pool->lock, flags);
431  
432  	/*
433  	 * FIXME: this should be io_schedule().  The timeout is there as a
434  	 * workaround for some DM problems in 2.6.18.
435  	 */
436  	io_schedule_timeout(5*HZ);
437  
438  	finish_wait(&pool->wait, &wait);
439  	goto repeat_alloc;
440  }
441  EXPORT_SYMBOL(mempool_alloc);
442  
443  /**
444   * mempool_free - return an element to the pool.
445   * @element:   pool element pointer.
446   * @pool:      pointer to the memory pool which was allocated via
447   *             mempool_create().
448   *
449   * this function only sleeps if the free_fn() function sleeps.
450   */
451  void mempool_free(void *element, mempool_t *pool)
452  {
453  	unsigned long flags;
454  
455  	if (unlikely(element == NULL))
456  		return;
457  
458  	/*
459  	 * Paired with the wmb in mempool_alloc().  The preceding read is
460  	 * for @element and the following @pool->curr_nr.  This ensures
461  	 * that the visible value of @pool->curr_nr is from after the
462  	 * allocation of @element.  This is necessary for fringe cases
463  	 * where @element was passed to this task without going through
464  	 * barriers.
465  	 *
466  	 * For example, assume @p is %NULL at the beginning and one task
467  	 * performs "p = mempool_alloc(...);" while another task is doing
468  	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
469  	 * may end up using curr_nr value which is from before allocation
470  	 * of @p without the following rmb.
471  	 */
472  	smp_rmb();
473  
474  	/*
475  	 * For correctness, we need a test which is guaranteed to trigger
476  	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
477  	 * without locking achieves that and refilling as soon as possible
478  	 * is desirable.
479  	 *
480  	 * Because curr_nr visible here is always a value after the
481  	 * allocation of @element, any task which decremented curr_nr below
482  	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
483  	 * incremented to min_nr afterwards.  If curr_nr gets incremented
484  	 * to min_nr after the allocation of @element, the elements
485  	 * allocated after that are subject to the same guarantee.
486  	 *
487  	 * Waiters happen iff curr_nr is 0 and the above guarantee also
488  	 * ensures that there will be frees which return elements to the
489  	 * pool waking up the waiters.
490  	 */
491  	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
492  		spin_lock_irqsave(&pool->lock, flags);
493  		if (likely(pool->curr_nr < pool->min_nr)) {
494  			add_element(pool, element);
495  			spin_unlock_irqrestore(&pool->lock, flags);
496  			wake_up(&pool->wait);
497  			return;
498  		}
499  		spin_unlock_irqrestore(&pool->lock, flags);
500  	}
501  	pool->free(element, pool->pool_data);
502  }
503  EXPORT_SYMBOL(mempool_free);
504  
505  /*
506   * A commonly used alloc and free fn.
507   */
508  void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
509  {
510  	struct kmem_cache *mem = pool_data;
511  	VM_BUG_ON(mem->ctor);
512  	return kmem_cache_alloc(mem, gfp_mask);
513  }
514  EXPORT_SYMBOL(mempool_alloc_slab);
515  
516  void mempool_free_slab(void *element, void *pool_data)
517  {
518  	struct kmem_cache *mem = pool_data;
519  	kmem_cache_free(mem, element);
520  }
521  EXPORT_SYMBOL(mempool_free_slab);
522  
523  /*
524   * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
525   * specified by pool_data
526   */
527  void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
528  {
529  	size_t size = (size_t)pool_data;
530  	return kmalloc(size, gfp_mask);
531  }
532  EXPORT_SYMBOL(mempool_kmalloc);
533  
534  void mempool_kfree(void *element, void *pool_data)
535  {
536  	kfree(element);
537  }
538  EXPORT_SYMBOL(mempool_kfree);
539  
540  /*
541   * A simple mempool-backed page allocator that allocates pages
542   * of the order specified by pool_data.
543   */
544  void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
545  {
546  	int order = (int)(long)pool_data;
547  	return alloc_pages(gfp_mask, order);
548  }
549  EXPORT_SYMBOL(mempool_alloc_pages);
550  
551  void mempool_free_pages(void *element, void *pool_data)
552  {
553  	int order = (int)(long)pool_data;
554  	__free_pages(element, order);
555  }
556  EXPORT_SYMBOL(mempool_free_pages);
557