xref: /openbmc/linux/mm/mempool.c (revision 3b23dc52)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/mempool.c
4  *
5  *  memory buffer pool support. Such pools are mostly used
6  *  for guaranteed, deadlock-free memory allocations during
7  *  extreme VM load.
8  *
9  *  started by Ingo Molnar, Copyright (C) 2001
10  *  debugging by David Rientjes, Copyright (C) 2015
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include "slab.h"
23 
24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
25 static void poison_error(mempool_t *pool, void *element, size_t size,
26 			 size_t byte)
27 {
28 	const int nr = pool->curr_nr;
29 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
30 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
31 	int i;
32 
33 	pr_err("BUG: mempool element poison mismatch\n");
34 	pr_err("Mempool %p size %zu\n", pool, size);
35 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
36 	for (i = start; i < end; i++)
37 		pr_cont("%x ", *(u8 *)(element + i));
38 	pr_cont("%s\n", end < size ? "..." : "");
39 	dump_stack();
40 }
41 
42 static void __check_element(mempool_t *pool, void *element, size_t size)
43 {
44 	u8 *obj = element;
45 	size_t i;
46 
47 	for (i = 0; i < size; i++) {
48 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
49 
50 		if (obj[i] != exp) {
51 			poison_error(pool, element, size, i);
52 			return;
53 		}
54 	}
55 	memset(obj, POISON_INUSE, size);
56 }
57 
58 static void check_element(mempool_t *pool, void *element)
59 {
60 	/* Mempools backed by slab allocator */
61 	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
62 		__check_element(pool, element, ksize(element));
63 
64 	/* Mempools backed by page allocator */
65 	if (pool->free == mempool_free_pages) {
66 		int order = (int)(long)pool->pool_data;
67 		void *addr = kmap_atomic((struct page *)element);
68 
69 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
70 		kunmap_atomic(addr);
71 	}
72 }
73 
74 static void __poison_element(void *element, size_t size)
75 {
76 	u8 *obj = element;
77 
78 	memset(obj, POISON_FREE, size - 1);
79 	obj[size - 1] = POISON_END;
80 }
81 
82 static void poison_element(mempool_t *pool, void *element)
83 {
84 	/* Mempools backed by slab allocator */
85 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
86 		__poison_element(element, ksize(element));
87 
88 	/* Mempools backed by page allocator */
89 	if (pool->alloc == mempool_alloc_pages) {
90 		int order = (int)(long)pool->pool_data;
91 		void *addr = kmap_atomic((struct page *)element);
92 
93 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
94 		kunmap_atomic(addr);
95 	}
96 }
97 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
98 static inline void check_element(mempool_t *pool, void *element)
99 {
100 }
101 static inline void poison_element(mempool_t *pool, void *element)
102 {
103 }
104 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
105 
106 static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
107 {
108 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
109 		kasan_poison_kfree(element, _RET_IP_);
110 	if (pool->alloc == mempool_alloc_pages)
111 		kasan_free_pages(element, (unsigned long)pool->pool_data);
112 }
113 
114 static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
115 {
116 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
117 		kasan_unpoison_slab(element);
118 	if (pool->alloc == mempool_alloc_pages)
119 		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
120 }
121 
122 static __always_inline void add_element(mempool_t *pool, void *element)
123 {
124 	BUG_ON(pool->curr_nr >= pool->min_nr);
125 	poison_element(pool, element);
126 	kasan_poison_element(pool, element);
127 	pool->elements[pool->curr_nr++] = element;
128 }
129 
130 static void *remove_element(mempool_t *pool, gfp_t flags)
131 {
132 	void *element = pool->elements[--pool->curr_nr];
133 
134 	BUG_ON(pool->curr_nr < 0);
135 	kasan_unpoison_element(pool, element, flags);
136 	check_element(pool, element);
137 	return element;
138 }
139 
140 /**
141  * mempool_exit - exit a mempool initialized with mempool_init()
142  * @pool:      pointer to the memory pool which was initialized with
143  *             mempool_init().
144  *
145  * Free all reserved elements in @pool and @pool itself.  This function
146  * only sleeps if the free_fn() function sleeps.
147  *
148  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
149  * kzalloc()).
150  */
151 void mempool_exit(mempool_t *pool)
152 {
153 	while (pool->curr_nr) {
154 		void *element = remove_element(pool, GFP_KERNEL);
155 		pool->free(element, pool->pool_data);
156 	}
157 	kfree(pool->elements);
158 	pool->elements = NULL;
159 }
160 EXPORT_SYMBOL(mempool_exit);
161 
162 /**
163  * mempool_destroy - deallocate a memory pool
164  * @pool:      pointer to the memory pool which was allocated via
165  *             mempool_create().
166  *
167  * Free all reserved elements in @pool and @pool itself.  This function
168  * only sleeps if the free_fn() function sleeps.
169  */
170 void mempool_destroy(mempool_t *pool)
171 {
172 	if (unlikely(!pool))
173 		return;
174 
175 	mempool_exit(pool);
176 	kfree(pool);
177 }
178 EXPORT_SYMBOL(mempool_destroy);
179 
180 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
181 		      mempool_free_t *free_fn, void *pool_data,
182 		      gfp_t gfp_mask, int node_id)
183 {
184 	spin_lock_init(&pool->lock);
185 	pool->min_nr	= min_nr;
186 	pool->pool_data = pool_data;
187 	pool->alloc	= alloc_fn;
188 	pool->free	= free_fn;
189 	init_waitqueue_head(&pool->wait);
190 
191 	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
192 					    gfp_mask, node_id);
193 	if (!pool->elements)
194 		return -ENOMEM;
195 
196 	/*
197 	 * First pre-allocate the guaranteed number of buffers.
198 	 */
199 	while (pool->curr_nr < pool->min_nr) {
200 		void *element;
201 
202 		element = pool->alloc(gfp_mask, pool->pool_data);
203 		if (unlikely(!element)) {
204 			mempool_exit(pool);
205 			return -ENOMEM;
206 		}
207 		add_element(pool, element);
208 	}
209 
210 	return 0;
211 }
212 EXPORT_SYMBOL(mempool_init_node);
213 
214 /**
215  * mempool_init - initialize a memory pool
216  * @min_nr:    the minimum number of elements guaranteed to be
217  *             allocated for this pool.
218  * @alloc_fn:  user-defined element-allocation function.
219  * @free_fn:   user-defined element-freeing function.
220  * @pool_data: optional private data available to the user-defined functions.
221  *
222  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
223  * structure).
224  */
225 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
226 		 mempool_free_t *free_fn, void *pool_data)
227 {
228 	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
229 				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
230 
231 }
232 EXPORT_SYMBOL(mempool_init);
233 
234 /**
235  * mempool_create - create a memory pool
236  * @min_nr:    the minimum number of elements guaranteed to be
237  *             allocated for this pool.
238  * @alloc_fn:  user-defined element-allocation function.
239  * @free_fn:   user-defined element-freeing function.
240  * @pool_data: optional private data available to the user-defined functions.
241  *
242  * this function creates and allocates a guaranteed size, preallocated
243  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
244  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
245  * functions might sleep - as long as the mempool_alloc() function is not called
246  * from IRQ contexts.
247  */
248 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
249 				mempool_free_t *free_fn, void *pool_data)
250 {
251 	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
252 				   GFP_KERNEL, NUMA_NO_NODE);
253 }
254 EXPORT_SYMBOL(mempool_create);
255 
256 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
257 			       mempool_free_t *free_fn, void *pool_data,
258 			       gfp_t gfp_mask, int node_id)
259 {
260 	mempool_t *pool;
261 
262 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
263 	if (!pool)
264 		return NULL;
265 
266 	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
267 			      gfp_mask, node_id)) {
268 		kfree(pool);
269 		return NULL;
270 	}
271 
272 	return pool;
273 }
274 EXPORT_SYMBOL(mempool_create_node);
275 
276 /**
277  * mempool_resize - resize an existing memory pool
278  * @pool:       pointer to the memory pool which was allocated via
279  *              mempool_create().
280  * @new_min_nr: the new minimum number of elements guaranteed to be
281  *              allocated for this pool.
282  *
283  * This function shrinks/grows the pool. In the case of growing,
284  * it cannot be guaranteed that the pool will be grown to the new
285  * size immediately, but new mempool_free() calls will refill it.
286  * This function may sleep.
287  *
288  * Note, the caller must guarantee that no mempool_destroy is called
289  * while this function is running. mempool_alloc() & mempool_free()
290  * might be called (eg. from IRQ contexts) while this function executes.
291  */
292 int mempool_resize(mempool_t *pool, int new_min_nr)
293 {
294 	void *element;
295 	void **new_elements;
296 	unsigned long flags;
297 
298 	BUG_ON(new_min_nr <= 0);
299 	might_sleep();
300 
301 	spin_lock_irqsave(&pool->lock, flags);
302 	if (new_min_nr <= pool->min_nr) {
303 		while (new_min_nr < pool->curr_nr) {
304 			element = remove_element(pool, GFP_KERNEL);
305 			spin_unlock_irqrestore(&pool->lock, flags);
306 			pool->free(element, pool->pool_data);
307 			spin_lock_irqsave(&pool->lock, flags);
308 		}
309 		pool->min_nr = new_min_nr;
310 		goto out_unlock;
311 	}
312 	spin_unlock_irqrestore(&pool->lock, flags);
313 
314 	/* Grow the pool */
315 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
316 				     GFP_KERNEL);
317 	if (!new_elements)
318 		return -ENOMEM;
319 
320 	spin_lock_irqsave(&pool->lock, flags);
321 	if (unlikely(new_min_nr <= pool->min_nr)) {
322 		/* Raced, other resize will do our work */
323 		spin_unlock_irqrestore(&pool->lock, flags);
324 		kfree(new_elements);
325 		goto out;
326 	}
327 	memcpy(new_elements, pool->elements,
328 			pool->curr_nr * sizeof(*new_elements));
329 	kfree(pool->elements);
330 	pool->elements = new_elements;
331 	pool->min_nr = new_min_nr;
332 
333 	while (pool->curr_nr < pool->min_nr) {
334 		spin_unlock_irqrestore(&pool->lock, flags);
335 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
336 		if (!element)
337 			goto out;
338 		spin_lock_irqsave(&pool->lock, flags);
339 		if (pool->curr_nr < pool->min_nr) {
340 			add_element(pool, element);
341 		} else {
342 			spin_unlock_irqrestore(&pool->lock, flags);
343 			pool->free(element, pool->pool_data);	/* Raced */
344 			goto out;
345 		}
346 	}
347 out_unlock:
348 	spin_unlock_irqrestore(&pool->lock, flags);
349 out:
350 	return 0;
351 }
352 EXPORT_SYMBOL(mempool_resize);
353 
354 /**
355  * mempool_alloc - allocate an element from a specific memory pool
356  * @pool:      pointer to the memory pool which was allocated via
357  *             mempool_create().
358  * @gfp_mask:  the usual allocation bitmask.
359  *
360  * this function only sleeps if the alloc_fn() function sleeps or
361  * returns NULL. Note that due to preallocation, this function
362  * *never* fails when called from process contexts. (it might
363  * fail if called from an IRQ context.)
364  * Note: using __GFP_ZERO is not supported.
365  */
366 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
367 {
368 	void *element;
369 	unsigned long flags;
370 	wait_queue_entry_t wait;
371 	gfp_t gfp_temp;
372 
373 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
374 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
375 
376 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
377 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
378 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
379 
380 	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
381 
382 repeat_alloc:
383 
384 	element = pool->alloc(gfp_temp, pool->pool_data);
385 	if (likely(element != NULL))
386 		return element;
387 
388 	spin_lock_irqsave(&pool->lock, flags);
389 	if (likely(pool->curr_nr)) {
390 		element = remove_element(pool, gfp_temp);
391 		spin_unlock_irqrestore(&pool->lock, flags);
392 		/* paired with rmb in mempool_free(), read comment there */
393 		smp_wmb();
394 		/*
395 		 * Update the allocation stack trace as this is more useful
396 		 * for debugging.
397 		 */
398 		kmemleak_update_trace(element);
399 		return element;
400 	}
401 
402 	/*
403 	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
404 	 * alloc failed with that and @pool was empty, retry immediately.
405 	 */
406 	if (gfp_temp != gfp_mask) {
407 		spin_unlock_irqrestore(&pool->lock, flags);
408 		gfp_temp = gfp_mask;
409 		goto repeat_alloc;
410 	}
411 
412 	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
413 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
414 		spin_unlock_irqrestore(&pool->lock, flags);
415 		return NULL;
416 	}
417 
418 	/* Let's wait for someone else to return an element to @pool */
419 	init_wait(&wait);
420 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
421 
422 	spin_unlock_irqrestore(&pool->lock, flags);
423 
424 	/*
425 	 * FIXME: this should be io_schedule().  The timeout is there as a
426 	 * workaround for some DM problems in 2.6.18.
427 	 */
428 	io_schedule_timeout(5*HZ);
429 
430 	finish_wait(&pool->wait, &wait);
431 	goto repeat_alloc;
432 }
433 EXPORT_SYMBOL(mempool_alloc);
434 
435 /**
436  * mempool_free - return an element to the pool.
437  * @element:   pool element pointer.
438  * @pool:      pointer to the memory pool which was allocated via
439  *             mempool_create().
440  *
441  * this function only sleeps if the free_fn() function sleeps.
442  */
443 void mempool_free(void *element, mempool_t *pool)
444 {
445 	unsigned long flags;
446 
447 	if (unlikely(element == NULL))
448 		return;
449 
450 	/*
451 	 * Paired with the wmb in mempool_alloc().  The preceding read is
452 	 * for @element and the following @pool->curr_nr.  This ensures
453 	 * that the visible value of @pool->curr_nr is from after the
454 	 * allocation of @element.  This is necessary for fringe cases
455 	 * where @element was passed to this task without going through
456 	 * barriers.
457 	 *
458 	 * For example, assume @p is %NULL at the beginning and one task
459 	 * performs "p = mempool_alloc(...);" while another task is doing
460 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
461 	 * may end up using curr_nr value which is from before allocation
462 	 * of @p without the following rmb.
463 	 */
464 	smp_rmb();
465 
466 	/*
467 	 * For correctness, we need a test which is guaranteed to trigger
468 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
469 	 * without locking achieves that and refilling as soon as possible
470 	 * is desirable.
471 	 *
472 	 * Because curr_nr visible here is always a value after the
473 	 * allocation of @element, any task which decremented curr_nr below
474 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
475 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
476 	 * to min_nr after the allocation of @element, the elements
477 	 * allocated after that are subject to the same guarantee.
478 	 *
479 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
480 	 * ensures that there will be frees which return elements to the
481 	 * pool waking up the waiters.
482 	 */
483 	if (unlikely(pool->curr_nr < pool->min_nr)) {
484 		spin_lock_irqsave(&pool->lock, flags);
485 		if (likely(pool->curr_nr < pool->min_nr)) {
486 			add_element(pool, element);
487 			spin_unlock_irqrestore(&pool->lock, flags);
488 			wake_up(&pool->wait);
489 			return;
490 		}
491 		spin_unlock_irqrestore(&pool->lock, flags);
492 	}
493 	pool->free(element, pool->pool_data);
494 }
495 EXPORT_SYMBOL(mempool_free);
496 
497 /*
498  * A commonly used alloc and free fn.
499  */
500 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
501 {
502 	struct kmem_cache *mem = pool_data;
503 	VM_BUG_ON(mem->ctor);
504 	return kmem_cache_alloc(mem, gfp_mask);
505 }
506 EXPORT_SYMBOL(mempool_alloc_slab);
507 
508 void mempool_free_slab(void *element, void *pool_data)
509 {
510 	struct kmem_cache *mem = pool_data;
511 	kmem_cache_free(mem, element);
512 }
513 EXPORT_SYMBOL(mempool_free_slab);
514 
515 /*
516  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
517  * specified by pool_data
518  */
519 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
520 {
521 	size_t size = (size_t)pool_data;
522 	return kmalloc(size, gfp_mask);
523 }
524 EXPORT_SYMBOL(mempool_kmalloc);
525 
526 void mempool_kfree(void *element, void *pool_data)
527 {
528 	kfree(element);
529 }
530 EXPORT_SYMBOL(mempool_kfree);
531 
532 /*
533  * A simple mempool-backed page allocator that allocates pages
534  * of the order specified by pool_data.
535  */
536 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
537 {
538 	int order = (int)(long)pool_data;
539 	return alloc_pages(gfp_mask, order);
540 }
541 EXPORT_SYMBOL(mempool_alloc_pages);
542 
543 void mempool_free_pages(void *element, void *pool_data)
544 {
545 	int order = (int)(long)pool_data;
546 	__free_pages(element, order);
547 }
548 EXPORT_SYMBOL(mempool_free_pages);
549