1 /* 2 * linux/mm/mempool.c 3 * 4 * memory buffer pool support. Such pools are mostly used 5 * for guaranteed, deadlock-free memory allocations during 6 * extreme VM load. 7 * 8 * started by Ingo Molnar, Copyright (C) 2001 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/slab.h> 13 #include <linux/module.h> 14 #include <linux/mempool.h> 15 #include <linux/blkdev.h> 16 #include <linux/writeback.h> 17 18 static void add_element(mempool_t *pool, void *element) 19 { 20 BUG_ON(pool->curr_nr >= pool->min_nr); 21 pool->elements[pool->curr_nr++] = element; 22 } 23 24 static void *remove_element(mempool_t *pool) 25 { 26 BUG_ON(pool->curr_nr <= 0); 27 return pool->elements[--pool->curr_nr]; 28 } 29 30 static void free_pool(mempool_t *pool) 31 { 32 while (pool->curr_nr) { 33 void *element = remove_element(pool); 34 pool->free(element, pool->pool_data); 35 } 36 kfree(pool->elements); 37 kfree(pool); 38 } 39 40 /** 41 * mempool_create - create a memory pool 42 * @min_nr: the minimum number of elements guaranteed to be 43 * allocated for this pool. 44 * @alloc_fn: user-defined element-allocation function. 45 * @free_fn: user-defined element-freeing function. 46 * @pool_data: optional private data available to the user-defined functions. 47 * 48 * this function creates and allocates a guaranteed size, preallocated 49 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 50 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 51 * functions might sleep - as long as the mempool_alloc() function is not called 52 * from IRQ contexts. 53 */ 54 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 55 mempool_free_t *free_fn, void *pool_data) 56 { 57 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1); 58 } 59 EXPORT_SYMBOL(mempool_create); 60 61 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 62 mempool_free_t *free_fn, void *pool_data, int node_id) 63 { 64 mempool_t *pool; 65 pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id); 66 if (!pool) 67 return NULL; 68 pool->elements = kmalloc_node(min_nr * sizeof(void *), 69 GFP_KERNEL, node_id); 70 if (!pool->elements) { 71 kfree(pool); 72 return NULL; 73 } 74 spin_lock_init(&pool->lock); 75 pool->min_nr = min_nr; 76 pool->pool_data = pool_data; 77 init_waitqueue_head(&pool->wait); 78 pool->alloc = alloc_fn; 79 pool->free = free_fn; 80 81 /* 82 * First pre-allocate the guaranteed number of buffers. 83 */ 84 while (pool->curr_nr < pool->min_nr) { 85 void *element; 86 87 element = pool->alloc(GFP_KERNEL, pool->pool_data); 88 if (unlikely(!element)) { 89 free_pool(pool); 90 return NULL; 91 } 92 add_element(pool, element); 93 } 94 return pool; 95 } 96 EXPORT_SYMBOL(mempool_create_node); 97 98 /** 99 * mempool_resize - resize an existing memory pool 100 * @pool: pointer to the memory pool which was allocated via 101 * mempool_create(). 102 * @new_min_nr: the new minimum number of elements guaranteed to be 103 * allocated for this pool. 104 * @gfp_mask: the usual allocation bitmask. 105 * 106 * This function shrinks/grows the pool. In the case of growing, 107 * it cannot be guaranteed that the pool will be grown to the new 108 * size immediately, but new mempool_free() calls will refill it. 109 * 110 * Note, the caller must guarantee that no mempool_destroy is called 111 * while this function is running. mempool_alloc() & mempool_free() 112 * might be called (eg. from IRQ contexts) while this function executes. 113 */ 114 int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask) 115 { 116 void *element; 117 void **new_elements; 118 unsigned long flags; 119 120 BUG_ON(new_min_nr <= 0); 121 122 spin_lock_irqsave(&pool->lock, flags); 123 if (new_min_nr <= pool->min_nr) { 124 while (new_min_nr < pool->curr_nr) { 125 element = remove_element(pool); 126 spin_unlock_irqrestore(&pool->lock, flags); 127 pool->free(element, pool->pool_data); 128 spin_lock_irqsave(&pool->lock, flags); 129 } 130 pool->min_nr = new_min_nr; 131 goto out_unlock; 132 } 133 spin_unlock_irqrestore(&pool->lock, flags); 134 135 /* Grow the pool */ 136 new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask); 137 if (!new_elements) 138 return -ENOMEM; 139 140 spin_lock_irqsave(&pool->lock, flags); 141 if (unlikely(new_min_nr <= pool->min_nr)) { 142 /* Raced, other resize will do our work */ 143 spin_unlock_irqrestore(&pool->lock, flags); 144 kfree(new_elements); 145 goto out; 146 } 147 memcpy(new_elements, pool->elements, 148 pool->curr_nr * sizeof(*new_elements)); 149 kfree(pool->elements); 150 pool->elements = new_elements; 151 pool->min_nr = new_min_nr; 152 153 while (pool->curr_nr < pool->min_nr) { 154 spin_unlock_irqrestore(&pool->lock, flags); 155 element = pool->alloc(gfp_mask, pool->pool_data); 156 if (!element) 157 goto out; 158 spin_lock_irqsave(&pool->lock, flags); 159 if (pool->curr_nr < pool->min_nr) { 160 add_element(pool, element); 161 } else { 162 spin_unlock_irqrestore(&pool->lock, flags); 163 pool->free(element, pool->pool_data); /* Raced */ 164 goto out; 165 } 166 } 167 out_unlock: 168 spin_unlock_irqrestore(&pool->lock, flags); 169 out: 170 return 0; 171 } 172 EXPORT_SYMBOL(mempool_resize); 173 174 /** 175 * mempool_destroy - deallocate a memory pool 176 * @pool: pointer to the memory pool which was allocated via 177 * mempool_create(). 178 * 179 * this function only sleeps if the free_fn() function sleeps. The caller 180 * has to guarantee that all elements have been returned to the pool (ie: 181 * freed) prior to calling mempool_destroy(). 182 */ 183 void mempool_destroy(mempool_t *pool) 184 { 185 /* Check for outstanding elements */ 186 BUG_ON(pool->curr_nr != pool->min_nr); 187 free_pool(pool); 188 } 189 EXPORT_SYMBOL(mempool_destroy); 190 191 /** 192 * mempool_alloc - allocate an element from a specific memory pool 193 * @pool: pointer to the memory pool which was allocated via 194 * mempool_create(). 195 * @gfp_mask: the usual allocation bitmask. 196 * 197 * this function only sleeps if the alloc_fn() function sleeps or 198 * returns NULL. Note that due to preallocation, this function 199 * *never* fails when called from process contexts. (it might 200 * fail if called from an IRQ context.) 201 */ 202 void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 203 { 204 void *element; 205 unsigned long flags; 206 wait_queue_t wait; 207 gfp_t gfp_temp; 208 209 might_sleep_if(gfp_mask & __GFP_WAIT); 210 211 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 212 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 213 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 214 215 gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO); 216 217 repeat_alloc: 218 219 element = pool->alloc(gfp_temp, pool->pool_data); 220 if (likely(element != NULL)) 221 return element; 222 223 spin_lock_irqsave(&pool->lock, flags); 224 if (likely(pool->curr_nr)) { 225 element = remove_element(pool); 226 spin_unlock_irqrestore(&pool->lock, flags); 227 return element; 228 } 229 spin_unlock_irqrestore(&pool->lock, flags); 230 231 /* We must not sleep in the GFP_ATOMIC case */ 232 if (!(gfp_mask & __GFP_WAIT)) 233 return NULL; 234 235 /* Now start performing page reclaim */ 236 gfp_temp = gfp_mask; 237 init_wait(&wait); 238 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 239 smp_mb(); 240 if (!pool->curr_nr) { 241 /* 242 * FIXME: this should be io_schedule(). The timeout is there 243 * as a workaround for some DM problems in 2.6.18. 244 */ 245 io_schedule_timeout(5*HZ); 246 } 247 finish_wait(&pool->wait, &wait); 248 249 goto repeat_alloc; 250 } 251 EXPORT_SYMBOL(mempool_alloc); 252 253 /** 254 * mempool_free - return an element to the pool. 255 * @element: pool element pointer. 256 * @pool: pointer to the memory pool which was allocated via 257 * mempool_create(). 258 * 259 * this function only sleeps if the free_fn() function sleeps. 260 */ 261 void mempool_free(void *element, mempool_t *pool) 262 { 263 unsigned long flags; 264 265 if (unlikely(element == NULL)) 266 return; 267 268 smp_mb(); 269 if (pool->curr_nr < pool->min_nr) { 270 spin_lock_irqsave(&pool->lock, flags); 271 if (pool->curr_nr < pool->min_nr) { 272 add_element(pool, element); 273 spin_unlock_irqrestore(&pool->lock, flags); 274 wake_up(&pool->wait); 275 return; 276 } 277 spin_unlock_irqrestore(&pool->lock, flags); 278 } 279 pool->free(element, pool->pool_data); 280 } 281 EXPORT_SYMBOL(mempool_free); 282 283 /* 284 * A commonly used alloc and free fn. 285 */ 286 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 287 { 288 struct kmem_cache *mem = pool_data; 289 return kmem_cache_alloc(mem, gfp_mask); 290 } 291 EXPORT_SYMBOL(mempool_alloc_slab); 292 293 void mempool_free_slab(void *element, void *pool_data) 294 { 295 struct kmem_cache *mem = pool_data; 296 kmem_cache_free(mem, element); 297 } 298 EXPORT_SYMBOL(mempool_free_slab); 299 300 /* 301 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 302 * specified by pool_data 303 */ 304 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 305 { 306 size_t size = (size_t)(long)pool_data; 307 return kmalloc(size, gfp_mask); 308 } 309 EXPORT_SYMBOL(mempool_kmalloc); 310 311 void *mempool_kzalloc(gfp_t gfp_mask, void *pool_data) 312 { 313 size_t size = (size_t) pool_data; 314 return kzalloc(size, gfp_mask); 315 } 316 EXPORT_SYMBOL(mempool_kzalloc); 317 318 void mempool_kfree(void *element, void *pool_data) 319 { 320 kfree(element); 321 } 322 EXPORT_SYMBOL(mempool_kfree); 323 324 /* 325 * A simple mempool-backed page allocator that allocates pages 326 * of the order specified by pool_data. 327 */ 328 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 329 { 330 int order = (int)(long)pool_data; 331 return alloc_pages(gfp_mask, order); 332 } 333 EXPORT_SYMBOL(mempool_alloc_pages); 334 335 void mempool_free_pages(void *element, void *pool_data) 336 { 337 int order = (int)(long)pool_data; 338 __free_pages(element, order); 339 } 340 EXPORT_SYMBOL(mempool_free_pages); 341