xref: /openbmc/linux/mm/mempool.c (revision 19c233b7)
1 /*
2  *  linux/mm/mempool.c
3  *
4  *  memory buffer pool support. Such pools are mostly used
5  *  for guaranteed, deadlock-free memory allocations during
6  *  extreme VM load.
7  *
8  *  started by Ingo Molnar, Copyright (C) 2001
9  *  debugging by David Rientjes, Copyright (C) 2015
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/kasan.h>
16 #include <linux/kmemleak.h>
17 #include <linux/export.h>
18 #include <linux/mempool.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22 
23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24 static void poison_error(mempool_t *pool, void *element, size_t size,
25 			 size_t byte)
26 {
27 	const int nr = pool->curr_nr;
28 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30 	int i;
31 
32 	pr_err("BUG: mempool element poison mismatch\n");
33 	pr_err("Mempool %p size %zu\n", pool, size);
34 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35 	for (i = start; i < end; i++)
36 		pr_cont("%x ", *(u8 *)(element + i));
37 	pr_cont("%s\n", end < size ? "..." : "");
38 	dump_stack();
39 }
40 
41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43 	u8 *obj = element;
44 	size_t i;
45 
46 	for (i = 0; i < size; i++) {
47 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48 
49 		if (obj[i] != exp) {
50 			poison_error(pool, element, size, i);
51 			return;
52 		}
53 	}
54 	memset(obj, POISON_INUSE, size);
55 }
56 
57 static void check_element(mempool_t *pool, void *element)
58 {
59 	/* Mempools backed by slab allocator */
60 	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
61 		__check_element(pool, element, ksize(element));
62 
63 	/* Mempools backed by page allocator */
64 	if (pool->free == mempool_free_pages) {
65 		int order = (int)(long)pool->pool_data;
66 		void *addr = kmap_atomic((struct page *)element);
67 
68 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69 		kunmap_atomic(addr);
70 	}
71 }
72 
73 static void __poison_element(void *element, size_t size)
74 {
75 	u8 *obj = element;
76 
77 	memset(obj, POISON_FREE, size - 1);
78 	obj[size - 1] = POISON_END;
79 }
80 
81 static void poison_element(mempool_t *pool, void *element)
82 {
83 	/* Mempools backed by slab allocator */
84 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
85 		__poison_element(element, ksize(element));
86 
87 	/* Mempools backed by page allocator */
88 	if (pool->alloc == mempool_alloc_pages) {
89 		int order = (int)(long)pool->pool_data;
90 		void *addr = kmap_atomic((struct page *)element);
91 
92 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
93 		kunmap_atomic(addr);
94 	}
95 }
96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
97 static inline void check_element(mempool_t *pool, void *element)
98 {
99 }
100 static inline void poison_element(mempool_t *pool, void *element)
101 {
102 }
103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104 
105 static void kasan_poison_element(mempool_t *pool, void *element)
106 {
107 	if (pool->alloc == mempool_alloc_slab)
108 		kasan_slab_free(pool->pool_data, element);
109 	if (pool->alloc == mempool_kmalloc)
110 		kasan_kfree(element);
111 	if (pool->alloc == mempool_alloc_pages)
112 		kasan_free_pages(element, (unsigned long)pool->pool_data);
113 }
114 
115 static void kasan_unpoison_element(mempool_t *pool, void *element)
116 {
117 	if (pool->alloc == mempool_alloc_slab)
118 		kasan_slab_alloc(pool->pool_data, element);
119 	if (pool->alloc == mempool_kmalloc)
120 		kasan_krealloc(element, (size_t)pool->pool_data);
121 	if (pool->alloc == mempool_alloc_pages)
122 		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
123 }
124 
125 static void add_element(mempool_t *pool, void *element)
126 {
127 	BUG_ON(pool->curr_nr >= pool->min_nr);
128 	poison_element(pool, element);
129 	kasan_poison_element(pool, element);
130 	pool->elements[pool->curr_nr++] = element;
131 }
132 
133 static void *remove_element(mempool_t *pool)
134 {
135 	void *element = pool->elements[--pool->curr_nr];
136 
137 	BUG_ON(pool->curr_nr < 0);
138 	check_element(pool, element);
139 	kasan_unpoison_element(pool, element);
140 	return element;
141 }
142 
143 /**
144  * mempool_destroy - deallocate a memory pool
145  * @pool:      pointer to the memory pool which was allocated via
146  *             mempool_create().
147  *
148  * Free all reserved elements in @pool and @pool itself.  This function
149  * only sleeps if the free_fn() function sleeps.
150  */
151 void mempool_destroy(mempool_t *pool)
152 {
153 	while (pool->curr_nr) {
154 		void *element = remove_element(pool);
155 		pool->free(element, pool->pool_data);
156 	}
157 	kfree(pool->elements);
158 	kfree(pool);
159 }
160 EXPORT_SYMBOL(mempool_destroy);
161 
162 /**
163  * mempool_create - create a memory pool
164  * @min_nr:    the minimum number of elements guaranteed to be
165  *             allocated for this pool.
166  * @alloc_fn:  user-defined element-allocation function.
167  * @free_fn:   user-defined element-freeing function.
168  * @pool_data: optional private data available to the user-defined functions.
169  *
170  * this function creates and allocates a guaranteed size, preallocated
171  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
172  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
173  * functions might sleep - as long as the mempool_alloc() function is not called
174  * from IRQ contexts.
175  */
176 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
177 				mempool_free_t *free_fn, void *pool_data)
178 {
179 	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
180 				   GFP_KERNEL, NUMA_NO_NODE);
181 }
182 EXPORT_SYMBOL(mempool_create);
183 
184 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
185 			       mempool_free_t *free_fn, void *pool_data,
186 			       gfp_t gfp_mask, int node_id)
187 {
188 	mempool_t *pool;
189 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
190 	if (!pool)
191 		return NULL;
192 	pool->elements = kmalloc_node(min_nr * sizeof(void *),
193 				      gfp_mask, node_id);
194 	if (!pool->elements) {
195 		kfree(pool);
196 		return NULL;
197 	}
198 	spin_lock_init(&pool->lock);
199 	pool->min_nr = min_nr;
200 	pool->pool_data = pool_data;
201 	init_waitqueue_head(&pool->wait);
202 	pool->alloc = alloc_fn;
203 	pool->free = free_fn;
204 
205 	/*
206 	 * First pre-allocate the guaranteed number of buffers.
207 	 */
208 	while (pool->curr_nr < pool->min_nr) {
209 		void *element;
210 
211 		element = pool->alloc(gfp_mask, pool->pool_data);
212 		if (unlikely(!element)) {
213 			mempool_destroy(pool);
214 			return NULL;
215 		}
216 		add_element(pool, element);
217 	}
218 	return pool;
219 }
220 EXPORT_SYMBOL(mempool_create_node);
221 
222 /**
223  * mempool_resize - resize an existing memory pool
224  * @pool:       pointer to the memory pool which was allocated via
225  *              mempool_create().
226  * @new_min_nr: the new minimum number of elements guaranteed to be
227  *              allocated for this pool.
228  *
229  * This function shrinks/grows the pool. In the case of growing,
230  * it cannot be guaranteed that the pool will be grown to the new
231  * size immediately, but new mempool_free() calls will refill it.
232  * This function may sleep.
233  *
234  * Note, the caller must guarantee that no mempool_destroy is called
235  * while this function is running. mempool_alloc() & mempool_free()
236  * might be called (eg. from IRQ contexts) while this function executes.
237  */
238 int mempool_resize(mempool_t *pool, int new_min_nr)
239 {
240 	void *element;
241 	void **new_elements;
242 	unsigned long flags;
243 
244 	BUG_ON(new_min_nr <= 0);
245 	might_sleep();
246 
247 	spin_lock_irqsave(&pool->lock, flags);
248 	if (new_min_nr <= pool->min_nr) {
249 		while (new_min_nr < pool->curr_nr) {
250 			element = remove_element(pool);
251 			spin_unlock_irqrestore(&pool->lock, flags);
252 			pool->free(element, pool->pool_data);
253 			spin_lock_irqsave(&pool->lock, flags);
254 		}
255 		pool->min_nr = new_min_nr;
256 		goto out_unlock;
257 	}
258 	spin_unlock_irqrestore(&pool->lock, flags);
259 
260 	/* Grow the pool */
261 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
262 				     GFP_KERNEL);
263 	if (!new_elements)
264 		return -ENOMEM;
265 
266 	spin_lock_irqsave(&pool->lock, flags);
267 	if (unlikely(new_min_nr <= pool->min_nr)) {
268 		/* Raced, other resize will do our work */
269 		spin_unlock_irqrestore(&pool->lock, flags);
270 		kfree(new_elements);
271 		goto out;
272 	}
273 	memcpy(new_elements, pool->elements,
274 			pool->curr_nr * sizeof(*new_elements));
275 	kfree(pool->elements);
276 	pool->elements = new_elements;
277 	pool->min_nr = new_min_nr;
278 
279 	while (pool->curr_nr < pool->min_nr) {
280 		spin_unlock_irqrestore(&pool->lock, flags);
281 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
282 		if (!element)
283 			goto out;
284 		spin_lock_irqsave(&pool->lock, flags);
285 		if (pool->curr_nr < pool->min_nr) {
286 			add_element(pool, element);
287 		} else {
288 			spin_unlock_irqrestore(&pool->lock, flags);
289 			pool->free(element, pool->pool_data);	/* Raced */
290 			goto out;
291 		}
292 	}
293 out_unlock:
294 	spin_unlock_irqrestore(&pool->lock, flags);
295 out:
296 	return 0;
297 }
298 EXPORT_SYMBOL(mempool_resize);
299 
300 /**
301  * mempool_alloc - allocate an element from a specific memory pool
302  * @pool:      pointer to the memory pool which was allocated via
303  *             mempool_create().
304  * @gfp_mask:  the usual allocation bitmask.
305  *
306  * this function only sleeps if the alloc_fn() function sleeps or
307  * returns NULL. Note that due to preallocation, this function
308  * *never* fails when called from process contexts. (it might
309  * fail if called from an IRQ context.)
310  * Note: using __GFP_ZERO is not supported.
311  */
312 void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
313 {
314 	void *element;
315 	unsigned long flags;
316 	wait_queue_t wait;
317 	gfp_t gfp_temp;
318 
319 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
320 	might_sleep_if(gfp_mask & __GFP_WAIT);
321 
322 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
323 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
324 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
325 
326 	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
327 
328 repeat_alloc:
329 
330 	element = pool->alloc(gfp_temp, pool->pool_data);
331 	if (likely(element != NULL))
332 		return element;
333 
334 	spin_lock_irqsave(&pool->lock, flags);
335 	if (likely(pool->curr_nr)) {
336 		element = remove_element(pool);
337 		spin_unlock_irqrestore(&pool->lock, flags);
338 		/* paired with rmb in mempool_free(), read comment there */
339 		smp_wmb();
340 		/*
341 		 * Update the allocation stack trace as this is more useful
342 		 * for debugging.
343 		 */
344 		kmemleak_update_trace(element);
345 		return element;
346 	}
347 
348 	/*
349 	 * We use gfp mask w/o __GFP_WAIT or IO for the first round.  If
350 	 * alloc failed with that and @pool was empty, retry immediately.
351 	 */
352 	if (gfp_temp != gfp_mask) {
353 		spin_unlock_irqrestore(&pool->lock, flags);
354 		gfp_temp = gfp_mask;
355 		goto repeat_alloc;
356 	}
357 
358 	/* We must not sleep if !__GFP_WAIT */
359 	if (!(gfp_mask & __GFP_WAIT)) {
360 		spin_unlock_irqrestore(&pool->lock, flags);
361 		return NULL;
362 	}
363 
364 	/* Let's wait for someone else to return an element to @pool */
365 	init_wait(&wait);
366 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
367 
368 	spin_unlock_irqrestore(&pool->lock, flags);
369 
370 	/*
371 	 * FIXME: this should be io_schedule().  The timeout is there as a
372 	 * workaround for some DM problems in 2.6.18.
373 	 */
374 	io_schedule_timeout(5*HZ);
375 
376 	finish_wait(&pool->wait, &wait);
377 	goto repeat_alloc;
378 }
379 EXPORT_SYMBOL(mempool_alloc);
380 
381 /**
382  * mempool_free - return an element to the pool.
383  * @element:   pool element pointer.
384  * @pool:      pointer to the memory pool which was allocated via
385  *             mempool_create().
386  *
387  * this function only sleeps if the free_fn() function sleeps.
388  */
389 void mempool_free(void *element, mempool_t *pool)
390 {
391 	unsigned long flags;
392 
393 	if (unlikely(element == NULL))
394 		return;
395 
396 	/*
397 	 * Paired with the wmb in mempool_alloc().  The preceding read is
398 	 * for @element and the following @pool->curr_nr.  This ensures
399 	 * that the visible value of @pool->curr_nr is from after the
400 	 * allocation of @element.  This is necessary for fringe cases
401 	 * where @element was passed to this task without going through
402 	 * barriers.
403 	 *
404 	 * For example, assume @p is %NULL at the beginning and one task
405 	 * performs "p = mempool_alloc(...);" while another task is doing
406 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
407 	 * may end up using curr_nr value which is from before allocation
408 	 * of @p without the following rmb.
409 	 */
410 	smp_rmb();
411 
412 	/*
413 	 * For correctness, we need a test which is guaranteed to trigger
414 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
415 	 * without locking achieves that and refilling as soon as possible
416 	 * is desirable.
417 	 *
418 	 * Because curr_nr visible here is always a value after the
419 	 * allocation of @element, any task which decremented curr_nr below
420 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
421 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
422 	 * to min_nr after the allocation of @element, the elements
423 	 * allocated after that are subject to the same guarantee.
424 	 *
425 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
426 	 * ensures that there will be frees which return elements to the
427 	 * pool waking up the waiters.
428 	 */
429 	if (unlikely(pool->curr_nr < pool->min_nr)) {
430 		spin_lock_irqsave(&pool->lock, flags);
431 		if (likely(pool->curr_nr < pool->min_nr)) {
432 			add_element(pool, element);
433 			spin_unlock_irqrestore(&pool->lock, flags);
434 			wake_up(&pool->wait);
435 			return;
436 		}
437 		spin_unlock_irqrestore(&pool->lock, flags);
438 	}
439 	pool->free(element, pool->pool_data);
440 }
441 EXPORT_SYMBOL(mempool_free);
442 
443 /*
444  * A commonly used alloc and free fn.
445  */
446 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
447 {
448 	struct kmem_cache *mem = pool_data;
449 	VM_BUG_ON(mem->ctor);
450 	return kmem_cache_alloc(mem, gfp_mask);
451 }
452 EXPORT_SYMBOL(mempool_alloc_slab);
453 
454 void mempool_free_slab(void *element, void *pool_data)
455 {
456 	struct kmem_cache *mem = pool_data;
457 	kmem_cache_free(mem, element);
458 }
459 EXPORT_SYMBOL(mempool_free_slab);
460 
461 /*
462  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
463  * specified by pool_data
464  */
465 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
466 {
467 	size_t size = (size_t)pool_data;
468 	return kmalloc(size, gfp_mask);
469 }
470 EXPORT_SYMBOL(mempool_kmalloc);
471 
472 void mempool_kfree(void *element, void *pool_data)
473 {
474 	kfree(element);
475 }
476 EXPORT_SYMBOL(mempool_kfree);
477 
478 /*
479  * A simple mempool-backed page allocator that allocates pages
480  * of the order specified by pool_data.
481  */
482 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
483 {
484 	int order = (int)(long)pool_data;
485 	return alloc_pages(gfp_mask, order);
486 }
487 EXPORT_SYMBOL(mempool_alloc_pages);
488 
489 void mempool_free_pages(void *element, void *pool_data)
490 {
491 	int order = (int)(long)pool_data;
492 	__free_pages(element, order);
493 }
494 EXPORT_SYMBOL(mempool_free_pages);
495