1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_nearest_node - Find nearest node by state 135 * @node: Node id to start the search 136 * @state: State to filter the search 137 * 138 * Lookup the closest node by distance if @nid is not in state. 139 * 140 * Return: this @node if it is in state, otherwise the closest node by distance 141 */ 142 int numa_nearest_node(int node, unsigned int state) 143 { 144 int min_dist = INT_MAX, dist, n, min_node; 145 146 if (state >= NR_NODE_STATES) 147 return -EINVAL; 148 149 if (node == NUMA_NO_NODE || node_state(node, state)) 150 return node; 151 152 min_node = node; 153 for_each_node_state(n, state) { 154 dist = node_distance(node, n); 155 if (dist < min_dist) { 156 min_dist = dist; 157 min_node = n; 158 } 159 } 160 161 return min_node; 162 } 163 EXPORT_SYMBOL_GPL(numa_nearest_node); 164 165 struct mempolicy *get_task_policy(struct task_struct *p) 166 { 167 struct mempolicy *pol = p->mempolicy; 168 int node; 169 170 if (pol) 171 return pol; 172 173 node = numa_node_id(); 174 if (node != NUMA_NO_NODE) { 175 pol = &preferred_node_policy[node]; 176 /* preferred_node_policy is not initialised early in boot */ 177 if (pol->mode) 178 return pol; 179 } 180 181 return &default_policy; 182 } 183 184 static const struct mempolicy_operations { 185 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 186 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 187 } mpol_ops[MPOL_MAX]; 188 189 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 190 { 191 return pol->flags & MPOL_MODE_FLAGS; 192 } 193 194 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 195 const nodemask_t *rel) 196 { 197 nodemask_t tmp; 198 nodes_fold(tmp, *orig, nodes_weight(*rel)); 199 nodes_onto(*ret, tmp, *rel); 200 } 201 202 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 203 { 204 if (nodes_empty(*nodes)) 205 return -EINVAL; 206 pol->nodes = *nodes; 207 return 0; 208 } 209 210 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 211 { 212 if (nodes_empty(*nodes)) 213 return -EINVAL; 214 215 nodes_clear(pol->nodes); 216 node_set(first_node(*nodes), pol->nodes); 217 return 0; 218 } 219 220 /* 221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 222 * any, for the new policy. mpol_new() has already validated the nodes 223 * parameter with respect to the policy mode and flags. 224 * 225 * Must be called holding task's alloc_lock to protect task's mems_allowed 226 * and mempolicy. May also be called holding the mmap_lock for write. 227 */ 228 static int mpol_set_nodemask(struct mempolicy *pol, 229 const nodemask_t *nodes, struct nodemask_scratch *nsc) 230 { 231 int ret; 232 233 /* 234 * Default (pol==NULL) resp. local memory policies are not a 235 * subject of any remapping. They also do not need any special 236 * constructor. 237 */ 238 if (!pol || pol->mode == MPOL_LOCAL) 239 return 0; 240 241 /* Check N_MEMORY */ 242 nodes_and(nsc->mask1, 243 cpuset_current_mems_allowed, node_states[N_MEMORY]); 244 245 VM_BUG_ON(!nodes); 246 247 if (pol->flags & MPOL_F_RELATIVE_NODES) 248 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 249 else 250 nodes_and(nsc->mask2, *nodes, nsc->mask1); 251 252 if (mpol_store_user_nodemask(pol)) 253 pol->w.user_nodemask = *nodes; 254 else 255 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 256 257 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 258 return ret; 259 } 260 261 /* 262 * This function just creates a new policy, does some check and simple 263 * initialization. You must invoke mpol_set_nodemask() to set nodes. 264 */ 265 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 266 nodemask_t *nodes) 267 { 268 struct mempolicy *policy; 269 270 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 271 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 272 273 if (mode == MPOL_DEFAULT) { 274 if (nodes && !nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 return NULL; 277 } 278 VM_BUG_ON(!nodes); 279 280 /* 281 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 282 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 283 * All other modes require a valid pointer to a non-empty nodemask. 284 */ 285 if (mode == MPOL_PREFERRED) { 286 if (nodes_empty(*nodes)) { 287 if (((flags & MPOL_F_STATIC_NODES) || 288 (flags & MPOL_F_RELATIVE_NODES))) 289 return ERR_PTR(-EINVAL); 290 291 mode = MPOL_LOCAL; 292 } 293 } else if (mode == MPOL_LOCAL) { 294 if (!nodes_empty(*nodes) || 295 (flags & MPOL_F_STATIC_NODES) || 296 (flags & MPOL_F_RELATIVE_NODES)) 297 return ERR_PTR(-EINVAL); 298 } else if (nodes_empty(*nodes)) 299 return ERR_PTR(-EINVAL); 300 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 301 if (!policy) 302 return ERR_PTR(-ENOMEM); 303 atomic_set(&policy->refcnt, 1); 304 policy->mode = mode; 305 policy->flags = flags; 306 policy->home_node = NUMA_NO_NODE; 307 308 return policy; 309 } 310 311 /* Slow path of a mpol destructor. */ 312 void __mpol_put(struct mempolicy *p) 313 { 314 if (!atomic_dec_and_test(&p->refcnt)) 315 return; 316 kmem_cache_free(policy_cache, p); 317 } 318 319 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 } 322 323 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 324 { 325 nodemask_t tmp; 326 327 if (pol->flags & MPOL_F_STATIC_NODES) 328 nodes_and(tmp, pol->w.user_nodemask, *nodes); 329 else if (pol->flags & MPOL_F_RELATIVE_NODES) 330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 331 else { 332 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 333 *nodes); 334 pol->w.cpuset_mems_allowed = *nodes; 335 } 336 337 if (nodes_empty(tmp)) 338 tmp = *nodes; 339 340 pol->nodes = tmp; 341 } 342 343 static void mpol_rebind_preferred(struct mempolicy *pol, 344 const nodemask_t *nodes) 345 { 346 pol->w.cpuset_mems_allowed = *nodes; 347 } 348 349 /* 350 * mpol_rebind_policy - Migrate a policy to a different set of nodes 351 * 352 * Per-vma policies are protected by mmap_lock. Allocations using per-task 353 * policies are protected by task->mems_allowed_seq to prevent a premature 354 * OOM/allocation failure due to parallel nodemask modification. 355 */ 356 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 357 { 358 if (!pol || pol->mode == MPOL_LOCAL) 359 return; 360 if (!mpol_store_user_nodemask(pol) && 361 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 362 return; 363 364 mpol_ops[pol->mode].rebind(pol, newmask); 365 } 366 367 /* 368 * Wrapper for mpol_rebind_policy() that just requires task 369 * pointer, and updates task mempolicy. 370 * 371 * Called with task's alloc_lock held. 372 */ 373 374 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 375 { 376 mpol_rebind_policy(tsk->mempolicy, new); 377 } 378 379 /* 380 * Rebind each vma in mm to new nodemask. 381 * 382 * Call holding a reference to mm. Takes mm->mmap_lock during call. 383 */ 384 385 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 386 { 387 struct vm_area_struct *vma; 388 VMA_ITERATOR(vmi, mm, 0); 389 390 mmap_write_lock(mm); 391 for_each_vma(vmi, vma) { 392 vma_start_write(vma); 393 mpol_rebind_policy(vma->vm_policy, new); 394 } 395 mmap_write_unlock(mm); 396 } 397 398 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 399 [MPOL_DEFAULT] = { 400 .rebind = mpol_rebind_default, 401 }, 402 [MPOL_INTERLEAVE] = { 403 .create = mpol_new_nodemask, 404 .rebind = mpol_rebind_nodemask, 405 }, 406 [MPOL_PREFERRED] = { 407 .create = mpol_new_preferred, 408 .rebind = mpol_rebind_preferred, 409 }, 410 [MPOL_BIND] = { 411 .create = mpol_new_nodemask, 412 .rebind = mpol_rebind_nodemask, 413 }, 414 [MPOL_LOCAL] = { 415 .rebind = mpol_rebind_default, 416 }, 417 [MPOL_PREFERRED_MANY] = { 418 .create = mpol_new_nodemask, 419 .rebind = mpol_rebind_preferred, 420 }, 421 }; 422 423 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 424 unsigned long flags); 425 426 struct queue_pages { 427 struct list_head *pagelist; 428 unsigned long flags; 429 nodemask_t *nmask; 430 unsigned long start; 431 unsigned long end; 432 struct vm_area_struct *first; 433 bool has_unmovable; 434 }; 435 436 /* 437 * Check if the folio's nid is in qp->nmask. 438 * 439 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 440 * in the invert of qp->nmask. 441 */ 442 static inline bool queue_folio_required(struct folio *folio, 443 struct queue_pages *qp) 444 { 445 int nid = folio_nid(folio); 446 unsigned long flags = qp->flags; 447 448 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 449 } 450 451 /* 452 * queue_folios_pmd() has three possible return values: 453 * 0 - folios are placed on the right node or queued successfully, or 454 * special page is met, i.e. zero page, or unmovable page is found 455 * but continue walking (indicated by queue_pages.has_unmovable). 456 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 457 * existing folio was already on a node that does not follow the 458 * policy. 459 */ 460 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 461 unsigned long end, struct mm_walk *walk) 462 __releases(ptl) 463 { 464 int ret = 0; 465 struct folio *folio; 466 struct queue_pages *qp = walk->private; 467 unsigned long flags; 468 469 if (unlikely(is_pmd_migration_entry(*pmd))) { 470 ret = -EIO; 471 goto unlock; 472 } 473 folio = pfn_folio(pmd_pfn(*pmd)); 474 if (is_huge_zero_page(&folio->page)) { 475 walk->action = ACTION_CONTINUE; 476 goto unlock; 477 } 478 if (!queue_folio_required(folio, qp)) 479 goto unlock; 480 481 flags = qp->flags; 482 /* go to folio migration */ 483 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 484 if (!vma_migratable(walk->vma) || 485 migrate_folio_add(folio, qp->pagelist, flags)) { 486 qp->has_unmovable = true; 487 goto unlock; 488 } 489 } else 490 ret = -EIO; 491 unlock: 492 spin_unlock(ptl); 493 return ret; 494 } 495 496 /* 497 * Scan through pages checking if pages follow certain conditions, 498 * and move them to the pagelist if they do. 499 * 500 * queue_folios_pte_range() has three possible return values: 501 * 0 - folios are placed on the right node or queued successfully, or 502 * special page is met, i.e. zero page, or unmovable page is found 503 * but continue walking (indicated by queue_pages.has_unmovable). 504 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 505 * on a node that does not follow the policy. 506 */ 507 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 508 unsigned long end, struct mm_walk *walk) 509 { 510 struct vm_area_struct *vma = walk->vma; 511 struct folio *folio; 512 struct queue_pages *qp = walk->private; 513 unsigned long flags = qp->flags; 514 pte_t *pte, *mapped_pte; 515 pte_t ptent; 516 spinlock_t *ptl; 517 518 ptl = pmd_trans_huge_lock(pmd, vma); 519 if (ptl) 520 return queue_folios_pmd(pmd, ptl, addr, end, walk); 521 522 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 523 if (!pte) { 524 walk->action = ACTION_AGAIN; 525 return 0; 526 } 527 for (; addr != end; pte++, addr += PAGE_SIZE) { 528 ptent = ptep_get(pte); 529 if (!pte_present(ptent)) 530 continue; 531 folio = vm_normal_folio(vma, addr, ptent); 532 if (!folio || folio_is_zone_device(folio)) 533 continue; 534 /* 535 * vm_normal_folio() filters out zero pages, but there might 536 * still be reserved folios to skip, perhaps in a VDSO. 537 */ 538 if (folio_test_reserved(folio)) 539 continue; 540 if (!queue_folio_required(folio, qp)) 541 continue; 542 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 543 /* 544 * MPOL_MF_STRICT must be specified if we get here. 545 * Continue walking vmas due to MPOL_MF_MOVE* flags. 546 */ 547 if (!vma_migratable(vma)) 548 qp->has_unmovable = true; 549 550 /* 551 * Do not abort immediately since there may be 552 * temporary off LRU pages in the range. Still 553 * need migrate other LRU pages. 554 */ 555 if (migrate_folio_add(folio, qp->pagelist, flags)) 556 qp->has_unmovable = true; 557 } else 558 break; 559 } 560 pte_unmap_unlock(mapped_pte, ptl); 561 cond_resched(); 562 563 return addr != end ? -EIO : 0; 564 } 565 566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 567 unsigned long addr, unsigned long end, 568 struct mm_walk *walk) 569 { 570 int ret = 0; 571 #ifdef CONFIG_HUGETLB_PAGE 572 struct queue_pages *qp = walk->private; 573 unsigned long flags = (qp->flags & MPOL_MF_VALID); 574 struct folio *folio; 575 spinlock_t *ptl; 576 pte_t entry; 577 578 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 579 entry = huge_ptep_get(pte); 580 if (!pte_present(entry)) 581 goto unlock; 582 folio = pfn_folio(pte_pfn(entry)); 583 if (!queue_folio_required(folio, qp)) 584 goto unlock; 585 586 if (flags == MPOL_MF_STRICT) { 587 /* 588 * STRICT alone means only detecting misplaced folio and no 589 * need to further check other vma. 590 */ 591 ret = -EIO; 592 goto unlock; 593 } 594 595 if (!vma_migratable(walk->vma)) { 596 /* 597 * Must be STRICT with MOVE*, otherwise .test_walk() have 598 * stopped walking current vma. 599 * Detecting misplaced folio but allow migrating folios which 600 * have been queued. 601 */ 602 qp->has_unmovable = true; 603 goto unlock; 604 } 605 606 /* 607 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 608 * is shared it is likely not worth migrating. 609 * 610 * To check if the folio is shared, ideally we want to make sure 611 * every page is mapped to the same process. Doing that is very 612 * expensive, so check the estimated mapcount of the folio instead. 613 */ 614 if (flags & (MPOL_MF_MOVE_ALL) || 615 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 616 !hugetlb_pmd_shared(pte))) { 617 if (!isolate_hugetlb(folio, qp->pagelist) && 618 (flags & MPOL_MF_STRICT)) 619 /* 620 * Failed to isolate folio but allow migrating pages 621 * which have been queued. 622 */ 623 qp->has_unmovable = true; 624 } 625 unlock: 626 spin_unlock(ptl); 627 #else 628 BUG(); 629 #endif 630 return ret; 631 } 632 633 #ifdef CONFIG_NUMA_BALANCING 634 /* 635 * This is used to mark a range of virtual addresses to be inaccessible. 636 * These are later cleared by a NUMA hinting fault. Depending on these 637 * faults, pages may be migrated for better NUMA placement. 638 * 639 * This is assuming that NUMA faults are handled using PROT_NONE. If 640 * an architecture makes a different choice, it will need further 641 * changes to the core. 642 */ 643 unsigned long change_prot_numa(struct vm_area_struct *vma, 644 unsigned long addr, unsigned long end) 645 { 646 struct mmu_gather tlb; 647 long nr_updated; 648 649 tlb_gather_mmu(&tlb, vma->vm_mm); 650 651 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 652 if (nr_updated > 0) 653 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 654 655 tlb_finish_mmu(&tlb); 656 657 return nr_updated; 658 } 659 #else 660 static unsigned long change_prot_numa(struct vm_area_struct *vma, 661 unsigned long addr, unsigned long end) 662 { 663 return 0; 664 } 665 #endif /* CONFIG_NUMA_BALANCING */ 666 667 static int queue_pages_test_walk(unsigned long start, unsigned long end, 668 struct mm_walk *walk) 669 { 670 struct vm_area_struct *next, *vma = walk->vma; 671 struct queue_pages *qp = walk->private; 672 unsigned long endvma = vma->vm_end; 673 unsigned long flags = qp->flags; 674 675 /* range check first */ 676 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 677 678 if (!qp->first) { 679 qp->first = vma; 680 if (!(flags & MPOL_MF_DISCONTIG_OK) && 681 (qp->start < vma->vm_start)) 682 /* hole at head side of range */ 683 return -EFAULT; 684 } 685 next = find_vma(vma->vm_mm, vma->vm_end); 686 if (!(flags & MPOL_MF_DISCONTIG_OK) && 687 ((vma->vm_end < qp->end) && 688 (!next || vma->vm_end < next->vm_start))) 689 /* hole at middle or tail of range */ 690 return -EFAULT; 691 692 /* 693 * Need check MPOL_MF_STRICT to return -EIO if possible 694 * regardless of vma_migratable 695 */ 696 if (!vma_migratable(vma) && 697 !(flags & MPOL_MF_STRICT)) 698 return 1; 699 700 if (endvma > end) 701 endvma = end; 702 703 if (flags & MPOL_MF_LAZY) { 704 /* Similar to task_numa_work, skip inaccessible VMAs */ 705 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 706 !(vma->vm_flags & VM_MIXEDMAP)) 707 change_prot_numa(vma, start, endvma); 708 return 1; 709 } 710 711 /* queue pages from current vma */ 712 if (flags & MPOL_MF_VALID) 713 return 0; 714 return 1; 715 } 716 717 static const struct mm_walk_ops queue_pages_walk_ops = { 718 .hugetlb_entry = queue_folios_hugetlb, 719 .pmd_entry = queue_folios_pte_range, 720 .test_walk = queue_pages_test_walk, 721 .walk_lock = PGWALK_RDLOCK, 722 }; 723 724 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 725 .hugetlb_entry = queue_folios_hugetlb, 726 .pmd_entry = queue_folios_pte_range, 727 .test_walk = queue_pages_test_walk, 728 .walk_lock = PGWALK_WRLOCK, 729 }; 730 731 /* 732 * Walk through page tables and collect pages to be migrated. 733 * 734 * If pages found in a given range are on a set of nodes (determined by 735 * @nodes and @flags,) it's isolated and queued to the pagelist which is 736 * passed via @private. 737 * 738 * queue_pages_range() has three possible return values: 739 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 740 * specified. 741 * 0 - queue pages successfully or no misplaced page. 742 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 743 * memory range specified by nodemask and maxnode points outside 744 * your accessible address space (-EFAULT) 745 */ 746 static int 747 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 748 nodemask_t *nodes, unsigned long flags, 749 struct list_head *pagelist, bool lock_vma) 750 { 751 int err; 752 struct queue_pages qp = { 753 .pagelist = pagelist, 754 .flags = flags, 755 .nmask = nodes, 756 .start = start, 757 .end = end, 758 .first = NULL, 759 .has_unmovable = false, 760 }; 761 const struct mm_walk_ops *ops = lock_vma ? 762 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 763 764 err = walk_page_range(mm, start, end, ops, &qp); 765 766 if (qp.has_unmovable) 767 err = 1; 768 if (!qp.first) 769 /* whole range in hole */ 770 err = -EFAULT; 771 772 return err; 773 } 774 775 /* 776 * Apply policy to a single VMA 777 * This must be called with the mmap_lock held for writing. 778 */ 779 static int vma_replace_policy(struct vm_area_struct *vma, 780 struct mempolicy *pol) 781 { 782 int err; 783 struct mempolicy *old; 784 struct mempolicy *new; 785 786 vma_assert_write_locked(vma); 787 788 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 789 vma->vm_start, vma->vm_end, vma->vm_pgoff, 790 vma->vm_ops, vma->vm_file, 791 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 792 793 new = mpol_dup(pol); 794 if (IS_ERR(new)) 795 return PTR_ERR(new); 796 797 if (vma->vm_ops && vma->vm_ops->set_policy) { 798 err = vma->vm_ops->set_policy(vma, new); 799 if (err) 800 goto err_out; 801 } 802 803 old = vma->vm_policy; 804 vma->vm_policy = new; /* protected by mmap_lock */ 805 mpol_put(old); 806 807 return 0; 808 err_out: 809 mpol_put(new); 810 return err; 811 } 812 813 /* Split or merge the VMA (if required) and apply the new policy */ 814 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 815 struct vm_area_struct **prev, unsigned long start, 816 unsigned long end, struct mempolicy *new_pol) 817 { 818 struct vm_area_struct *merged; 819 unsigned long vmstart, vmend; 820 pgoff_t pgoff; 821 int err; 822 823 vmend = min(end, vma->vm_end); 824 if (start > vma->vm_start) { 825 *prev = vma; 826 vmstart = start; 827 } else { 828 vmstart = vma->vm_start; 829 } 830 831 if (mpol_equal(vma_policy(vma), new_pol)) { 832 *prev = vma; 833 return 0; 834 } 835 836 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 837 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 838 vma->anon_vma, vma->vm_file, pgoff, new_pol, 839 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 840 if (merged) { 841 *prev = merged; 842 return vma_replace_policy(merged, new_pol); 843 } 844 845 if (vma->vm_start != vmstart) { 846 err = split_vma(vmi, vma, vmstart, 1); 847 if (err) 848 return err; 849 } 850 851 if (vma->vm_end != vmend) { 852 err = split_vma(vmi, vma, vmend, 0); 853 if (err) 854 return err; 855 } 856 857 *prev = vma; 858 return vma_replace_policy(vma, new_pol); 859 } 860 861 /* Set the process memory policy */ 862 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 863 nodemask_t *nodes) 864 { 865 struct mempolicy *new, *old; 866 NODEMASK_SCRATCH(scratch); 867 int ret; 868 869 if (!scratch) 870 return -ENOMEM; 871 872 new = mpol_new(mode, flags, nodes); 873 if (IS_ERR(new)) { 874 ret = PTR_ERR(new); 875 goto out; 876 } 877 878 task_lock(current); 879 ret = mpol_set_nodemask(new, nodes, scratch); 880 if (ret) { 881 task_unlock(current); 882 mpol_put(new); 883 goto out; 884 } 885 886 old = current->mempolicy; 887 current->mempolicy = new; 888 if (new && new->mode == MPOL_INTERLEAVE) 889 current->il_prev = MAX_NUMNODES-1; 890 task_unlock(current); 891 mpol_put(old); 892 ret = 0; 893 out: 894 NODEMASK_SCRATCH_FREE(scratch); 895 return ret; 896 } 897 898 /* 899 * Return nodemask for policy for get_mempolicy() query 900 * 901 * Called with task's alloc_lock held 902 */ 903 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 904 { 905 nodes_clear(*nodes); 906 if (p == &default_policy) 907 return; 908 909 switch (p->mode) { 910 case MPOL_BIND: 911 case MPOL_INTERLEAVE: 912 case MPOL_PREFERRED: 913 case MPOL_PREFERRED_MANY: 914 *nodes = p->nodes; 915 break; 916 case MPOL_LOCAL: 917 /* return empty node mask for local allocation */ 918 break; 919 default: 920 BUG(); 921 } 922 } 923 924 static int lookup_node(struct mm_struct *mm, unsigned long addr) 925 { 926 struct page *p = NULL; 927 int ret; 928 929 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 930 if (ret > 0) { 931 ret = page_to_nid(p); 932 put_page(p); 933 } 934 return ret; 935 } 936 937 /* Retrieve NUMA policy */ 938 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 939 unsigned long addr, unsigned long flags) 940 { 941 int err; 942 struct mm_struct *mm = current->mm; 943 struct vm_area_struct *vma = NULL; 944 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 945 946 if (flags & 947 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 948 return -EINVAL; 949 950 if (flags & MPOL_F_MEMS_ALLOWED) { 951 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 952 return -EINVAL; 953 *policy = 0; /* just so it's initialized */ 954 task_lock(current); 955 *nmask = cpuset_current_mems_allowed; 956 task_unlock(current); 957 return 0; 958 } 959 960 if (flags & MPOL_F_ADDR) { 961 /* 962 * Do NOT fall back to task policy if the 963 * vma/shared policy at addr is NULL. We 964 * want to return MPOL_DEFAULT in this case. 965 */ 966 mmap_read_lock(mm); 967 vma = vma_lookup(mm, addr); 968 if (!vma) { 969 mmap_read_unlock(mm); 970 return -EFAULT; 971 } 972 if (vma->vm_ops && vma->vm_ops->get_policy) 973 pol = vma->vm_ops->get_policy(vma, addr); 974 else 975 pol = vma->vm_policy; 976 } else if (addr) 977 return -EINVAL; 978 979 if (!pol) 980 pol = &default_policy; /* indicates default behavior */ 981 982 if (flags & MPOL_F_NODE) { 983 if (flags & MPOL_F_ADDR) { 984 /* 985 * Take a refcount on the mpol, because we are about to 986 * drop the mmap_lock, after which only "pol" remains 987 * valid, "vma" is stale. 988 */ 989 pol_refcount = pol; 990 vma = NULL; 991 mpol_get(pol); 992 mmap_read_unlock(mm); 993 err = lookup_node(mm, addr); 994 if (err < 0) 995 goto out; 996 *policy = err; 997 } else if (pol == current->mempolicy && 998 pol->mode == MPOL_INTERLEAVE) { 999 *policy = next_node_in(current->il_prev, pol->nodes); 1000 } else { 1001 err = -EINVAL; 1002 goto out; 1003 } 1004 } else { 1005 *policy = pol == &default_policy ? MPOL_DEFAULT : 1006 pol->mode; 1007 /* 1008 * Internal mempolicy flags must be masked off before exposing 1009 * the policy to userspace. 1010 */ 1011 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1012 } 1013 1014 err = 0; 1015 if (nmask) { 1016 if (mpol_store_user_nodemask(pol)) { 1017 *nmask = pol->w.user_nodemask; 1018 } else { 1019 task_lock(current); 1020 get_policy_nodemask(pol, nmask); 1021 task_unlock(current); 1022 } 1023 } 1024 1025 out: 1026 mpol_cond_put(pol); 1027 if (vma) 1028 mmap_read_unlock(mm); 1029 if (pol_refcount) 1030 mpol_put(pol_refcount); 1031 return err; 1032 } 1033 1034 #ifdef CONFIG_MIGRATION 1035 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1036 unsigned long flags) 1037 { 1038 /* 1039 * We try to migrate only unshared folios. If it is shared it 1040 * is likely not worth migrating. 1041 * 1042 * To check if the folio is shared, ideally we want to make sure 1043 * every page is mapped to the same process. Doing that is very 1044 * expensive, so check the estimated mapcount of the folio instead. 1045 */ 1046 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1047 if (folio_isolate_lru(folio)) { 1048 list_add_tail(&folio->lru, foliolist); 1049 node_stat_mod_folio(folio, 1050 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1051 folio_nr_pages(folio)); 1052 } else if (flags & MPOL_MF_STRICT) { 1053 /* 1054 * Non-movable folio may reach here. And, there may be 1055 * temporary off LRU folios or non-LRU movable folios. 1056 * Treat them as unmovable folios since they can't be 1057 * isolated, so they can't be moved at the moment. It 1058 * should return -EIO for this case too. 1059 */ 1060 return -EIO; 1061 } 1062 } 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * Migrate pages from one node to a target node. 1069 * Returns error or the number of pages not migrated. 1070 */ 1071 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1072 int flags) 1073 { 1074 nodemask_t nmask; 1075 struct vm_area_struct *vma; 1076 LIST_HEAD(pagelist); 1077 int err = 0; 1078 struct migration_target_control mtc = { 1079 .nid = dest, 1080 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1081 }; 1082 1083 nodes_clear(nmask); 1084 node_set(source, nmask); 1085 1086 /* 1087 * This does not "check" the range but isolates all pages that 1088 * need migration. Between passing in the full user address 1089 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1090 */ 1091 vma = find_vma(mm, 0); 1092 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1093 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1094 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false); 1095 1096 if (!list_empty(&pagelist)) { 1097 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1098 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1099 if (err) 1100 putback_movable_pages(&pagelist); 1101 } 1102 1103 return err; 1104 } 1105 1106 /* 1107 * Move pages between the two nodesets so as to preserve the physical 1108 * layout as much as possible. 1109 * 1110 * Returns the number of page that could not be moved. 1111 */ 1112 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1113 const nodemask_t *to, int flags) 1114 { 1115 int busy = 0; 1116 int err = 0; 1117 nodemask_t tmp; 1118 1119 lru_cache_disable(); 1120 1121 mmap_read_lock(mm); 1122 1123 /* 1124 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1125 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1126 * bit in 'tmp', and return that <source, dest> pair for migration. 1127 * The pair of nodemasks 'to' and 'from' define the map. 1128 * 1129 * If no pair of bits is found that way, fallback to picking some 1130 * pair of 'source' and 'dest' bits that are not the same. If the 1131 * 'source' and 'dest' bits are the same, this represents a node 1132 * that will be migrating to itself, so no pages need move. 1133 * 1134 * If no bits are left in 'tmp', or if all remaining bits left 1135 * in 'tmp' correspond to the same bit in 'to', return false 1136 * (nothing left to migrate). 1137 * 1138 * This lets us pick a pair of nodes to migrate between, such that 1139 * if possible the dest node is not already occupied by some other 1140 * source node, minimizing the risk of overloading the memory on a 1141 * node that would happen if we migrated incoming memory to a node 1142 * before migrating outgoing memory source that same node. 1143 * 1144 * A single scan of tmp is sufficient. As we go, we remember the 1145 * most recent <s, d> pair that moved (s != d). If we find a pair 1146 * that not only moved, but what's better, moved to an empty slot 1147 * (d is not set in tmp), then we break out then, with that pair. 1148 * Otherwise when we finish scanning from_tmp, we at least have the 1149 * most recent <s, d> pair that moved. If we get all the way through 1150 * the scan of tmp without finding any node that moved, much less 1151 * moved to an empty node, then there is nothing left worth migrating. 1152 */ 1153 1154 tmp = *from; 1155 while (!nodes_empty(tmp)) { 1156 int s, d; 1157 int source = NUMA_NO_NODE; 1158 int dest = 0; 1159 1160 for_each_node_mask(s, tmp) { 1161 1162 /* 1163 * do_migrate_pages() tries to maintain the relative 1164 * node relationship of the pages established between 1165 * threads and memory areas. 1166 * 1167 * However if the number of source nodes is not equal to 1168 * the number of destination nodes we can not preserve 1169 * this node relative relationship. In that case, skip 1170 * copying memory from a node that is in the destination 1171 * mask. 1172 * 1173 * Example: [2,3,4] -> [3,4,5] moves everything. 1174 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1175 */ 1176 1177 if ((nodes_weight(*from) != nodes_weight(*to)) && 1178 (node_isset(s, *to))) 1179 continue; 1180 1181 d = node_remap(s, *from, *to); 1182 if (s == d) 1183 continue; 1184 1185 source = s; /* Node moved. Memorize */ 1186 dest = d; 1187 1188 /* dest not in remaining from nodes? */ 1189 if (!node_isset(dest, tmp)) 1190 break; 1191 } 1192 if (source == NUMA_NO_NODE) 1193 break; 1194 1195 node_clear(source, tmp); 1196 err = migrate_to_node(mm, source, dest, flags); 1197 if (err > 0) 1198 busy += err; 1199 if (err < 0) 1200 break; 1201 } 1202 mmap_read_unlock(mm); 1203 1204 lru_cache_enable(); 1205 if (err < 0) 1206 return err; 1207 return busy; 1208 1209 } 1210 1211 /* 1212 * Allocate a new page for page migration based on vma policy. 1213 * Start by assuming the page is mapped by the same vma as contains @start. 1214 * Search forward from there, if not. N.B., this assumes that the 1215 * list of pages handed to migrate_pages()--which is how we get here-- 1216 * is in virtual address order. 1217 */ 1218 static struct folio *new_folio(struct folio *src, unsigned long start) 1219 { 1220 struct vm_area_struct *vma; 1221 unsigned long address; 1222 VMA_ITERATOR(vmi, current->mm, start); 1223 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1224 1225 for_each_vma(vmi, vma) { 1226 address = page_address_in_vma(&src->page, vma); 1227 if (address != -EFAULT) 1228 break; 1229 } 1230 1231 if (folio_test_hugetlb(src)) { 1232 return alloc_hugetlb_folio_vma(folio_hstate(src), 1233 vma, address); 1234 } 1235 1236 if (folio_test_large(src)) 1237 gfp = GFP_TRANSHUGE; 1238 1239 /* 1240 * if !vma, vma_alloc_folio() will use task or system default policy 1241 */ 1242 return vma_alloc_folio(gfp, folio_order(src), vma, address, 1243 folio_test_large(src)); 1244 } 1245 #else 1246 1247 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1248 unsigned long flags) 1249 { 1250 return -EIO; 1251 } 1252 1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1254 const nodemask_t *to, int flags) 1255 { 1256 return -ENOSYS; 1257 } 1258 1259 static struct folio *new_folio(struct folio *src, unsigned long start) 1260 { 1261 return NULL; 1262 } 1263 #endif 1264 1265 static long do_mbind(unsigned long start, unsigned long len, 1266 unsigned short mode, unsigned short mode_flags, 1267 nodemask_t *nmask, unsigned long flags) 1268 { 1269 struct mm_struct *mm = current->mm; 1270 struct vm_area_struct *vma, *prev; 1271 struct vma_iterator vmi; 1272 struct mempolicy *new; 1273 unsigned long end; 1274 int err; 1275 int ret; 1276 LIST_HEAD(pagelist); 1277 1278 if (flags & ~(unsigned long)MPOL_MF_VALID) 1279 return -EINVAL; 1280 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1281 return -EPERM; 1282 1283 if (start & ~PAGE_MASK) 1284 return -EINVAL; 1285 1286 if (mode == MPOL_DEFAULT) 1287 flags &= ~MPOL_MF_STRICT; 1288 1289 len = PAGE_ALIGN(len); 1290 end = start + len; 1291 1292 if (end < start) 1293 return -EINVAL; 1294 if (end == start) 1295 return 0; 1296 1297 new = mpol_new(mode, mode_flags, nmask); 1298 if (IS_ERR(new)) 1299 return PTR_ERR(new); 1300 1301 if (flags & MPOL_MF_LAZY) 1302 new->flags |= MPOL_F_MOF; 1303 1304 /* 1305 * If we are using the default policy then operation 1306 * on discontinuous address spaces is okay after all 1307 */ 1308 if (!new) 1309 flags |= MPOL_MF_DISCONTIG_OK; 1310 1311 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1312 start, start + len, mode, mode_flags, 1313 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1314 1315 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1316 1317 lru_cache_disable(); 1318 } 1319 { 1320 NODEMASK_SCRATCH(scratch); 1321 if (scratch) { 1322 mmap_write_lock(mm); 1323 err = mpol_set_nodemask(new, nmask, scratch); 1324 if (err) 1325 mmap_write_unlock(mm); 1326 } else 1327 err = -ENOMEM; 1328 NODEMASK_SCRATCH_FREE(scratch); 1329 } 1330 if (err) 1331 goto mpol_out; 1332 1333 /* 1334 * Lock the VMAs before scanning for pages to migrate, to ensure we don't 1335 * miss a concurrently inserted page. 1336 */ 1337 ret = queue_pages_range(mm, start, end, nmask, 1338 flags | MPOL_MF_INVERT, &pagelist, true); 1339 1340 if (ret < 0) { 1341 err = ret; 1342 goto up_out; 1343 } 1344 1345 vma_iter_init(&vmi, mm, start); 1346 prev = vma_prev(&vmi); 1347 for_each_vma_range(vmi, vma, end) { 1348 err = mbind_range(&vmi, vma, &prev, start, end, new); 1349 if (err) 1350 break; 1351 } 1352 1353 if (!err) { 1354 int nr_failed = 0; 1355 1356 if (!list_empty(&pagelist)) { 1357 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1358 nr_failed = migrate_pages(&pagelist, new_folio, NULL, 1359 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1360 if (nr_failed) 1361 putback_movable_pages(&pagelist); 1362 } 1363 1364 if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT)) 1365 err = -EIO; 1366 } else { 1367 up_out: 1368 if (!list_empty(&pagelist)) 1369 putback_movable_pages(&pagelist); 1370 } 1371 1372 mmap_write_unlock(mm); 1373 mpol_out: 1374 mpol_put(new); 1375 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1376 lru_cache_enable(); 1377 return err; 1378 } 1379 1380 /* 1381 * User space interface with variable sized bitmaps for nodelists. 1382 */ 1383 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1384 unsigned long maxnode) 1385 { 1386 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1387 int ret; 1388 1389 if (in_compat_syscall()) 1390 ret = compat_get_bitmap(mask, 1391 (const compat_ulong_t __user *)nmask, 1392 maxnode); 1393 else 1394 ret = copy_from_user(mask, nmask, 1395 nlongs * sizeof(unsigned long)); 1396 1397 if (ret) 1398 return -EFAULT; 1399 1400 if (maxnode % BITS_PER_LONG) 1401 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1402 1403 return 0; 1404 } 1405 1406 /* Copy a node mask from user space. */ 1407 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1408 unsigned long maxnode) 1409 { 1410 --maxnode; 1411 nodes_clear(*nodes); 1412 if (maxnode == 0 || !nmask) 1413 return 0; 1414 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1415 return -EINVAL; 1416 1417 /* 1418 * When the user specified more nodes than supported just check 1419 * if the non supported part is all zero, one word at a time, 1420 * starting at the end. 1421 */ 1422 while (maxnode > MAX_NUMNODES) { 1423 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1424 unsigned long t; 1425 1426 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1427 return -EFAULT; 1428 1429 if (maxnode - bits >= MAX_NUMNODES) { 1430 maxnode -= bits; 1431 } else { 1432 maxnode = MAX_NUMNODES; 1433 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1434 } 1435 if (t) 1436 return -EINVAL; 1437 } 1438 1439 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1440 } 1441 1442 /* Copy a kernel node mask to user space */ 1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1444 nodemask_t *nodes) 1445 { 1446 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1447 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1448 bool compat = in_compat_syscall(); 1449 1450 if (compat) 1451 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1452 1453 if (copy > nbytes) { 1454 if (copy > PAGE_SIZE) 1455 return -EINVAL; 1456 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1457 return -EFAULT; 1458 copy = nbytes; 1459 maxnode = nr_node_ids; 1460 } 1461 1462 if (compat) 1463 return compat_put_bitmap((compat_ulong_t __user *)mask, 1464 nodes_addr(*nodes), maxnode); 1465 1466 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1467 } 1468 1469 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1470 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1471 { 1472 *flags = *mode & MPOL_MODE_FLAGS; 1473 *mode &= ~MPOL_MODE_FLAGS; 1474 1475 if ((unsigned int)(*mode) >= MPOL_MAX) 1476 return -EINVAL; 1477 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1478 return -EINVAL; 1479 if (*flags & MPOL_F_NUMA_BALANCING) { 1480 if (*mode != MPOL_BIND) 1481 return -EINVAL; 1482 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1483 } 1484 return 0; 1485 } 1486 1487 static long kernel_mbind(unsigned long start, unsigned long len, 1488 unsigned long mode, const unsigned long __user *nmask, 1489 unsigned long maxnode, unsigned int flags) 1490 { 1491 unsigned short mode_flags; 1492 nodemask_t nodes; 1493 int lmode = mode; 1494 int err; 1495 1496 start = untagged_addr(start); 1497 err = sanitize_mpol_flags(&lmode, &mode_flags); 1498 if (err) 1499 return err; 1500 1501 err = get_nodes(&nodes, nmask, maxnode); 1502 if (err) 1503 return err; 1504 1505 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1506 } 1507 1508 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1509 unsigned long, home_node, unsigned long, flags) 1510 { 1511 struct mm_struct *mm = current->mm; 1512 struct vm_area_struct *vma, *prev; 1513 struct mempolicy *new, *old; 1514 unsigned long end; 1515 int err = -ENOENT; 1516 VMA_ITERATOR(vmi, mm, start); 1517 1518 start = untagged_addr(start); 1519 if (start & ~PAGE_MASK) 1520 return -EINVAL; 1521 /* 1522 * flags is used for future extension if any. 1523 */ 1524 if (flags != 0) 1525 return -EINVAL; 1526 1527 /* 1528 * Check home_node is online to avoid accessing uninitialized 1529 * NODE_DATA. 1530 */ 1531 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1532 return -EINVAL; 1533 1534 len = PAGE_ALIGN(len); 1535 end = start + len; 1536 1537 if (end < start) 1538 return -EINVAL; 1539 if (end == start) 1540 return 0; 1541 mmap_write_lock(mm); 1542 prev = vma_prev(&vmi); 1543 for_each_vma_range(vmi, vma, end) { 1544 /* 1545 * If any vma in the range got policy other than MPOL_BIND 1546 * or MPOL_PREFERRED_MANY we return error. We don't reset 1547 * the home node for vmas we already updated before. 1548 */ 1549 old = vma_policy(vma); 1550 if (!old) { 1551 prev = vma; 1552 continue; 1553 } 1554 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1555 err = -EOPNOTSUPP; 1556 break; 1557 } 1558 new = mpol_dup(old); 1559 if (IS_ERR(new)) { 1560 err = PTR_ERR(new); 1561 break; 1562 } 1563 1564 vma_start_write(vma); 1565 new->home_node = home_node; 1566 err = mbind_range(&vmi, vma, &prev, start, end, new); 1567 mpol_put(new); 1568 if (err) 1569 break; 1570 } 1571 mmap_write_unlock(mm); 1572 return err; 1573 } 1574 1575 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1576 unsigned long, mode, const unsigned long __user *, nmask, 1577 unsigned long, maxnode, unsigned int, flags) 1578 { 1579 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1580 } 1581 1582 /* Set the process memory policy */ 1583 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1584 unsigned long maxnode) 1585 { 1586 unsigned short mode_flags; 1587 nodemask_t nodes; 1588 int lmode = mode; 1589 int err; 1590 1591 err = sanitize_mpol_flags(&lmode, &mode_flags); 1592 if (err) 1593 return err; 1594 1595 err = get_nodes(&nodes, nmask, maxnode); 1596 if (err) 1597 return err; 1598 1599 return do_set_mempolicy(lmode, mode_flags, &nodes); 1600 } 1601 1602 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1603 unsigned long, maxnode) 1604 { 1605 return kernel_set_mempolicy(mode, nmask, maxnode); 1606 } 1607 1608 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1609 const unsigned long __user *old_nodes, 1610 const unsigned long __user *new_nodes) 1611 { 1612 struct mm_struct *mm = NULL; 1613 struct task_struct *task; 1614 nodemask_t task_nodes; 1615 int err; 1616 nodemask_t *old; 1617 nodemask_t *new; 1618 NODEMASK_SCRATCH(scratch); 1619 1620 if (!scratch) 1621 return -ENOMEM; 1622 1623 old = &scratch->mask1; 1624 new = &scratch->mask2; 1625 1626 err = get_nodes(old, old_nodes, maxnode); 1627 if (err) 1628 goto out; 1629 1630 err = get_nodes(new, new_nodes, maxnode); 1631 if (err) 1632 goto out; 1633 1634 /* Find the mm_struct */ 1635 rcu_read_lock(); 1636 task = pid ? find_task_by_vpid(pid) : current; 1637 if (!task) { 1638 rcu_read_unlock(); 1639 err = -ESRCH; 1640 goto out; 1641 } 1642 get_task_struct(task); 1643 1644 err = -EINVAL; 1645 1646 /* 1647 * Check if this process has the right to modify the specified process. 1648 * Use the regular "ptrace_may_access()" checks. 1649 */ 1650 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1651 rcu_read_unlock(); 1652 err = -EPERM; 1653 goto out_put; 1654 } 1655 rcu_read_unlock(); 1656 1657 task_nodes = cpuset_mems_allowed(task); 1658 /* Is the user allowed to access the target nodes? */ 1659 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1660 err = -EPERM; 1661 goto out_put; 1662 } 1663 1664 task_nodes = cpuset_mems_allowed(current); 1665 nodes_and(*new, *new, task_nodes); 1666 if (nodes_empty(*new)) 1667 goto out_put; 1668 1669 err = security_task_movememory(task); 1670 if (err) 1671 goto out_put; 1672 1673 mm = get_task_mm(task); 1674 put_task_struct(task); 1675 1676 if (!mm) { 1677 err = -EINVAL; 1678 goto out; 1679 } 1680 1681 err = do_migrate_pages(mm, old, new, 1682 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1683 1684 mmput(mm); 1685 out: 1686 NODEMASK_SCRATCH_FREE(scratch); 1687 1688 return err; 1689 1690 out_put: 1691 put_task_struct(task); 1692 goto out; 1693 1694 } 1695 1696 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1697 const unsigned long __user *, old_nodes, 1698 const unsigned long __user *, new_nodes) 1699 { 1700 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1701 } 1702 1703 1704 /* Retrieve NUMA policy */ 1705 static int kernel_get_mempolicy(int __user *policy, 1706 unsigned long __user *nmask, 1707 unsigned long maxnode, 1708 unsigned long addr, 1709 unsigned long flags) 1710 { 1711 int err; 1712 int pval; 1713 nodemask_t nodes; 1714 1715 if (nmask != NULL && maxnode < nr_node_ids) 1716 return -EINVAL; 1717 1718 addr = untagged_addr(addr); 1719 1720 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1721 1722 if (err) 1723 return err; 1724 1725 if (policy && put_user(pval, policy)) 1726 return -EFAULT; 1727 1728 if (nmask) 1729 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1730 1731 return err; 1732 } 1733 1734 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1735 unsigned long __user *, nmask, unsigned long, maxnode, 1736 unsigned long, addr, unsigned long, flags) 1737 { 1738 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1739 } 1740 1741 bool vma_migratable(struct vm_area_struct *vma) 1742 { 1743 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1744 return false; 1745 1746 /* 1747 * DAX device mappings require predictable access latency, so avoid 1748 * incurring periodic faults. 1749 */ 1750 if (vma_is_dax(vma)) 1751 return false; 1752 1753 if (is_vm_hugetlb_page(vma) && 1754 !hugepage_migration_supported(hstate_vma(vma))) 1755 return false; 1756 1757 /* 1758 * Migration allocates pages in the highest zone. If we cannot 1759 * do so then migration (at least from node to node) is not 1760 * possible. 1761 */ 1762 if (vma->vm_file && 1763 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1764 < policy_zone) 1765 return false; 1766 return true; 1767 } 1768 1769 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1770 unsigned long addr) 1771 { 1772 struct mempolicy *pol = NULL; 1773 1774 if (vma) { 1775 if (vma->vm_ops && vma->vm_ops->get_policy) { 1776 pol = vma->vm_ops->get_policy(vma, addr); 1777 } else if (vma->vm_policy) { 1778 pol = vma->vm_policy; 1779 1780 /* 1781 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1782 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1783 * count on these policies which will be dropped by 1784 * mpol_cond_put() later 1785 */ 1786 if (mpol_needs_cond_ref(pol)) 1787 mpol_get(pol); 1788 } 1789 } 1790 1791 return pol; 1792 } 1793 1794 /* 1795 * get_vma_policy(@vma, @addr) 1796 * @vma: virtual memory area whose policy is sought 1797 * @addr: address in @vma for shared policy lookup 1798 * 1799 * Returns effective policy for a VMA at specified address. 1800 * Falls back to current->mempolicy or system default policy, as necessary. 1801 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1802 * count--added by the get_policy() vm_op, as appropriate--to protect against 1803 * freeing by another task. It is the caller's responsibility to free the 1804 * extra reference for shared policies. 1805 */ 1806 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1807 unsigned long addr) 1808 { 1809 struct mempolicy *pol = __get_vma_policy(vma, addr); 1810 1811 if (!pol) 1812 pol = get_task_policy(current); 1813 1814 return pol; 1815 } 1816 1817 bool vma_policy_mof(struct vm_area_struct *vma) 1818 { 1819 struct mempolicy *pol; 1820 1821 if (vma->vm_ops && vma->vm_ops->get_policy) { 1822 bool ret = false; 1823 1824 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1825 if (pol && (pol->flags & MPOL_F_MOF)) 1826 ret = true; 1827 mpol_cond_put(pol); 1828 1829 return ret; 1830 } 1831 1832 pol = vma->vm_policy; 1833 if (!pol) 1834 pol = get_task_policy(current); 1835 1836 return pol->flags & MPOL_F_MOF; 1837 } 1838 1839 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1840 { 1841 enum zone_type dynamic_policy_zone = policy_zone; 1842 1843 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1844 1845 /* 1846 * if policy->nodes has movable memory only, 1847 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1848 * 1849 * policy->nodes is intersect with node_states[N_MEMORY]. 1850 * so if the following test fails, it implies 1851 * policy->nodes has movable memory only. 1852 */ 1853 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1854 dynamic_policy_zone = ZONE_MOVABLE; 1855 1856 return zone >= dynamic_policy_zone; 1857 } 1858 1859 /* 1860 * Return a nodemask representing a mempolicy for filtering nodes for 1861 * page allocation 1862 */ 1863 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1864 { 1865 int mode = policy->mode; 1866 1867 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1868 if (unlikely(mode == MPOL_BIND) && 1869 apply_policy_zone(policy, gfp_zone(gfp)) && 1870 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1871 return &policy->nodes; 1872 1873 if (mode == MPOL_PREFERRED_MANY) 1874 return &policy->nodes; 1875 1876 return NULL; 1877 } 1878 1879 /* 1880 * Return the preferred node id for 'prefer' mempolicy, and return 1881 * the given id for all other policies. 1882 * 1883 * policy_node() is always coupled with policy_nodemask(), which 1884 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1885 */ 1886 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1887 { 1888 if (policy->mode == MPOL_PREFERRED) { 1889 nd = first_node(policy->nodes); 1890 } else { 1891 /* 1892 * __GFP_THISNODE shouldn't even be used with the bind policy 1893 * because we might easily break the expectation to stay on the 1894 * requested node and not break the policy. 1895 */ 1896 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1897 } 1898 1899 if ((policy->mode == MPOL_BIND || 1900 policy->mode == MPOL_PREFERRED_MANY) && 1901 policy->home_node != NUMA_NO_NODE) 1902 return policy->home_node; 1903 1904 return nd; 1905 } 1906 1907 /* Do dynamic interleaving for a process */ 1908 static unsigned interleave_nodes(struct mempolicy *policy) 1909 { 1910 unsigned next; 1911 struct task_struct *me = current; 1912 1913 next = next_node_in(me->il_prev, policy->nodes); 1914 if (next < MAX_NUMNODES) 1915 me->il_prev = next; 1916 return next; 1917 } 1918 1919 /* 1920 * Depending on the memory policy provide a node from which to allocate the 1921 * next slab entry. 1922 */ 1923 unsigned int mempolicy_slab_node(void) 1924 { 1925 struct mempolicy *policy; 1926 int node = numa_mem_id(); 1927 1928 if (!in_task()) 1929 return node; 1930 1931 policy = current->mempolicy; 1932 if (!policy) 1933 return node; 1934 1935 switch (policy->mode) { 1936 case MPOL_PREFERRED: 1937 return first_node(policy->nodes); 1938 1939 case MPOL_INTERLEAVE: 1940 return interleave_nodes(policy); 1941 1942 case MPOL_BIND: 1943 case MPOL_PREFERRED_MANY: 1944 { 1945 struct zoneref *z; 1946 1947 /* 1948 * Follow bind policy behavior and start allocation at the 1949 * first node. 1950 */ 1951 struct zonelist *zonelist; 1952 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1953 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1954 z = first_zones_zonelist(zonelist, highest_zoneidx, 1955 &policy->nodes); 1956 return z->zone ? zone_to_nid(z->zone) : node; 1957 } 1958 case MPOL_LOCAL: 1959 return node; 1960 1961 default: 1962 BUG(); 1963 } 1964 } 1965 1966 /* 1967 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1968 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1969 * number of present nodes. 1970 */ 1971 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1972 { 1973 nodemask_t nodemask = pol->nodes; 1974 unsigned int target, nnodes; 1975 int i; 1976 int nid; 1977 /* 1978 * The barrier will stabilize the nodemask in a register or on 1979 * the stack so that it will stop changing under the code. 1980 * 1981 * Between first_node() and next_node(), pol->nodes could be changed 1982 * by other threads. So we put pol->nodes in a local stack. 1983 */ 1984 barrier(); 1985 1986 nnodes = nodes_weight(nodemask); 1987 if (!nnodes) 1988 return numa_node_id(); 1989 target = (unsigned int)n % nnodes; 1990 nid = first_node(nodemask); 1991 for (i = 0; i < target; i++) 1992 nid = next_node(nid, nodemask); 1993 return nid; 1994 } 1995 1996 /* Determine a node number for interleave */ 1997 static inline unsigned interleave_nid(struct mempolicy *pol, 1998 struct vm_area_struct *vma, unsigned long addr, int shift) 1999 { 2000 if (vma) { 2001 unsigned long off; 2002 2003 /* 2004 * for small pages, there is no difference between 2005 * shift and PAGE_SHIFT, so the bit-shift is safe. 2006 * for huge pages, since vm_pgoff is in units of small 2007 * pages, we need to shift off the always 0 bits to get 2008 * a useful offset. 2009 */ 2010 BUG_ON(shift < PAGE_SHIFT); 2011 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2012 off += (addr - vma->vm_start) >> shift; 2013 return offset_il_node(pol, off); 2014 } else 2015 return interleave_nodes(pol); 2016 } 2017 2018 #ifdef CONFIG_HUGETLBFS 2019 /* 2020 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2021 * @vma: virtual memory area whose policy is sought 2022 * @addr: address in @vma for shared policy lookup and interleave policy 2023 * @gfp_flags: for requested zone 2024 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2025 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2026 * 2027 * Returns a nid suitable for a huge page allocation and a pointer 2028 * to the struct mempolicy for conditional unref after allocation. 2029 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2030 * to the mempolicy's @nodemask for filtering the zonelist. 2031 * 2032 * Must be protected by read_mems_allowed_begin() 2033 */ 2034 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2035 struct mempolicy **mpol, nodemask_t **nodemask) 2036 { 2037 int nid; 2038 int mode; 2039 2040 *mpol = get_vma_policy(vma, addr); 2041 *nodemask = NULL; 2042 mode = (*mpol)->mode; 2043 2044 if (unlikely(mode == MPOL_INTERLEAVE)) { 2045 nid = interleave_nid(*mpol, vma, addr, 2046 huge_page_shift(hstate_vma(vma))); 2047 } else { 2048 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2049 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2050 *nodemask = &(*mpol)->nodes; 2051 } 2052 return nid; 2053 } 2054 2055 /* 2056 * init_nodemask_of_mempolicy 2057 * 2058 * If the current task's mempolicy is "default" [NULL], return 'false' 2059 * to indicate default policy. Otherwise, extract the policy nodemask 2060 * for 'bind' or 'interleave' policy into the argument nodemask, or 2061 * initialize the argument nodemask to contain the single node for 2062 * 'preferred' or 'local' policy and return 'true' to indicate presence 2063 * of non-default mempolicy. 2064 * 2065 * We don't bother with reference counting the mempolicy [mpol_get/put] 2066 * because the current task is examining it's own mempolicy and a task's 2067 * mempolicy is only ever changed by the task itself. 2068 * 2069 * N.B., it is the caller's responsibility to free a returned nodemask. 2070 */ 2071 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2072 { 2073 struct mempolicy *mempolicy; 2074 2075 if (!(mask && current->mempolicy)) 2076 return false; 2077 2078 task_lock(current); 2079 mempolicy = current->mempolicy; 2080 switch (mempolicy->mode) { 2081 case MPOL_PREFERRED: 2082 case MPOL_PREFERRED_MANY: 2083 case MPOL_BIND: 2084 case MPOL_INTERLEAVE: 2085 *mask = mempolicy->nodes; 2086 break; 2087 2088 case MPOL_LOCAL: 2089 init_nodemask_of_node(mask, numa_node_id()); 2090 break; 2091 2092 default: 2093 BUG(); 2094 } 2095 task_unlock(current); 2096 2097 return true; 2098 } 2099 #endif 2100 2101 /* 2102 * mempolicy_in_oom_domain 2103 * 2104 * If tsk's mempolicy is "bind", check for intersection between mask and 2105 * the policy nodemask. Otherwise, return true for all other policies 2106 * including "interleave", as a tsk with "interleave" policy may have 2107 * memory allocated from all nodes in system. 2108 * 2109 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2110 */ 2111 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2112 const nodemask_t *mask) 2113 { 2114 struct mempolicy *mempolicy; 2115 bool ret = true; 2116 2117 if (!mask) 2118 return ret; 2119 2120 task_lock(tsk); 2121 mempolicy = tsk->mempolicy; 2122 if (mempolicy && mempolicy->mode == MPOL_BIND) 2123 ret = nodes_intersects(mempolicy->nodes, *mask); 2124 task_unlock(tsk); 2125 2126 return ret; 2127 } 2128 2129 /* Allocate a page in interleaved policy. 2130 Own path because it needs to do special accounting. */ 2131 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2132 unsigned nid) 2133 { 2134 struct page *page; 2135 2136 page = __alloc_pages(gfp, order, nid, NULL); 2137 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2138 if (!static_branch_likely(&vm_numa_stat_key)) 2139 return page; 2140 if (page && page_to_nid(page) == nid) { 2141 preempt_disable(); 2142 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2143 preempt_enable(); 2144 } 2145 return page; 2146 } 2147 2148 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2149 int nid, struct mempolicy *pol) 2150 { 2151 struct page *page; 2152 gfp_t preferred_gfp; 2153 2154 /* 2155 * This is a two pass approach. The first pass will only try the 2156 * preferred nodes but skip the direct reclaim and allow the 2157 * allocation to fail, while the second pass will try all the 2158 * nodes in system. 2159 */ 2160 preferred_gfp = gfp | __GFP_NOWARN; 2161 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2162 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2163 if (!page) 2164 page = __alloc_pages(gfp, order, nid, NULL); 2165 2166 return page; 2167 } 2168 2169 /** 2170 * vma_alloc_folio - Allocate a folio for a VMA. 2171 * @gfp: GFP flags. 2172 * @order: Order of the folio. 2173 * @vma: Pointer to VMA or NULL if not available. 2174 * @addr: Virtual address of the allocation. Must be inside @vma. 2175 * @hugepage: For hugepages try only the preferred node if possible. 2176 * 2177 * Allocate a folio for a specific address in @vma, using the appropriate 2178 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2179 * of the mm_struct of the VMA to prevent it from going away. Should be 2180 * used for all allocations for folios that will be mapped into user space. 2181 * 2182 * Return: The folio on success or NULL if allocation fails. 2183 */ 2184 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2185 unsigned long addr, bool hugepage) 2186 { 2187 struct mempolicy *pol; 2188 int node = numa_node_id(); 2189 struct folio *folio; 2190 int preferred_nid; 2191 nodemask_t *nmask; 2192 2193 pol = get_vma_policy(vma, addr); 2194 2195 if (pol->mode == MPOL_INTERLEAVE) { 2196 struct page *page; 2197 unsigned nid; 2198 2199 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2200 mpol_cond_put(pol); 2201 gfp |= __GFP_COMP; 2202 page = alloc_page_interleave(gfp, order, nid); 2203 folio = (struct folio *)page; 2204 if (folio && order > 1) 2205 folio_prep_large_rmappable(folio); 2206 goto out; 2207 } 2208 2209 if (pol->mode == MPOL_PREFERRED_MANY) { 2210 struct page *page; 2211 2212 node = policy_node(gfp, pol, node); 2213 gfp |= __GFP_COMP; 2214 page = alloc_pages_preferred_many(gfp, order, node, pol); 2215 mpol_cond_put(pol); 2216 folio = (struct folio *)page; 2217 if (folio && order > 1) 2218 folio_prep_large_rmappable(folio); 2219 goto out; 2220 } 2221 2222 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2223 int hpage_node = node; 2224 2225 /* 2226 * For hugepage allocation and non-interleave policy which 2227 * allows the current node (or other explicitly preferred 2228 * node) we only try to allocate from the current/preferred 2229 * node and don't fall back to other nodes, as the cost of 2230 * remote accesses would likely offset THP benefits. 2231 * 2232 * If the policy is interleave or does not allow the current 2233 * node in its nodemask, we allocate the standard way. 2234 */ 2235 if (pol->mode == MPOL_PREFERRED) 2236 hpage_node = first_node(pol->nodes); 2237 2238 nmask = policy_nodemask(gfp, pol); 2239 if (!nmask || node_isset(hpage_node, *nmask)) { 2240 mpol_cond_put(pol); 2241 /* 2242 * First, try to allocate THP only on local node, but 2243 * don't reclaim unnecessarily, just compact. 2244 */ 2245 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2246 __GFP_NORETRY, order, hpage_node); 2247 2248 /* 2249 * If hugepage allocations are configured to always 2250 * synchronous compact or the vma has been madvised 2251 * to prefer hugepage backing, retry allowing remote 2252 * memory with both reclaim and compact as well. 2253 */ 2254 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2255 folio = __folio_alloc(gfp, order, hpage_node, 2256 nmask); 2257 2258 goto out; 2259 } 2260 } 2261 2262 nmask = policy_nodemask(gfp, pol); 2263 preferred_nid = policy_node(gfp, pol, node); 2264 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2265 mpol_cond_put(pol); 2266 out: 2267 return folio; 2268 } 2269 EXPORT_SYMBOL(vma_alloc_folio); 2270 2271 /** 2272 * alloc_pages - Allocate pages. 2273 * @gfp: GFP flags. 2274 * @order: Power of two of number of pages to allocate. 2275 * 2276 * Allocate 1 << @order contiguous pages. The physical address of the 2277 * first page is naturally aligned (eg an order-3 allocation will be aligned 2278 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2279 * process is honoured when in process context. 2280 * 2281 * Context: Can be called from any context, providing the appropriate GFP 2282 * flags are used. 2283 * Return: The page on success or NULL if allocation fails. 2284 */ 2285 struct page *alloc_pages(gfp_t gfp, unsigned order) 2286 { 2287 struct mempolicy *pol = &default_policy; 2288 struct page *page; 2289 2290 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2291 pol = get_task_policy(current); 2292 2293 /* 2294 * No reference counting needed for current->mempolicy 2295 * nor system default_policy 2296 */ 2297 if (pol->mode == MPOL_INTERLEAVE) 2298 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2299 else if (pol->mode == MPOL_PREFERRED_MANY) 2300 page = alloc_pages_preferred_many(gfp, order, 2301 policy_node(gfp, pol, numa_node_id()), pol); 2302 else 2303 page = __alloc_pages(gfp, order, 2304 policy_node(gfp, pol, numa_node_id()), 2305 policy_nodemask(gfp, pol)); 2306 2307 return page; 2308 } 2309 EXPORT_SYMBOL(alloc_pages); 2310 2311 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2312 { 2313 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2314 struct folio *folio = (struct folio *)page; 2315 2316 if (folio && order > 1) 2317 folio_prep_large_rmappable(folio); 2318 return folio; 2319 } 2320 EXPORT_SYMBOL(folio_alloc); 2321 2322 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2323 struct mempolicy *pol, unsigned long nr_pages, 2324 struct page **page_array) 2325 { 2326 int nodes; 2327 unsigned long nr_pages_per_node; 2328 int delta; 2329 int i; 2330 unsigned long nr_allocated; 2331 unsigned long total_allocated = 0; 2332 2333 nodes = nodes_weight(pol->nodes); 2334 nr_pages_per_node = nr_pages / nodes; 2335 delta = nr_pages - nodes * nr_pages_per_node; 2336 2337 for (i = 0; i < nodes; i++) { 2338 if (delta) { 2339 nr_allocated = __alloc_pages_bulk(gfp, 2340 interleave_nodes(pol), NULL, 2341 nr_pages_per_node + 1, NULL, 2342 page_array); 2343 delta--; 2344 } else { 2345 nr_allocated = __alloc_pages_bulk(gfp, 2346 interleave_nodes(pol), NULL, 2347 nr_pages_per_node, NULL, page_array); 2348 } 2349 2350 page_array += nr_allocated; 2351 total_allocated += nr_allocated; 2352 } 2353 2354 return total_allocated; 2355 } 2356 2357 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2358 struct mempolicy *pol, unsigned long nr_pages, 2359 struct page **page_array) 2360 { 2361 gfp_t preferred_gfp; 2362 unsigned long nr_allocated = 0; 2363 2364 preferred_gfp = gfp | __GFP_NOWARN; 2365 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2366 2367 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2368 nr_pages, NULL, page_array); 2369 2370 if (nr_allocated < nr_pages) 2371 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2372 nr_pages - nr_allocated, NULL, 2373 page_array + nr_allocated); 2374 return nr_allocated; 2375 } 2376 2377 /* alloc pages bulk and mempolicy should be considered at the 2378 * same time in some situation such as vmalloc. 2379 * 2380 * It can accelerate memory allocation especially interleaving 2381 * allocate memory. 2382 */ 2383 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2384 unsigned long nr_pages, struct page **page_array) 2385 { 2386 struct mempolicy *pol = &default_policy; 2387 2388 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2389 pol = get_task_policy(current); 2390 2391 if (pol->mode == MPOL_INTERLEAVE) 2392 return alloc_pages_bulk_array_interleave(gfp, pol, 2393 nr_pages, page_array); 2394 2395 if (pol->mode == MPOL_PREFERRED_MANY) 2396 return alloc_pages_bulk_array_preferred_many(gfp, 2397 numa_node_id(), pol, nr_pages, page_array); 2398 2399 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2400 policy_nodemask(gfp, pol), nr_pages, NULL, 2401 page_array); 2402 } 2403 2404 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2405 { 2406 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2407 2408 if (IS_ERR(pol)) 2409 return PTR_ERR(pol); 2410 dst->vm_policy = pol; 2411 return 0; 2412 } 2413 2414 /* 2415 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2416 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2417 * with the mems_allowed returned by cpuset_mems_allowed(). This 2418 * keeps mempolicies cpuset relative after its cpuset moves. See 2419 * further kernel/cpuset.c update_nodemask(). 2420 * 2421 * current's mempolicy may be rebinded by the other task(the task that changes 2422 * cpuset's mems), so we needn't do rebind work for current task. 2423 */ 2424 2425 /* Slow path of a mempolicy duplicate */ 2426 struct mempolicy *__mpol_dup(struct mempolicy *old) 2427 { 2428 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2429 2430 if (!new) 2431 return ERR_PTR(-ENOMEM); 2432 2433 /* task's mempolicy is protected by alloc_lock */ 2434 if (old == current->mempolicy) { 2435 task_lock(current); 2436 *new = *old; 2437 task_unlock(current); 2438 } else 2439 *new = *old; 2440 2441 if (current_cpuset_is_being_rebound()) { 2442 nodemask_t mems = cpuset_mems_allowed(current); 2443 mpol_rebind_policy(new, &mems); 2444 } 2445 atomic_set(&new->refcnt, 1); 2446 return new; 2447 } 2448 2449 /* Slow path of a mempolicy comparison */ 2450 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2451 { 2452 if (!a || !b) 2453 return false; 2454 if (a->mode != b->mode) 2455 return false; 2456 if (a->flags != b->flags) 2457 return false; 2458 if (a->home_node != b->home_node) 2459 return false; 2460 if (mpol_store_user_nodemask(a)) 2461 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2462 return false; 2463 2464 switch (a->mode) { 2465 case MPOL_BIND: 2466 case MPOL_INTERLEAVE: 2467 case MPOL_PREFERRED: 2468 case MPOL_PREFERRED_MANY: 2469 return !!nodes_equal(a->nodes, b->nodes); 2470 case MPOL_LOCAL: 2471 return true; 2472 default: 2473 BUG(); 2474 return false; 2475 } 2476 } 2477 2478 /* 2479 * Shared memory backing store policy support. 2480 * 2481 * Remember policies even when nobody has shared memory mapped. 2482 * The policies are kept in Red-Black tree linked from the inode. 2483 * They are protected by the sp->lock rwlock, which should be held 2484 * for any accesses to the tree. 2485 */ 2486 2487 /* 2488 * lookup first element intersecting start-end. Caller holds sp->lock for 2489 * reading or for writing 2490 */ 2491 static struct sp_node * 2492 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2493 { 2494 struct rb_node *n = sp->root.rb_node; 2495 2496 while (n) { 2497 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2498 2499 if (start >= p->end) 2500 n = n->rb_right; 2501 else if (end <= p->start) 2502 n = n->rb_left; 2503 else 2504 break; 2505 } 2506 if (!n) 2507 return NULL; 2508 for (;;) { 2509 struct sp_node *w = NULL; 2510 struct rb_node *prev = rb_prev(n); 2511 if (!prev) 2512 break; 2513 w = rb_entry(prev, struct sp_node, nd); 2514 if (w->end <= start) 2515 break; 2516 n = prev; 2517 } 2518 return rb_entry(n, struct sp_node, nd); 2519 } 2520 2521 /* 2522 * Insert a new shared policy into the list. Caller holds sp->lock for 2523 * writing. 2524 */ 2525 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2526 { 2527 struct rb_node **p = &sp->root.rb_node; 2528 struct rb_node *parent = NULL; 2529 struct sp_node *nd; 2530 2531 while (*p) { 2532 parent = *p; 2533 nd = rb_entry(parent, struct sp_node, nd); 2534 if (new->start < nd->start) 2535 p = &(*p)->rb_left; 2536 else if (new->end > nd->end) 2537 p = &(*p)->rb_right; 2538 else 2539 BUG(); 2540 } 2541 rb_link_node(&new->nd, parent, p); 2542 rb_insert_color(&new->nd, &sp->root); 2543 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2544 new->policy ? new->policy->mode : 0); 2545 } 2546 2547 /* Find shared policy intersecting idx */ 2548 struct mempolicy * 2549 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2550 { 2551 struct mempolicy *pol = NULL; 2552 struct sp_node *sn; 2553 2554 if (!sp->root.rb_node) 2555 return NULL; 2556 read_lock(&sp->lock); 2557 sn = sp_lookup(sp, idx, idx+1); 2558 if (sn) { 2559 mpol_get(sn->policy); 2560 pol = sn->policy; 2561 } 2562 read_unlock(&sp->lock); 2563 return pol; 2564 } 2565 2566 static void sp_free(struct sp_node *n) 2567 { 2568 mpol_put(n->policy); 2569 kmem_cache_free(sn_cache, n); 2570 } 2571 2572 /** 2573 * mpol_misplaced - check whether current page node is valid in policy 2574 * 2575 * @page: page to be checked 2576 * @vma: vm area where page mapped 2577 * @addr: virtual address where page mapped 2578 * 2579 * Lookup current policy node id for vma,addr and "compare to" page's 2580 * node id. Policy determination "mimics" alloc_page_vma(). 2581 * Called from fault path where we know the vma and faulting address. 2582 * 2583 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2584 * policy, or a suitable node ID to allocate a replacement page from. 2585 */ 2586 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2587 { 2588 struct mempolicy *pol; 2589 struct zoneref *z; 2590 int curnid = page_to_nid(page); 2591 unsigned long pgoff; 2592 int thiscpu = raw_smp_processor_id(); 2593 int thisnid = cpu_to_node(thiscpu); 2594 int polnid = NUMA_NO_NODE; 2595 int ret = NUMA_NO_NODE; 2596 2597 pol = get_vma_policy(vma, addr); 2598 if (!(pol->flags & MPOL_F_MOF)) 2599 goto out; 2600 2601 switch (pol->mode) { 2602 case MPOL_INTERLEAVE: 2603 pgoff = vma->vm_pgoff; 2604 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2605 polnid = offset_il_node(pol, pgoff); 2606 break; 2607 2608 case MPOL_PREFERRED: 2609 if (node_isset(curnid, pol->nodes)) 2610 goto out; 2611 polnid = first_node(pol->nodes); 2612 break; 2613 2614 case MPOL_LOCAL: 2615 polnid = numa_node_id(); 2616 break; 2617 2618 case MPOL_BIND: 2619 /* Optimize placement among multiple nodes via NUMA balancing */ 2620 if (pol->flags & MPOL_F_MORON) { 2621 if (node_isset(thisnid, pol->nodes)) 2622 break; 2623 goto out; 2624 } 2625 fallthrough; 2626 2627 case MPOL_PREFERRED_MANY: 2628 /* 2629 * use current page if in policy nodemask, 2630 * else select nearest allowed node, if any. 2631 * If no allowed nodes, use current [!misplaced]. 2632 */ 2633 if (node_isset(curnid, pol->nodes)) 2634 goto out; 2635 z = first_zones_zonelist( 2636 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2637 gfp_zone(GFP_HIGHUSER), 2638 &pol->nodes); 2639 polnid = zone_to_nid(z->zone); 2640 break; 2641 2642 default: 2643 BUG(); 2644 } 2645 2646 /* Migrate the page towards the node whose CPU is referencing it */ 2647 if (pol->flags & MPOL_F_MORON) { 2648 polnid = thisnid; 2649 2650 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2651 goto out; 2652 } 2653 2654 if (curnid != polnid) 2655 ret = polnid; 2656 out: 2657 mpol_cond_put(pol); 2658 2659 return ret; 2660 } 2661 2662 /* 2663 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2664 * dropped after task->mempolicy is set to NULL so that any allocation done as 2665 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2666 * policy. 2667 */ 2668 void mpol_put_task_policy(struct task_struct *task) 2669 { 2670 struct mempolicy *pol; 2671 2672 task_lock(task); 2673 pol = task->mempolicy; 2674 task->mempolicy = NULL; 2675 task_unlock(task); 2676 mpol_put(pol); 2677 } 2678 2679 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2680 { 2681 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2682 rb_erase(&n->nd, &sp->root); 2683 sp_free(n); 2684 } 2685 2686 static void sp_node_init(struct sp_node *node, unsigned long start, 2687 unsigned long end, struct mempolicy *pol) 2688 { 2689 node->start = start; 2690 node->end = end; 2691 node->policy = pol; 2692 } 2693 2694 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2695 struct mempolicy *pol) 2696 { 2697 struct sp_node *n; 2698 struct mempolicy *newpol; 2699 2700 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2701 if (!n) 2702 return NULL; 2703 2704 newpol = mpol_dup(pol); 2705 if (IS_ERR(newpol)) { 2706 kmem_cache_free(sn_cache, n); 2707 return NULL; 2708 } 2709 newpol->flags |= MPOL_F_SHARED; 2710 sp_node_init(n, start, end, newpol); 2711 2712 return n; 2713 } 2714 2715 /* Replace a policy range. */ 2716 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2717 unsigned long end, struct sp_node *new) 2718 { 2719 struct sp_node *n; 2720 struct sp_node *n_new = NULL; 2721 struct mempolicy *mpol_new = NULL; 2722 int ret = 0; 2723 2724 restart: 2725 write_lock(&sp->lock); 2726 n = sp_lookup(sp, start, end); 2727 /* Take care of old policies in the same range. */ 2728 while (n && n->start < end) { 2729 struct rb_node *next = rb_next(&n->nd); 2730 if (n->start >= start) { 2731 if (n->end <= end) 2732 sp_delete(sp, n); 2733 else 2734 n->start = end; 2735 } else { 2736 /* Old policy spanning whole new range. */ 2737 if (n->end > end) { 2738 if (!n_new) 2739 goto alloc_new; 2740 2741 *mpol_new = *n->policy; 2742 atomic_set(&mpol_new->refcnt, 1); 2743 sp_node_init(n_new, end, n->end, mpol_new); 2744 n->end = start; 2745 sp_insert(sp, n_new); 2746 n_new = NULL; 2747 mpol_new = NULL; 2748 break; 2749 } else 2750 n->end = start; 2751 } 2752 if (!next) 2753 break; 2754 n = rb_entry(next, struct sp_node, nd); 2755 } 2756 if (new) 2757 sp_insert(sp, new); 2758 write_unlock(&sp->lock); 2759 ret = 0; 2760 2761 err_out: 2762 if (mpol_new) 2763 mpol_put(mpol_new); 2764 if (n_new) 2765 kmem_cache_free(sn_cache, n_new); 2766 2767 return ret; 2768 2769 alloc_new: 2770 write_unlock(&sp->lock); 2771 ret = -ENOMEM; 2772 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2773 if (!n_new) 2774 goto err_out; 2775 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2776 if (!mpol_new) 2777 goto err_out; 2778 atomic_set(&mpol_new->refcnt, 1); 2779 goto restart; 2780 } 2781 2782 /** 2783 * mpol_shared_policy_init - initialize shared policy for inode 2784 * @sp: pointer to inode shared policy 2785 * @mpol: struct mempolicy to install 2786 * 2787 * Install non-NULL @mpol in inode's shared policy rb-tree. 2788 * On entry, the current task has a reference on a non-NULL @mpol. 2789 * This must be released on exit. 2790 * This is called at get_inode() calls and we can use GFP_KERNEL. 2791 */ 2792 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2793 { 2794 int ret; 2795 2796 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2797 rwlock_init(&sp->lock); 2798 2799 if (mpol) { 2800 struct vm_area_struct pvma; 2801 struct mempolicy *new; 2802 NODEMASK_SCRATCH(scratch); 2803 2804 if (!scratch) 2805 goto put_mpol; 2806 /* contextualize the tmpfs mount point mempolicy */ 2807 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2808 if (IS_ERR(new)) 2809 goto free_scratch; /* no valid nodemask intersection */ 2810 2811 task_lock(current); 2812 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2813 task_unlock(current); 2814 if (ret) 2815 goto put_new; 2816 2817 /* Create pseudo-vma that contains just the policy */ 2818 vma_init(&pvma, NULL); 2819 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2820 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2821 2822 put_new: 2823 mpol_put(new); /* drop initial ref */ 2824 free_scratch: 2825 NODEMASK_SCRATCH_FREE(scratch); 2826 put_mpol: 2827 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2828 } 2829 } 2830 2831 int mpol_set_shared_policy(struct shared_policy *info, 2832 struct vm_area_struct *vma, struct mempolicy *npol) 2833 { 2834 int err; 2835 struct sp_node *new = NULL; 2836 unsigned long sz = vma_pages(vma); 2837 2838 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2839 vma->vm_pgoff, 2840 sz, npol ? npol->mode : -1, 2841 npol ? npol->flags : -1, 2842 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2843 2844 if (npol) { 2845 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2846 if (!new) 2847 return -ENOMEM; 2848 } 2849 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2850 if (err && new) 2851 sp_free(new); 2852 return err; 2853 } 2854 2855 /* Free a backing policy store on inode delete. */ 2856 void mpol_free_shared_policy(struct shared_policy *p) 2857 { 2858 struct sp_node *n; 2859 struct rb_node *next; 2860 2861 if (!p->root.rb_node) 2862 return; 2863 write_lock(&p->lock); 2864 next = rb_first(&p->root); 2865 while (next) { 2866 n = rb_entry(next, struct sp_node, nd); 2867 next = rb_next(&n->nd); 2868 sp_delete(p, n); 2869 } 2870 write_unlock(&p->lock); 2871 } 2872 2873 #ifdef CONFIG_NUMA_BALANCING 2874 static int __initdata numabalancing_override; 2875 2876 static void __init check_numabalancing_enable(void) 2877 { 2878 bool numabalancing_default = false; 2879 2880 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2881 numabalancing_default = true; 2882 2883 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2884 if (numabalancing_override) 2885 set_numabalancing_state(numabalancing_override == 1); 2886 2887 if (num_online_nodes() > 1 && !numabalancing_override) { 2888 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2889 numabalancing_default ? "Enabling" : "Disabling"); 2890 set_numabalancing_state(numabalancing_default); 2891 } 2892 } 2893 2894 static int __init setup_numabalancing(char *str) 2895 { 2896 int ret = 0; 2897 if (!str) 2898 goto out; 2899 2900 if (!strcmp(str, "enable")) { 2901 numabalancing_override = 1; 2902 ret = 1; 2903 } else if (!strcmp(str, "disable")) { 2904 numabalancing_override = -1; 2905 ret = 1; 2906 } 2907 out: 2908 if (!ret) 2909 pr_warn("Unable to parse numa_balancing=\n"); 2910 2911 return ret; 2912 } 2913 __setup("numa_balancing=", setup_numabalancing); 2914 #else 2915 static inline void __init check_numabalancing_enable(void) 2916 { 2917 } 2918 #endif /* CONFIG_NUMA_BALANCING */ 2919 2920 /* assumes fs == KERNEL_DS */ 2921 void __init numa_policy_init(void) 2922 { 2923 nodemask_t interleave_nodes; 2924 unsigned long largest = 0; 2925 int nid, prefer = 0; 2926 2927 policy_cache = kmem_cache_create("numa_policy", 2928 sizeof(struct mempolicy), 2929 0, SLAB_PANIC, NULL); 2930 2931 sn_cache = kmem_cache_create("shared_policy_node", 2932 sizeof(struct sp_node), 2933 0, SLAB_PANIC, NULL); 2934 2935 for_each_node(nid) { 2936 preferred_node_policy[nid] = (struct mempolicy) { 2937 .refcnt = ATOMIC_INIT(1), 2938 .mode = MPOL_PREFERRED, 2939 .flags = MPOL_F_MOF | MPOL_F_MORON, 2940 .nodes = nodemask_of_node(nid), 2941 }; 2942 } 2943 2944 /* 2945 * Set interleaving policy for system init. Interleaving is only 2946 * enabled across suitably sized nodes (default is >= 16MB), or 2947 * fall back to the largest node if they're all smaller. 2948 */ 2949 nodes_clear(interleave_nodes); 2950 for_each_node_state(nid, N_MEMORY) { 2951 unsigned long total_pages = node_present_pages(nid); 2952 2953 /* Preserve the largest node */ 2954 if (largest < total_pages) { 2955 largest = total_pages; 2956 prefer = nid; 2957 } 2958 2959 /* Interleave this node? */ 2960 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2961 node_set(nid, interleave_nodes); 2962 } 2963 2964 /* All too small, use the largest */ 2965 if (unlikely(nodes_empty(interleave_nodes))) 2966 node_set(prefer, interleave_nodes); 2967 2968 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2969 pr_err("%s: interleaving failed\n", __func__); 2970 2971 check_numabalancing_enable(); 2972 } 2973 2974 /* Reset policy of current process to default */ 2975 void numa_default_policy(void) 2976 { 2977 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2978 } 2979 2980 /* 2981 * Parse and format mempolicy from/to strings 2982 */ 2983 2984 static const char * const policy_modes[] = 2985 { 2986 [MPOL_DEFAULT] = "default", 2987 [MPOL_PREFERRED] = "prefer", 2988 [MPOL_BIND] = "bind", 2989 [MPOL_INTERLEAVE] = "interleave", 2990 [MPOL_LOCAL] = "local", 2991 [MPOL_PREFERRED_MANY] = "prefer (many)", 2992 }; 2993 2994 2995 #ifdef CONFIG_TMPFS 2996 /** 2997 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2998 * @str: string containing mempolicy to parse 2999 * @mpol: pointer to struct mempolicy pointer, returned on success. 3000 * 3001 * Format of input: 3002 * <mode>[=<flags>][:<nodelist>] 3003 * 3004 * Return: %0 on success, else %1 3005 */ 3006 int mpol_parse_str(char *str, struct mempolicy **mpol) 3007 { 3008 struct mempolicy *new = NULL; 3009 unsigned short mode_flags; 3010 nodemask_t nodes; 3011 char *nodelist = strchr(str, ':'); 3012 char *flags = strchr(str, '='); 3013 int err = 1, mode; 3014 3015 if (flags) 3016 *flags++ = '\0'; /* terminate mode string */ 3017 3018 if (nodelist) { 3019 /* NUL-terminate mode or flags string */ 3020 *nodelist++ = '\0'; 3021 if (nodelist_parse(nodelist, nodes)) 3022 goto out; 3023 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3024 goto out; 3025 } else 3026 nodes_clear(nodes); 3027 3028 mode = match_string(policy_modes, MPOL_MAX, str); 3029 if (mode < 0) 3030 goto out; 3031 3032 switch (mode) { 3033 case MPOL_PREFERRED: 3034 /* 3035 * Insist on a nodelist of one node only, although later 3036 * we use first_node(nodes) to grab a single node, so here 3037 * nodelist (or nodes) cannot be empty. 3038 */ 3039 if (nodelist) { 3040 char *rest = nodelist; 3041 while (isdigit(*rest)) 3042 rest++; 3043 if (*rest) 3044 goto out; 3045 if (nodes_empty(nodes)) 3046 goto out; 3047 } 3048 break; 3049 case MPOL_INTERLEAVE: 3050 /* 3051 * Default to online nodes with memory if no nodelist 3052 */ 3053 if (!nodelist) 3054 nodes = node_states[N_MEMORY]; 3055 break; 3056 case MPOL_LOCAL: 3057 /* 3058 * Don't allow a nodelist; mpol_new() checks flags 3059 */ 3060 if (nodelist) 3061 goto out; 3062 break; 3063 case MPOL_DEFAULT: 3064 /* 3065 * Insist on a empty nodelist 3066 */ 3067 if (!nodelist) 3068 err = 0; 3069 goto out; 3070 case MPOL_PREFERRED_MANY: 3071 case MPOL_BIND: 3072 /* 3073 * Insist on a nodelist 3074 */ 3075 if (!nodelist) 3076 goto out; 3077 } 3078 3079 mode_flags = 0; 3080 if (flags) { 3081 /* 3082 * Currently, we only support two mutually exclusive 3083 * mode flags. 3084 */ 3085 if (!strcmp(flags, "static")) 3086 mode_flags |= MPOL_F_STATIC_NODES; 3087 else if (!strcmp(flags, "relative")) 3088 mode_flags |= MPOL_F_RELATIVE_NODES; 3089 else 3090 goto out; 3091 } 3092 3093 new = mpol_new(mode, mode_flags, &nodes); 3094 if (IS_ERR(new)) 3095 goto out; 3096 3097 /* 3098 * Save nodes for mpol_to_str() to show the tmpfs mount options 3099 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3100 */ 3101 if (mode != MPOL_PREFERRED) { 3102 new->nodes = nodes; 3103 } else if (nodelist) { 3104 nodes_clear(new->nodes); 3105 node_set(first_node(nodes), new->nodes); 3106 } else { 3107 new->mode = MPOL_LOCAL; 3108 } 3109 3110 /* 3111 * Save nodes for contextualization: this will be used to "clone" 3112 * the mempolicy in a specific context [cpuset] at a later time. 3113 */ 3114 new->w.user_nodemask = nodes; 3115 3116 err = 0; 3117 3118 out: 3119 /* Restore string for error message */ 3120 if (nodelist) 3121 *--nodelist = ':'; 3122 if (flags) 3123 *--flags = '='; 3124 if (!err) 3125 *mpol = new; 3126 return err; 3127 } 3128 #endif /* CONFIG_TMPFS */ 3129 3130 /** 3131 * mpol_to_str - format a mempolicy structure for printing 3132 * @buffer: to contain formatted mempolicy string 3133 * @maxlen: length of @buffer 3134 * @pol: pointer to mempolicy to be formatted 3135 * 3136 * Convert @pol into a string. If @buffer is too short, truncate the string. 3137 * Recommend a @maxlen of at least 51 for the longest mode, "weighted 3138 * interleave", plus the longest flag flags, "relative|balancing", and to 3139 * display at least a few node ids. 3140 */ 3141 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3142 { 3143 char *p = buffer; 3144 nodemask_t nodes = NODE_MASK_NONE; 3145 unsigned short mode = MPOL_DEFAULT; 3146 unsigned short flags = 0; 3147 3148 if (pol && 3149 pol != &default_policy && 3150 !(pol >= &preferred_node_policy[0] && 3151 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) { 3152 mode = pol->mode; 3153 flags = pol->flags; 3154 } 3155 3156 switch (mode) { 3157 case MPOL_DEFAULT: 3158 case MPOL_LOCAL: 3159 break; 3160 case MPOL_PREFERRED: 3161 case MPOL_PREFERRED_MANY: 3162 case MPOL_BIND: 3163 case MPOL_INTERLEAVE: 3164 nodes = pol->nodes; 3165 break; 3166 default: 3167 WARN_ON_ONCE(1); 3168 snprintf(p, maxlen, "unknown"); 3169 return; 3170 } 3171 3172 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3173 3174 if (flags & MPOL_MODE_FLAGS) { 3175 p += snprintf(p, buffer + maxlen - p, "="); 3176 3177 /* 3178 * Static and relative are mutually exclusive. 3179 */ 3180 if (flags & MPOL_F_STATIC_NODES) 3181 p += snprintf(p, buffer + maxlen - p, "static"); 3182 else if (flags & MPOL_F_RELATIVE_NODES) 3183 p += snprintf(p, buffer + maxlen - p, "relative"); 3184 3185 if (flags & MPOL_F_NUMA_BALANCING) { 3186 if (!is_power_of_2(flags & MPOL_MODE_FLAGS)) 3187 p += snprintf(p, buffer + maxlen - p, "|"); 3188 p += snprintf(p, buffer + maxlen - p, "balancing"); 3189 } 3190 } 3191 3192 if (!nodes_empty(nodes)) 3193 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3194 nodemask_pr_args(&nodes)); 3195 } 3196