xref: /openbmc/linux/mm/mempolicy.c (revision feac8c8b)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = tmp;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 				unsigned long end, struct mm_walk *walk)
433 {
434 	int ret = 0;
435 	struct page *page;
436 	struct queue_pages *qp = walk->private;
437 	unsigned long flags;
438 
439 	if (unlikely(is_pmd_migration_entry(*pmd))) {
440 		ret = 1;
441 		goto unlock;
442 	}
443 	page = pmd_page(*pmd);
444 	if (is_huge_zero_page(page)) {
445 		spin_unlock(ptl);
446 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 		goto out;
448 	}
449 	if (!thp_migration_supported()) {
450 		get_page(page);
451 		spin_unlock(ptl);
452 		lock_page(page);
453 		ret = split_huge_page(page);
454 		unlock_page(page);
455 		put_page(page);
456 		goto out;
457 	}
458 	if (!queue_pages_required(page, qp)) {
459 		ret = 1;
460 		goto unlock;
461 	}
462 
463 	ret = 1;
464 	flags = qp->flags;
465 	/* go to thp migration */
466 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 		migrate_page_add(page, qp->pagelist, flags);
468 unlock:
469 	spin_unlock(ptl);
470 out:
471 	return ret;
472 }
473 
474 /*
475  * Scan through pages checking if pages follow certain conditions,
476  * and move them to the pagelist if they do.
477  */
478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 			unsigned long end, struct mm_walk *walk)
480 {
481 	struct vm_area_struct *vma = walk->vma;
482 	struct page *page;
483 	struct queue_pages *qp = walk->private;
484 	unsigned long flags = qp->flags;
485 	int ret;
486 	pte_t *pte;
487 	spinlock_t *ptl;
488 
489 	ptl = pmd_trans_huge_lock(pmd, vma);
490 	if (ptl) {
491 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 		if (ret)
493 			return 0;
494 	}
495 
496 	if (pmd_trans_unstable(pmd))
497 		return 0;
498 retry:
499 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 	for (; addr != end; pte++, addr += PAGE_SIZE) {
501 		if (!pte_present(*pte))
502 			continue;
503 		page = vm_normal_page(vma, addr, *pte);
504 		if (!page)
505 			continue;
506 		/*
507 		 * vm_normal_page() filters out zero pages, but there might
508 		 * still be PageReserved pages to skip, perhaps in a VDSO.
509 		 */
510 		if (PageReserved(page))
511 			continue;
512 		if (!queue_pages_required(page, qp))
513 			continue;
514 		if (PageTransCompound(page) && !thp_migration_supported()) {
515 			get_page(page);
516 			pte_unmap_unlock(pte, ptl);
517 			lock_page(page);
518 			ret = split_huge_page(page);
519 			unlock_page(page);
520 			put_page(page);
521 			/* Failed to split -- skip. */
522 			if (ret) {
523 				pte = pte_offset_map_lock(walk->mm, pmd,
524 						addr, &ptl);
525 				continue;
526 			}
527 			goto retry;
528 		}
529 
530 		migrate_page_add(page, qp->pagelist, flags);
531 	}
532 	pte_unmap_unlock(pte - 1, ptl);
533 	cond_resched();
534 	return 0;
535 }
536 
537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 			       unsigned long addr, unsigned long end,
539 			       struct mm_walk *walk)
540 {
541 #ifdef CONFIG_HUGETLB_PAGE
542 	struct queue_pages *qp = walk->private;
543 	unsigned long flags = qp->flags;
544 	struct page *page;
545 	spinlock_t *ptl;
546 	pte_t entry;
547 
548 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 	entry = huge_ptep_get(pte);
550 	if (!pte_present(entry))
551 		goto unlock;
552 	page = pte_page(entry);
553 	if (!queue_pages_required(page, qp))
554 		goto unlock;
555 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 	if (flags & (MPOL_MF_MOVE_ALL) ||
557 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 		isolate_huge_page(page, qp->pagelist);
559 unlock:
560 	spin_unlock(ptl);
561 #else
562 	BUG();
563 #endif
564 	return 0;
565 }
566 
567 #ifdef CONFIG_NUMA_BALANCING
568 /*
569  * This is used to mark a range of virtual addresses to be inaccessible.
570  * These are later cleared by a NUMA hinting fault. Depending on these
571  * faults, pages may be migrated for better NUMA placement.
572  *
573  * This is assuming that NUMA faults are handled using PROT_NONE. If
574  * an architecture makes a different choice, it will need further
575  * changes to the core.
576  */
577 unsigned long change_prot_numa(struct vm_area_struct *vma,
578 			unsigned long addr, unsigned long end)
579 {
580 	int nr_updated;
581 
582 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 	if (nr_updated)
584 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585 
586 	return nr_updated;
587 }
588 #else
589 static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 			unsigned long addr, unsigned long end)
591 {
592 	return 0;
593 }
594 #endif /* CONFIG_NUMA_BALANCING */
595 
596 static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 				struct mm_walk *walk)
598 {
599 	struct vm_area_struct *vma = walk->vma;
600 	struct queue_pages *qp = walk->private;
601 	unsigned long endvma = vma->vm_end;
602 	unsigned long flags = qp->flags;
603 
604 	if (!vma_migratable(vma))
605 		return 1;
606 
607 	if (endvma > end)
608 		endvma = end;
609 	if (vma->vm_start > start)
610 		start = vma->vm_start;
611 
612 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 		if (!vma->vm_next && vma->vm_end < end)
614 			return -EFAULT;
615 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 			return -EFAULT;
617 	}
618 
619 	qp->prev = vma;
620 
621 	if (flags & MPOL_MF_LAZY) {
622 		/* Similar to task_numa_work, skip inaccessible VMAs */
623 		if (!is_vm_hugetlb_page(vma) &&
624 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 			!(vma->vm_flags & VM_MIXEDMAP))
626 			change_prot_numa(vma, start, endvma);
627 		return 1;
628 	}
629 
630 	/* queue pages from current vma */
631 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 		return 0;
633 	return 1;
634 }
635 
636 /*
637  * Walk through page tables and collect pages to be migrated.
638  *
639  * If pages found in a given range are on a set of nodes (determined by
640  * @nodes and @flags,) it's isolated and queued to the pagelist which is
641  * passed via @private.)
642  */
643 static int
644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 		nodemask_t *nodes, unsigned long flags,
646 		struct list_head *pagelist)
647 {
648 	struct queue_pages qp = {
649 		.pagelist = pagelist,
650 		.flags = flags,
651 		.nmask = nodes,
652 		.prev = NULL,
653 	};
654 	struct mm_walk queue_pages_walk = {
655 		.hugetlb_entry = queue_pages_hugetlb,
656 		.pmd_entry = queue_pages_pte_range,
657 		.test_walk = queue_pages_test_walk,
658 		.mm = mm,
659 		.private = &qp,
660 	};
661 
662 	return walk_page_range(start, end, &queue_pages_walk);
663 }
664 
665 /*
666  * Apply policy to a single VMA
667  * This must be called with the mmap_sem held for writing.
668  */
669 static int vma_replace_policy(struct vm_area_struct *vma,
670 						struct mempolicy *pol)
671 {
672 	int err;
673 	struct mempolicy *old;
674 	struct mempolicy *new;
675 
676 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 		 vma->vm_ops, vma->vm_file,
679 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680 
681 	new = mpol_dup(pol);
682 	if (IS_ERR(new))
683 		return PTR_ERR(new);
684 
685 	if (vma->vm_ops && vma->vm_ops->set_policy) {
686 		err = vma->vm_ops->set_policy(vma, new);
687 		if (err)
688 			goto err_out;
689 	}
690 
691 	old = vma->vm_policy;
692 	vma->vm_policy = new; /* protected by mmap_sem */
693 	mpol_put(old);
694 
695 	return 0;
696  err_out:
697 	mpol_put(new);
698 	return err;
699 }
700 
701 /* Step 2: apply policy to a range and do splits. */
702 static int mbind_range(struct mm_struct *mm, unsigned long start,
703 		       unsigned long end, struct mempolicy *new_pol)
704 {
705 	struct vm_area_struct *next;
706 	struct vm_area_struct *prev;
707 	struct vm_area_struct *vma;
708 	int err = 0;
709 	pgoff_t pgoff;
710 	unsigned long vmstart;
711 	unsigned long vmend;
712 
713 	vma = find_vma(mm, start);
714 	if (!vma || vma->vm_start > start)
715 		return -EFAULT;
716 
717 	prev = vma->vm_prev;
718 	if (start > vma->vm_start)
719 		prev = vma;
720 
721 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 		next = vma->vm_next;
723 		vmstart = max(start, vma->vm_start);
724 		vmend   = min(end, vma->vm_end);
725 
726 		if (mpol_equal(vma_policy(vma), new_pol))
727 			continue;
728 
729 		pgoff = vma->vm_pgoff +
730 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 				 vma->anon_vma, vma->vm_file, pgoff,
733 				 new_pol, vma->vm_userfaultfd_ctx);
734 		if (prev) {
735 			vma = prev;
736 			next = vma->vm_next;
737 			if (mpol_equal(vma_policy(vma), new_pol))
738 				continue;
739 			/* vma_merge() joined vma && vma->next, case 8 */
740 			goto replace;
741 		}
742 		if (vma->vm_start != vmstart) {
743 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 			if (err)
745 				goto out;
746 		}
747 		if (vma->vm_end != vmend) {
748 			err = split_vma(vma->vm_mm, vma, vmend, 0);
749 			if (err)
750 				goto out;
751 		}
752  replace:
753 		err = vma_replace_policy(vma, new_pol);
754 		if (err)
755 			goto out;
756 	}
757 
758  out:
759 	return err;
760 }
761 
762 /* Set the process memory policy */
763 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 			     nodemask_t *nodes)
765 {
766 	struct mempolicy *new, *old;
767 	NODEMASK_SCRATCH(scratch);
768 	int ret;
769 
770 	if (!scratch)
771 		return -ENOMEM;
772 
773 	new = mpol_new(mode, flags, nodes);
774 	if (IS_ERR(new)) {
775 		ret = PTR_ERR(new);
776 		goto out;
777 	}
778 
779 	task_lock(current);
780 	ret = mpol_set_nodemask(new, nodes, scratch);
781 	if (ret) {
782 		task_unlock(current);
783 		mpol_put(new);
784 		goto out;
785 	}
786 	old = current->mempolicy;
787 	current->mempolicy = new;
788 	if (new && new->mode == MPOL_INTERLEAVE)
789 		current->il_prev = MAX_NUMNODES-1;
790 	task_unlock(current);
791 	mpol_put(old);
792 	ret = 0;
793 out:
794 	NODEMASK_SCRATCH_FREE(scratch);
795 	return ret;
796 }
797 
798 /*
799  * Return nodemask for policy for get_mempolicy() query
800  *
801  * Called with task's alloc_lock held
802  */
803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804 {
805 	nodes_clear(*nodes);
806 	if (p == &default_policy)
807 		return;
808 
809 	switch (p->mode) {
810 	case MPOL_BIND:
811 		/* Fall through */
812 	case MPOL_INTERLEAVE:
813 		*nodes = p->v.nodes;
814 		break;
815 	case MPOL_PREFERRED:
816 		if (!(p->flags & MPOL_F_LOCAL))
817 			node_set(p->v.preferred_node, *nodes);
818 		/* else return empty node mask for local allocation */
819 		break;
820 	default:
821 		BUG();
822 	}
823 }
824 
825 static int lookup_node(unsigned long addr)
826 {
827 	struct page *p;
828 	int err;
829 
830 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 	if (err >= 0) {
832 		err = page_to_nid(p);
833 		put_page(p);
834 	}
835 	return err;
836 }
837 
838 /* Retrieve NUMA policy */
839 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 			     unsigned long addr, unsigned long flags)
841 {
842 	int err;
843 	struct mm_struct *mm = current->mm;
844 	struct vm_area_struct *vma = NULL;
845 	struct mempolicy *pol = current->mempolicy;
846 
847 	if (flags &
848 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 		return -EINVAL;
850 
851 	if (flags & MPOL_F_MEMS_ALLOWED) {
852 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 			return -EINVAL;
854 		*policy = 0;	/* just so it's initialized */
855 		task_lock(current);
856 		*nmask  = cpuset_current_mems_allowed;
857 		task_unlock(current);
858 		return 0;
859 	}
860 
861 	if (flags & MPOL_F_ADDR) {
862 		/*
863 		 * Do NOT fall back to task policy if the
864 		 * vma/shared policy at addr is NULL.  We
865 		 * want to return MPOL_DEFAULT in this case.
866 		 */
867 		down_read(&mm->mmap_sem);
868 		vma = find_vma_intersection(mm, addr, addr+1);
869 		if (!vma) {
870 			up_read(&mm->mmap_sem);
871 			return -EFAULT;
872 		}
873 		if (vma->vm_ops && vma->vm_ops->get_policy)
874 			pol = vma->vm_ops->get_policy(vma, addr);
875 		else
876 			pol = vma->vm_policy;
877 	} else if (addr)
878 		return -EINVAL;
879 
880 	if (!pol)
881 		pol = &default_policy;	/* indicates default behavior */
882 
883 	if (flags & MPOL_F_NODE) {
884 		if (flags & MPOL_F_ADDR) {
885 			err = lookup_node(addr);
886 			if (err < 0)
887 				goto out;
888 			*policy = err;
889 		} else if (pol == current->mempolicy &&
890 				pol->mode == MPOL_INTERLEAVE) {
891 			*policy = next_node_in(current->il_prev, pol->v.nodes);
892 		} else {
893 			err = -EINVAL;
894 			goto out;
895 		}
896 	} else {
897 		*policy = pol == &default_policy ? MPOL_DEFAULT :
898 						pol->mode;
899 		/*
900 		 * Internal mempolicy flags must be masked off before exposing
901 		 * the policy to userspace.
902 		 */
903 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
904 	}
905 
906 	err = 0;
907 	if (nmask) {
908 		if (mpol_store_user_nodemask(pol)) {
909 			*nmask = pol->w.user_nodemask;
910 		} else {
911 			task_lock(current);
912 			get_policy_nodemask(pol, nmask);
913 			task_unlock(current);
914 		}
915 	}
916 
917  out:
918 	mpol_cond_put(pol);
919 	if (vma)
920 		up_read(&current->mm->mmap_sem);
921 	return err;
922 }
923 
924 #ifdef CONFIG_MIGRATION
925 /*
926  * page migration, thp tail pages can be passed.
927  */
928 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 				unsigned long flags)
930 {
931 	struct page *head = compound_head(page);
932 	/*
933 	 * Avoid migrating a page that is shared with others.
934 	 */
935 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 		if (!isolate_lru_page(head)) {
937 			list_add_tail(&head->lru, pagelist);
938 			mod_node_page_state(page_pgdat(head),
939 				NR_ISOLATED_ANON + page_is_file_cache(head),
940 				hpage_nr_pages(head));
941 		}
942 	}
943 }
944 
945 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946 {
947 	if (PageHuge(page))
948 		return alloc_huge_page_node(page_hstate(compound_head(page)),
949 					node);
950 	else if (thp_migration_supported() && PageTransHuge(page)) {
951 		struct page *thp;
952 
953 		thp = alloc_pages_node(node,
954 			(GFP_TRANSHUGE | __GFP_THISNODE),
955 			HPAGE_PMD_ORDER);
956 		if (!thp)
957 			return NULL;
958 		prep_transhuge_page(thp);
959 		return thp;
960 	} else
961 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 						    __GFP_THISNODE, 0);
963 }
964 
965 /*
966  * Migrate pages from one node to a target node.
967  * Returns error or the number of pages not migrated.
968  */
969 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 			   int flags)
971 {
972 	nodemask_t nmask;
973 	LIST_HEAD(pagelist);
974 	int err = 0;
975 
976 	nodes_clear(nmask);
977 	node_set(source, nmask);
978 
979 	/*
980 	 * This does not "check" the range but isolates all pages that
981 	 * need migration.  Between passing in the full user address
982 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 	 */
984 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987 
988 	if (!list_empty(&pagelist)) {
989 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 					MIGRATE_SYNC, MR_SYSCALL);
991 		if (err)
992 			putback_movable_pages(&pagelist);
993 	}
994 
995 	return err;
996 }
997 
998 /*
999  * Move pages between the two nodesets so as to preserve the physical
1000  * layout as much as possible.
1001  *
1002  * Returns the number of page that could not be moved.
1003  */
1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 		     const nodemask_t *to, int flags)
1006 {
1007 	int busy = 0;
1008 	int err;
1009 	nodemask_t tmp;
1010 
1011 	err = migrate_prep();
1012 	if (err)
1013 		return err;
1014 
1015 	down_read(&mm->mmap_sem);
1016 
1017 	/*
1018 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1020 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 	 * The pair of nodemasks 'to' and 'from' define the map.
1022 	 *
1023 	 * If no pair of bits is found that way, fallback to picking some
1024 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1025 	 * 'source' and 'dest' bits are the same, this represents a node
1026 	 * that will be migrating to itself, so no pages need move.
1027 	 *
1028 	 * If no bits are left in 'tmp', or if all remaining bits left
1029 	 * in 'tmp' correspond to the same bit in 'to', return false
1030 	 * (nothing left to migrate).
1031 	 *
1032 	 * This lets us pick a pair of nodes to migrate between, such that
1033 	 * if possible the dest node is not already occupied by some other
1034 	 * source node, minimizing the risk of overloading the memory on a
1035 	 * node that would happen if we migrated incoming memory to a node
1036 	 * before migrating outgoing memory source that same node.
1037 	 *
1038 	 * A single scan of tmp is sufficient.  As we go, we remember the
1039 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1040 	 * that not only moved, but what's better, moved to an empty slot
1041 	 * (d is not set in tmp), then we break out then, with that pair.
1042 	 * Otherwise when we finish scanning from_tmp, we at least have the
1043 	 * most recent <s, d> pair that moved.  If we get all the way through
1044 	 * the scan of tmp without finding any node that moved, much less
1045 	 * moved to an empty node, then there is nothing left worth migrating.
1046 	 */
1047 
1048 	tmp = *from;
1049 	while (!nodes_empty(tmp)) {
1050 		int s,d;
1051 		int source = NUMA_NO_NODE;
1052 		int dest = 0;
1053 
1054 		for_each_node_mask(s, tmp) {
1055 
1056 			/*
1057 			 * do_migrate_pages() tries to maintain the relative
1058 			 * node relationship of the pages established between
1059 			 * threads and memory areas.
1060                          *
1061 			 * However if the number of source nodes is not equal to
1062 			 * the number of destination nodes we can not preserve
1063 			 * this node relative relationship.  In that case, skip
1064 			 * copying memory from a node that is in the destination
1065 			 * mask.
1066 			 *
1067 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 			 */
1070 
1071 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 						(node_isset(s, *to)))
1073 				continue;
1074 
1075 			d = node_remap(s, *from, *to);
1076 			if (s == d)
1077 				continue;
1078 
1079 			source = s;	/* Node moved. Memorize */
1080 			dest = d;
1081 
1082 			/* dest not in remaining from nodes? */
1083 			if (!node_isset(dest, tmp))
1084 				break;
1085 		}
1086 		if (source == NUMA_NO_NODE)
1087 			break;
1088 
1089 		node_clear(source, tmp);
1090 		err = migrate_to_node(mm, source, dest, flags);
1091 		if (err > 0)
1092 			busy += err;
1093 		if (err < 0)
1094 			break;
1095 	}
1096 	up_read(&mm->mmap_sem);
1097 	if (err < 0)
1098 		return err;
1099 	return busy;
1100 
1101 }
1102 
1103 /*
1104  * Allocate a new page for page migration based on vma policy.
1105  * Start by assuming the page is mapped by the same vma as contains @start.
1106  * Search forward from there, if not.  N.B., this assumes that the
1107  * list of pages handed to migrate_pages()--which is how we get here--
1108  * is in virtual address order.
1109  */
1110 static struct page *new_page(struct page *page, unsigned long start, int **x)
1111 {
1112 	struct vm_area_struct *vma;
1113 	unsigned long uninitialized_var(address);
1114 
1115 	vma = find_vma(current->mm, start);
1116 	while (vma) {
1117 		address = page_address_in_vma(page, vma);
1118 		if (address != -EFAULT)
1119 			break;
1120 		vma = vma->vm_next;
1121 	}
1122 
1123 	if (PageHuge(page)) {
1124 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1125 				vma, address);
1126 	} else if (thp_migration_supported() && PageTransHuge(page)) {
1127 		struct page *thp;
1128 
1129 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 					 HPAGE_PMD_ORDER);
1131 		if (!thp)
1132 			return NULL;
1133 		prep_transhuge_page(thp);
1134 		return thp;
1135 	}
1136 	/*
1137 	 * if !vma, alloc_page_vma() will use task or system default policy
1138 	 */
1139 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 			vma, address);
1141 }
1142 #else
1143 
1144 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 				unsigned long flags)
1146 {
1147 }
1148 
1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 		     const nodemask_t *to, int flags)
1151 {
1152 	return -ENOSYS;
1153 }
1154 
1155 static struct page *new_page(struct page *page, unsigned long start, int **x)
1156 {
1157 	return NULL;
1158 }
1159 #endif
1160 
1161 static long do_mbind(unsigned long start, unsigned long len,
1162 		     unsigned short mode, unsigned short mode_flags,
1163 		     nodemask_t *nmask, unsigned long flags)
1164 {
1165 	struct mm_struct *mm = current->mm;
1166 	struct mempolicy *new;
1167 	unsigned long end;
1168 	int err;
1169 	LIST_HEAD(pagelist);
1170 
1171 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 		return -EINVAL;
1173 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 		return -EPERM;
1175 
1176 	if (start & ~PAGE_MASK)
1177 		return -EINVAL;
1178 
1179 	if (mode == MPOL_DEFAULT)
1180 		flags &= ~MPOL_MF_STRICT;
1181 
1182 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 	end = start + len;
1184 
1185 	if (end < start)
1186 		return -EINVAL;
1187 	if (end == start)
1188 		return 0;
1189 
1190 	new = mpol_new(mode, mode_flags, nmask);
1191 	if (IS_ERR(new))
1192 		return PTR_ERR(new);
1193 
1194 	if (flags & MPOL_MF_LAZY)
1195 		new->flags |= MPOL_F_MOF;
1196 
1197 	/*
1198 	 * If we are using the default policy then operation
1199 	 * on discontinuous address spaces is okay after all
1200 	 */
1201 	if (!new)
1202 		flags |= MPOL_MF_DISCONTIG_OK;
1203 
1204 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 		 start, start + len, mode, mode_flags,
1206 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207 
1208 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209 
1210 		err = migrate_prep();
1211 		if (err)
1212 			goto mpol_out;
1213 	}
1214 	{
1215 		NODEMASK_SCRATCH(scratch);
1216 		if (scratch) {
1217 			down_write(&mm->mmap_sem);
1218 			task_lock(current);
1219 			err = mpol_set_nodemask(new, nmask, scratch);
1220 			task_unlock(current);
1221 			if (err)
1222 				up_write(&mm->mmap_sem);
1223 		} else
1224 			err = -ENOMEM;
1225 		NODEMASK_SCRATCH_FREE(scratch);
1226 	}
1227 	if (err)
1228 		goto mpol_out;
1229 
1230 	err = queue_pages_range(mm, start, end, nmask,
1231 			  flags | MPOL_MF_INVERT, &pagelist);
1232 	if (!err)
1233 		err = mbind_range(mm, start, end, new);
1234 
1235 	if (!err) {
1236 		int nr_failed = 0;
1237 
1238 		if (!list_empty(&pagelist)) {
1239 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 			if (nr_failed)
1243 				putback_movable_pages(&pagelist);
1244 		}
1245 
1246 		if (nr_failed && (flags & MPOL_MF_STRICT))
1247 			err = -EIO;
1248 	} else
1249 		putback_movable_pages(&pagelist);
1250 
1251 	up_write(&mm->mmap_sem);
1252  mpol_out:
1253 	mpol_put(new);
1254 	return err;
1255 }
1256 
1257 /*
1258  * User space interface with variable sized bitmaps for nodelists.
1259  */
1260 
1261 /* Copy a node mask from user space. */
1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 		     unsigned long maxnode)
1264 {
1265 	unsigned long k;
1266 	unsigned long t;
1267 	unsigned long nlongs;
1268 	unsigned long endmask;
1269 
1270 	--maxnode;
1271 	nodes_clear(*nodes);
1272 	if (maxnode == 0 || !nmask)
1273 		return 0;
1274 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1275 		return -EINVAL;
1276 
1277 	nlongs = BITS_TO_LONGS(maxnode);
1278 	if ((maxnode % BITS_PER_LONG) == 0)
1279 		endmask = ~0UL;
1280 	else
1281 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1282 
1283 	/*
1284 	 * When the user specified more nodes than supported just check
1285 	 * if the non supported part is all zero.
1286 	 *
1287 	 * If maxnode have more longs than MAX_NUMNODES, check
1288 	 * the bits in that area first. And then go through to
1289 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1290 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1291 	 */
1292 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1294 			if (get_user(t, nmask + k))
1295 				return -EFAULT;
1296 			if (k == nlongs - 1) {
1297 				if (t & endmask)
1298 					return -EINVAL;
1299 			} else if (t)
1300 				return -EINVAL;
1301 		}
1302 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1303 		endmask = ~0UL;
1304 	}
1305 
1306 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1307 		unsigned long valid_mask = endmask;
1308 
1309 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1310 		if (get_user(t, nmask + nlongs - 1))
1311 			return -EFAULT;
1312 		if (t & valid_mask)
1313 			return -EINVAL;
1314 	}
1315 
1316 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1317 		return -EFAULT;
1318 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1319 	return 0;
1320 }
1321 
1322 /* Copy a kernel node mask to user space */
1323 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1324 			      nodemask_t *nodes)
1325 {
1326 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1327 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1328 
1329 	if (copy > nbytes) {
1330 		if (copy > PAGE_SIZE)
1331 			return -EINVAL;
1332 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1333 			return -EFAULT;
1334 		copy = nbytes;
1335 	}
1336 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1337 }
1338 
1339 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1340 		unsigned long, mode, const unsigned long __user *, nmask,
1341 		unsigned long, maxnode, unsigned, flags)
1342 {
1343 	nodemask_t nodes;
1344 	int err;
1345 	unsigned short mode_flags;
1346 
1347 	mode_flags = mode & MPOL_MODE_FLAGS;
1348 	mode &= ~MPOL_MODE_FLAGS;
1349 	if (mode >= MPOL_MAX)
1350 		return -EINVAL;
1351 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1352 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1353 		return -EINVAL;
1354 	err = get_nodes(&nodes, nmask, maxnode);
1355 	if (err)
1356 		return err;
1357 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1358 }
1359 
1360 /* Set the process memory policy */
1361 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1362 		unsigned long, maxnode)
1363 {
1364 	int err;
1365 	nodemask_t nodes;
1366 	unsigned short flags;
1367 
1368 	flags = mode & MPOL_MODE_FLAGS;
1369 	mode &= ~MPOL_MODE_FLAGS;
1370 	if ((unsigned int)mode >= MPOL_MAX)
1371 		return -EINVAL;
1372 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1373 		return -EINVAL;
1374 	err = get_nodes(&nodes, nmask, maxnode);
1375 	if (err)
1376 		return err;
1377 	return do_set_mempolicy(mode, flags, &nodes);
1378 }
1379 
1380 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1381 		const unsigned long __user *, old_nodes,
1382 		const unsigned long __user *, new_nodes)
1383 {
1384 	struct mm_struct *mm = NULL;
1385 	struct task_struct *task;
1386 	nodemask_t task_nodes;
1387 	int err;
1388 	nodemask_t *old;
1389 	nodemask_t *new;
1390 	NODEMASK_SCRATCH(scratch);
1391 
1392 	if (!scratch)
1393 		return -ENOMEM;
1394 
1395 	old = &scratch->mask1;
1396 	new = &scratch->mask2;
1397 
1398 	err = get_nodes(old, old_nodes, maxnode);
1399 	if (err)
1400 		goto out;
1401 
1402 	err = get_nodes(new, new_nodes, maxnode);
1403 	if (err)
1404 		goto out;
1405 
1406 	/* Find the mm_struct */
1407 	rcu_read_lock();
1408 	task = pid ? find_task_by_vpid(pid) : current;
1409 	if (!task) {
1410 		rcu_read_unlock();
1411 		err = -ESRCH;
1412 		goto out;
1413 	}
1414 	get_task_struct(task);
1415 
1416 	err = -EINVAL;
1417 
1418 	/*
1419 	 * Check if this process has the right to modify the specified process.
1420 	 * Use the regular "ptrace_may_access()" checks.
1421 	 */
1422 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1423 		rcu_read_unlock();
1424 		err = -EPERM;
1425 		goto out_put;
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	task_nodes = cpuset_mems_allowed(task);
1430 	/* Is the user allowed to access the target nodes? */
1431 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1432 		err = -EPERM;
1433 		goto out_put;
1434 	}
1435 
1436 	task_nodes = cpuset_mems_allowed(current);
1437 	nodes_and(*new, *new, task_nodes);
1438 	if (nodes_empty(*new))
1439 		goto out_put;
1440 
1441 	nodes_and(*new, *new, node_states[N_MEMORY]);
1442 	if (nodes_empty(*new))
1443 		goto out_put;
1444 
1445 	err = security_task_movememory(task);
1446 	if (err)
1447 		goto out_put;
1448 
1449 	mm = get_task_mm(task);
1450 	put_task_struct(task);
1451 
1452 	if (!mm) {
1453 		err = -EINVAL;
1454 		goto out;
1455 	}
1456 
1457 	err = do_migrate_pages(mm, old, new,
1458 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1459 
1460 	mmput(mm);
1461 out:
1462 	NODEMASK_SCRATCH_FREE(scratch);
1463 
1464 	return err;
1465 
1466 out_put:
1467 	put_task_struct(task);
1468 	goto out;
1469 
1470 }
1471 
1472 
1473 /* Retrieve NUMA policy */
1474 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1475 		unsigned long __user *, nmask, unsigned long, maxnode,
1476 		unsigned long, addr, unsigned long, flags)
1477 {
1478 	int err;
1479 	int uninitialized_var(pval);
1480 	nodemask_t nodes;
1481 
1482 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1483 		return -EINVAL;
1484 
1485 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1486 
1487 	if (err)
1488 		return err;
1489 
1490 	if (policy && put_user(pval, policy))
1491 		return -EFAULT;
1492 
1493 	if (nmask)
1494 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1495 
1496 	return err;
1497 }
1498 
1499 #ifdef CONFIG_COMPAT
1500 
1501 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1502 		       compat_ulong_t __user *, nmask,
1503 		       compat_ulong_t, maxnode,
1504 		       compat_ulong_t, addr, compat_ulong_t, flags)
1505 {
1506 	long err;
1507 	unsigned long __user *nm = NULL;
1508 	unsigned long nr_bits, alloc_size;
1509 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1510 
1511 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1512 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1513 
1514 	if (nmask)
1515 		nm = compat_alloc_user_space(alloc_size);
1516 
1517 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1518 
1519 	if (!err && nmask) {
1520 		unsigned long copy_size;
1521 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1522 		err = copy_from_user(bm, nm, copy_size);
1523 		/* ensure entire bitmap is zeroed */
1524 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1525 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1526 	}
1527 
1528 	return err;
1529 }
1530 
1531 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1532 		       compat_ulong_t, maxnode)
1533 {
1534 	unsigned long __user *nm = NULL;
1535 	unsigned long nr_bits, alloc_size;
1536 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1537 
1538 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1539 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1540 
1541 	if (nmask) {
1542 		if (compat_get_bitmap(bm, nmask, nr_bits))
1543 			return -EFAULT;
1544 		nm = compat_alloc_user_space(alloc_size);
1545 		if (copy_to_user(nm, bm, alloc_size))
1546 			return -EFAULT;
1547 	}
1548 
1549 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1550 }
1551 
1552 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1553 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1554 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1555 {
1556 	unsigned long __user *nm = NULL;
1557 	unsigned long nr_bits, alloc_size;
1558 	nodemask_t bm;
1559 
1560 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1561 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1562 
1563 	if (nmask) {
1564 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1565 			return -EFAULT;
1566 		nm = compat_alloc_user_space(alloc_size);
1567 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1568 			return -EFAULT;
1569 	}
1570 
1571 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1572 }
1573 
1574 #endif
1575 
1576 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1577 						unsigned long addr)
1578 {
1579 	struct mempolicy *pol = NULL;
1580 
1581 	if (vma) {
1582 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1583 			pol = vma->vm_ops->get_policy(vma, addr);
1584 		} else if (vma->vm_policy) {
1585 			pol = vma->vm_policy;
1586 
1587 			/*
1588 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1589 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1590 			 * count on these policies which will be dropped by
1591 			 * mpol_cond_put() later
1592 			 */
1593 			if (mpol_needs_cond_ref(pol))
1594 				mpol_get(pol);
1595 		}
1596 	}
1597 
1598 	return pol;
1599 }
1600 
1601 /*
1602  * get_vma_policy(@vma, @addr)
1603  * @vma: virtual memory area whose policy is sought
1604  * @addr: address in @vma for shared policy lookup
1605  *
1606  * Returns effective policy for a VMA at specified address.
1607  * Falls back to current->mempolicy or system default policy, as necessary.
1608  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1609  * count--added by the get_policy() vm_op, as appropriate--to protect against
1610  * freeing by another task.  It is the caller's responsibility to free the
1611  * extra reference for shared policies.
1612  */
1613 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1614 						unsigned long addr)
1615 {
1616 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1617 
1618 	if (!pol)
1619 		pol = get_task_policy(current);
1620 
1621 	return pol;
1622 }
1623 
1624 bool vma_policy_mof(struct vm_area_struct *vma)
1625 {
1626 	struct mempolicy *pol;
1627 
1628 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1629 		bool ret = false;
1630 
1631 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1632 		if (pol && (pol->flags & MPOL_F_MOF))
1633 			ret = true;
1634 		mpol_cond_put(pol);
1635 
1636 		return ret;
1637 	}
1638 
1639 	pol = vma->vm_policy;
1640 	if (!pol)
1641 		pol = get_task_policy(current);
1642 
1643 	return pol->flags & MPOL_F_MOF;
1644 }
1645 
1646 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1647 {
1648 	enum zone_type dynamic_policy_zone = policy_zone;
1649 
1650 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1651 
1652 	/*
1653 	 * if policy->v.nodes has movable memory only,
1654 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1655 	 *
1656 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1657 	 * so if the following test faile, it implies
1658 	 * policy->v.nodes has movable memory only.
1659 	 */
1660 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1661 		dynamic_policy_zone = ZONE_MOVABLE;
1662 
1663 	return zone >= dynamic_policy_zone;
1664 }
1665 
1666 /*
1667  * Return a nodemask representing a mempolicy for filtering nodes for
1668  * page allocation
1669  */
1670 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1671 {
1672 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1673 	if (unlikely(policy->mode == MPOL_BIND) &&
1674 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1675 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1676 		return &policy->v.nodes;
1677 
1678 	return NULL;
1679 }
1680 
1681 /* Return the node id preferred by the given mempolicy, or the given id */
1682 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1683 								int nd)
1684 {
1685 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1686 		nd = policy->v.preferred_node;
1687 	else {
1688 		/*
1689 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1690 		 * because we might easily break the expectation to stay on the
1691 		 * requested node and not break the policy.
1692 		 */
1693 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1694 	}
1695 
1696 	return nd;
1697 }
1698 
1699 /* Do dynamic interleaving for a process */
1700 static unsigned interleave_nodes(struct mempolicy *policy)
1701 {
1702 	unsigned next;
1703 	struct task_struct *me = current;
1704 
1705 	next = next_node_in(me->il_prev, policy->v.nodes);
1706 	if (next < MAX_NUMNODES)
1707 		me->il_prev = next;
1708 	return next;
1709 }
1710 
1711 /*
1712  * Depending on the memory policy provide a node from which to allocate the
1713  * next slab entry.
1714  */
1715 unsigned int mempolicy_slab_node(void)
1716 {
1717 	struct mempolicy *policy;
1718 	int node = numa_mem_id();
1719 
1720 	if (in_interrupt())
1721 		return node;
1722 
1723 	policy = current->mempolicy;
1724 	if (!policy || policy->flags & MPOL_F_LOCAL)
1725 		return node;
1726 
1727 	switch (policy->mode) {
1728 	case MPOL_PREFERRED:
1729 		/*
1730 		 * handled MPOL_F_LOCAL above
1731 		 */
1732 		return policy->v.preferred_node;
1733 
1734 	case MPOL_INTERLEAVE:
1735 		return interleave_nodes(policy);
1736 
1737 	case MPOL_BIND: {
1738 		struct zoneref *z;
1739 
1740 		/*
1741 		 * Follow bind policy behavior and start allocation at the
1742 		 * first node.
1743 		 */
1744 		struct zonelist *zonelist;
1745 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1746 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1747 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1748 							&policy->v.nodes);
1749 		return z->zone ? z->zone->node : node;
1750 	}
1751 
1752 	default:
1753 		BUG();
1754 	}
1755 }
1756 
1757 /*
1758  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1759  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1760  * number of present nodes.
1761  */
1762 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1763 {
1764 	unsigned nnodes = nodes_weight(pol->v.nodes);
1765 	unsigned target;
1766 	int i;
1767 	int nid;
1768 
1769 	if (!nnodes)
1770 		return numa_node_id();
1771 	target = (unsigned int)n % nnodes;
1772 	nid = first_node(pol->v.nodes);
1773 	for (i = 0; i < target; i++)
1774 		nid = next_node(nid, pol->v.nodes);
1775 	return nid;
1776 }
1777 
1778 /* Determine a node number for interleave */
1779 static inline unsigned interleave_nid(struct mempolicy *pol,
1780 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1781 {
1782 	if (vma) {
1783 		unsigned long off;
1784 
1785 		/*
1786 		 * for small pages, there is no difference between
1787 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1788 		 * for huge pages, since vm_pgoff is in units of small
1789 		 * pages, we need to shift off the always 0 bits to get
1790 		 * a useful offset.
1791 		 */
1792 		BUG_ON(shift < PAGE_SHIFT);
1793 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1794 		off += (addr - vma->vm_start) >> shift;
1795 		return offset_il_node(pol, off);
1796 	} else
1797 		return interleave_nodes(pol);
1798 }
1799 
1800 #ifdef CONFIG_HUGETLBFS
1801 /*
1802  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1803  * @vma: virtual memory area whose policy is sought
1804  * @addr: address in @vma for shared policy lookup and interleave policy
1805  * @gfp_flags: for requested zone
1806  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1807  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1808  *
1809  * Returns a nid suitable for a huge page allocation and a pointer
1810  * to the struct mempolicy for conditional unref after allocation.
1811  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1812  * @nodemask for filtering the zonelist.
1813  *
1814  * Must be protected by read_mems_allowed_begin()
1815  */
1816 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1817 				struct mempolicy **mpol, nodemask_t **nodemask)
1818 {
1819 	int nid;
1820 
1821 	*mpol = get_vma_policy(vma, addr);
1822 	*nodemask = NULL;	/* assume !MPOL_BIND */
1823 
1824 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1825 		nid = interleave_nid(*mpol, vma, addr,
1826 					huge_page_shift(hstate_vma(vma)));
1827 	} else {
1828 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1829 		if ((*mpol)->mode == MPOL_BIND)
1830 			*nodemask = &(*mpol)->v.nodes;
1831 	}
1832 	return nid;
1833 }
1834 
1835 /*
1836  * init_nodemask_of_mempolicy
1837  *
1838  * If the current task's mempolicy is "default" [NULL], return 'false'
1839  * to indicate default policy.  Otherwise, extract the policy nodemask
1840  * for 'bind' or 'interleave' policy into the argument nodemask, or
1841  * initialize the argument nodemask to contain the single node for
1842  * 'preferred' or 'local' policy and return 'true' to indicate presence
1843  * of non-default mempolicy.
1844  *
1845  * We don't bother with reference counting the mempolicy [mpol_get/put]
1846  * because the current task is examining it's own mempolicy and a task's
1847  * mempolicy is only ever changed by the task itself.
1848  *
1849  * N.B., it is the caller's responsibility to free a returned nodemask.
1850  */
1851 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1852 {
1853 	struct mempolicy *mempolicy;
1854 	int nid;
1855 
1856 	if (!(mask && current->mempolicy))
1857 		return false;
1858 
1859 	task_lock(current);
1860 	mempolicy = current->mempolicy;
1861 	switch (mempolicy->mode) {
1862 	case MPOL_PREFERRED:
1863 		if (mempolicy->flags & MPOL_F_LOCAL)
1864 			nid = numa_node_id();
1865 		else
1866 			nid = mempolicy->v.preferred_node;
1867 		init_nodemask_of_node(mask, nid);
1868 		break;
1869 
1870 	case MPOL_BIND:
1871 		/* Fall through */
1872 	case MPOL_INTERLEAVE:
1873 		*mask =  mempolicy->v.nodes;
1874 		break;
1875 
1876 	default:
1877 		BUG();
1878 	}
1879 	task_unlock(current);
1880 
1881 	return true;
1882 }
1883 #endif
1884 
1885 /*
1886  * mempolicy_nodemask_intersects
1887  *
1888  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1889  * policy.  Otherwise, check for intersection between mask and the policy
1890  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1891  * policy, always return true since it may allocate elsewhere on fallback.
1892  *
1893  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1894  */
1895 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1896 					const nodemask_t *mask)
1897 {
1898 	struct mempolicy *mempolicy;
1899 	bool ret = true;
1900 
1901 	if (!mask)
1902 		return ret;
1903 	task_lock(tsk);
1904 	mempolicy = tsk->mempolicy;
1905 	if (!mempolicy)
1906 		goto out;
1907 
1908 	switch (mempolicy->mode) {
1909 	case MPOL_PREFERRED:
1910 		/*
1911 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1912 		 * allocate from, they may fallback to other nodes when oom.
1913 		 * Thus, it's possible for tsk to have allocated memory from
1914 		 * nodes in mask.
1915 		 */
1916 		break;
1917 	case MPOL_BIND:
1918 	case MPOL_INTERLEAVE:
1919 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1920 		break;
1921 	default:
1922 		BUG();
1923 	}
1924 out:
1925 	task_unlock(tsk);
1926 	return ret;
1927 }
1928 
1929 /* Allocate a page in interleaved policy.
1930    Own path because it needs to do special accounting. */
1931 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1932 					unsigned nid)
1933 {
1934 	struct page *page;
1935 
1936 	page = __alloc_pages(gfp, order, nid);
1937 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1938 	if (!static_branch_likely(&vm_numa_stat_key))
1939 		return page;
1940 	if (page && page_to_nid(page) == nid) {
1941 		preempt_disable();
1942 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1943 		preempt_enable();
1944 	}
1945 	return page;
1946 }
1947 
1948 /**
1949  * 	alloc_pages_vma	- Allocate a page for a VMA.
1950  *
1951  * 	@gfp:
1952  *      %GFP_USER    user allocation.
1953  *      %GFP_KERNEL  kernel allocations,
1954  *      %GFP_HIGHMEM highmem/user allocations,
1955  *      %GFP_FS      allocation should not call back into a file system.
1956  *      %GFP_ATOMIC  don't sleep.
1957  *
1958  *	@order:Order of the GFP allocation.
1959  * 	@vma:  Pointer to VMA or NULL if not available.
1960  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1961  *	@node: Which node to prefer for allocation (modulo policy).
1962  *	@hugepage: for hugepages try only the preferred node if possible
1963  *
1964  * 	This function allocates a page from the kernel page pool and applies
1965  *	a NUMA policy associated with the VMA or the current process.
1966  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1967  *	mm_struct of the VMA to prevent it from going away. Should be used for
1968  *	all allocations for pages that will be mapped into user space. Returns
1969  *	NULL when no page can be allocated.
1970  */
1971 struct page *
1972 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1973 		unsigned long addr, int node, bool hugepage)
1974 {
1975 	struct mempolicy *pol;
1976 	struct page *page;
1977 	int preferred_nid;
1978 	nodemask_t *nmask;
1979 
1980 	pol = get_vma_policy(vma, addr);
1981 
1982 	if (pol->mode == MPOL_INTERLEAVE) {
1983 		unsigned nid;
1984 
1985 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1986 		mpol_cond_put(pol);
1987 		page = alloc_page_interleave(gfp, order, nid);
1988 		goto out;
1989 	}
1990 
1991 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1992 		int hpage_node = node;
1993 
1994 		/*
1995 		 * For hugepage allocation and non-interleave policy which
1996 		 * allows the current node (or other explicitly preferred
1997 		 * node) we only try to allocate from the current/preferred
1998 		 * node and don't fall back to other nodes, as the cost of
1999 		 * remote accesses would likely offset THP benefits.
2000 		 *
2001 		 * If the policy is interleave, or does not allow the current
2002 		 * node in its nodemask, we allocate the standard way.
2003 		 */
2004 		if (pol->mode == MPOL_PREFERRED &&
2005 						!(pol->flags & MPOL_F_LOCAL))
2006 			hpage_node = pol->v.preferred_node;
2007 
2008 		nmask = policy_nodemask(gfp, pol);
2009 		if (!nmask || node_isset(hpage_node, *nmask)) {
2010 			mpol_cond_put(pol);
2011 			page = __alloc_pages_node(hpage_node,
2012 						gfp | __GFP_THISNODE, order);
2013 			goto out;
2014 		}
2015 	}
2016 
2017 	nmask = policy_nodemask(gfp, pol);
2018 	preferred_nid = policy_node(gfp, pol, node);
2019 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2020 	mpol_cond_put(pol);
2021 out:
2022 	return page;
2023 }
2024 
2025 /**
2026  * 	alloc_pages_current - Allocate pages.
2027  *
2028  *	@gfp:
2029  *		%GFP_USER   user allocation,
2030  *      	%GFP_KERNEL kernel allocation,
2031  *      	%GFP_HIGHMEM highmem allocation,
2032  *      	%GFP_FS     don't call back into a file system.
2033  *      	%GFP_ATOMIC don't sleep.
2034  *	@order: Power of two of allocation size in pages. 0 is a single page.
2035  *
2036  *	Allocate a page from the kernel page pool.  When not in
2037  *	interrupt context and apply the current process NUMA policy.
2038  *	Returns NULL when no page can be allocated.
2039  */
2040 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2041 {
2042 	struct mempolicy *pol = &default_policy;
2043 	struct page *page;
2044 
2045 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2046 		pol = get_task_policy(current);
2047 
2048 	/*
2049 	 * No reference counting needed for current->mempolicy
2050 	 * nor system default_policy
2051 	 */
2052 	if (pol->mode == MPOL_INTERLEAVE)
2053 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2054 	else
2055 		page = __alloc_pages_nodemask(gfp, order,
2056 				policy_node(gfp, pol, numa_node_id()),
2057 				policy_nodemask(gfp, pol));
2058 
2059 	return page;
2060 }
2061 EXPORT_SYMBOL(alloc_pages_current);
2062 
2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2064 {
2065 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2066 
2067 	if (IS_ERR(pol))
2068 		return PTR_ERR(pol);
2069 	dst->vm_policy = pol;
2070 	return 0;
2071 }
2072 
2073 /*
2074  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2075  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2076  * with the mems_allowed returned by cpuset_mems_allowed().  This
2077  * keeps mempolicies cpuset relative after its cpuset moves.  See
2078  * further kernel/cpuset.c update_nodemask().
2079  *
2080  * current's mempolicy may be rebinded by the other task(the task that changes
2081  * cpuset's mems), so we needn't do rebind work for current task.
2082  */
2083 
2084 /* Slow path of a mempolicy duplicate */
2085 struct mempolicy *__mpol_dup(struct mempolicy *old)
2086 {
2087 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2088 
2089 	if (!new)
2090 		return ERR_PTR(-ENOMEM);
2091 
2092 	/* task's mempolicy is protected by alloc_lock */
2093 	if (old == current->mempolicy) {
2094 		task_lock(current);
2095 		*new = *old;
2096 		task_unlock(current);
2097 	} else
2098 		*new = *old;
2099 
2100 	if (current_cpuset_is_being_rebound()) {
2101 		nodemask_t mems = cpuset_mems_allowed(current);
2102 		mpol_rebind_policy(new, &mems);
2103 	}
2104 	atomic_set(&new->refcnt, 1);
2105 	return new;
2106 }
2107 
2108 /* Slow path of a mempolicy comparison */
2109 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2110 {
2111 	if (!a || !b)
2112 		return false;
2113 	if (a->mode != b->mode)
2114 		return false;
2115 	if (a->flags != b->flags)
2116 		return false;
2117 	if (mpol_store_user_nodemask(a))
2118 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2119 			return false;
2120 
2121 	switch (a->mode) {
2122 	case MPOL_BIND:
2123 		/* Fall through */
2124 	case MPOL_INTERLEAVE:
2125 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2126 	case MPOL_PREFERRED:
2127 		return a->v.preferred_node == b->v.preferred_node;
2128 	default:
2129 		BUG();
2130 		return false;
2131 	}
2132 }
2133 
2134 /*
2135  * Shared memory backing store policy support.
2136  *
2137  * Remember policies even when nobody has shared memory mapped.
2138  * The policies are kept in Red-Black tree linked from the inode.
2139  * They are protected by the sp->lock rwlock, which should be held
2140  * for any accesses to the tree.
2141  */
2142 
2143 /*
2144  * lookup first element intersecting start-end.  Caller holds sp->lock for
2145  * reading or for writing
2146  */
2147 static struct sp_node *
2148 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2149 {
2150 	struct rb_node *n = sp->root.rb_node;
2151 
2152 	while (n) {
2153 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2154 
2155 		if (start >= p->end)
2156 			n = n->rb_right;
2157 		else if (end <= p->start)
2158 			n = n->rb_left;
2159 		else
2160 			break;
2161 	}
2162 	if (!n)
2163 		return NULL;
2164 	for (;;) {
2165 		struct sp_node *w = NULL;
2166 		struct rb_node *prev = rb_prev(n);
2167 		if (!prev)
2168 			break;
2169 		w = rb_entry(prev, struct sp_node, nd);
2170 		if (w->end <= start)
2171 			break;
2172 		n = prev;
2173 	}
2174 	return rb_entry(n, struct sp_node, nd);
2175 }
2176 
2177 /*
2178  * Insert a new shared policy into the list.  Caller holds sp->lock for
2179  * writing.
2180  */
2181 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2182 {
2183 	struct rb_node **p = &sp->root.rb_node;
2184 	struct rb_node *parent = NULL;
2185 	struct sp_node *nd;
2186 
2187 	while (*p) {
2188 		parent = *p;
2189 		nd = rb_entry(parent, struct sp_node, nd);
2190 		if (new->start < nd->start)
2191 			p = &(*p)->rb_left;
2192 		else if (new->end > nd->end)
2193 			p = &(*p)->rb_right;
2194 		else
2195 			BUG();
2196 	}
2197 	rb_link_node(&new->nd, parent, p);
2198 	rb_insert_color(&new->nd, &sp->root);
2199 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2200 		 new->policy ? new->policy->mode : 0);
2201 }
2202 
2203 /* Find shared policy intersecting idx */
2204 struct mempolicy *
2205 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2206 {
2207 	struct mempolicy *pol = NULL;
2208 	struct sp_node *sn;
2209 
2210 	if (!sp->root.rb_node)
2211 		return NULL;
2212 	read_lock(&sp->lock);
2213 	sn = sp_lookup(sp, idx, idx+1);
2214 	if (sn) {
2215 		mpol_get(sn->policy);
2216 		pol = sn->policy;
2217 	}
2218 	read_unlock(&sp->lock);
2219 	return pol;
2220 }
2221 
2222 static void sp_free(struct sp_node *n)
2223 {
2224 	mpol_put(n->policy);
2225 	kmem_cache_free(sn_cache, n);
2226 }
2227 
2228 /**
2229  * mpol_misplaced - check whether current page node is valid in policy
2230  *
2231  * @page: page to be checked
2232  * @vma: vm area where page mapped
2233  * @addr: virtual address where page mapped
2234  *
2235  * Lookup current policy node id for vma,addr and "compare to" page's
2236  * node id.
2237  *
2238  * Returns:
2239  *	-1	- not misplaced, page is in the right node
2240  *	node	- node id where the page should be
2241  *
2242  * Policy determination "mimics" alloc_page_vma().
2243  * Called from fault path where we know the vma and faulting address.
2244  */
2245 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2246 {
2247 	struct mempolicy *pol;
2248 	struct zoneref *z;
2249 	int curnid = page_to_nid(page);
2250 	unsigned long pgoff;
2251 	int thiscpu = raw_smp_processor_id();
2252 	int thisnid = cpu_to_node(thiscpu);
2253 	int polnid = -1;
2254 	int ret = -1;
2255 
2256 	pol = get_vma_policy(vma, addr);
2257 	if (!(pol->flags & MPOL_F_MOF))
2258 		goto out;
2259 
2260 	switch (pol->mode) {
2261 	case MPOL_INTERLEAVE:
2262 		pgoff = vma->vm_pgoff;
2263 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2264 		polnid = offset_il_node(pol, pgoff);
2265 		break;
2266 
2267 	case MPOL_PREFERRED:
2268 		if (pol->flags & MPOL_F_LOCAL)
2269 			polnid = numa_node_id();
2270 		else
2271 			polnid = pol->v.preferred_node;
2272 		break;
2273 
2274 	case MPOL_BIND:
2275 
2276 		/*
2277 		 * allows binding to multiple nodes.
2278 		 * use current page if in policy nodemask,
2279 		 * else select nearest allowed node, if any.
2280 		 * If no allowed nodes, use current [!misplaced].
2281 		 */
2282 		if (node_isset(curnid, pol->v.nodes))
2283 			goto out;
2284 		z = first_zones_zonelist(
2285 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2286 				gfp_zone(GFP_HIGHUSER),
2287 				&pol->v.nodes);
2288 		polnid = z->zone->node;
2289 		break;
2290 
2291 	default:
2292 		BUG();
2293 	}
2294 
2295 	/* Migrate the page towards the node whose CPU is referencing it */
2296 	if (pol->flags & MPOL_F_MORON) {
2297 		polnid = thisnid;
2298 
2299 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2300 			goto out;
2301 	}
2302 
2303 	if (curnid != polnid)
2304 		ret = polnid;
2305 out:
2306 	mpol_cond_put(pol);
2307 
2308 	return ret;
2309 }
2310 
2311 /*
2312  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2313  * dropped after task->mempolicy is set to NULL so that any allocation done as
2314  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2315  * policy.
2316  */
2317 void mpol_put_task_policy(struct task_struct *task)
2318 {
2319 	struct mempolicy *pol;
2320 
2321 	task_lock(task);
2322 	pol = task->mempolicy;
2323 	task->mempolicy = NULL;
2324 	task_unlock(task);
2325 	mpol_put(pol);
2326 }
2327 
2328 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2329 {
2330 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2331 	rb_erase(&n->nd, &sp->root);
2332 	sp_free(n);
2333 }
2334 
2335 static void sp_node_init(struct sp_node *node, unsigned long start,
2336 			unsigned long end, struct mempolicy *pol)
2337 {
2338 	node->start = start;
2339 	node->end = end;
2340 	node->policy = pol;
2341 }
2342 
2343 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2344 				struct mempolicy *pol)
2345 {
2346 	struct sp_node *n;
2347 	struct mempolicy *newpol;
2348 
2349 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2350 	if (!n)
2351 		return NULL;
2352 
2353 	newpol = mpol_dup(pol);
2354 	if (IS_ERR(newpol)) {
2355 		kmem_cache_free(sn_cache, n);
2356 		return NULL;
2357 	}
2358 	newpol->flags |= MPOL_F_SHARED;
2359 	sp_node_init(n, start, end, newpol);
2360 
2361 	return n;
2362 }
2363 
2364 /* Replace a policy range. */
2365 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2366 				 unsigned long end, struct sp_node *new)
2367 {
2368 	struct sp_node *n;
2369 	struct sp_node *n_new = NULL;
2370 	struct mempolicy *mpol_new = NULL;
2371 	int ret = 0;
2372 
2373 restart:
2374 	write_lock(&sp->lock);
2375 	n = sp_lookup(sp, start, end);
2376 	/* Take care of old policies in the same range. */
2377 	while (n && n->start < end) {
2378 		struct rb_node *next = rb_next(&n->nd);
2379 		if (n->start >= start) {
2380 			if (n->end <= end)
2381 				sp_delete(sp, n);
2382 			else
2383 				n->start = end;
2384 		} else {
2385 			/* Old policy spanning whole new range. */
2386 			if (n->end > end) {
2387 				if (!n_new)
2388 					goto alloc_new;
2389 
2390 				*mpol_new = *n->policy;
2391 				atomic_set(&mpol_new->refcnt, 1);
2392 				sp_node_init(n_new, end, n->end, mpol_new);
2393 				n->end = start;
2394 				sp_insert(sp, n_new);
2395 				n_new = NULL;
2396 				mpol_new = NULL;
2397 				break;
2398 			} else
2399 				n->end = start;
2400 		}
2401 		if (!next)
2402 			break;
2403 		n = rb_entry(next, struct sp_node, nd);
2404 	}
2405 	if (new)
2406 		sp_insert(sp, new);
2407 	write_unlock(&sp->lock);
2408 	ret = 0;
2409 
2410 err_out:
2411 	if (mpol_new)
2412 		mpol_put(mpol_new);
2413 	if (n_new)
2414 		kmem_cache_free(sn_cache, n_new);
2415 
2416 	return ret;
2417 
2418 alloc_new:
2419 	write_unlock(&sp->lock);
2420 	ret = -ENOMEM;
2421 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2422 	if (!n_new)
2423 		goto err_out;
2424 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2425 	if (!mpol_new)
2426 		goto err_out;
2427 	goto restart;
2428 }
2429 
2430 /**
2431  * mpol_shared_policy_init - initialize shared policy for inode
2432  * @sp: pointer to inode shared policy
2433  * @mpol:  struct mempolicy to install
2434  *
2435  * Install non-NULL @mpol in inode's shared policy rb-tree.
2436  * On entry, the current task has a reference on a non-NULL @mpol.
2437  * This must be released on exit.
2438  * This is called at get_inode() calls and we can use GFP_KERNEL.
2439  */
2440 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2441 {
2442 	int ret;
2443 
2444 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2445 	rwlock_init(&sp->lock);
2446 
2447 	if (mpol) {
2448 		struct vm_area_struct pvma;
2449 		struct mempolicy *new;
2450 		NODEMASK_SCRATCH(scratch);
2451 
2452 		if (!scratch)
2453 			goto put_mpol;
2454 		/* contextualize the tmpfs mount point mempolicy */
2455 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2456 		if (IS_ERR(new))
2457 			goto free_scratch; /* no valid nodemask intersection */
2458 
2459 		task_lock(current);
2460 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2461 		task_unlock(current);
2462 		if (ret)
2463 			goto put_new;
2464 
2465 		/* Create pseudo-vma that contains just the policy */
2466 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2467 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2468 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2469 
2470 put_new:
2471 		mpol_put(new);			/* drop initial ref */
2472 free_scratch:
2473 		NODEMASK_SCRATCH_FREE(scratch);
2474 put_mpol:
2475 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2476 	}
2477 }
2478 
2479 int mpol_set_shared_policy(struct shared_policy *info,
2480 			struct vm_area_struct *vma, struct mempolicy *npol)
2481 {
2482 	int err;
2483 	struct sp_node *new = NULL;
2484 	unsigned long sz = vma_pages(vma);
2485 
2486 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2487 		 vma->vm_pgoff,
2488 		 sz, npol ? npol->mode : -1,
2489 		 npol ? npol->flags : -1,
2490 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2491 
2492 	if (npol) {
2493 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2494 		if (!new)
2495 			return -ENOMEM;
2496 	}
2497 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2498 	if (err && new)
2499 		sp_free(new);
2500 	return err;
2501 }
2502 
2503 /* Free a backing policy store on inode delete. */
2504 void mpol_free_shared_policy(struct shared_policy *p)
2505 {
2506 	struct sp_node *n;
2507 	struct rb_node *next;
2508 
2509 	if (!p->root.rb_node)
2510 		return;
2511 	write_lock(&p->lock);
2512 	next = rb_first(&p->root);
2513 	while (next) {
2514 		n = rb_entry(next, struct sp_node, nd);
2515 		next = rb_next(&n->nd);
2516 		sp_delete(p, n);
2517 	}
2518 	write_unlock(&p->lock);
2519 }
2520 
2521 #ifdef CONFIG_NUMA_BALANCING
2522 static int __initdata numabalancing_override;
2523 
2524 static void __init check_numabalancing_enable(void)
2525 {
2526 	bool numabalancing_default = false;
2527 
2528 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2529 		numabalancing_default = true;
2530 
2531 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2532 	if (numabalancing_override)
2533 		set_numabalancing_state(numabalancing_override == 1);
2534 
2535 	if (num_online_nodes() > 1 && !numabalancing_override) {
2536 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2537 			numabalancing_default ? "Enabling" : "Disabling");
2538 		set_numabalancing_state(numabalancing_default);
2539 	}
2540 }
2541 
2542 static int __init setup_numabalancing(char *str)
2543 {
2544 	int ret = 0;
2545 	if (!str)
2546 		goto out;
2547 
2548 	if (!strcmp(str, "enable")) {
2549 		numabalancing_override = 1;
2550 		ret = 1;
2551 	} else if (!strcmp(str, "disable")) {
2552 		numabalancing_override = -1;
2553 		ret = 1;
2554 	}
2555 out:
2556 	if (!ret)
2557 		pr_warn("Unable to parse numa_balancing=\n");
2558 
2559 	return ret;
2560 }
2561 __setup("numa_balancing=", setup_numabalancing);
2562 #else
2563 static inline void __init check_numabalancing_enable(void)
2564 {
2565 }
2566 #endif /* CONFIG_NUMA_BALANCING */
2567 
2568 /* assumes fs == KERNEL_DS */
2569 void __init numa_policy_init(void)
2570 {
2571 	nodemask_t interleave_nodes;
2572 	unsigned long largest = 0;
2573 	int nid, prefer = 0;
2574 
2575 	policy_cache = kmem_cache_create("numa_policy",
2576 					 sizeof(struct mempolicy),
2577 					 0, SLAB_PANIC, NULL);
2578 
2579 	sn_cache = kmem_cache_create("shared_policy_node",
2580 				     sizeof(struct sp_node),
2581 				     0, SLAB_PANIC, NULL);
2582 
2583 	for_each_node(nid) {
2584 		preferred_node_policy[nid] = (struct mempolicy) {
2585 			.refcnt = ATOMIC_INIT(1),
2586 			.mode = MPOL_PREFERRED,
2587 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2588 			.v = { .preferred_node = nid, },
2589 		};
2590 	}
2591 
2592 	/*
2593 	 * Set interleaving policy for system init. Interleaving is only
2594 	 * enabled across suitably sized nodes (default is >= 16MB), or
2595 	 * fall back to the largest node if they're all smaller.
2596 	 */
2597 	nodes_clear(interleave_nodes);
2598 	for_each_node_state(nid, N_MEMORY) {
2599 		unsigned long total_pages = node_present_pages(nid);
2600 
2601 		/* Preserve the largest node */
2602 		if (largest < total_pages) {
2603 			largest = total_pages;
2604 			prefer = nid;
2605 		}
2606 
2607 		/* Interleave this node? */
2608 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2609 			node_set(nid, interleave_nodes);
2610 	}
2611 
2612 	/* All too small, use the largest */
2613 	if (unlikely(nodes_empty(interleave_nodes)))
2614 		node_set(prefer, interleave_nodes);
2615 
2616 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2617 		pr_err("%s: interleaving failed\n", __func__);
2618 
2619 	check_numabalancing_enable();
2620 }
2621 
2622 /* Reset policy of current process to default */
2623 void numa_default_policy(void)
2624 {
2625 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2626 }
2627 
2628 /*
2629  * Parse and format mempolicy from/to strings
2630  */
2631 
2632 /*
2633  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2634  */
2635 static const char * const policy_modes[] =
2636 {
2637 	[MPOL_DEFAULT]    = "default",
2638 	[MPOL_PREFERRED]  = "prefer",
2639 	[MPOL_BIND]       = "bind",
2640 	[MPOL_INTERLEAVE] = "interleave",
2641 	[MPOL_LOCAL]      = "local",
2642 };
2643 
2644 
2645 #ifdef CONFIG_TMPFS
2646 /**
2647  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2648  * @str:  string containing mempolicy to parse
2649  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2650  *
2651  * Format of input:
2652  *	<mode>[=<flags>][:<nodelist>]
2653  *
2654  * On success, returns 0, else 1
2655  */
2656 int mpol_parse_str(char *str, struct mempolicy **mpol)
2657 {
2658 	struct mempolicy *new = NULL;
2659 	unsigned short mode;
2660 	unsigned short mode_flags;
2661 	nodemask_t nodes;
2662 	char *nodelist = strchr(str, ':');
2663 	char *flags = strchr(str, '=');
2664 	int err = 1;
2665 
2666 	if (nodelist) {
2667 		/* NUL-terminate mode or flags string */
2668 		*nodelist++ = '\0';
2669 		if (nodelist_parse(nodelist, nodes))
2670 			goto out;
2671 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2672 			goto out;
2673 	} else
2674 		nodes_clear(nodes);
2675 
2676 	if (flags)
2677 		*flags++ = '\0';	/* terminate mode string */
2678 
2679 	for (mode = 0; mode < MPOL_MAX; mode++) {
2680 		if (!strcmp(str, policy_modes[mode])) {
2681 			break;
2682 		}
2683 	}
2684 	if (mode >= MPOL_MAX)
2685 		goto out;
2686 
2687 	switch (mode) {
2688 	case MPOL_PREFERRED:
2689 		/*
2690 		 * Insist on a nodelist of one node only
2691 		 */
2692 		if (nodelist) {
2693 			char *rest = nodelist;
2694 			while (isdigit(*rest))
2695 				rest++;
2696 			if (*rest)
2697 				goto out;
2698 		}
2699 		break;
2700 	case MPOL_INTERLEAVE:
2701 		/*
2702 		 * Default to online nodes with memory if no nodelist
2703 		 */
2704 		if (!nodelist)
2705 			nodes = node_states[N_MEMORY];
2706 		break;
2707 	case MPOL_LOCAL:
2708 		/*
2709 		 * Don't allow a nodelist;  mpol_new() checks flags
2710 		 */
2711 		if (nodelist)
2712 			goto out;
2713 		mode = MPOL_PREFERRED;
2714 		break;
2715 	case MPOL_DEFAULT:
2716 		/*
2717 		 * Insist on a empty nodelist
2718 		 */
2719 		if (!nodelist)
2720 			err = 0;
2721 		goto out;
2722 	case MPOL_BIND:
2723 		/*
2724 		 * Insist on a nodelist
2725 		 */
2726 		if (!nodelist)
2727 			goto out;
2728 	}
2729 
2730 	mode_flags = 0;
2731 	if (flags) {
2732 		/*
2733 		 * Currently, we only support two mutually exclusive
2734 		 * mode flags.
2735 		 */
2736 		if (!strcmp(flags, "static"))
2737 			mode_flags |= MPOL_F_STATIC_NODES;
2738 		else if (!strcmp(flags, "relative"))
2739 			mode_flags |= MPOL_F_RELATIVE_NODES;
2740 		else
2741 			goto out;
2742 	}
2743 
2744 	new = mpol_new(mode, mode_flags, &nodes);
2745 	if (IS_ERR(new))
2746 		goto out;
2747 
2748 	/*
2749 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2750 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2751 	 */
2752 	if (mode != MPOL_PREFERRED)
2753 		new->v.nodes = nodes;
2754 	else if (nodelist)
2755 		new->v.preferred_node = first_node(nodes);
2756 	else
2757 		new->flags |= MPOL_F_LOCAL;
2758 
2759 	/*
2760 	 * Save nodes for contextualization: this will be used to "clone"
2761 	 * the mempolicy in a specific context [cpuset] at a later time.
2762 	 */
2763 	new->w.user_nodemask = nodes;
2764 
2765 	err = 0;
2766 
2767 out:
2768 	/* Restore string for error message */
2769 	if (nodelist)
2770 		*--nodelist = ':';
2771 	if (flags)
2772 		*--flags = '=';
2773 	if (!err)
2774 		*mpol = new;
2775 	return err;
2776 }
2777 #endif /* CONFIG_TMPFS */
2778 
2779 /**
2780  * mpol_to_str - format a mempolicy structure for printing
2781  * @buffer:  to contain formatted mempolicy string
2782  * @maxlen:  length of @buffer
2783  * @pol:  pointer to mempolicy to be formatted
2784  *
2785  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2786  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2787  * longest flag, "relative", and to display at least a few node ids.
2788  */
2789 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2790 {
2791 	char *p = buffer;
2792 	nodemask_t nodes = NODE_MASK_NONE;
2793 	unsigned short mode = MPOL_DEFAULT;
2794 	unsigned short flags = 0;
2795 
2796 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2797 		mode = pol->mode;
2798 		flags = pol->flags;
2799 	}
2800 
2801 	switch (mode) {
2802 	case MPOL_DEFAULT:
2803 		break;
2804 	case MPOL_PREFERRED:
2805 		if (flags & MPOL_F_LOCAL)
2806 			mode = MPOL_LOCAL;
2807 		else
2808 			node_set(pol->v.preferred_node, nodes);
2809 		break;
2810 	case MPOL_BIND:
2811 	case MPOL_INTERLEAVE:
2812 		nodes = pol->v.nodes;
2813 		break;
2814 	default:
2815 		WARN_ON_ONCE(1);
2816 		snprintf(p, maxlen, "unknown");
2817 		return;
2818 	}
2819 
2820 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2821 
2822 	if (flags & MPOL_MODE_FLAGS) {
2823 		p += snprintf(p, buffer + maxlen - p, "=");
2824 
2825 		/*
2826 		 * Currently, the only defined flags are mutually exclusive
2827 		 */
2828 		if (flags & MPOL_F_STATIC_NODES)
2829 			p += snprintf(p, buffer + maxlen - p, "static");
2830 		else if (flags & MPOL_F_RELATIVE_NODES)
2831 			p += snprintf(p, buffer + maxlen - p, "relative");
2832 	}
2833 
2834 	if (!nodes_empty(nodes))
2835 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2836 			       nodemask_pr_args(&nodes));
2837 }
2838