1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = tmp; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static void migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 432 unsigned long end, struct mm_walk *walk) 433 { 434 int ret = 0; 435 struct page *page; 436 struct queue_pages *qp = walk->private; 437 unsigned long flags; 438 439 if (unlikely(is_pmd_migration_entry(*pmd))) { 440 ret = 1; 441 goto unlock; 442 } 443 page = pmd_page(*pmd); 444 if (is_huge_zero_page(page)) { 445 spin_unlock(ptl); 446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 447 goto out; 448 } 449 if (!thp_migration_supported()) { 450 get_page(page); 451 spin_unlock(ptl); 452 lock_page(page); 453 ret = split_huge_page(page); 454 unlock_page(page); 455 put_page(page); 456 goto out; 457 } 458 if (!queue_pages_required(page, qp)) { 459 ret = 1; 460 goto unlock; 461 } 462 463 ret = 1; 464 flags = qp->flags; 465 /* go to thp migration */ 466 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 467 migrate_page_add(page, qp->pagelist, flags); 468 unlock: 469 spin_unlock(ptl); 470 out: 471 return ret; 472 } 473 474 /* 475 * Scan through pages checking if pages follow certain conditions, 476 * and move them to the pagelist if they do. 477 */ 478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 479 unsigned long end, struct mm_walk *walk) 480 { 481 struct vm_area_struct *vma = walk->vma; 482 struct page *page; 483 struct queue_pages *qp = walk->private; 484 unsigned long flags = qp->flags; 485 int ret; 486 pte_t *pte; 487 spinlock_t *ptl; 488 489 ptl = pmd_trans_huge_lock(pmd, vma); 490 if (ptl) { 491 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 492 if (ret) 493 return 0; 494 } 495 496 if (pmd_trans_unstable(pmd)) 497 return 0; 498 retry: 499 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 500 for (; addr != end; pte++, addr += PAGE_SIZE) { 501 if (!pte_present(*pte)) 502 continue; 503 page = vm_normal_page(vma, addr, *pte); 504 if (!page) 505 continue; 506 /* 507 * vm_normal_page() filters out zero pages, but there might 508 * still be PageReserved pages to skip, perhaps in a VDSO. 509 */ 510 if (PageReserved(page)) 511 continue; 512 if (!queue_pages_required(page, qp)) 513 continue; 514 if (PageTransCompound(page) && !thp_migration_supported()) { 515 get_page(page); 516 pte_unmap_unlock(pte, ptl); 517 lock_page(page); 518 ret = split_huge_page(page); 519 unlock_page(page); 520 put_page(page); 521 /* Failed to split -- skip. */ 522 if (ret) { 523 pte = pte_offset_map_lock(walk->mm, pmd, 524 addr, &ptl); 525 continue; 526 } 527 goto retry; 528 } 529 530 migrate_page_add(page, qp->pagelist, flags); 531 } 532 pte_unmap_unlock(pte - 1, ptl); 533 cond_resched(); 534 return 0; 535 } 536 537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 538 unsigned long addr, unsigned long end, 539 struct mm_walk *walk) 540 { 541 #ifdef CONFIG_HUGETLB_PAGE 542 struct queue_pages *qp = walk->private; 543 unsigned long flags = qp->flags; 544 struct page *page; 545 spinlock_t *ptl; 546 pte_t entry; 547 548 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 549 entry = huge_ptep_get(pte); 550 if (!pte_present(entry)) 551 goto unlock; 552 page = pte_page(entry); 553 if (!queue_pages_required(page, qp)) 554 goto unlock; 555 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 556 if (flags & (MPOL_MF_MOVE_ALL) || 557 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 558 isolate_huge_page(page, qp->pagelist); 559 unlock: 560 spin_unlock(ptl); 561 #else 562 BUG(); 563 #endif 564 return 0; 565 } 566 567 #ifdef CONFIG_NUMA_BALANCING 568 /* 569 * This is used to mark a range of virtual addresses to be inaccessible. 570 * These are later cleared by a NUMA hinting fault. Depending on these 571 * faults, pages may be migrated for better NUMA placement. 572 * 573 * This is assuming that NUMA faults are handled using PROT_NONE. If 574 * an architecture makes a different choice, it will need further 575 * changes to the core. 576 */ 577 unsigned long change_prot_numa(struct vm_area_struct *vma, 578 unsigned long addr, unsigned long end) 579 { 580 int nr_updated; 581 582 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 583 if (nr_updated) 584 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 585 586 return nr_updated; 587 } 588 #else 589 static unsigned long change_prot_numa(struct vm_area_struct *vma, 590 unsigned long addr, unsigned long end) 591 { 592 return 0; 593 } 594 #endif /* CONFIG_NUMA_BALANCING */ 595 596 static int queue_pages_test_walk(unsigned long start, unsigned long end, 597 struct mm_walk *walk) 598 { 599 struct vm_area_struct *vma = walk->vma; 600 struct queue_pages *qp = walk->private; 601 unsigned long endvma = vma->vm_end; 602 unsigned long flags = qp->flags; 603 604 if (!vma_migratable(vma)) 605 return 1; 606 607 if (endvma > end) 608 endvma = end; 609 if (vma->vm_start > start) 610 start = vma->vm_start; 611 612 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 613 if (!vma->vm_next && vma->vm_end < end) 614 return -EFAULT; 615 if (qp->prev && qp->prev->vm_end < vma->vm_start) 616 return -EFAULT; 617 } 618 619 qp->prev = vma; 620 621 if (flags & MPOL_MF_LAZY) { 622 /* Similar to task_numa_work, skip inaccessible VMAs */ 623 if (!is_vm_hugetlb_page(vma) && 624 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 625 !(vma->vm_flags & VM_MIXEDMAP)) 626 change_prot_numa(vma, start, endvma); 627 return 1; 628 } 629 630 /* queue pages from current vma */ 631 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 632 return 0; 633 return 1; 634 } 635 636 /* 637 * Walk through page tables and collect pages to be migrated. 638 * 639 * If pages found in a given range are on a set of nodes (determined by 640 * @nodes and @flags,) it's isolated and queued to the pagelist which is 641 * passed via @private.) 642 */ 643 static int 644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 645 nodemask_t *nodes, unsigned long flags, 646 struct list_head *pagelist) 647 { 648 struct queue_pages qp = { 649 .pagelist = pagelist, 650 .flags = flags, 651 .nmask = nodes, 652 .prev = NULL, 653 }; 654 struct mm_walk queue_pages_walk = { 655 .hugetlb_entry = queue_pages_hugetlb, 656 .pmd_entry = queue_pages_pte_range, 657 .test_walk = queue_pages_test_walk, 658 .mm = mm, 659 .private = &qp, 660 }; 661 662 return walk_page_range(start, end, &queue_pages_walk); 663 } 664 665 /* 666 * Apply policy to a single VMA 667 * This must be called with the mmap_sem held for writing. 668 */ 669 static int vma_replace_policy(struct vm_area_struct *vma, 670 struct mempolicy *pol) 671 { 672 int err; 673 struct mempolicy *old; 674 struct mempolicy *new; 675 676 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 677 vma->vm_start, vma->vm_end, vma->vm_pgoff, 678 vma->vm_ops, vma->vm_file, 679 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 680 681 new = mpol_dup(pol); 682 if (IS_ERR(new)) 683 return PTR_ERR(new); 684 685 if (vma->vm_ops && vma->vm_ops->set_policy) { 686 err = vma->vm_ops->set_policy(vma, new); 687 if (err) 688 goto err_out; 689 } 690 691 old = vma->vm_policy; 692 vma->vm_policy = new; /* protected by mmap_sem */ 693 mpol_put(old); 694 695 return 0; 696 err_out: 697 mpol_put(new); 698 return err; 699 } 700 701 /* Step 2: apply policy to a range and do splits. */ 702 static int mbind_range(struct mm_struct *mm, unsigned long start, 703 unsigned long end, struct mempolicy *new_pol) 704 { 705 struct vm_area_struct *next; 706 struct vm_area_struct *prev; 707 struct vm_area_struct *vma; 708 int err = 0; 709 pgoff_t pgoff; 710 unsigned long vmstart; 711 unsigned long vmend; 712 713 vma = find_vma(mm, start); 714 if (!vma || vma->vm_start > start) 715 return -EFAULT; 716 717 prev = vma->vm_prev; 718 if (start > vma->vm_start) 719 prev = vma; 720 721 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 722 next = vma->vm_next; 723 vmstart = max(start, vma->vm_start); 724 vmend = min(end, vma->vm_end); 725 726 if (mpol_equal(vma_policy(vma), new_pol)) 727 continue; 728 729 pgoff = vma->vm_pgoff + 730 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 731 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 732 vma->anon_vma, vma->vm_file, pgoff, 733 new_pol, vma->vm_userfaultfd_ctx); 734 if (prev) { 735 vma = prev; 736 next = vma->vm_next; 737 if (mpol_equal(vma_policy(vma), new_pol)) 738 continue; 739 /* vma_merge() joined vma && vma->next, case 8 */ 740 goto replace; 741 } 742 if (vma->vm_start != vmstart) { 743 err = split_vma(vma->vm_mm, vma, vmstart, 1); 744 if (err) 745 goto out; 746 } 747 if (vma->vm_end != vmend) { 748 err = split_vma(vma->vm_mm, vma, vmend, 0); 749 if (err) 750 goto out; 751 } 752 replace: 753 err = vma_replace_policy(vma, new_pol); 754 if (err) 755 goto out; 756 } 757 758 out: 759 return err; 760 } 761 762 /* Set the process memory policy */ 763 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 764 nodemask_t *nodes) 765 { 766 struct mempolicy *new, *old; 767 NODEMASK_SCRATCH(scratch); 768 int ret; 769 770 if (!scratch) 771 return -ENOMEM; 772 773 new = mpol_new(mode, flags, nodes); 774 if (IS_ERR(new)) { 775 ret = PTR_ERR(new); 776 goto out; 777 } 778 779 task_lock(current); 780 ret = mpol_set_nodemask(new, nodes, scratch); 781 if (ret) { 782 task_unlock(current); 783 mpol_put(new); 784 goto out; 785 } 786 old = current->mempolicy; 787 current->mempolicy = new; 788 if (new && new->mode == MPOL_INTERLEAVE) 789 current->il_prev = MAX_NUMNODES-1; 790 task_unlock(current); 791 mpol_put(old); 792 ret = 0; 793 out: 794 NODEMASK_SCRATCH_FREE(scratch); 795 return ret; 796 } 797 798 /* 799 * Return nodemask for policy for get_mempolicy() query 800 * 801 * Called with task's alloc_lock held 802 */ 803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 804 { 805 nodes_clear(*nodes); 806 if (p == &default_policy) 807 return; 808 809 switch (p->mode) { 810 case MPOL_BIND: 811 /* Fall through */ 812 case MPOL_INTERLEAVE: 813 *nodes = p->v.nodes; 814 break; 815 case MPOL_PREFERRED: 816 if (!(p->flags & MPOL_F_LOCAL)) 817 node_set(p->v.preferred_node, *nodes); 818 /* else return empty node mask for local allocation */ 819 break; 820 default: 821 BUG(); 822 } 823 } 824 825 static int lookup_node(unsigned long addr) 826 { 827 struct page *p; 828 int err; 829 830 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 831 if (err >= 0) { 832 err = page_to_nid(p); 833 put_page(p); 834 } 835 return err; 836 } 837 838 /* Retrieve NUMA policy */ 839 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 840 unsigned long addr, unsigned long flags) 841 { 842 int err; 843 struct mm_struct *mm = current->mm; 844 struct vm_area_struct *vma = NULL; 845 struct mempolicy *pol = current->mempolicy; 846 847 if (flags & 848 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 849 return -EINVAL; 850 851 if (flags & MPOL_F_MEMS_ALLOWED) { 852 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 853 return -EINVAL; 854 *policy = 0; /* just so it's initialized */ 855 task_lock(current); 856 *nmask = cpuset_current_mems_allowed; 857 task_unlock(current); 858 return 0; 859 } 860 861 if (flags & MPOL_F_ADDR) { 862 /* 863 * Do NOT fall back to task policy if the 864 * vma/shared policy at addr is NULL. We 865 * want to return MPOL_DEFAULT in this case. 866 */ 867 down_read(&mm->mmap_sem); 868 vma = find_vma_intersection(mm, addr, addr+1); 869 if (!vma) { 870 up_read(&mm->mmap_sem); 871 return -EFAULT; 872 } 873 if (vma->vm_ops && vma->vm_ops->get_policy) 874 pol = vma->vm_ops->get_policy(vma, addr); 875 else 876 pol = vma->vm_policy; 877 } else if (addr) 878 return -EINVAL; 879 880 if (!pol) 881 pol = &default_policy; /* indicates default behavior */ 882 883 if (flags & MPOL_F_NODE) { 884 if (flags & MPOL_F_ADDR) { 885 err = lookup_node(addr); 886 if (err < 0) 887 goto out; 888 *policy = err; 889 } else if (pol == current->mempolicy && 890 pol->mode == MPOL_INTERLEAVE) { 891 *policy = next_node_in(current->il_prev, pol->v.nodes); 892 } else { 893 err = -EINVAL; 894 goto out; 895 } 896 } else { 897 *policy = pol == &default_policy ? MPOL_DEFAULT : 898 pol->mode; 899 /* 900 * Internal mempolicy flags must be masked off before exposing 901 * the policy to userspace. 902 */ 903 *policy |= (pol->flags & MPOL_MODE_FLAGS); 904 } 905 906 err = 0; 907 if (nmask) { 908 if (mpol_store_user_nodemask(pol)) { 909 *nmask = pol->w.user_nodemask; 910 } else { 911 task_lock(current); 912 get_policy_nodemask(pol, nmask); 913 task_unlock(current); 914 } 915 } 916 917 out: 918 mpol_cond_put(pol); 919 if (vma) 920 up_read(¤t->mm->mmap_sem); 921 return err; 922 } 923 924 #ifdef CONFIG_MIGRATION 925 /* 926 * page migration, thp tail pages can be passed. 927 */ 928 static void migrate_page_add(struct page *page, struct list_head *pagelist, 929 unsigned long flags) 930 { 931 struct page *head = compound_head(page); 932 /* 933 * Avoid migrating a page that is shared with others. 934 */ 935 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 936 if (!isolate_lru_page(head)) { 937 list_add_tail(&head->lru, pagelist); 938 mod_node_page_state(page_pgdat(head), 939 NR_ISOLATED_ANON + page_is_file_cache(head), 940 hpage_nr_pages(head)); 941 } 942 } 943 } 944 945 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 946 { 947 if (PageHuge(page)) 948 return alloc_huge_page_node(page_hstate(compound_head(page)), 949 node); 950 else if (thp_migration_supported() && PageTransHuge(page)) { 951 struct page *thp; 952 953 thp = alloc_pages_node(node, 954 (GFP_TRANSHUGE | __GFP_THISNODE), 955 HPAGE_PMD_ORDER); 956 if (!thp) 957 return NULL; 958 prep_transhuge_page(thp); 959 return thp; 960 } else 961 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 962 __GFP_THISNODE, 0); 963 } 964 965 /* 966 * Migrate pages from one node to a target node. 967 * Returns error or the number of pages not migrated. 968 */ 969 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 970 int flags) 971 { 972 nodemask_t nmask; 973 LIST_HEAD(pagelist); 974 int err = 0; 975 976 nodes_clear(nmask); 977 node_set(source, nmask); 978 979 /* 980 * This does not "check" the range but isolates all pages that 981 * need migration. Between passing in the full user address 982 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 983 */ 984 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 985 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 986 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 987 988 if (!list_empty(&pagelist)) { 989 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 990 MIGRATE_SYNC, MR_SYSCALL); 991 if (err) 992 putback_movable_pages(&pagelist); 993 } 994 995 return err; 996 } 997 998 /* 999 * Move pages between the two nodesets so as to preserve the physical 1000 * layout as much as possible. 1001 * 1002 * Returns the number of page that could not be moved. 1003 */ 1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1005 const nodemask_t *to, int flags) 1006 { 1007 int busy = 0; 1008 int err; 1009 nodemask_t tmp; 1010 1011 err = migrate_prep(); 1012 if (err) 1013 return err; 1014 1015 down_read(&mm->mmap_sem); 1016 1017 /* 1018 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1019 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1020 * bit in 'tmp', and return that <source, dest> pair for migration. 1021 * The pair of nodemasks 'to' and 'from' define the map. 1022 * 1023 * If no pair of bits is found that way, fallback to picking some 1024 * pair of 'source' and 'dest' bits that are not the same. If the 1025 * 'source' and 'dest' bits are the same, this represents a node 1026 * that will be migrating to itself, so no pages need move. 1027 * 1028 * If no bits are left in 'tmp', or if all remaining bits left 1029 * in 'tmp' correspond to the same bit in 'to', return false 1030 * (nothing left to migrate). 1031 * 1032 * This lets us pick a pair of nodes to migrate between, such that 1033 * if possible the dest node is not already occupied by some other 1034 * source node, minimizing the risk of overloading the memory on a 1035 * node that would happen if we migrated incoming memory to a node 1036 * before migrating outgoing memory source that same node. 1037 * 1038 * A single scan of tmp is sufficient. As we go, we remember the 1039 * most recent <s, d> pair that moved (s != d). If we find a pair 1040 * that not only moved, but what's better, moved to an empty slot 1041 * (d is not set in tmp), then we break out then, with that pair. 1042 * Otherwise when we finish scanning from_tmp, we at least have the 1043 * most recent <s, d> pair that moved. If we get all the way through 1044 * the scan of tmp without finding any node that moved, much less 1045 * moved to an empty node, then there is nothing left worth migrating. 1046 */ 1047 1048 tmp = *from; 1049 while (!nodes_empty(tmp)) { 1050 int s,d; 1051 int source = NUMA_NO_NODE; 1052 int dest = 0; 1053 1054 for_each_node_mask(s, tmp) { 1055 1056 /* 1057 * do_migrate_pages() tries to maintain the relative 1058 * node relationship of the pages established between 1059 * threads and memory areas. 1060 * 1061 * However if the number of source nodes is not equal to 1062 * the number of destination nodes we can not preserve 1063 * this node relative relationship. In that case, skip 1064 * copying memory from a node that is in the destination 1065 * mask. 1066 * 1067 * Example: [2,3,4] -> [3,4,5] moves everything. 1068 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1069 */ 1070 1071 if ((nodes_weight(*from) != nodes_weight(*to)) && 1072 (node_isset(s, *to))) 1073 continue; 1074 1075 d = node_remap(s, *from, *to); 1076 if (s == d) 1077 continue; 1078 1079 source = s; /* Node moved. Memorize */ 1080 dest = d; 1081 1082 /* dest not in remaining from nodes? */ 1083 if (!node_isset(dest, tmp)) 1084 break; 1085 } 1086 if (source == NUMA_NO_NODE) 1087 break; 1088 1089 node_clear(source, tmp); 1090 err = migrate_to_node(mm, source, dest, flags); 1091 if (err > 0) 1092 busy += err; 1093 if (err < 0) 1094 break; 1095 } 1096 up_read(&mm->mmap_sem); 1097 if (err < 0) 1098 return err; 1099 return busy; 1100 1101 } 1102 1103 /* 1104 * Allocate a new page for page migration based on vma policy. 1105 * Start by assuming the page is mapped by the same vma as contains @start. 1106 * Search forward from there, if not. N.B., this assumes that the 1107 * list of pages handed to migrate_pages()--which is how we get here-- 1108 * is in virtual address order. 1109 */ 1110 static struct page *new_page(struct page *page, unsigned long start, int **x) 1111 { 1112 struct vm_area_struct *vma; 1113 unsigned long uninitialized_var(address); 1114 1115 vma = find_vma(current->mm, start); 1116 while (vma) { 1117 address = page_address_in_vma(page, vma); 1118 if (address != -EFAULT) 1119 break; 1120 vma = vma->vm_next; 1121 } 1122 1123 if (PageHuge(page)) { 1124 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1125 vma, address); 1126 } else if (thp_migration_supported() && PageTransHuge(page)) { 1127 struct page *thp; 1128 1129 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1130 HPAGE_PMD_ORDER); 1131 if (!thp) 1132 return NULL; 1133 prep_transhuge_page(thp); 1134 return thp; 1135 } 1136 /* 1137 * if !vma, alloc_page_vma() will use task or system default policy 1138 */ 1139 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1140 vma, address); 1141 } 1142 #else 1143 1144 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1145 unsigned long flags) 1146 { 1147 } 1148 1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1150 const nodemask_t *to, int flags) 1151 { 1152 return -ENOSYS; 1153 } 1154 1155 static struct page *new_page(struct page *page, unsigned long start, int **x) 1156 { 1157 return NULL; 1158 } 1159 #endif 1160 1161 static long do_mbind(unsigned long start, unsigned long len, 1162 unsigned short mode, unsigned short mode_flags, 1163 nodemask_t *nmask, unsigned long flags) 1164 { 1165 struct mm_struct *mm = current->mm; 1166 struct mempolicy *new; 1167 unsigned long end; 1168 int err; 1169 LIST_HEAD(pagelist); 1170 1171 if (flags & ~(unsigned long)MPOL_MF_VALID) 1172 return -EINVAL; 1173 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1174 return -EPERM; 1175 1176 if (start & ~PAGE_MASK) 1177 return -EINVAL; 1178 1179 if (mode == MPOL_DEFAULT) 1180 flags &= ~MPOL_MF_STRICT; 1181 1182 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1183 end = start + len; 1184 1185 if (end < start) 1186 return -EINVAL; 1187 if (end == start) 1188 return 0; 1189 1190 new = mpol_new(mode, mode_flags, nmask); 1191 if (IS_ERR(new)) 1192 return PTR_ERR(new); 1193 1194 if (flags & MPOL_MF_LAZY) 1195 new->flags |= MPOL_F_MOF; 1196 1197 /* 1198 * If we are using the default policy then operation 1199 * on discontinuous address spaces is okay after all 1200 */ 1201 if (!new) 1202 flags |= MPOL_MF_DISCONTIG_OK; 1203 1204 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1205 start, start + len, mode, mode_flags, 1206 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1207 1208 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1209 1210 err = migrate_prep(); 1211 if (err) 1212 goto mpol_out; 1213 } 1214 { 1215 NODEMASK_SCRATCH(scratch); 1216 if (scratch) { 1217 down_write(&mm->mmap_sem); 1218 task_lock(current); 1219 err = mpol_set_nodemask(new, nmask, scratch); 1220 task_unlock(current); 1221 if (err) 1222 up_write(&mm->mmap_sem); 1223 } else 1224 err = -ENOMEM; 1225 NODEMASK_SCRATCH_FREE(scratch); 1226 } 1227 if (err) 1228 goto mpol_out; 1229 1230 err = queue_pages_range(mm, start, end, nmask, 1231 flags | MPOL_MF_INVERT, &pagelist); 1232 if (!err) 1233 err = mbind_range(mm, start, end, new); 1234 1235 if (!err) { 1236 int nr_failed = 0; 1237 1238 if (!list_empty(&pagelist)) { 1239 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1240 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1241 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1242 if (nr_failed) 1243 putback_movable_pages(&pagelist); 1244 } 1245 1246 if (nr_failed && (flags & MPOL_MF_STRICT)) 1247 err = -EIO; 1248 } else 1249 putback_movable_pages(&pagelist); 1250 1251 up_write(&mm->mmap_sem); 1252 mpol_out: 1253 mpol_put(new); 1254 return err; 1255 } 1256 1257 /* 1258 * User space interface with variable sized bitmaps for nodelists. 1259 */ 1260 1261 /* Copy a node mask from user space. */ 1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1263 unsigned long maxnode) 1264 { 1265 unsigned long k; 1266 unsigned long t; 1267 unsigned long nlongs; 1268 unsigned long endmask; 1269 1270 --maxnode; 1271 nodes_clear(*nodes); 1272 if (maxnode == 0 || !nmask) 1273 return 0; 1274 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1275 return -EINVAL; 1276 1277 nlongs = BITS_TO_LONGS(maxnode); 1278 if ((maxnode % BITS_PER_LONG) == 0) 1279 endmask = ~0UL; 1280 else 1281 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1282 1283 /* 1284 * When the user specified more nodes than supported just check 1285 * if the non supported part is all zero. 1286 * 1287 * If maxnode have more longs than MAX_NUMNODES, check 1288 * the bits in that area first. And then go through to 1289 * check the rest bits which equal or bigger than MAX_NUMNODES. 1290 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1291 */ 1292 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1293 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1294 if (get_user(t, nmask + k)) 1295 return -EFAULT; 1296 if (k == nlongs - 1) { 1297 if (t & endmask) 1298 return -EINVAL; 1299 } else if (t) 1300 return -EINVAL; 1301 } 1302 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1303 endmask = ~0UL; 1304 } 1305 1306 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1307 unsigned long valid_mask = endmask; 1308 1309 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1310 if (get_user(t, nmask + nlongs - 1)) 1311 return -EFAULT; 1312 if (t & valid_mask) 1313 return -EINVAL; 1314 } 1315 1316 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1317 return -EFAULT; 1318 nodes_addr(*nodes)[nlongs-1] &= endmask; 1319 return 0; 1320 } 1321 1322 /* Copy a kernel node mask to user space */ 1323 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1324 nodemask_t *nodes) 1325 { 1326 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1327 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1328 1329 if (copy > nbytes) { 1330 if (copy > PAGE_SIZE) 1331 return -EINVAL; 1332 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1333 return -EFAULT; 1334 copy = nbytes; 1335 } 1336 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1337 } 1338 1339 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1340 unsigned long, mode, const unsigned long __user *, nmask, 1341 unsigned long, maxnode, unsigned, flags) 1342 { 1343 nodemask_t nodes; 1344 int err; 1345 unsigned short mode_flags; 1346 1347 mode_flags = mode & MPOL_MODE_FLAGS; 1348 mode &= ~MPOL_MODE_FLAGS; 1349 if (mode >= MPOL_MAX) 1350 return -EINVAL; 1351 if ((mode_flags & MPOL_F_STATIC_NODES) && 1352 (mode_flags & MPOL_F_RELATIVE_NODES)) 1353 return -EINVAL; 1354 err = get_nodes(&nodes, nmask, maxnode); 1355 if (err) 1356 return err; 1357 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1358 } 1359 1360 /* Set the process memory policy */ 1361 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1362 unsigned long, maxnode) 1363 { 1364 int err; 1365 nodemask_t nodes; 1366 unsigned short flags; 1367 1368 flags = mode & MPOL_MODE_FLAGS; 1369 mode &= ~MPOL_MODE_FLAGS; 1370 if ((unsigned int)mode >= MPOL_MAX) 1371 return -EINVAL; 1372 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1373 return -EINVAL; 1374 err = get_nodes(&nodes, nmask, maxnode); 1375 if (err) 1376 return err; 1377 return do_set_mempolicy(mode, flags, &nodes); 1378 } 1379 1380 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1381 const unsigned long __user *, old_nodes, 1382 const unsigned long __user *, new_nodes) 1383 { 1384 struct mm_struct *mm = NULL; 1385 struct task_struct *task; 1386 nodemask_t task_nodes; 1387 int err; 1388 nodemask_t *old; 1389 nodemask_t *new; 1390 NODEMASK_SCRATCH(scratch); 1391 1392 if (!scratch) 1393 return -ENOMEM; 1394 1395 old = &scratch->mask1; 1396 new = &scratch->mask2; 1397 1398 err = get_nodes(old, old_nodes, maxnode); 1399 if (err) 1400 goto out; 1401 1402 err = get_nodes(new, new_nodes, maxnode); 1403 if (err) 1404 goto out; 1405 1406 /* Find the mm_struct */ 1407 rcu_read_lock(); 1408 task = pid ? find_task_by_vpid(pid) : current; 1409 if (!task) { 1410 rcu_read_unlock(); 1411 err = -ESRCH; 1412 goto out; 1413 } 1414 get_task_struct(task); 1415 1416 err = -EINVAL; 1417 1418 /* 1419 * Check if this process has the right to modify the specified process. 1420 * Use the regular "ptrace_may_access()" checks. 1421 */ 1422 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1423 rcu_read_unlock(); 1424 err = -EPERM; 1425 goto out_put; 1426 } 1427 rcu_read_unlock(); 1428 1429 task_nodes = cpuset_mems_allowed(task); 1430 /* Is the user allowed to access the target nodes? */ 1431 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1432 err = -EPERM; 1433 goto out_put; 1434 } 1435 1436 task_nodes = cpuset_mems_allowed(current); 1437 nodes_and(*new, *new, task_nodes); 1438 if (nodes_empty(*new)) 1439 goto out_put; 1440 1441 nodes_and(*new, *new, node_states[N_MEMORY]); 1442 if (nodes_empty(*new)) 1443 goto out_put; 1444 1445 err = security_task_movememory(task); 1446 if (err) 1447 goto out_put; 1448 1449 mm = get_task_mm(task); 1450 put_task_struct(task); 1451 1452 if (!mm) { 1453 err = -EINVAL; 1454 goto out; 1455 } 1456 1457 err = do_migrate_pages(mm, old, new, 1458 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1459 1460 mmput(mm); 1461 out: 1462 NODEMASK_SCRATCH_FREE(scratch); 1463 1464 return err; 1465 1466 out_put: 1467 put_task_struct(task); 1468 goto out; 1469 1470 } 1471 1472 1473 /* Retrieve NUMA policy */ 1474 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1475 unsigned long __user *, nmask, unsigned long, maxnode, 1476 unsigned long, addr, unsigned long, flags) 1477 { 1478 int err; 1479 int uninitialized_var(pval); 1480 nodemask_t nodes; 1481 1482 if (nmask != NULL && maxnode < MAX_NUMNODES) 1483 return -EINVAL; 1484 1485 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1486 1487 if (err) 1488 return err; 1489 1490 if (policy && put_user(pval, policy)) 1491 return -EFAULT; 1492 1493 if (nmask) 1494 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1495 1496 return err; 1497 } 1498 1499 #ifdef CONFIG_COMPAT 1500 1501 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1502 compat_ulong_t __user *, nmask, 1503 compat_ulong_t, maxnode, 1504 compat_ulong_t, addr, compat_ulong_t, flags) 1505 { 1506 long err; 1507 unsigned long __user *nm = NULL; 1508 unsigned long nr_bits, alloc_size; 1509 DECLARE_BITMAP(bm, MAX_NUMNODES); 1510 1511 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1512 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1513 1514 if (nmask) 1515 nm = compat_alloc_user_space(alloc_size); 1516 1517 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1518 1519 if (!err && nmask) { 1520 unsigned long copy_size; 1521 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1522 err = copy_from_user(bm, nm, copy_size); 1523 /* ensure entire bitmap is zeroed */ 1524 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1525 err |= compat_put_bitmap(nmask, bm, nr_bits); 1526 } 1527 1528 return err; 1529 } 1530 1531 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1532 compat_ulong_t, maxnode) 1533 { 1534 unsigned long __user *nm = NULL; 1535 unsigned long nr_bits, alloc_size; 1536 DECLARE_BITMAP(bm, MAX_NUMNODES); 1537 1538 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1539 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1540 1541 if (nmask) { 1542 if (compat_get_bitmap(bm, nmask, nr_bits)) 1543 return -EFAULT; 1544 nm = compat_alloc_user_space(alloc_size); 1545 if (copy_to_user(nm, bm, alloc_size)) 1546 return -EFAULT; 1547 } 1548 1549 return sys_set_mempolicy(mode, nm, nr_bits+1); 1550 } 1551 1552 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1553 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1554 compat_ulong_t, maxnode, compat_ulong_t, flags) 1555 { 1556 unsigned long __user *nm = NULL; 1557 unsigned long nr_bits, alloc_size; 1558 nodemask_t bm; 1559 1560 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1561 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1562 1563 if (nmask) { 1564 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1565 return -EFAULT; 1566 nm = compat_alloc_user_space(alloc_size); 1567 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1568 return -EFAULT; 1569 } 1570 1571 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1572 } 1573 1574 #endif 1575 1576 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1577 unsigned long addr) 1578 { 1579 struct mempolicy *pol = NULL; 1580 1581 if (vma) { 1582 if (vma->vm_ops && vma->vm_ops->get_policy) { 1583 pol = vma->vm_ops->get_policy(vma, addr); 1584 } else if (vma->vm_policy) { 1585 pol = vma->vm_policy; 1586 1587 /* 1588 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1589 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1590 * count on these policies which will be dropped by 1591 * mpol_cond_put() later 1592 */ 1593 if (mpol_needs_cond_ref(pol)) 1594 mpol_get(pol); 1595 } 1596 } 1597 1598 return pol; 1599 } 1600 1601 /* 1602 * get_vma_policy(@vma, @addr) 1603 * @vma: virtual memory area whose policy is sought 1604 * @addr: address in @vma for shared policy lookup 1605 * 1606 * Returns effective policy for a VMA at specified address. 1607 * Falls back to current->mempolicy or system default policy, as necessary. 1608 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1609 * count--added by the get_policy() vm_op, as appropriate--to protect against 1610 * freeing by another task. It is the caller's responsibility to free the 1611 * extra reference for shared policies. 1612 */ 1613 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1614 unsigned long addr) 1615 { 1616 struct mempolicy *pol = __get_vma_policy(vma, addr); 1617 1618 if (!pol) 1619 pol = get_task_policy(current); 1620 1621 return pol; 1622 } 1623 1624 bool vma_policy_mof(struct vm_area_struct *vma) 1625 { 1626 struct mempolicy *pol; 1627 1628 if (vma->vm_ops && vma->vm_ops->get_policy) { 1629 bool ret = false; 1630 1631 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1632 if (pol && (pol->flags & MPOL_F_MOF)) 1633 ret = true; 1634 mpol_cond_put(pol); 1635 1636 return ret; 1637 } 1638 1639 pol = vma->vm_policy; 1640 if (!pol) 1641 pol = get_task_policy(current); 1642 1643 return pol->flags & MPOL_F_MOF; 1644 } 1645 1646 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1647 { 1648 enum zone_type dynamic_policy_zone = policy_zone; 1649 1650 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1651 1652 /* 1653 * if policy->v.nodes has movable memory only, 1654 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1655 * 1656 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1657 * so if the following test faile, it implies 1658 * policy->v.nodes has movable memory only. 1659 */ 1660 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1661 dynamic_policy_zone = ZONE_MOVABLE; 1662 1663 return zone >= dynamic_policy_zone; 1664 } 1665 1666 /* 1667 * Return a nodemask representing a mempolicy for filtering nodes for 1668 * page allocation 1669 */ 1670 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1671 { 1672 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1673 if (unlikely(policy->mode == MPOL_BIND) && 1674 apply_policy_zone(policy, gfp_zone(gfp)) && 1675 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1676 return &policy->v.nodes; 1677 1678 return NULL; 1679 } 1680 1681 /* Return the node id preferred by the given mempolicy, or the given id */ 1682 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1683 int nd) 1684 { 1685 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1686 nd = policy->v.preferred_node; 1687 else { 1688 /* 1689 * __GFP_THISNODE shouldn't even be used with the bind policy 1690 * because we might easily break the expectation to stay on the 1691 * requested node and not break the policy. 1692 */ 1693 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1694 } 1695 1696 return nd; 1697 } 1698 1699 /* Do dynamic interleaving for a process */ 1700 static unsigned interleave_nodes(struct mempolicy *policy) 1701 { 1702 unsigned next; 1703 struct task_struct *me = current; 1704 1705 next = next_node_in(me->il_prev, policy->v.nodes); 1706 if (next < MAX_NUMNODES) 1707 me->il_prev = next; 1708 return next; 1709 } 1710 1711 /* 1712 * Depending on the memory policy provide a node from which to allocate the 1713 * next slab entry. 1714 */ 1715 unsigned int mempolicy_slab_node(void) 1716 { 1717 struct mempolicy *policy; 1718 int node = numa_mem_id(); 1719 1720 if (in_interrupt()) 1721 return node; 1722 1723 policy = current->mempolicy; 1724 if (!policy || policy->flags & MPOL_F_LOCAL) 1725 return node; 1726 1727 switch (policy->mode) { 1728 case MPOL_PREFERRED: 1729 /* 1730 * handled MPOL_F_LOCAL above 1731 */ 1732 return policy->v.preferred_node; 1733 1734 case MPOL_INTERLEAVE: 1735 return interleave_nodes(policy); 1736 1737 case MPOL_BIND: { 1738 struct zoneref *z; 1739 1740 /* 1741 * Follow bind policy behavior and start allocation at the 1742 * first node. 1743 */ 1744 struct zonelist *zonelist; 1745 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1746 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1747 z = first_zones_zonelist(zonelist, highest_zoneidx, 1748 &policy->v.nodes); 1749 return z->zone ? z->zone->node : node; 1750 } 1751 1752 default: 1753 BUG(); 1754 } 1755 } 1756 1757 /* 1758 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1759 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1760 * number of present nodes. 1761 */ 1762 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1763 { 1764 unsigned nnodes = nodes_weight(pol->v.nodes); 1765 unsigned target; 1766 int i; 1767 int nid; 1768 1769 if (!nnodes) 1770 return numa_node_id(); 1771 target = (unsigned int)n % nnodes; 1772 nid = first_node(pol->v.nodes); 1773 for (i = 0; i < target; i++) 1774 nid = next_node(nid, pol->v.nodes); 1775 return nid; 1776 } 1777 1778 /* Determine a node number for interleave */ 1779 static inline unsigned interleave_nid(struct mempolicy *pol, 1780 struct vm_area_struct *vma, unsigned long addr, int shift) 1781 { 1782 if (vma) { 1783 unsigned long off; 1784 1785 /* 1786 * for small pages, there is no difference between 1787 * shift and PAGE_SHIFT, so the bit-shift is safe. 1788 * for huge pages, since vm_pgoff is in units of small 1789 * pages, we need to shift off the always 0 bits to get 1790 * a useful offset. 1791 */ 1792 BUG_ON(shift < PAGE_SHIFT); 1793 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1794 off += (addr - vma->vm_start) >> shift; 1795 return offset_il_node(pol, off); 1796 } else 1797 return interleave_nodes(pol); 1798 } 1799 1800 #ifdef CONFIG_HUGETLBFS 1801 /* 1802 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1803 * @vma: virtual memory area whose policy is sought 1804 * @addr: address in @vma for shared policy lookup and interleave policy 1805 * @gfp_flags: for requested zone 1806 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1807 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1808 * 1809 * Returns a nid suitable for a huge page allocation and a pointer 1810 * to the struct mempolicy for conditional unref after allocation. 1811 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1812 * @nodemask for filtering the zonelist. 1813 * 1814 * Must be protected by read_mems_allowed_begin() 1815 */ 1816 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1817 struct mempolicy **mpol, nodemask_t **nodemask) 1818 { 1819 int nid; 1820 1821 *mpol = get_vma_policy(vma, addr); 1822 *nodemask = NULL; /* assume !MPOL_BIND */ 1823 1824 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1825 nid = interleave_nid(*mpol, vma, addr, 1826 huge_page_shift(hstate_vma(vma))); 1827 } else { 1828 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1829 if ((*mpol)->mode == MPOL_BIND) 1830 *nodemask = &(*mpol)->v.nodes; 1831 } 1832 return nid; 1833 } 1834 1835 /* 1836 * init_nodemask_of_mempolicy 1837 * 1838 * If the current task's mempolicy is "default" [NULL], return 'false' 1839 * to indicate default policy. Otherwise, extract the policy nodemask 1840 * for 'bind' or 'interleave' policy into the argument nodemask, or 1841 * initialize the argument nodemask to contain the single node for 1842 * 'preferred' or 'local' policy and return 'true' to indicate presence 1843 * of non-default mempolicy. 1844 * 1845 * We don't bother with reference counting the mempolicy [mpol_get/put] 1846 * because the current task is examining it's own mempolicy and a task's 1847 * mempolicy is only ever changed by the task itself. 1848 * 1849 * N.B., it is the caller's responsibility to free a returned nodemask. 1850 */ 1851 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1852 { 1853 struct mempolicy *mempolicy; 1854 int nid; 1855 1856 if (!(mask && current->mempolicy)) 1857 return false; 1858 1859 task_lock(current); 1860 mempolicy = current->mempolicy; 1861 switch (mempolicy->mode) { 1862 case MPOL_PREFERRED: 1863 if (mempolicy->flags & MPOL_F_LOCAL) 1864 nid = numa_node_id(); 1865 else 1866 nid = mempolicy->v.preferred_node; 1867 init_nodemask_of_node(mask, nid); 1868 break; 1869 1870 case MPOL_BIND: 1871 /* Fall through */ 1872 case MPOL_INTERLEAVE: 1873 *mask = mempolicy->v.nodes; 1874 break; 1875 1876 default: 1877 BUG(); 1878 } 1879 task_unlock(current); 1880 1881 return true; 1882 } 1883 #endif 1884 1885 /* 1886 * mempolicy_nodemask_intersects 1887 * 1888 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1889 * policy. Otherwise, check for intersection between mask and the policy 1890 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1891 * policy, always return true since it may allocate elsewhere on fallback. 1892 * 1893 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1894 */ 1895 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1896 const nodemask_t *mask) 1897 { 1898 struct mempolicy *mempolicy; 1899 bool ret = true; 1900 1901 if (!mask) 1902 return ret; 1903 task_lock(tsk); 1904 mempolicy = tsk->mempolicy; 1905 if (!mempolicy) 1906 goto out; 1907 1908 switch (mempolicy->mode) { 1909 case MPOL_PREFERRED: 1910 /* 1911 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1912 * allocate from, they may fallback to other nodes when oom. 1913 * Thus, it's possible for tsk to have allocated memory from 1914 * nodes in mask. 1915 */ 1916 break; 1917 case MPOL_BIND: 1918 case MPOL_INTERLEAVE: 1919 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1920 break; 1921 default: 1922 BUG(); 1923 } 1924 out: 1925 task_unlock(tsk); 1926 return ret; 1927 } 1928 1929 /* Allocate a page in interleaved policy. 1930 Own path because it needs to do special accounting. */ 1931 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1932 unsigned nid) 1933 { 1934 struct page *page; 1935 1936 page = __alloc_pages(gfp, order, nid); 1937 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 1938 if (!static_branch_likely(&vm_numa_stat_key)) 1939 return page; 1940 if (page && page_to_nid(page) == nid) { 1941 preempt_disable(); 1942 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 1943 preempt_enable(); 1944 } 1945 return page; 1946 } 1947 1948 /** 1949 * alloc_pages_vma - Allocate a page for a VMA. 1950 * 1951 * @gfp: 1952 * %GFP_USER user allocation. 1953 * %GFP_KERNEL kernel allocations, 1954 * %GFP_HIGHMEM highmem/user allocations, 1955 * %GFP_FS allocation should not call back into a file system. 1956 * %GFP_ATOMIC don't sleep. 1957 * 1958 * @order:Order of the GFP allocation. 1959 * @vma: Pointer to VMA or NULL if not available. 1960 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1961 * @node: Which node to prefer for allocation (modulo policy). 1962 * @hugepage: for hugepages try only the preferred node if possible 1963 * 1964 * This function allocates a page from the kernel page pool and applies 1965 * a NUMA policy associated with the VMA or the current process. 1966 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1967 * mm_struct of the VMA to prevent it from going away. Should be used for 1968 * all allocations for pages that will be mapped into user space. Returns 1969 * NULL when no page can be allocated. 1970 */ 1971 struct page * 1972 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1973 unsigned long addr, int node, bool hugepage) 1974 { 1975 struct mempolicy *pol; 1976 struct page *page; 1977 int preferred_nid; 1978 nodemask_t *nmask; 1979 1980 pol = get_vma_policy(vma, addr); 1981 1982 if (pol->mode == MPOL_INTERLEAVE) { 1983 unsigned nid; 1984 1985 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1986 mpol_cond_put(pol); 1987 page = alloc_page_interleave(gfp, order, nid); 1988 goto out; 1989 } 1990 1991 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1992 int hpage_node = node; 1993 1994 /* 1995 * For hugepage allocation and non-interleave policy which 1996 * allows the current node (or other explicitly preferred 1997 * node) we only try to allocate from the current/preferred 1998 * node and don't fall back to other nodes, as the cost of 1999 * remote accesses would likely offset THP benefits. 2000 * 2001 * If the policy is interleave, or does not allow the current 2002 * node in its nodemask, we allocate the standard way. 2003 */ 2004 if (pol->mode == MPOL_PREFERRED && 2005 !(pol->flags & MPOL_F_LOCAL)) 2006 hpage_node = pol->v.preferred_node; 2007 2008 nmask = policy_nodemask(gfp, pol); 2009 if (!nmask || node_isset(hpage_node, *nmask)) { 2010 mpol_cond_put(pol); 2011 page = __alloc_pages_node(hpage_node, 2012 gfp | __GFP_THISNODE, order); 2013 goto out; 2014 } 2015 } 2016 2017 nmask = policy_nodemask(gfp, pol); 2018 preferred_nid = policy_node(gfp, pol, node); 2019 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2020 mpol_cond_put(pol); 2021 out: 2022 return page; 2023 } 2024 2025 /** 2026 * alloc_pages_current - Allocate pages. 2027 * 2028 * @gfp: 2029 * %GFP_USER user allocation, 2030 * %GFP_KERNEL kernel allocation, 2031 * %GFP_HIGHMEM highmem allocation, 2032 * %GFP_FS don't call back into a file system. 2033 * %GFP_ATOMIC don't sleep. 2034 * @order: Power of two of allocation size in pages. 0 is a single page. 2035 * 2036 * Allocate a page from the kernel page pool. When not in 2037 * interrupt context and apply the current process NUMA policy. 2038 * Returns NULL when no page can be allocated. 2039 */ 2040 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2041 { 2042 struct mempolicy *pol = &default_policy; 2043 struct page *page; 2044 2045 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2046 pol = get_task_policy(current); 2047 2048 /* 2049 * No reference counting needed for current->mempolicy 2050 * nor system default_policy 2051 */ 2052 if (pol->mode == MPOL_INTERLEAVE) 2053 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2054 else 2055 page = __alloc_pages_nodemask(gfp, order, 2056 policy_node(gfp, pol, numa_node_id()), 2057 policy_nodemask(gfp, pol)); 2058 2059 return page; 2060 } 2061 EXPORT_SYMBOL(alloc_pages_current); 2062 2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2064 { 2065 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2066 2067 if (IS_ERR(pol)) 2068 return PTR_ERR(pol); 2069 dst->vm_policy = pol; 2070 return 0; 2071 } 2072 2073 /* 2074 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2075 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2076 * with the mems_allowed returned by cpuset_mems_allowed(). This 2077 * keeps mempolicies cpuset relative after its cpuset moves. See 2078 * further kernel/cpuset.c update_nodemask(). 2079 * 2080 * current's mempolicy may be rebinded by the other task(the task that changes 2081 * cpuset's mems), so we needn't do rebind work for current task. 2082 */ 2083 2084 /* Slow path of a mempolicy duplicate */ 2085 struct mempolicy *__mpol_dup(struct mempolicy *old) 2086 { 2087 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2088 2089 if (!new) 2090 return ERR_PTR(-ENOMEM); 2091 2092 /* task's mempolicy is protected by alloc_lock */ 2093 if (old == current->mempolicy) { 2094 task_lock(current); 2095 *new = *old; 2096 task_unlock(current); 2097 } else 2098 *new = *old; 2099 2100 if (current_cpuset_is_being_rebound()) { 2101 nodemask_t mems = cpuset_mems_allowed(current); 2102 mpol_rebind_policy(new, &mems); 2103 } 2104 atomic_set(&new->refcnt, 1); 2105 return new; 2106 } 2107 2108 /* Slow path of a mempolicy comparison */ 2109 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2110 { 2111 if (!a || !b) 2112 return false; 2113 if (a->mode != b->mode) 2114 return false; 2115 if (a->flags != b->flags) 2116 return false; 2117 if (mpol_store_user_nodemask(a)) 2118 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2119 return false; 2120 2121 switch (a->mode) { 2122 case MPOL_BIND: 2123 /* Fall through */ 2124 case MPOL_INTERLEAVE: 2125 return !!nodes_equal(a->v.nodes, b->v.nodes); 2126 case MPOL_PREFERRED: 2127 return a->v.preferred_node == b->v.preferred_node; 2128 default: 2129 BUG(); 2130 return false; 2131 } 2132 } 2133 2134 /* 2135 * Shared memory backing store policy support. 2136 * 2137 * Remember policies even when nobody has shared memory mapped. 2138 * The policies are kept in Red-Black tree linked from the inode. 2139 * They are protected by the sp->lock rwlock, which should be held 2140 * for any accesses to the tree. 2141 */ 2142 2143 /* 2144 * lookup first element intersecting start-end. Caller holds sp->lock for 2145 * reading or for writing 2146 */ 2147 static struct sp_node * 2148 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2149 { 2150 struct rb_node *n = sp->root.rb_node; 2151 2152 while (n) { 2153 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2154 2155 if (start >= p->end) 2156 n = n->rb_right; 2157 else if (end <= p->start) 2158 n = n->rb_left; 2159 else 2160 break; 2161 } 2162 if (!n) 2163 return NULL; 2164 for (;;) { 2165 struct sp_node *w = NULL; 2166 struct rb_node *prev = rb_prev(n); 2167 if (!prev) 2168 break; 2169 w = rb_entry(prev, struct sp_node, nd); 2170 if (w->end <= start) 2171 break; 2172 n = prev; 2173 } 2174 return rb_entry(n, struct sp_node, nd); 2175 } 2176 2177 /* 2178 * Insert a new shared policy into the list. Caller holds sp->lock for 2179 * writing. 2180 */ 2181 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2182 { 2183 struct rb_node **p = &sp->root.rb_node; 2184 struct rb_node *parent = NULL; 2185 struct sp_node *nd; 2186 2187 while (*p) { 2188 parent = *p; 2189 nd = rb_entry(parent, struct sp_node, nd); 2190 if (new->start < nd->start) 2191 p = &(*p)->rb_left; 2192 else if (new->end > nd->end) 2193 p = &(*p)->rb_right; 2194 else 2195 BUG(); 2196 } 2197 rb_link_node(&new->nd, parent, p); 2198 rb_insert_color(&new->nd, &sp->root); 2199 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2200 new->policy ? new->policy->mode : 0); 2201 } 2202 2203 /* Find shared policy intersecting idx */ 2204 struct mempolicy * 2205 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2206 { 2207 struct mempolicy *pol = NULL; 2208 struct sp_node *sn; 2209 2210 if (!sp->root.rb_node) 2211 return NULL; 2212 read_lock(&sp->lock); 2213 sn = sp_lookup(sp, idx, idx+1); 2214 if (sn) { 2215 mpol_get(sn->policy); 2216 pol = sn->policy; 2217 } 2218 read_unlock(&sp->lock); 2219 return pol; 2220 } 2221 2222 static void sp_free(struct sp_node *n) 2223 { 2224 mpol_put(n->policy); 2225 kmem_cache_free(sn_cache, n); 2226 } 2227 2228 /** 2229 * mpol_misplaced - check whether current page node is valid in policy 2230 * 2231 * @page: page to be checked 2232 * @vma: vm area where page mapped 2233 * @addr: virtual address where page mapped 2234 * 2235 * Lookup current policy node id for vma,addr and "compare to" page's 2236 * node id. 2237 * 2238 * Returns: 2239 * -1 - not misplaced, page is in the right node 2240 * node - node id where the page should be 2241 * 2242 * Policy determination "mimics" alloc_page_vma(). 2243 * Called from fault path where we know the vma and faulting address. 2244 */ 2245 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2246 { 2247 struct mempolicy *pol; 2248 struct zoneref *z; 2249 int curnid = page_to_nid(page); 2250 unsigned long pgoff; 2251 int thiscpu = raw_smp_processor_id(); 2252 int thisnid = cpu_to_node(thiscpu); 2253 int polnid = -1; 2254 int ret = -1; 2255 2256 pol = get_vma_policy(vma, addr); 2257 if (!(pol->flags & MPOL_F_MOF)) 2258 goto out; 2259 2260 switch (pol->mode) { 2261 case MPOL_INTERLEAVE: 2262 pgoff = vma->vm_pgoff; 2263 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2264 polnid = offset_il_node(pol, pgoff); 2265 break; 2266 2267 case MPOL_PREFERRED: 2268 if (pol->flags & MPOL_F_LOCAL) 2269 polnid = numa_node_id(); 2270 else 2271 polnid = pol->v.preferred_node; 2272 break; 2273 2274 case MPOL_BIND: 2275 2276 /* 2277 * allows binding to multiple nodes. 2278 * use current page if in policy nodemask, 2279 * else select nearest allowed node, if any. 2280 * If no allowed nodes, use current [!misplaced]. 2281 */ 2282 if (node_isset(curnid, pol->v.nodes)) 2283 goto out; 2284 z = first_zones_zonelist( 2285 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2286 gfp_zone(GFP_HIGHUSER), 2287 &pol->v.nodes); 2288 polnid = z->zone->node; 2289 break; 2290 2291 default: 2292 BUG(); 2293 } 2294 2295 /* Migrate the page towards the node whose CPU is referencing it */ 2296 if (pol->flags & MPOL_F_MORON) { 2297 polnid = thisnid; 2298 2299 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2300 goto out; 2301 } 2302 2303 if (curnid != polnid) 2304 ret = polnid; 2305 out: 2306 mpol_cond_put(pol); 2307 2308 return ret; 2309 } 2310 2311 /* 2312 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2313 * dropped after task->mempolicy is set to NULL so that any allocation done as 2314 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2315 * policy. 2316 */ 2317 void mpol_put_task_policy(struct task_struct *task) 2318 { 2319 struct mempolicy *pol; 2320 2321 task_lock(task); 2322 pol = task->mempolicy; 2323 task->mempolicy = NULL; 2324 task_unlock(task); 2325 mpol_put(pol); 2326 } 2327 2328 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2329 { 2330 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2331 rb_erase(&n->nd, &sp->root); 2332 sp_free(n); 2333 } 2334 2335 static void sp_node_init(struct sp_node *node, unsigned long start, 2336 unsigned long end, struct mempolicy *pol) 2337 { 2338 node->start = start; 2339 node->end = end; 2340 node->policy = pol; 2341 } 2342 2343 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2344 struct mempolicy *pol) 2345 { 2346 struct sp_node *n; 2347 struct mempolicy *newpol; 2348 2349 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2350 if (!n) 2351 return NULL; 2352 2353 newpol = mpol_dup(pol); 2354 if (IS_ERR(newpol)) { 2355 kmem_cache_free(sn_cache, n); 2356 return NULL; 2357 } 2358 newpol->flags |= MPOL_F_SHARED; 2359 sp_node_init(n, start, end, newpol); 2360 2361 return n; 2362 } 2363 2364 /* Replace a policy range. */ 2365 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2366 unsigned long end, struct sp_node *new) 2367 { 2368 struct sp_node *n; 2369 struct sp_node *n_new = NULL; 2370 struct mempolicy *mpol_new = NULL; 2371 int ret = 0; 2372 2373 restart: 2374 write_lock(&sp->lock); 2375 n = sp_lookup(sp, start, end); 2376 /* Take care of old policies in the same range. */ 2377 while (n && n->start < end) { 2378 struct rb_node *next = rb_next(&n->nd); 2379 if (n->start >= start) { 2380 if (n->end <= end) 2381 sp_delete(sp, n); 2382 else 2383 n->start = end; 2384 } else { 2385 /* Old policy spanning whole new range. */ 2386 if (n->end > end) { 2387 if (!n_new) 2388 goto alloc_new; 2389 2390 *mpol_new = *n->policy; 2391 atomic_set(&mpol_new->refcnt, 1); 2392 sp_node_init(n_new, end, n->end, mpol_new); 2393 n->end = start; 2394 sp_insert(sp, n_new); 2395 n_new = NULL; 2396 mpol_new = NULL; 2397 break; 2398 } else 2399 n->end = start; 2400 } 2401 if (!next) 2402 break; 2403 n = rb_entry(next, struct sp_node, nd); 2404 } 2405 if (new) 2406 sp_insert(sp, new); 2407 write_unlock(&sp->lock); 2408 ret = 0; 2409 2410 err_out: 2411 if (mpol_new) 2412 mpol_put(mpol_new); 2413 if (n_new) 2414 kmem_cache_free(sn_cache, n_new); 2415 2416 return ret; 2417 2418 alloc_new: 2419 write_unlock(&sp->lock); 2420 ret = -ENOMEM; 2421 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2422 if (!n_new) 2423 goto err_out; 2424 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2425 if (!mpol_new) 2426 goto err_out; 2427 goto restart; 2428 } 2429 2430 /** 2431 * mpol_shared_policy_init - initialize shared policy for inode 2432 * @sp: pointer to inode shared policy 2433 * @mpol: struct mempolicy to install 2434 * 2435 * Install non-NULL @mpol in inode's shared policy rb-tree. 2436 * On entry, the current task has a reference on a non-NULL @mpol. 2437 * This must be released on exit. 2438 * This is called at get_inode() calls and we can use GFP_KERNEL. 2439 */ 2440 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2441 { 2442 int ret; 2443 2444 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2445 rwlock_init(&sp->lock); 2446 2447 if (mpol) { 2448 struct vm_area_struct pvma; 2449 struct mempolicy *new; 2450 NODEMASK_SCRATCH(scratch); 2451 2452 if (!scratch) 2453 goto put_mpol; 2454 /* contextualize the tmpfs mount point mempolicy */ 2455 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2456 if (IS_ERR(new)) 2457 goto free_scratch; /* no valid nodemask intersection */ 2458 2459 task_lock(current); 2460 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2461 task_unlock(current); 2462 if (ret) 2463 goto put_new; 2464 2465 /* Create pseudo-vma that contains just the policy */ 2466 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2467 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2468 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2469 2470 put_new: 2471 mpol_put(new); /* drop initial ref */ 2472 free_scratch: 2473 NODEMASK_SCRATCH_FREE(scratch); 2474 put_mpol: 2475 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2476 } 2477 } 2478 2479 int mpol_set_shared_policy(struct shared_policy *info, 2480 struct vm_area_struct *vma, struct mempolicy *npol) 2481 { 2482 int err; 2483 struct sp_node *new = NULL; 2484 unsigned long sz = vma_pages(vma); 2485 2486 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2487 vma->vm_pgoff, 2488 sz, npol ? npol->mode : -1, 2489 npol ? npol->flags : -1, 2490 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2491 2492 if (npol) { 2493 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2494 if (!new) 2495 return -ENOMEM; 2496 } 2497 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2498 if (err && new) 2499 sp_free(new); 2500 return err; 2501 } 2502 2503 /* Free a backing policy store on inode delete. */ 2504 void mpol_free_shared_policy(struct shared_policy *p) 2505 { 2506 struct sp_node *n; 2507 struct rb_node *next; 2508 2509 if (!p->root.rb_node) 2510 return; 2511 write_lock(&p->lock); 2512 next = rb_first(&p->root); 2513 while (next) { 2514 n = rb_entry(next, struct sp_node, nd); 2515 next = rb_next(&n->nd); 2516 sp_delete(p, n); 2517 } 2518 write_unlock(&p->lock); 2519 } 2520 2521 #ifdef CONFIG_NUMA_BALANCING 2522 static int __initdata numabalancing_override; 2523 2524 static void __init check_numabalancing_enable(void) 2525 { 2526 bool numabalancing_default = false; 2527 2528 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2529 numabalancing_default = true; 2530 2531 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2532 if (numabalancing_override) 2533 set_numabalancing_state(numabalancing_override == 1); 2534 2535 if (num_online_nodes() > 1 && !numabalancing_override) { 2536 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2537 numabalancing_default ? "Enabling" : "Disabling"); 2538 set_numabalancing_state(numabalancing_default); 2539 } 2540 } 2541 2542 static int __init setup_numabalancing(char *str) 2543 { 2544 int ret = 0; 2545 if (!str) 2546 goto out; 2547 2548 if (!strcmp(str, "enable")) { 2549 numabalancing_override = 1; 2550 ret = 1; 2551 } else if (!strcmp(str, "disable")) { 2552 numabalancing_override = -1; 2553 ret = 1; 2554 } 2555 out: 2556 if (!ret) 2557 pr_warn("Unable to parse numa_balancing=\n"); 2558 2559 return ret; 2560 } 2561 __setup("numa_balancing=", setup_numabalancing); 2562 #else 2563 static inline void __init check_numabalancing_enable(void) 2564 { 2565 } 2566 #endif /* CONFIG_NUMA_BALANCING */ 2567 2568 /* assumes fs == KERNEL_DS */ 2569 void __init numa_policy_init(void) 2570 { 2571 nodemask_t interleave_nodes; 2572 unsigned long largest = 0; 2573 int nid, prefer = 0; 2574 2575 policy_cache = kmem_cache_create("numa_policy", 2576 sizeof(struct mempolicy), 2577 0, SLAB_PANIC, NULL); 2578 2579 sn_cache = kmem_cache_create("shared_policy_node", 2580 sizeof(struct sp_node), 2581 0, SLAB_PANIC, NULL); 2582 2583 for_each_node(nid) { 2584 preferred_node_policy[nid] = (struct mempolicy) { 2585 .refcnt = ATOMIC_INIT(1), 2586 .mode = MPOL_PREFERRED, 2587 .flags = MPOL_F_MOF | MPOL_F_MORON, 2588 .v = { .preferred_node = nid, }, 2589 }; 2590 } 2591 2592 /* 2593 * Set interleaving policy for system init. Interleaving is only 2594 * enabled across suitably sized nodes (default is >= 16MB), or 2595 * fall back to the largest node if they're all smaller. 2596 */ 2597 nodes_clear(interleave_nodes); 2598 for_each_node_state(nid, N_MEMORY) { 2599 unsigned long total_pages = node_present_pages(nid); 2600 2601 /* Preserve the largest node */ 2602 if (largest < total_pages) { 2603 largest = total_pages; 2604 prefer = nid; 2605 } 2606 2607 /* Interleave this node? */ 2608 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2609 node_set(nid, interleave_nodes); 2610 } 2611 2612 /* All too small, use the largest */ 2613 if (unlikely(nodes_empty(interleave_nodes))) 2614 node_set(prefer, interleave_nodes); 2615 2616 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2617 pr_err("%s: interleaving failed\n", __func__); 2618 2619 check_numabalancing_enable(); 2620 } 2621 2622 /* Reset policy of current process to default */ 2623 void numa_default_policy(void) 2624 { 2625 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2626 } 2627 2628 /* 2629 * Parse and format mempolicy from/to strings 2630 */ 2631 2632 /* 2633 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2634 */ 2635 static const char * const policy_modes[] = 2636 { 2637 [MPOL_DEFAULT] = "default", 2638 [MPOL_PREFERRED] = "prefer", 2639 [MPOL_BIND] = "bind", 2640 [MPOL_INTERLEAVE] = "interleave", 2641 [MPOL_LOCAL] = "local", 2642 }; 2643 2644 2645 #ifdef CONFIG_TMPFS 2646 /** 2647 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2648 * @str: string containing mempolicy to parse 2649 * @mpol: pointer to struct mempolicy pointer, returned on success. 2650 * 2651 * Format of input: 2652 * <mode>[=<flags>][:<nodelist>] 2653 * 2654 * On success, returns 0, else 1 2655 */ 2656 int mpol_parse_str(char *str, struct mempolicy **mpol) 2657 { 2658 struct mempolicy *new = NULL; 2659 unsigned short mode; 2660 unsigned short mode_flags; 2661 nodemask_t nodes; 2662 char *nodelist = strchr(str, ':'); 2663 char *flags = strchr(str, '='); 2664 int err = 1; 2665 2666 if (nodelist) { 2667 /* NUL-terminate mode or flags string */ 2668 *nodelist++ = '\0'; 2669 if (nodelist_parse(nodelist, nodes)) 2670 goto out; 2671 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2672 goto out; 2673 } else 2674 nodes_clear(nodes); 2675 2676 if (flags) 2677 *flags++ = '\0'; /* terminate mode string */ 2678 2679 for (mode = 0; mode < MPOL_MAX; mode++) { 2680 if (!strcmp(str, policy_modes[mode])) { 2681 break; 2682 } 2683 } 2684 if (mode >= MPOL_MAX) 2685 goto out; 2686 2687 switch (mode) { 2688 case MPOL_PREFERRED: 2689 /* 2690 * Insist on a nodelist of one node only 2691 */ 2692 if (nodelist) { 2693 char *rest = nodelist; 2694 while (isdigit(*rest)) 2695 rest++; 2696 if (*rest) 2697 goto out; 2698 } 2699 break; 2700 case MPOL_INTERLEAVE: 2701 /* 2702 * Default to online nodes with memory if no nodelist 2703 */ 2704 if (!nodelist) 2705 nodes = node_states[N_MEMORY]; 2706 break; 2707 case MPOL_LOCAL: 2708 /* 2709 * Don't allow a nodelist; mpol_new() checks flags 2710 */ 2711 if (nodelist) 2712 goto out; 2713 mode = MPOL_PREFERRED; 2714 break; 2715 case MPOL_DEFAULT: 2716 /* 2717 * Insist on a empty nodelist 2718 */ 2719 if (!nodelist) 2720 err = 0; 2721 goto out; 2722 case MPOL_BIND: 2723 /* 2724 * Insist on a nodelist 2725 */ 2726 if (!nodelist) 2727 goto out; 2728 } 2729 2730 mode_flags = 0; 2731 if (flags) { 2732 /* 2733 * Currently, we only support two mutually exclusive 2734 * mode flags. 2735 */ 2736 if (!strcmp(flags, "static")) 2737 mode_flags |= MPOL_F_STATIC_NODES; 2738 else if (!strcmp(flags, "relative")) 2739 mode_flags |= MPOL_F_RELATIVE_NODES; 2740 else 2741 goto out; 2742 } 2743 2744 new = mpol_new(mode, mode_flags, &nodes); 2745 if (IS_ERR(new)) 2746 goto out; 2747 2748 /* 2749 * Save nodes for mpol_to_str() to show the tmpfs mount options 2750 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2751 */ 2752 if (mode != MPOL_PREFERRED) 2753 new->v.nodes = nodes; 2754 else if (nodelist) 2755 new->v.preferred_node = first_node(nodes); 2756 else 2757 new->flags |= MPOL_F_LOCAL; 2758 2759 /* 2760 * Save nodes for contextualization: this will be used to "clone" 2761 * the mempolicy in a specific context [cpuset] at a later time. 2762 */ 2763 new->w.user_nodemask = nodes; 2764 2765 err = 0; 2766 2767 out: 2768 /* Restore string for error message */ 2769 if (nodelist) 2770 *--nodelist = ':'; 2771 if (flags) 2772 *--flags = '='; 2773 if (!err) 2774 *mpol = new; 2775 return err; 2776 } 2777 #endif /* CONFIG_TMPFS */ 2778 2779 /** 2780 * mpol_to_str - format a mempolicy structure for printing 2781 * @buffer: to contain formatted mempolicy string 2782 * @maxlen: length of @buffer 2783 * @pol: pointer to mempolicy to be formatted 2784 * 2785 * Convert @pol into a string. If @buffer is too short, truncate the string. 2786 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2787 * longest flag, "relative", and to display at least a few node ids. 2788 */ 2789 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2790 { 2791 char *p = buffer; 2792 nodemask_t nodes = NODE_MASK_NONE; 2793 unsigned short mode = MPOL_DEFAULT; 2794 unsigned short flags = 0; 2795 2796 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2797 mode = pol->mode; 2798 flags = pol->flags; 2799 } 2800 2801 switch (mode) { 2802 case MPOL_DEFAULT: 2803 break; 2804 case MPOL_PREFERRED: 2805 if (flags & MPOL_F_LOCAL) 2806 mode = MPOL_LOCAL; 2807 else 2808 node_set(pol->v.preferred_node, nodes); 2809 break; 2810 case MPOL_BIND: 2811 case MPOL_INTERLEAVE: 2812 nodes = pol->v.nodes; 2813 break; 2814 default: 2815 WARN_ON_ONCE(1); 2816 snprintf(p, maxlen, "unknown"); 2817 return; 2818 } 2819 2820 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2821 2822 if (flags & MPOL_MODE_FLAGS) { 2823 p += snprintf(p, buffer + maxlen - p, "="); 2824 2825 /* 2826 * Currently, the only defined flags are mutually exclusive 2827 */ 2828 if (flags & MPOL_F_STATIC_NODES) 2829 p += snprintf(p, buffer + maxlen - p, "static"); 2830 else if (flags & MPOL_F_RELATIVE_NODES) 2831 p += snprintf(p, buffer + maxlen - p, "relative"); 2832 } 2833 2834 if (!nodes_empty(nodes)) 2835 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2836 nodemask_pr_args(&nodes)); 2837 } 2838