1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 could replace all the switch()es with a mempolicy_ops structure. 67 */ 68 69 #include <linux/mempolicy.h> 70 #include <linux/mm.h> 71 #include <linux/highmem.h> 72 #include <linux/hugetlb.h> 73 #include <linux/kernel.h> 74 #include <linux/sched.h> 75 #include <linux/nodemask.h> 76 #include <linux/cpuset.h> 77 #include <linux/gfp.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/module.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/rmap.h> 90 #include <linux/security.h> 91 #include <linux/syscalls.h> 92 93 #include <asm/tlbflush.h> 94 #include <asm/uaccess.h> 95 96 /* Internal flags */ 97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 100 101 static struct kmem_cache *policy_cache; 102 static struct kmem_cache *sn_cache; 103 104 /* Highest zone. An specific allocation for a zone below that is not 105 policied. */ 106 enum zone_type policy_zone = 0; 107 108 struct mempolicy default_policy = { 109 .refcnt = ATOMIC_INIT(1), /* never free it */ 110 .policy = MPOL_DEFAULT, 111 }; 112 113 static void mpol_rebind_policy(struct mempolicy *pol, 114 const nodemask_t *newmask); 115 116 /* Do sanity checking on a policy */ 117 static int mpol_check_policy(int mode, nodemask_t *nodes) 118 { 119 int was_empty, is_empty; 120 121 if (!nodes) 122 return 0; 123 124 /* 125 * "Contextualize" the in-coming nodemast for cpusets: 126 * Remember whether in-coming nodemask was empty, If not, 127 * restrict the nodes to the allowed nodes in the cpuset. 128 * This is guaranteed to be a subset of nodes with memory. 129 */ 130 cpuset_update_task_memory_state(); 131 is_empty = was_empty = nodes_empty(*nodes); 132 if (!was_empty) { 133 nodes_and(*nodes, *nodes, cpuset_current_mems_allowed); 134 is_empty = nodes_empty(*nodes); /* after "contextualization" */ 135 } 136 137 switch (mode) { 138 case MPOL_DEFAULT: 139 /* 140 * require caller to specify an empty nodemask 141 * before "contextualization" 142 */ 143 if (!was_empty) 144 return -EINVAL; 145 break; 146 case MPOL_BIND: 147 case MPOL_INTERLEAVE: 148 /* 149 * require at least 1 valid node after "contextualization" 150 */ 151 if (is_empty) 152 return -EINVAL; 153 break; 154 case MPOL_PREFERRED: 155 /* 156 * Did caller specify invalid nodes? 157 * Don't silently accept this as "local allocation". 158 */ 159 if (!was_empty && is_empty) 160 return -EINVAL; 161 break; 162 } 163 return 0; 164 } 165 166 /* Generate a custom zonelist for the BIND policy. */ 167 static struct zonelist *bind_zonelist(nodemask_t *nodes) 168 { 169 struct zonelist *zl; 170 int num, max, nd; 171 enum zone_type k; 172 173 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); 174 max++; /* space for zlcache_ptr (see mmzone.h) */ 175 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); 176 if (!zl) 177 return ERR_PTR(-ENOMEM); 178 zl->zlcache_ptr = NULL; 179 num = 0; 180 /* First put in the highest zones from all nodes, then all the next 181 lower zones etc. Avoid empty zones because the memory allocator 182 doesn't like them. If you implement node hot removal you 183 have to fix that. */ 184 k = MAX_NR_ZONES - 1; 185 while (1) { 186 for_each_node_mask(nd, *nodes) { 187 struct zone *z = &NODE_DATA(nd)->node_zones[k]; 188 if (z->present_pages > 0) 189 zl->zones[num++] = z; 190 } 191 if (k == 0) 192 break; 193 k--; 194 } 195 if (num == 0) { 196 kfree(zl); 197 return ERR_PTR(-EINVAL); 198 } 199 zl->zones[num] = NULL; 200 return zl; 201 } 202 203 /* Create a new policy */ 204 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes) 205 { 206 struct mempolicy *policy; 207 208 pr_debug("setting mode %d nodes[0] %lx\n", 209 mode, nodes ? nodes_addr(*nodes)[0] : -1); 210 211 if (mode == MPOL_DEFAULT) 212 return NULL; 213 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 214 if (!policy) 215 return ERR_PTR(-ENOMEM); 216 atomic_set(&policy->refcnt, 1); 217 switch (mode) { 218 case MPOL_INTERLEAVE: 219 policy->v.nodes = *nodes; 220 if (nodes_weight(policy->v.nodes) == 0) { 221 kmem_cache_free(policy_cache, policy); 222 return ERR_PTR(-EINVAL); 223 } 224 break; 225 case MPOL_PREFERRED: 226 policy->v.preferred_node = first_node(*nodes); 227 if (policy->v.preferred_node >= MAX_NUMNODES) 228 policy->v.preferred_node = -1; 229 break; 230 case MPOL_BIND: 231 policy->v.zonelist = bind_zonelist(nodes); 232 if (IS_ERR(policy->v.zonelist)) { 233 void *error_code = policy->v.zonelist; 234 kmem_cache_free(policy_cache, policy); 235 return error_code; 236 } 237 break; 238 } 239 policy->policy = mode; 240 policy->cpuset_mems_allowed = cpuset_mems_allowed(current); 241 return policy; 242 } 243 244 static void gather_stats(struct page *, void *, int pte_dirty); 245 static void migrate_page_add(struct page *page, struct list_head *pagelist, 246 unsigned long flags); 247 248 /* Scan through pages checking if pages follow certain conditions. */ 249 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 250 unsigned long addr, unsigned long end, 251 const nodemask_t *nodes, unsigned long flags, 252 void *private) 253 { 254 pte_t *orig_pte; 255 pte_t *pte; 256 spinlock_t *ptl; 257 258 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 259 do { 260 struct page *page; 261 int nid; 262 263 if (!pte_present(*pte)) 264 continue; 265 page = vm_normal_page(vma, addr, *pte); 266 if (!page) 267 continue; 268 /* 269 * The check for PageReserved here is important to avoid 270 * handling zero pages and other pages that may have been 271 * marked special by the system. 272 * 273 * If the PageReserved would not be checked here then f.e. 274 * the location of the zero page could have an influence 275 * on MPOL_MF_STRICT, zero pages would be counted for 276 * the per node stats, and there would be useless attempts 277 * to put zero pages on the migration list. 278 */ 279 if (PageReserved(page)) 280 continue; 281 nid = page_to_nid(page); 282 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 283 continue; 284 285 if (flags & MPOL_MF_STATS) 286 gather_stats(page, private, pte_dirty(*pte)); 287 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 288 migrate_page_add(page, private, flags); 289 else 290 break; 291 } while (pte++, addr += PAGE_SIZE, addr != end); 292 pte_unmap_unlock(orig_pte, ptl); 293 return addr != end; 294 } 295 296 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 297 unsigned long addr, unsigned long end, 298 const nodemask_t *nodes, unsigned long flags, 299 void *private) 300 { 301 pmd_t *pmd; 302 unsigned long next; 303 304 pmd = pmd_offset(pud, addr); 305 do { 306 next = pmd_addr_end(addr, end); 307 if (pmd_none_or_clear_bad(pmd)) 308 continue; 309 if (check_pte_range(vma, pmd, addr, next, nodes, 310 flags, private)) 311 return -EIO; 312 } while (pmd++, addr = next, addr != end); 313 return 0; 314 } 315 316 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 317 unsigned long addr, unsigned long end, 318 const nodemask_t *nodes, unsigned long flags, 319 void *private) 320 { 321 pud_t *pud; 322 unsigned long next; 323 324 pud = pud_offset(pgd, addr); 325 do { 326 next = pud_addr_end(addr, end); 327 if (pud_none_or_clear_bad(pud)) 328 continue; 329 if (check_pmd_range(vma, pud, addr, next, nodes, 330 flags, private)) 331 return -EIO; 332 } while (pud++, addr = next, addr != end); 333 return 0; 334 } 335 336 static inline int check_pgd_range(struct vm_area_struct *vma, 337 unsigned long addr, unsigned long end, 338 const nodemask_t *nodes, unsigned long flags, 339 void *private) 340 { 341 pgd_t *pgd; 342 unsigned long next; 343 344 pgd = pgd_offset(vma->vm_mm, addr); 345 do { 346 next = pgd_addr_end(addr, end); 347 if (pgd_none_or_clear_bad(pgd)) 348 continue; 349 if (check_pud_range(vma, pgd, addr, next, nodes, 350 flags, private)) 351 return -EIO; 352 } while (pgd++, addr = next, addr != end); 353 return 0; 354 } 355 356 /* 357 * Check if all pages in a range are on a set of nodes. 358 * If pagelist != NULL then isolate pages from the LRU and 359 * put them on the pagelist. 360 */ 361 static struct vm_area_struct * 362 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 363 const nodemask_t *nodes, unsigned long flags, void *private) 364 { 365 int err; 366 struct vm_area_struct *first, *vma, *prev; 367 368 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 369 370 err = migrate_prep(); 371 if (err) 372 return ERR_PTR(err); 373 } 374 375 first = find_vma(mm, start); 376 if (!first) 377 return ERR_PTR(-EFAULT); 378 prev = NULL; 379 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 380 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 381 if (!vma->vm_next && vma->vm_end < end) 382 return ERR_PTR(-EFAULT); 383 if (prev && prev->vm_end < vma->vm_start) 384 return ERR_PTR(-EFAULT); 385 } 386 if (!is_vm_hugetlb_page(vma) && 387 ((flags & MPOL_MF_STRICT) || 388 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 389 vma_migratable(vma)))) { 390 unsigned long endvma = vma->vm_end; 391 392 if (endvma > end) 393 endvma = end; 394 if (vma->vm_start > start) 395 start = vma->vm_start; 396 err = check_pgd_range(vma, start, endvma, nodes, 397 flags, private); 398 if (err) { 399 first = ERR_PTR(err); 400 break; 401 } 402 } 403 prev = vma; 404 } 405 return first; 406 } 407 408 /* Apply policy to a single VMA */ 409 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 410 { 411 int err = 0; 412 struct mempolicy *old = vma->vm_policy; 413 414 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 415 vma->vm_start, vma->vm_end, vma->vm_pgoff, 416 vma->vm_ops, vma->vm_file, 417 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 418 419 if (vma->vm_ops && vma->vm_ops->set_policy) 420 err = vma->vm_ops->set_policy(vma, new); 421 if (!err) { 422 mpol_get(new); 423 vma->vm_policy = new; 424 mpol_free(old); 425 } 426 return err; 427 } 428 429 /* Step 2: apply policy to a range and do splits. */ 430 static int mbind_range(struct vm_area_struct *vma, unsigned long start, 431 unsigned long end, struct mempolicy *new) 432 { 433 struct vm_area_struct *next; 434 int err; 435 436 err = 0; 437 for (; vma && vma->vm_start < end; vma = next) { 438 next = vma->vm_next; 439 if (vma->vm_start < start) 440 err = split_vma(vma->vm_mm, vma, start, 1); 441 if (!err && vma->vm_end > end) 442 err = split_vma(vma->vm_mm, vma, end, 0); 443 if (!err) 444 err = policy_vma(vma, new); 445 if (err) 446 break; 447 } 448 return err; 449 } 450 451 /* 452 * Update task->flags PF_MEMPOLICY bit: set iff non-default 453 * mempolicy. Allows more rapid checking of this (combined perhaps 454 * with other PF_* flag bits) on memory allocation hot code paths. 455 * 456 * If called from outside this file, the task 'p' should -only- be 457 * a newly forked child not yet visible on the task list, because 458 * manipulating the task flags of a visible task is not safe. 459 * 460 * The above limitation is why this routine has the funny name 461 * mpol_fix_fork_child_flag(). 462 * 463 * It is also safe to call this with a task pointer of current, 464 * which the static wrapper mpol_set_task_struct_flag() does, 465 * for use within this file. 466 */ 467 468 void mpol_fix_fork_child_flag(struct task_struct *p) 469 { 470 if (p->mempolicy) 471 p->flags |= PF_MEMPOLICY; 472 else 473 p->flags &= ~PF_MEMPOLICY; 474 } 475 476 static void mpol_set_task_struct_flag(void) 477 { 478 mpol_fix_fork_child_flag(current); 479 } 480 481 /* Set the process memory policy */ 482 static long do_set_mempolicy(int mode, nodemask_t *nodes) 483 { 484 struct mempolicy *new; 485 486 if (mpol_check_policy(mode, nodes)) 487 return -EINVAL; 488 new = mpol_new(mode, nodes); 489 if (IS_ERR(new)) 490 return PTR_ERR(new); 491 mpol_free(current->mempolicy); 492 current->mempolicy = new; 493 mpol_set_task_struct_flag(); 494 if (new && new->policy == MPOL_INTERLEAVE) 495 current->il_next = first_node(new->v.nodes); 496 return 0; 497 } 498 499 /* Fill a zone bitmap for a policy */ 500 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes) 501 { 502 int i; 503 504 nodes_clear(*nodes); 505 switch (p->policy) { 506 case MPOL_BIND: 507 for (i = 0; p->v.zonelist->zones[i]; i++) 508 node_set(zone_to_nid(p->v.zonelist->zones[i]), 509 *nodes); 510 break; 511 case MPOL_DEFAULT: 512 break; 513 case MPOL_INTERLEAVE: 514 *nodes = p->v.nodes; 515 break; 516 case MPOL_PREFERRED: 517 /* or use current node instead of memory_map? */ 518 if (p->v.preferred_node < 0) 519 *nodes = node_states[N_HIGH_MEMORY]; 520 else 521 node_set(p->v.preferred_node, *nodes); 522 break; 523 default: 524 BUG(); 525 } 526 } 527 528 static int lookup_node(struct mm_struct *mm, unsigned long addr) 529 { 530 struct page *p; 531 int err; 532 533 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 534 if (err >= 0) { 535 err = page_to_nid(p); 536 put_page(p); 537 } 538 return err; 539 } 540 541 /* Retrieve NUMA policy */ 542 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 543 unsigned long addr, unsigned long flags) 544 { 545 int err; 546 struct mm_struct *mm = current->mm; 547 struct vm_area_struct *vma = NULL; 548 struct mempolicy *pol = current->mempolicy; 549 550 cpuset_update_task_memory_state(); 551 if (flags & 552 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 553 return -EINVAL; 554 555 if (flags & MPOL_F_MEMS_ALLOWED) { 556 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 557 return -EINVAL; 558 *policy = 0; /* just so it's initialized */ 559 *nmask = cpuset_current_mems_allowed; 560 return 0; 561 } 562 563 if (flags & MPOL_F_ADDR) { 564 down_read(&mm->mmap_sem); 565 vma = find_vma_intersection(mm, addr, addr+1); 566 if (!vma) { 567 up_read(&mm->mmap_sem); 568 return -EFAULT; 569 } 570 if (vma->vm_ops && vma->vm_ops->get_policy) 571 pol = vma->vm_ops->get_policy(vma, addr); 572 else 573 pol = vma->vm_policy; 574 } else if (addr) 575 return -EINVAL; 576 577 if (!pol) 578 pol = &default_policy; 579 580 if (flags & MPOL_F_NODE) { 581 if (flags & MPOL_F_ADDR) { 582 err = lookup_node(mm, addr); 583 if (err < 0) 584 goto out; 585 *policy = err; 586 } else if (pol == current->mempolicy && 587 pol->policy == MPOL_INTERLEAVE) { 588 *policy = current->il_next; 589 } else { 590 err = -EINVAL; 591 goto out; 592 } 593 } else 594 *policy = pol->policy; 595 596 if (vma) { 597 up_read(¤t->mm->mmap_sem); 598 vma = NULL; 599 } 600 601 err = 0; 602 if (nmask) 603 get_zonemask(pol, nmask); 604 605 out: 606 if (vma) 607 up_read(¤t->mm->mmap_sem); 608 return err; 609 } 610 611 #ifdef CONFIG_MIGRATION 612 /* 613 * page migration 614 */ 615 static void migrate_page_add(struct page *page, struct list_head *pagelist, 616 unsigned long flags) 617 { 618 /* 619 * Avoid migrating a page that is shared with others. 620 */ 621 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) 622 isolate_lru_page(page, pagelist); 623 } 624 625 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 626 { 627 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0); 628 } 629 630 /* 631 * Migrate pages from one node to a target node. 632 * Returns error or the number of pages not migrated. 633 */ 634 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 635 int flags) 636 { 637 nodemask_t nmask; 638 LIST_HEAD(pagelist); 639 int err = 0; 640 641 nodes_clear(nmask); 642 node_set(source, nmask); 643 644 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, 645 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 646 647 if (!list_empty(&pagelist)) 648 err = migrate_pages(&pagelist, new_node_page, dest); 649 650 return err; 651 } 652 653 /* 654 * Move pages between the two nodesets so as to preserve the physical 655 * layout as much as possible. 656 * 657 * Returns the number of page that could not be moved. 658 */ 659 int do_migrate_pages(struct mm_struct *mm, 660 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 661 { 662 LIST_HEAD(pagelist); 663 int busy = 0; 664 int err = 0; 665 nodemask_t tmp; 666 667 down_read(&mm->mmap_sem); 668 669 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 670 if (err) 671 goto out; 672 673 /* 674 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 675 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 676 * bit in 'tmp', and return that <source, dest> pair for migration. 677 * The pair of nodemasks 'to' and 'from' define the map. 678 * 679 * If no pair of bits is found that way, fallback to picking some 680 * pair of 'source' and 'dest' bits that are not the same. If the 681 * 'source' and 'dest' bits are the same, this represents a node 682 * that will be migrating to itself, so no pages need move. 683 * 684 * If no bits are left in 'tmp', or if all remaining bits left 685 * in 'tmp' correspond to the same bit in 'to', return false 686 * (nothing left to migrate). 687 * 688 * This lets us pick a pair of nodes to migrate between, such that 689 * if possible the dest node is not already occupied by some other 690 * source node, minimizing the risk of overloading the memory on a 691 * node that would happen if we migrated incoming memory to a node 692 * before migrating outgoing memory source that same node. 693 * 694 * A single scan of tmp is sufficient. As we go, we remember the 695 * most recent <s, d> pair that moved (s != d). If we find a pair 696 * that not only moved, but what's better, moved to an empty slot 697 * (d is not set in tmp), then we break out then, with that pair. 698 * Otherwise when we finish scannng from_tmp, we at least have the 699 * most recent <s, d> pair that moved. If we get all the way through 700 * the scan of tmp without finding any node that moved, much less 701 * moved to an empty node, then there is nothing left worth migrating. 702 */ 703 704 tmp = *from_nodes; 705 while (!nodes_empty(tmp)) { 706 int s,d; 707 int source = -1; 708 int dest = 0; 709 710 for_each_node_mask(s, tmp) { 711 d = node_remap(s, *from_nodes, *to_nodes); 712 if (s == d) 713 continue; 714 715 source = s; /* Node moved. Memorize */ 716 dest = d; 717 718 /* dest not in remaining from nodes? */ 719 if (!node_isset(dest, tmp)) 720 break; 721 } 722 if (source == -1) 723 break; 724 725 node_clear(source, tmp); 726 err = migrate_to_node(mm, source, dest, flags); 727 if (err > 0) 728 busy += err; 729 if (err < 0) 730 break; 731 } 732 out: 733 up_read(&mm->mmap_sem); 734 if (err < 0) 735 return err; 736 return busy; 737 738 } 739 740 /* 741 * Allocate a new page for page migration based on vma policy. 742 * Start assuming that page is mapped by vma pointed to by @private. 743 * Search forward from there, if not. N.B., this assumes that the 744 * list of pages handed to migrate_pages()--which is how we get here-- 745 * is in virtual address order. 746 */ 747 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 748 { 749 struct vm_area_struct *vma = (struct vm_area_struct *)private; 750 unsigned long uninitialized_var(address); 751 752 while (vma) { 753 address = page_address_in_vma(page, vma); 754 if (address != -EFAULT) 755 break; 756 vma = vma->vm_next; 757 } 758 759 /* 760 * if !vma, alloc_page_vma() will use task or system default policy 761 */ 762 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 763 } 764 #else 765 766 static void migrate_page_add(struct page *page, struct list_head *pagelist, 767 unsigned long flags) 768 { 769 } 770 771 int do_migrate_pages(struct mm_struct *mm, 772 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 773 { 774 return -ENOSYS; 775 } 776 777 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 778 { 779 return NULL; 780 } 781 #endif 782 783 static long do_mbind(unsigned long start, unsigned long len, 784 unsigned long mode, nodemask_t *nmask, 785 unsigned long flags) 786 { 787 struct vm_area_struct *vma; 788 struct mm_struct *mm = current->mm; 789 struct mempolicy *new; 790 unsigned long end; 791 int err; 792 LIST_HEAD(pagelist); 793 794 if ((flags & ~(unsigned long)(MPOL_MF_STRICT | 795 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 796 || mode > MPOL_MAX) 797 return -EINVAL; 798 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 799 return -EPERM; 800 801 if (start & ~PAGE_MASK) 802 return -EINVAL; 803 804 if (mode == MPOL_DEFAULT) 805 flags &= ~MPOL_MF_STRICT; 806 807 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 808 end = start + len; 809 810 if (end < start) 811 return -EINVAL; 812 if (end == start) 813 return 0; 814 815 if (mpol_check_policy(mode, nmask)) 816 return -EINVAL; 817 818 new = mpol_new(mode, nmask); 819 if (IS_ERR(new)) 820 return PTR_ERR(new); 821 822 /* 823 * If we are using the default policy then operation 824 * on discontinuous address spaces is okay after all 825 */ 826 if (!new) 827 flags |= MPOL_MF_DISCONTIG_OK; 828 829 pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, 830 mode, nmask ? nodes_addr(*nmask)[0] : -1); 831 832 down_write(&mm->mmap_sem); 833 vma = check_range(mm, start, end, nmask, 834 flags | MPOL_MF_INVERT, &pagelist); 835 836 err = PTR_ERR(vma); 837 if (!IS_ERR(vma)) { 838 int nr_failed = 0; 839 840 err = mbind_range(vma, start, end, new); 841 842 if (!list_empty(&pagelist)) 843 nr_failed = migrate_pages(&pagelist, new_vma_page, 844 (unsigned long)vma); 845 846 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 847 err = -EIO; 848 } 849 850 up_write(&mm->mmap_sem); 851 mpol_free(new); 852 return err; 853 } 854 855 /* 856 * User space interface with variable sized bitmaps for nodelists. 857 */ 858 859 /* Copy a node mask from user space. */ 860 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 861 unsigned long maxnode) 862 { 863 unsigned long k; 864 unsigned long nlongs; 865 unsigned long endmask; 866 867 --maxnode; 868 nodes_clear(*nodes); 869 if (maxnode == 0 || !nmask) 870 return 0; 871 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 872 return -EINVAL; 873 874 nlongs = BITS_TO_LONGS(maxnode); 875 if ((maxnode % BITS_PER_LONG) == 0) 876 endmask = ~0UL; 877 else 878 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 879 880 /* When the user specified more nodes than supported just check 881 if the non supported part is all zero. */ 882 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 883 if (nlongs > PAGE_SIZE/sizeof(long)) 884 return -EINVAL; 885 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 886 unsigned long t; 887 if (get_user(t, nmask + k)) 888 return -EFAULT; 889 if (k == nlongs - 1) { 890 if (t & endmask) 891 return -EINVAL; 892 } else if (t) 893 return -EINVAL; 894 } 895 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 896 endmask = ~0UL; 897 } 898 899 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 900 return -EFAULT; 901 nodes_addr(*nodes)[nlongs-1] &= endmask; 902 return 0; 903 } 904 905 /* Copy a kernel node mask to user space */ 906 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 907 nodemask_t *nodes) 908 { 909 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 910 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 911 912 if (copy > nbytes) { 913 if (copy > PAGE_SIZE) 914 return -EINVAL; 915 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 916 return -EFAULT; 917 copy = nbytes; 918 } 919 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 920 } 921 922 asmlinkage long sys_mbind(unsigned long start, unsigned long len, 923 unsigned long mode, 924 unsigned long __user *nmask, unsigned long maxnode, 925 unsigned flags) 926 { 927 nodemask_t nodes; 928 int err; 929 930 err = get_nodes(&nodes, nmask, maxnode); 931 if (err) 932 return err; 933 return do_mbind(start, len, mode, &nodes, flags); 934 } 935 936 /* Set the process memory policy */ 937 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask, 938 unsigned long maxnode) 939 { 940 int err; 941 nodemask_t nodes; 942 943 if (mode < 0 || mode > MPOL_MAX) 944 return -EINVAL; 945 err = get_nodes(&nodes, nmask, maxnode); 946 if (err) 947 return err; 948 return do_set_mempolicy(mode, &nodes); 949 } 950 951 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode, 952 const unsigned long __user *old_nodes, 953 const unsigned long __user *new_nodes) 954 { 955 struct mm_struct *mm; 956 struct task_struct *task; 957 nodemask_t old; 958 nodemask_t new; 959 nodemask_t task_nodes; 960 int err; 961 962 err = get_nodes(&old, old_nodes, maxnode); 963 if (err) 964 return err; 965 966 err = get_nodes(&new, new_nodes, maxnode); 967 if (err) 968 return err; 969 970 /* Find the mm_struct */ 971 read_lock(&tasklist_lock); 972 task = pid ? find_task_by_vpid(pid) : current; 973 if (!task) { 974 read_unlock(&tasklist_lock); 975 return -ESRCH; 976 } 977 mm = get_task_mm(task); 978 read_unlock(&tasklist_lock); 979 980 if (!mm) 981 return -EINVAL; 982 983 /* 984 * Check if this process has the right to modify the specified 985 * process. The right exists if the process has administrative 986 * capabilities, superuser privileges or the same 987 * userid as the target process. 988 */ 989 if ((current->euid != task->suid) && (current->euid != task->uid) && 990 (current->uid != task->suid) && (current->uid != task->uid) && 991 !capable(CAP_SYS_NICE)) { 992 err = -EPERM; 993 goto out; 994 } 995 996 task_nodes = cpuset_mems_allowed(task); 997 /* Is the user allowed to access the target nodes? */ 998 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 999 err = -EPERM; 1000 goto out; 1001 } 1002 1003 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { 1004 err = -EINVAL; 1005 goto out; 1006 } 1007 1008 err = security_task_movememory(task); 1009 if (err) 1010 goto out; 1011 1012 err = do_migrate_pages(mm, &old, &new, 1013 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1014 out: 1015 mmput(mm); 1016 return err; 1017 } 1018 1019 1020 /* Retrieve NUMA policy */ 1021 asmlinkage long sys_get_mempolicy(int __user *policy, 1022 unsigned long __user *nmask, 1023 unsigned long maxnode, 1024 unsigned long addr, unsigned long flags) 1025 { 1026 int err; 1027 int uninitialized_var(pval); 1028 nodemask_t nodes; 1029 1030 if (nmask != NULL && maxnode < MAX_NUMNODES) 1031 return -EINVAL; 1032 1033 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1034 1035 if (err) 1036 return err; 1037 1038 if (policy && put_user(pval, policy)) 1039 return -EFAULT; 1040 1041 if (nmask) 1042 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1043 1044 return err; 1045 } 1046 1047 #ifdef CONFIG_COMPAT 1048 1049 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1050 compat_ulong_t __user *nmask, 1051 compat_ulong_t maxnode, 1052 compat_ulong_t addr, compat_ulong_t flags) 1053 { 1054 long err; 1055 unsigned long __user *nm = NULL; 1056 unsigned long nr_bits, alloc_size; 1057 DECLARE_BITMAP(bm, MAX_NUMNODES); 1058 1059 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1060 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1061 1062 if (nmask) 1063 nm = compat_alloc_user_space(alloc_size); 1064 1065 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1066 1067 if (!err && nmask) { 1068 err = copy_from_user(bm, nm, alloc_size); 1069 /* ensure entire bitmap is zeroed */ 1070 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1071 err |= compat_put_bitmap(nmask, bm, nr_bits); 1072 } 1073 1074 return err; 1075 } 1076 1077 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1078 compat_ulong_t maxnode) 1079 { 1080 long err = 0; 1081 unsigned long __user *nm = NULL; 1082 unsigned long nr_bits, alloc_size; 1083 DECLARE_BITMAP(bm, MAX_NUMNODES); 1084 1085 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1086 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1087 1088 if (nmask) { 1089 err = compat_get_bitmap(bm, nmask, nr_bits); 1090 nm = compat_alloc_user_space(alloc_size); 1091 err |= copy_to_user(nm, bm, alloc_size); 1092 } 1093 1094 if (err) 1095 return -EFAULT; 1096 1097 return sys_set_mempolicy(mode, nm, nr_bits+1); 1098 } 1099 1100 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1101 compat_ulong_t mode, compat_ulong_t __user *nmask, 1102 compat_ulong_t maxnode, compat_ulong_t flags) 1103 { 1104 long err = 0; 1105 unsigned long __user *nm = NULL; 1106 unsigned long nr_bits, alloc_size; 1107 nodemask_t bm; 1108 1109 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1110 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1111 1112 if (nmask) { 1113 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1114 nm = compat_alloc_user_space(alloc_size); 1115 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1116 } 1117 1118 if (err) 1119 return -EFAULT; 1120 1121 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1122 } 1123 1124 #endif 1125 1126 /* 1127 * get_vma_policy(@task, @vma, @addr) 1128 * @task - task for fallback if vma policy == default 1129 * @vma - virtual memory area whose policy is sought 1130 * @addr - address in @vma for shared policy lookup 1131 * 1132 * Returns effective policy for a VMA at specified address. 1133 * Falls back to @task or system default policy, as necessary. 1134 * Returned policy has extra reference count if shared, vma, 1135 * or some other task's policy [show_numa_maps() can pass 1136 * @task != current]. It is the caller's responsibility to 1137 * free the reference in these cases. 1138 */ 1139 static struct mempolicy * get_vma_policy(struct task_struct *task, 1140 struct vm_area_struct *vma, unsigned long addr) 1141 { 1142 struct mempolicy *pol = task->mempolicy; 1143 int shared_pol = 0; 1144 1145 if (vma) { 1146 if (vma->vm_ops && vma->vm_ops->get_policy) { 1147 pol = vma->vm_ops->get_policy(vma, addr); 1148 shared_pol = 1; /* if pol non-NULL, add ref below */ 1149 } else if (vma->vm_policy && 1150 vma->vm_policy->policy != MPOL_DEFAULT) 1151 pol = vma->vm_policy; 1152 } 1153 if (!pol) 1154 pol = &default_policy; 1155 else if (!shared_pol && pol != current->mempolicy) 1156 mpol_get(pol); /* vma or other task's policy */ 1157 return pol; 1158 } 1159 1160 /* Return a zonelist representing a mempolicy */ 1161 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy) 1162 { 1163 int nd; 1164 1165 switch (policy->policy) { 1166 case MPOL_PREFERRED: 1167 nd = policy->v.preferred_node; 1168 if (nd < 0) 1169 nd = numa_node_id(); 1170 break; 1171 case MPOL_BIND: 1172 /* Lower zones don't get a policy applied */ 1173 /* Careful: current->mems_allowed might have moved */ 1174 if (gfp_zone(gfp) >= policy_zone) 1175 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist)) 1176 return policy->v.zonelist; 1177 /*FALL THROUGH*/ 1178 case MPOL_INTERLEAVE: /* should not happen */ 1179 case MPOL_DEFAULT: 1180 nd = numa_node_id(); 1181 break; 1182 default: 1183 nd = 0; 1184 BUG(); 1185 } 1186 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp); 1187 } 1188 1189 /* Do dynamic interleaving for a process */ 1190 static unsigned interleave_nodes(struct mempolicy *policy) 1191 { 1192 unsigned nid, next; 1193 struct task_struct *me = current; 1194 1195 nid = me->il_next; 1196 next = next_node(nid, policy->v.nodes); 1197 if (next >= MAX_NUMNODES) 1198 next = first_node(policy->v.nodes); 1199 me->il_next = next; 1200 return nid; 1201 } 1202 1203 /* 1204 * Depending on the memory policy provide a node from which to allocate the 1205 * next slab entry. 1206 */ 1207 unsigned slab_node(struct mempolicy *policy) 1208 { 1209 int pol = policy ? policy->policy : MPOL_DEFAULT; 1210 1211 switch (pol) { 1212 case MPOL_INTERLEAVE: 1213 return interleave_nodes(policy); 1214 1215 case MPOL_BIND: 1216 /* 1217 * Follow bind policy behavior and start allocation at the 1218 * first node. 1219 */ 1220 return zone_to_nid(policy->v.zonelist->zones[0]); 1221 1222 case MPOL_PREFERRED: 1223 if (policy->v.preferred_node >= 0) 1224 return policy->v.preferred_node; 1225 /* Fall through */ 1226 1227 default: 1228 return numa_node_id(); 1229 } 1230 } 1231 1232 /* Do static interleaving for a VMA with known offset. */ 1233 static unsigned offset_il_node(struct mempolicy *pol, 1234 struct vm_area_struct *vma, unsigned long off) 1235 { 1236 unsigned nnodes = nodes_weight(pol->v.nodes); 1237 unsigned target = (unsigned)off % nnodes; 1238 int c; 1239 int nid = -1; 1240 1241 c = 0; 1242 do { 1243 nid = next_node(nid, pol->v.nodes); 1244 c++; 1245 } while (c <= target); 1246 return nid; 1247 } 1248 1249 /* Determine a node number for interleave */ 1250 static inline unsigned interleave_nid(struct mempolicy *pol, 1251 struct vm_area_struct *vma, unsigned long addr, int shift) 1252 { 1253 if (vma) { 1254 unsigned long off; 1255 1256 /* 1257 * for small pages, there is no difference between 1258 * shift and PAGE_SHIFT, so the bit-shift is safe. 1259 * for huge pages, since vm_pgoff is in units of small 1260 * pages, we need to shift off the always 0 bits to get 1261 * a useful offset. 1262 */ 1263 BUG_ON(shift < PAGE_SHIFT); 1264 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1265 off += (addr - vma->vm_start) >> shift; 1266 return offset_il_node(pol, vma, off); 1267 } else 1268 return interleave_nodes(pol); 1269 } 1270 1271 #ifdef CONFIG_HUGETLBFS 1272 /* 1273 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1274 * @vma = virtual memory area whose policy is sought 1275 * @addr = address in @vma for shared policy lookup and interleave policy 1276 * @gfp_flags = for requested zone 1277 * @mpol = pointer to mempolicy pointer for reference counted 'BIND policy 1278 * 1279 * Returns a zonelist suitable for a huge page allocation. 1280 * If the effective policy is 'BIND, returns pointer to policy's zonelist. 1281 * If it is also a policy for which get_vma_policy() returns an extra 1282 * reference, we must hold that reference until after allocation. 1283 * In that case, return policy via @mpol so hugetlb allocation can drop 1284 * the reference. For non-'BIND referenced policies, we can/do drop the 1285 * reference here, so the caller doesn't need to know about the special case 1286 * for default and current task policy. 1287 */ 1288 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1289 gfp_t gfp_flags, struct mempolicy **mpol) 1290 { 1291 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1292 struct zonelist *zl; 1293 1294 *mpol = NULL; /* probably no unref needed */ 1295 if (pol->policy == MPOL_INTERLEAVE) { 1296 unsigned nid; 1297 1298 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT); 1299 if (unlikely(pol != &default_policy && 1300 pol != current->mempolicy)) 1301 __mpol_free(pol); /* finished with pol */ 1302 return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags); 1303 } 1304 1305 zl = zonelist_policy(GFP_HIGHUSER, pol); 1306 if (unlikely(pol != &default_policy && pol != current->mempolicy)) { 1307 if (pol->policy != MPOL_BIND) 1308 __mpol_free(pol); /* finished with pol */ 1309 else 1310 *mpol = pol; /* unref needed after allocation */ 1311 } 1312 return zl; 1313 } 1314 #endif 1315 1316 /* Allocate a page in interleaved policy. 1317 Own path because it needs to do special accounting. */ 1318 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1319 unsigned nid) 1320 { 1321 struct zonelist *zl; 1322 struct page *page; 1323 1324 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp); 1325 page = __alloc_pages(gfp, order, zl); 1326 if (page && page_zone(page) == zl->zones[0]) 1327 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1328 return page; 1329 } 1330 1331 /** 1332 * alloc_page_vma - Allocate a page for a VMA. 1333 * 1334 * @gfp: 1335 * %GFP_USER user allocation. 1336 * %GFP_KERNEL kernel allocations, 1337 * %GFP_HIGHMEM highmem/user allocations, 1338 * %GFP_FS allocation should not call back into a file system. 1339 * %GFP_ATOMIC don't sleep. 1340 * 1341 * @vma: Pointer to VMA or NULL if not available. 1342 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1343 * 1344 * This function allocates a page from the kernel page pool and applies 1345 * a NUMA policy associated with the VMA or the current process. 1346 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1347 * mm_struct of the VMA to prevent it from going away. Should be used for 1348 * all allocations for pages that will be mapped into 1349 * user space. Returns NULL when no page can be allocated. 1350 * 1351 * Should be called with the mm_sem of the vma hold. 1352 */ 1353 struct page * 1354 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1355 { 1356 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1357 struct zonelist *zl; 1358 1359 cpuset_update_task_memory_state(); 1360 1361 if (unlikely(pol->policy == MPOL_INTERLEAVE)) { 1362 unsigned nid; 1363 1364 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1365 if (unlikely(pol != &default_policy && 1366 pol != current->mempolicy)) 1367 __mpol_free(pol); /* finished with pol */ 1368 return alloc_page_interleave(gfp, 0, nid); 1369 } 1370 zl = zonelist_policy(gfp, pol); 1371 if (pol != &default_policy && pol != current->mempolicy) { 1372 /* 1373 * slow path: ref counted policy -- shared or vma 1374 */ 1375 struct page *page = __alloc_pages(gfp, 0, zl); 1376 __mpol_free(pol); 1377 return page; 1378 } 1379 /* 1380 * fast path: default or task policy 1381 */ 1382 return __alloc_pages(gfp, 0, zl); 1383 } 1384 1385 /** 1386 * alloc_pages_current - Allocate pages. 1387 * 1388 * @gfp: 1389 * %GFP_USER user allocation, 1390 * %GFP_KERNEL kernel allocation, 1391 * %GFP_HIGHMEM highmem allocation, 1392 * %GFP_FS don't call back into a file system. 1393 * %GFP_ATOMIC don't sleep. 1394 * @order: Power of two of allocation size in pages. 0 is a single page. 1395 * 1396 * Allocate a page from the kernel page pool. When not in 1397 * interrupt context and apply the current process NUMA policy. 1398 * Returns NULL when no page can be allocated. 1399 * 1400 * Don't call cpuset_update_task_memory_state() unless 1401 * 1) it's ok to take cpuset_sem (can WAIT), and 1402 * 2) allocating for current task (not interrupt). 1403 */ 1404 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1405 { 1406 struct mempolicy *pol = current->mempolicy; 1407 1408 if ((gfp & __GFP_WAIT) && !in_interrupt()) 1409 cpuset_update_task_memory_state(); 1410 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1411 pol = &default_policy; 1412 if (pol->policy == MPOL_INTERLEAVE) 1413 return alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1414 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol)); 1415 } 1416 EXPORT_SYMBOL(alloc_pages_current); 1417 1418 /* 1419 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it 1420 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1421 * with the mems_allowed returned by cpuset_mems_allowed(). This 1422 * keeps mempolicies cpuset relative after its cpuset moves. See 1423 * further kernel/cpuset.c update_nodemask(). 1424 */ 1425 1426 /* Slow path of a mempolicy copy */ 1427 struct mempolicy *__mpol_copy(struct mempolicy *old) 1428 { 1429 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1430 1431 if (!new) 1432 return ERR_PTR(-ENOMEM); 1433 if (current_cpuset_is_being_rebound()) { 1434 nodemask_t mems = cpuset_mems_allowed(current); 1435 mpol_rebind_policy(old, &mems); 1436 } 1437 *new = *old; 1438 atomic_set(&new->refcnt, 1); 1439 if (new->policy == MPOL_BIND) { 1440 int sz = ksize(old->v.zonelist); 1441 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL); 1442 if (!new->v.zonelist) { 1443 kmem_cache_free(policy_cache, new); 1444 return ERR_PTR(-ENOMEM); 1445 } 1446 } 1447 return new; 1448 } 1449 1450 /* Slow path of a mempolicy comparison */ 1451 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1452 { 1453 if (!a || !b) 1454 return 0; 1455 if (a->policy != b->policy) 1456 return 0; 1457 switch (a->policy) { 1458 case MPOL_DEFAULT: 1459 return 1; 1460 case MPOL_INTERLEAVE: 1461 return nodes_equal(a->v.nodes, b->v.nodes); 1462 case MPOL_PREFERRED: 1463 return a->v.preferred_node == b->v.preferred_node; 1464 case MPOL_BIND: { 1465 int i; 1466 for (i = 0; a->v.zonelist->zones[i]; i++) 1467 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i]) 1468 return 0; 1469 return b->v.zonelist->zones[i] == NULL; 1470 } 1471 default: 1472 BUG(); 1473 return 0; 1474 } 1475 } 1476 1477 /* Slow path of a mpol destructor. */ 1478 void __mpol_free(struct mempolicy *p) 1479 { 1480 if (!atomic_dec_and_test(&p->refcnt)) 1481 return; 1482 if (p->policy == MPOL_BIND) 1483 kfree(p->v.zonelist); 1484 p->policy = MPOL_DEFAULT; 1485 kmem_cache_free(policy_cache, p); 1486 } 1487 1488 /* 1489 * Shared memory backing store policy support. 1490 * 1491 * Remember policies even when nobody has shared memory mapped. 1492 * The policies are kept in Red-Black tree linked from the inode. 1493 * They are protected by the sp->lock spinlock, which should be held 1494 * for any accesses to the tree. 1495 */ 1496 1497 /* lookup first element intersecting start-end */ 1498 /* Caller holds sp->lock */ 1499 static struct sp_node * 1500 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1501 { 1502 struct rb_node *n = sp->root.rb_node; 1503 1504 while (n) { 1505 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1506 1507 if (start >= p->end) 1508 n = n->rb_right; 1509 else if (end <= p->start) 1510 n = n->rb_left; 1511 else 1512 break; 1513 } 1514 if (!n) 1515 return NULL; 1516 for (;;) { 1517 struct sp_node *w = NULL; 1518 struct rb_node *prev = rb_prev(n); 1519 if (!prev) 1520 break; 1521 w = rb_entry(prev, struct sp_node, nd); 1522 if (w->end <= start) 1523 break; 1524 n = prev; 1525 } 1526 return rb_entry(n, struct sp_node, nd); 1527 } 1528 1529 /* Insert a new shared policy into the list. */ 1530 /* Caller holds sp->lock */ 1531 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1532 { 1533 struct rb_node **p = &sp->root.rb_node; 1534 struct rb_node *parent = NULL; 1535 struct sp_node *nd; 1536 1537 while (*p) { 1538 parent = *p; 1539 nd = rb_entry(parent, struct sp_node, nd); 1540 if (new->start < nd->start) 1541 p = &(*p)->rb_left; 1542 else if (new->end > nd->end) 1543 p = &(*p)->rb_right; 1544 else 1545 BUG(); 1546 } 1547 rb_link_node(&new->nd, parent, p); 1548 rb_insert_color(&new->nd, &sp->root); 1549 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 1550 new->policy ? new->policy->policy : 0); 1551 } 1552 1553 /* Find shared policy intersecting idx */ 1554 struct mempolicy * 1555 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1556 { 1557 struct mempolicy *pol = NULL; 1558 struct sp_node *sn; 1559 1560 if (!sp->root.rb_node) 1561 return NULL; 1562 spin_lock(&sp->lock); 1563 sn = sp_lookup(sp, idx, idx+1); 1564 if (sn) { 1565 mpol_get(sn->policy); 1566 pol = sn->policy; 1567 } 1568 spin_unlock(&sp->lock); 1569 return pol; 1570 } 1571 1572 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 1573 { 1574 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 1575 rb_erase(&n->nd, &sp->root); 1576 mpol_free(n->policy); 1577 kmem_cache_free(sn_cache, n); 1578 } 1579 1580 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 1581 struct mempolicy *pol) 1582 { 1583 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 1584 1585 if (!n) 1586 return NULL; 1587 n->start = start; 1588 n->end = end; 1589 mpol_get(pol); 1590 n->policy = pol; 1591 return n; 1592 } 1593 1594 /* Replace a policy range. */ 1595 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 1596 unsigned long end, struct sp_node *new) 1597 { 1598 struct sp_node *n, *new2 = NULL; 1599 1600 restart: 1601 spin_lock(&sp->lock); 1602 n = sp_lookup(sp, start, end); 1603 /* Take care of old policies in the same range. */ 1604 while (n && n->start < end) { 1605 struct rb_node *next = rb_next(&n->nd); 1606 if (n->start >= start) { 1607 if (n->end <= end) 1608 sp_delete(sp, n); 1609 else 1610 n->start = end; 1611 } else { 1612 /* Old policy spanning whole new range. */ 1613 if (n->end > end) { 1614 if (!new2) { 1615 spin_unlock(&sp->lock); 1616 new2 = sp_alloc(end, n->end, n->policy); 1617 if (!new2) 1618 return -ENOMEM; 1619 goto restart; 1620 } 1621 n->end = start; 1622 sp_insert(sp, new2); 1623 new2 = NULL; 1624 break; 1625 } else 1626 n->end = start; 1627 } 1628 if (!next) 1629 break; 1630 n = rb_entry(next, struct sp_node, nd); 1631 } 1632 if (new) 1633 sp_insert(sp, new); 1634 spin_unlock(&sp->lock); 1635 if (new2) { 1636 mpol_free(new2->policy); 1637 kmem_cache_free(sn_cache, new2); 1638 } 1639 return 0; 1640 } 1641 1642 void mpol_shared_policy_init(struct shared_policy *info, int policy, 1643 nodemask_t *policy_nodes) 1644 { 1645 info->root = RB_ROOT; 1646 spin_lock_init(&info->lock); 1647 1648 if (policy != MPOL_DEFAULT) { 1649 struct mempolicy *newpol; 1650 1651 /* Falls back to MPOL_DEFAULT on any error */ 1652 newpol = mpol_new(policy, policy_nodes); 1653 if (!IS_ERR(newpol)) { 1654 /* Create pseudo-vma that contains just the policy */ 1655 struct vm_area_struct pvma; 1656 1657 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1658 /* Policy covers entire file */ 1659 pvma.vm_end = TASK_SIZE; 1660 mpol_set_shared_policy(info, &pvma, newpol); 1661 mpol_free(newpol); 1662 } 1663 } 1664 } 1665 1666 int mpol_set_shared_policy(struct shared_policy *info, 1667 struct vm_area_struct *vma, struct mempolicy *npol) 1668 { 1669 int err; 1670 struct sp_node *new = NULL; 1671 unsigned long sz = vma_pages(vma); 1672 1673 pr_debug("set_shared_policy %lx sz %lu %d %lx\n", 1674 vma->vm_pgoff, 1675 sz, npol? npol->policy : -1, 1676 npol ? nodes_addr(npol->v.nodes)[0] : -1); 1677 1678 if (npol) { 1679 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 1680 if (!new) 1681 return -ENOMEM; 1682 } 1683 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 1684 if (err && new) 1685 kmem_cache_free(sn_cache, new); 1686 return err; 1687 } 1688 1689 /* Free a backing policy store on inode delete. */ 1690 void mpol_free_shared_policy(struct shared_policy *p) 1691 { 1692 struct sp_node *n; 1693 struct rb_node *next; 1694 1695 if (!p->root.rb_node) 1696 return; 1697 spin_lock(&p->lock); 1698 next = rb_first(&p->root); 1699 while (next) { 1700 n = rb_entry(next, struct sp_node, nd); 1701 next = rb_next(&n->nd); 1702 rb_erase(&n->nd, &p->root); 1703 mpol_free(n->policy); 1704 kmem_cache_free(sn_cache, n); 1705 } 1706 spin_unlock(&p->lock); 1707 } 1708 1709 /* assumes fs == KERNEL_DS */ 1710 void __init numa_policy_init(void) 1711 { 1712 nodemask_t interleave_nodes; 1713 unsigned long largest = 0; 1714 int nid, prefer = 0; 1715 1716 policy_cache = kmem_cache_create("numa_policy", 1717 sizeof(struct mempolicy), 1718 0, SLAB_PANIC, NULL); 1719 1720 sn_cache = kmem_cache_create("shared_policy_node", 1721 sizeof(struct sp_node), 1722 0, SLAB_PANIC, NULL); 1723 1724 /* 1725 * Set interleaving policy for system init. Interleaving is only 1726 * enabled across suitably sized nodes (default is >= 16MB), or 1727 * fall back to the largest node if they're all smaller. 1728 */ 1729 nodes_clear(interleave_nodes); 1730 for_each_node_state(nid, N_HIGH_MEMORY) { 1731 unsigned long total_pages = node_present_pages(nid); 1732 1733 /* Preserve the largest node */ 1734 if (largest < total_pages) { 1735 largest = total_pages; 1736 prefer = nid; 1737 } 1738 1739 /* Interleave this node? */ 1740 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 1741 node_set(nid, interleave_nodes); 1742 } 1743 1744 /* All too small, use the largest */ 1745 if (unlikely(nodes_empty(interleave_nodes))) 1746 node_set(prefer, interleave_nodes); 1747 1748 if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes)) 1749 printk("numa_policy_init: interleaving failed\n"); 1750 } 1751 1752 /* Reset policy of current process to default */ 1753 void numa_default_policy(void) 1754 { 1755 do_set_mempolicy(MPOL_DEFAULT, NULL); 1756 } 1757 1758 /* Migrate a policy to a different set of nodes */ 1759 static void mpol_rebind_policy(struct mempolicy *pol, 1760 const nodemask_t *newmask) 1761 { 1762 nodemask_t *mpolmask; 1763 nodemask_t tmp; 1764 1765 if (!pol) 1766 return; 1767 mpolmask = &pol->cpuset_mems_allowed; 1768 if (nodes_equal(*mpolmask, *newmask)) 1769 return; 1770 1771 switch (pol->policy) { 1772 case MPOL_DEFAULT: 1773 break; 1774 case MPOL_INTERLEAVE: 1775 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask); 1776 pol->v.nodes = tmp; 1777 *mpolmask = *newmask; 1778 current->il_next = node_remap(current->il_next, 1779 *mpolmask, *newmask); 1780 break; 1781 case MPOL_PREFERRED: 1782 pol->v.preferred_node = node_remap(pol->v.preferred_node, 1783 *mpolmask, *newmask); 1784 *mpolmask = *newmask; 1785 break; 1786 case MPOL_BIND: { 1787 nodemask_t nodes; 1788 struct zone **z; 1789 struct zonelist *zonelist; 1790 1791 nodes_clear(nodes); 1792 for (z = pol->v.zonelist->zones; *z; z++) 1793 node_set(zone_to_nid(*z), nodes); 1794 nodes_remap(tmp, nodes, *mpolmask, *newmask); 1795 nodes = tmp; 1796 1797 zonelist = bind_zonelist(&nodes); 1798 1799 /* If no mem, then zonelist is NULL and we keep old zonelist. 1800 * If that old zonelist has no remaining mems_allowed nodes, 1801 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT. 1802 */ 1803 1804 if (!IS_ERR(zonelist)) { 1805 /* Good - got mem - substitute new zonelist */ 1806 kfree(pol->v.zonelist); 1807 pol->v.zonelist = zonelist; 1808 } 1809 *mpolmask = *newmask; 1810 break; 1811 } 1812 default: 1813 BUG(); 1814 break; 1815 } 1816 } 1817 1818 /* 1819 * Wrapper for mpol_rebind_policy() that just requires task 1820 * pointer, and updates task mempolicy. 1821 */ 1822 1823 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 1824 { 1825 mpol_rebind_policy(tsk->mempolicy, new); 1826 } 1827 1828 /* 1829 * Rebind each vma in mm to new nodemask. 1830 * 1831 * Call holding a reference to mm. Takes mm->mmap_sem during call. 1832 */ 1833 1834 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 1835 { 1836 struct vm_area_struct *vma; 1837 1838 down_write(&mm->mmap_sem); 1839 for (vma = mm->mmap; vma; vma = vma->vm_next) 1840 mpol_rebind_policy(vma->vm_policy, new); 1841 up_write(&mm->mmap_sem); 1842 } 1843 1844 /* 1845 * Display pages allocated per node and memory policy via /proc. 1846 */ 1847 1848 static const char * const policy_types[] = 1849 { "default", "prefer", "bind", "interleave" }; 1850 1851 /* 1852 * Convert a mempolicy into a string. 1853 * Returns the number of characters in buffer (if positive) 1854 * or an error (negative) 1855 */ 1856 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 1857 { 1858 char *p = buffer; 1859 int l; 1860 nodemask_t nodes; 1861 int mode = pol ? pol->policy : MPOL_DEFAULT; 1862 1863 switch (mode) { 1864 case MPOL_DEFAULT: 1865 nodes_clear(nodes); 1866 break; 1867 1868 case MPOL_PREFERRED: 1869 nodes_clear(nodes); 1870 node_set(pol->v.preferred_node, nodes); 1871 break; 1872 1873 case MPOL_BIND: 1874 get_zonemask(pol, &nodes); 1875 break; 1876 1877 case MPOL_INTERLEAVE: 1878 nodes = pol->v.nodes; 1879 break; 1880 1881 default: 1882 BUG(); 1883 return -EFAULT; 1884 } 1885 1886 l = strlen(policy_types[mode]); 1887 if (buffer + maxlen < p + l + 1) 1888 return -ENOSPC; 1889 1890 strcpy(p, policy_types[mode]); 1891 p += l; 1892 1893 if (!nodes_empty(nodes)) { 1894 if (buffer + maxlen < p + 2) 1895 return -ENOSPC; 1896 *p++ = '='; 1897 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 1898 } 1899 return p - buffer; 1900 } 1901 1902 struct numa_maps { 1903 unsigned long pages; 1904 unsigned long anon; 1905 unsigned long active; 1906 unsigned long writeback; 1907 unsigned long mapcount_max; 1908 unsigned long dirty; 1909 unsigned long swapcache; 1910 unsigned long node[MAX_NUMNODES]; 1911 }; 1912 1913 static void gather_stats(struct page *page, void *private, int pte_dirty) 1914 { 1915 struct numa_maps *md = private; 1916 int count = page_mapcount(page); 1917 1918 md->pages++; 1919 if (pte_dirty || PageDirty(page)) 1920 md->dirty++; 1921 1922 if (PageSwapCache(page)) 1923 md->swapcache++; 1924 1925 if (PageActive(page)) 1926 md->active++; 1927 1928 if (PageWriteback(page)) 1929 md->writeback++; 1930 1931 if (PageAnon(page)) 1932 md->anon++; 1933 1934 if (count > md->mapcount_max) 1935 md->mapcount_max = count; 1936 1937 md->node[page_to_nid(page)]++; 1938 } 1939 1940 #ifdef CONFIG_HUGETLB_PAGE 1941 static void check_huge_range(struct vm_area_struct *vma, 1942 unsigned long start, unsigned long end, 1943 struct numa_maps *md) 1944 { 1945 unsigned long addr; 1946 struct page *page; 1947 1948 for (addr = start; addr < end; addr += HPAGE_SIZE) { 1949 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); 1950 pte_t pte; 1951 1952 if (!ptep) 1953 continue; 1954 1955 pte = *ptep; 1956 if (pte_none(pte)) 1957 continue; 1958 1959 page = pte_page(pte); 1960 if (!page) 1961 continue; 1962 1963 gather_stats(page, md, pte_dirty(*ptep)); 1964 } 1965 } 1966 #else 1967 static inline void check_huge_range(struct vm_area_struct *vma, 1968 unsigned long start, unsigned long end, 1969 struct numa_maps *md) 1970 { 1971 } 1972 #endif 1973 1974 int show_numa_map(struct seq_file *m, void *v) 1975 { 1976 struct proc_maps_private *priv = m->private; 1977 struct vm_area_struct *vma = v; 1978 struct numa_maps *md; 1979 struct file *file = vma->vm_file; 1980 struct mm_struct *mm = vma->vm_mm; 1981 struct mempolicy *pol; 1982 int n; 1983 char buffer[50]; 1984 1985 if (!mm) 1986 return 0; 1987 1988 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 1989 if (!md) 1990 return 0; 1991 1992 pol = get_vma_policy(priv->task, vma, vma->vm_start); 1993 mpol_to_str(buffer, sizeof(buffer), pol); 1994 /* 1995 * unref shared or other task's mempolicy 1996 */ 1997 if (pol != &default_policy && pol != current->mempolicy) 1998 __mpol_free(pol); 1999 2000 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 2001 2002 if (file) { 2003 seq_printf(m, " file="); 2004 seq_path(m, &file->f_path, "\n\t= "); 2005 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 2006 seq_printf(m, " heap"); 2007 } else if (vma->vm_start <= mm->start_stack && 2008 vma->vm_end >= mm->start_stack) { 2009 seq_printf(m, " stack"); 2010 } 2011 2012 if (is_vm_hugetlb_page(vma)) { 2013 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 2014 seq_printf(m, " huge"); 2015 } else { 2016 check_pgd_range(vma, vma->vm_start, vma->vm_end, 2017 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md); 2018 } 2019 2020 if (!md->pages) 2021 goto out; 2022 2023 if (md->anon) 2024 seq_printf(m," anon=%lu",md->anon); 2025 2026 if (md->dirty) 2027 seq_printf(m," dirty=%lu",md->dirty); 2028 2029 if (md->pages != md->anon && md->pages != md->dirty) 2030 seq_printf(m, " mapped=%lu", md->pages); 2031 2032 if (md->mapcount_max > 1) 2033 seq_printf(m, " mapmax=%lu", md->mapcount_max); 2034 2035 if (md->swapcache) 2036 seq_printf(m," swapcache=%lu", md->swapcache); 2037 2038 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2039 seq_printf(m," active=%lu", md->active); 2040 2041 if (md->writeback) 2042 seq_printf(m," writeback=%lu", md->writeback); 2043 2044 for_each_node_state(n, N_HIGH_MEMORY) 2045 if (md->node[n]) 2046 seq_printf(m, " N%d=%lu", n, md->node[n]); 2047 out: 2048 seq_putc(m, '\n'); 2049 kfree(md); 2050 2051 if (m->count < m->size) 2052 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 2053 return 0; 2054 } 2055