1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = tmp; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static void migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 432 unsigned long end, struct mm_walk *walk) 433 { 434 int ret = 0; 435 struct page *page; 436 struct queue_pages *qp = walk->private; 437 unsigned long flags; 438 439 if (unlikely(is_pmd_migration_entry(*pmd))) { 440 ret = 1; 441 goto unlock; 442 } 443 page = pmd_page(*pmd); 444 if (is_huge_zero_page(page)) { 445 spin_unlock(ptl); 446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 447 goto out; 448 } 449 if (!queue_pages_required(page, qp)) { 450 ret = 1; 451 goto unlock; 452 } 453 454 ret = 1; 455 flags = qp->flags; 456 /* go to thp migration */ 457 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 458 migrate_page_add(page, qp->pagelist, flags); 459 unlock: 460 spin_unlock(ptl); 461 out: 462 return ret; 463 } 464 465 /* 466 * Scan through pages checking if pages follow certain conditions, 467 * and move them to the pagelist if they do. 468 */ 469 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 470 unsigned long end, struct mm_walk *walk) 471 { 472 struct vm_area_struct *vma = walk->vma; 473 struct page *page; 474 struct queue_pages *qp = walk->private; 475 unsigned long flags = qp->flags; 476 int ret; 477 pte_t *pte; 478 spinlock_t *ptl; 479 480 ptl = pmd_trans_huge_lock(pmd, vma); 481 if (ptl) { 482 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 483 if (ret) 484 return 0; 485 } 486 487 if (pmd_trans_unstable(pmd)) 488 return 0; 489 490 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 491 for (; addr != end; pte++, addr += PAGE_SIZE) { 492 if (!pte_present(*pte)) 493 continue; 494 page = vm_normal_page(vma, addr, *pte); 495 if (!page) 496 continue; 497 /* 498 * vm_normal_page() filters out zero pages, but there might 499 * still be PageReserved pages to skip, perhaps in a VDSO. 500 */ 501 if (PageReserved(page)) 502 continue; 503 if (!queue_pages_required(page, qp)) 504 continue; 505 migrate_page_add(page, qp->pagelist, flags); 506 } 507 pte_unmap_unlock(pte - 1, ptl); 508 cond_resched(); 509 return 0; 510 } 511 512 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 513 unsigned long addr, unsigned long end, 514 struct mm_walk *walk) 515 { 516 #ifdef CONFIG_HUGETLB_PAGE 517 struct queue_pages *qp = walk->private; 518 unsigned long flags = qp->flags; 519 struct page *page; 520 spinlock_t *ptl; 521 pte_t entry; 522 523 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 524 entry = huge_ptep_get(pte); 525 if (!pte_present(entry)) 526 goto unlock; 527 page = pte_page(entry); 528 if (!queue_pages_required(page, qp)) 529 goto unlock; 530 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 531 if (flags & (MPOL_MF_MOVE_ALL) || 532 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 533 isolate_huge_page(page, qp->pagelist); 534 unlock: 535 spin_unlock(ptl); 536 #else 537 BUG(); 538 #endif 539 return 0; 540 } 541 542 #ifdef CONFIG_NUMA_BALANCING 543 /* 544 * This is used to mark a range of virtual addresses to be inaccessible. 545 * These are later cleared by a NUMA hinting fault. Depending on these 546 * faults, pages may be migrated for better NUMA placement. 547 * 548 * This is assuming that NUMA faults are handled using PROT_NONE. If 549 * an architecture makes a different choice, it will need further 550 * changes to the core. 551 */ 552 unsigned long change_prot_numa(struct vm_area_struct *vma, 553 unsigned long addr, unsigned long end) 554 { 555 int nr_updated; 556 557 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 558 if (nr_updated) 559 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 560 561 return nr_updated; 562 } 563 #else 564 static unsigned long change_prot_numa(struct vm_area_struct *vma, 565 unsigned long addr, unsigned long end) 566 { 567 return 0; 568 } 569 #endif /* CONFIG_NUMA_BALANCING */ 570 571 static int queue_pages_test_walk(unsigned long start, unsigned long end, 572 struct mm_walk *walk) 573 { 574 struct vm_area_struct *vma = walk->vma; 575 struct queue_pages *qp = walk->private; 576 unsigned long endvma = vma->vm_end; 577 unsigned long flags = qp->flags; 578 579 if (!vma_migratable(vma)) 580 return 1; 581 582 if (endvma > end) 583 endvma = end; 584 if (vma->vm_start > start) 585 start = vma->vm_start; 586 587 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 588 if (!vma->vm_next && vma->vm_end < end) 589 return -EFAULT; 590 if (qp->prev && qp->prev->vm_end < vma->vm_start) 591 return -EFAULT; 592 } 593 594 qp->prev = vma; 595 596 if (flags & MPOL_MF_LAZY) { 597 /* Similar to task_numa_work, skip inaccessible VMAs */ 598 if (!is_vm_hugetlb_page(vma) && 599 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 600 !(vma->vm_flags & VM_MIXEDMAP)) 601 change_prot_numa(vma, start, endvma); 602 return 1; 603 } 604 605 /* queue pages from current vma */ 606 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 607 return 0; 608 return 1; 609 } 610 611 /* 612 * Walk through page tables and collect pages to be migrated. 613 * 614 * If pages found in a given range are on a set of nodes (determined by 615 * @nodes and @flags,) it's isolated and queued to the pagelist which is 616 * passed via @private.) 617 */ 618 static int 619 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 620 nodemask_t *nodes, unsigned long flags, 621 struct list_head *pagelist) 622 { 623 struct queue_pages qp = { 624 .pagelist = pagelist, 625 .flags = flags, 626 .nmask = nodes, 627 .prev = NULL, 628 }; 629 struct mm_walk queue_pages_walk = { 630 .hugetlb_entry = queue_pages_hugetlb, 631 .pmd_entry = queue_pages_pte_range, 632 .test_walk = queue_pages_test_walk, 633 .mm = mm, 634 .private = &qp, 635 }; 636 637 return walk_page_range(start, end, &queue_pages_walk); 638 } 639 640 /* 641 * Apply policy to a single VMA 642 * This must be called with the mmap_sem held for writing. 643 */ 644 static int vma_replace_policy(struct vm_area_struct *vma, 645 struct mempolicy *pol) 646 { 647 int err; 648 struct mempolicy *old; 649 struct mempolicy *new; 650 651 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 652 vma->vm_start, vma->vm_end, vma->vm_pgoff, 653 vma->vm_ops, vma->vm_file, 654 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 655 656 new = mpol_dup(pol); 657 if (IS_ERR(new)) 658 return PTR_ERR(new); 659 660 if (vma->vm_ops && vma->vm_ops->set_policy) { 661 err = vma->vm_ops->set_policy(vma, new); 662 if (err) 663 goto err_out; 664 } 665 666 old = vma->vm_policy; 667 vma->vm_policy = new; /* protected by mmap_sem */ 668 mpol_put(old); 669 670 return 0; 671 err_out: 672 mpol_put(new); 673 return err; 674 } 675 676 /* Step 2: apply policy to a range and do splits. */ 677 static int mbind_range(struct mm_struct *mm, unsigned long start, 678 unsigned long end, struct mempolicy *new_pol) 679 { 680 struct vm_area_struct *next; 681 struct vm_area_struct *prev; 682 struct vm_area_struct *vma; 683 int err = 0; 684 pgoff_t pgoff; 685 unsigned long vmstart; 686 unsigned long vmend; 687 688 vma = find_vma(mm, start); 689 if (!vma || vma->vm_start > start) 690 return -EFAULT; 691 692 prev = vma->vm_prev; 693 if (start > vma->vm_start) 694 prev = vma; 695 696 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 697 next = vma->vm_next; 698 vmstart = max(start, vma->vm_start); 699 vmend = min(end, vma->vm_end); 700 701 if (mpol_equal(vma_policy(vma), new_pol)) 702 continue; 703 704 pgoff = vma->vm_pgoff + 705 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 706 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 707 vma->anon_vma, vma->vm_file, pgoff, 708 new_pol, vma->vm_userfaultfd_ctx); 709 if (prev) { 710 vma = prev; 711 next = vma->vm_next; 712 if (mpol_equal(vma_policy(vma), new_pol)) 713 continue; 714 /* vma_merge() joined vma && vma->next, case 8 */ 715 goto replace; 716 } 717 if (vma->vm_start != vmstart) { 718 err = split_vma(vma->vm_mm, vma, vmstart, 1); 719 if (err) 720 goto out; 721 } 722 if (vma->vm_end != vmend) { 723 err = split_vma(vma->vm_mm, vma, vmend, 0); 724 if (err) 725 goto out; 726 } 727 replace: 728 err = vma_replace_policy(vma, new_pol); 729 if (err) 730 goto out; 731 } 732 733 out: 734 return err; 735 } 736 737 /* Set the process memory policy */ 738 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 739 nodemask_t *nodes) 740 { 741 struct mempolicy *new, *old; 742 NODEMASK_SCRATCH(scratch); 743 int ret; 744 745 if (!scratch) 746 return -ENOMEM; 747 748 new = mpol_new(mode, flags, nodes); 749 if (IS_ERR(new)) { 750 ret = PTR_ERR(new); 751 goto out; 752 } 753 754 task_lock(current); 755 ret = mpol_set_nodemask(new, nodes, scratch); 756 if (ret) { 757 task_unlock(current); 758 mpol_put(new); 759 goto out; 760 } 761 old = current->mempolicy; 762 current->mempolicy = new; 763 if (new && new->mode == MPOL_INTERLEAVE) 764 current->il_prev = MAX_NUMNODES-1; 765 task_unlock(current); 766 mpol_put(old); 767 ret = 0; 768 out: 769 NODEMASK_SCRATCH_FREE(scratch); 770 return ret; 771 } 772 773 /* 774 * Return nodemask for policy for get_mempolicy() query 775 * 776 * Called with task's alloc_lock held 777 */ 778 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 779 { 780 nodes_clear(*nodes); 781 if (p == &default_policy) 782 return; 783 784 switch (p->mode) { 785 case MPOL_BIND: 786 /* Fall through */ 787 case MPOL_INTERLEAVE: 788 *nodes = p->v.nodes; 789 break; 790 case MPOL_PREFERRED: 791 if (!(p->flags & MPOL_F_LOCAL)) 792 node_set(p->v.preferred_node, *nodes); 793 /* else return empty node mask for local allocation */ 794 break; 795 default: 796 BUG(); 797 } 798 } 799 800 static int lookup_node(unsigned long addr) 801 { 802 struct page *p; 803 int err; 804 805 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 806 if (err >= 0) { 807 err = page_to_nid(p); 808 put_page(p); 809 } 810 return err; 811 } 812 813 /* Retrieve NUMA policy */ 814 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 815 unsigned long addr, unsigned long flags) 816 { 817 int err; 818 struct mm_struct *mm = current->mm; 819 struct vm_area_struct *vma = NULL; 820 struct mempolicy *pol = current->mempolicy; 821 822 if (flags & 823 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 824 return -EINVAL; 825 826 if (flags & MPOL_F_MEMS_ALLOWED) { 827 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 828 return -EINVAL; 829 *policy = 0; /* just so it's initialized */ 830 task_lock(current); 831 *nmask = cpuset_current_mems_allowed; 832 task_unlock(current); 833 return 0; 834 } 835 836 if (flags & MPOL_F_ADDR) { 837 /* 838 * Do NOT fall back to task policy if the 839 * vma/shared policy at addr is NULL. We 840 * want to return MPOL_DEFAULT in this case. 841 */ 842 down_read(&mm->mmap_sem); 843 vma = find_vma_intersection(mm, addr, addr+1); 844 if (!vma) { 845 up_read(&mm->mmap_sem); 846 return -EFAULT; 847 } 848 if (vma->vm_ops && vma->vm_ops->get_policy) 849 pol = vma->vm_ops->get_policy(vma, addr); 850 else 851 pol = vma->vm_policy; 852 } else if (addr) 853 return -EINVAL; 854 855 if (!pol) 856 pol = &default_policy; /* indicates default behavior */ 857 858 if (flags & MPOL_F_NODE) { 859 if (flags & MPOL_F_ADDR) { 860 err = lookup_node(addr); 861 if (err < 0) 862 goto out; 863 *policy = err; 864 } else if (pol == current->mempolicy && 865 pol->mode == MPOL_INTERLEAVE) { 866 *policy = next_node_in(current->il_prev, pol->v.nodes); 867 } else { 868 err = -EINVAL; 869 goto out; 870 } 871 } else { 872 *policy = pol == &default_policy ? MPOL_DEFAULT : 873 pol->mode; 874 /* 875 * Internal mempolicy flags must be masked off before exposing 876 * the policy to userspace. 877 */ 878 *policy |= (pol->flags & MPOL_MODE_FLAGS); 879 } 880 881 err = 0; 882 if (nmask) { 883 if (mpol_store_user_nodemask(pol)) { 884 *nmask = pol->w.user_nodemask; 885 } else { 886 task_lock(current); 887 get_policy_nodemask(pol, nmask); 888 task_unlock(current); 889 } 890 } 891 892 out: 893 mpol_cond_put(pol); 894 if (vma) 895 up_read(¤t->mm->mmap_sem); 896 return err; 897 } 898 899 #ifdef CONFIG_MIGRATION 900 /* 901 * page migration, thp tail pages can be passed. 902 */ 903 static void migrate_page_add(struct page *page, struct list_head *pagelist, 904 unsigned long flags) 905 { 906 struct page *head = compound_head(page); 907 /* 908 * Avoid migrating a page that is shared with others. 909 */ 910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 911 if (!isolate_lru_page(head)) { 912 list_add_tail(&head->lru, pagelist); 913 mod_node_page_state(page_pgdat(head), 914 NR_ISOLATED_ANON + page_is_file_cache(head), 915 hpage_nr_pages(head)); 916 } 917 } 918 } 919 920 /* page allocation callback for NUMA node migration */ 921 struct page *alloc_new_node_page(struct page *page, unsigned long node) 922 { 923 if (PageHuge(page)) 924 return alloc_huge_page_node(page_hstate(compound_head(page)), 925 node); 926 else if (PageTransHuge(page)) { 927 struct page *thp; 928 929 thp = alloc_pages_node(node, 930 (GFP_TRANSHUGE | __GFP_THISNODE), 931 HPAGE_PMD_ORDER); 932 if (!thp) 933 return NULL; 934 prep_transhuge_page(thp); 935 return thp; 936 } else 937 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 938 __GFP_THISNODE, 0); 939 } 940 941 /* 942 * Migrate pages from one node to a target node. 943 * Returns error or the number of pages not migrated. 944 */ 945 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 946 int flags) 947 { 948 nodemask_t nmask; 949 LIST_HEAD(pagelist); 950 int err = 0; 951 952 nodes_clear(nmask); 953 node_set(source, nmask); 954 955 /* 956 * This does not "check" the range but isolates all pages that 957 * need migration. Between passing in the full user address 958 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 959 */ 960 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 961 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 962 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 963 964 if (!list_empty(&pagelist)) { 965 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 966 MIGRATE_SYNC, MR_SYSCALL); 967 if (err) 968 putback_movable_pages(&pagelist); 969 } 970 971 return err; 972 } 973 974 /* 975 * Move pages between the two nodesets so as to preserve the physical 976 * layout as much as possible. 977 * 978 * Returns the number of page that could not be moved. 979 */ 980 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 981 const nodemask_t *to, int flags) 982 { 983 int busy = 0; 984 int err; 985 nodemask_t tmp; 986 987 err = migrate_prep(); 988 if (err) 989 return err; 990 991 down_read(&mm->mmap_sem); 992 993 /* 994 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 995 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 996 * bit in 'tmp', and return that <source, dest> pair for migration. 997 * The pair of nodemasks 'to' and 'from' define the map. 998 * 999 * If no pair of bits is found that way, fallback to picking some 1000 * pair of 'source' and 'dest' bits that are not the same. If the 1001 * 'source' and 'dest' bits are the same, this represents a node 1002 * that will be migrating to itself, so no pages need move. 1003 * 1004 * If no bits are left in 'tmp', or if all remaining bits left 1005 * in 'tmp' correspond to the same bit in 'to', return false 1006 * (nothing left to migrate). 1007 * 1008 * This lets us pick a pair of nodes to migrate between, such that 1009 * if possible the dest node is not already occupied by some other 1010 * source node, minimizing the risk of overloading the memory on a 1011 * node that would happen if we migrated incoming memory to a node 1012 * before migrating outgoing memory source that same node. 1013 * 1014 * A single scan of tmp is sufficient. As we go, we remember the 1015 * most recent <s, d> pair that moved (s != d). If we find a pair 1016 * that not only moved, but what's better, moved to an empty slot 1017 * (d is not set in tmp), then we break out then, with that pair. 1018 * Otherwise when we finish scanning from_tmp, we at least have the 1019 * most recent <s, d> pair that moved. If we get all the way through 1020 * the scan of tmp without finding any node that moved, much less 1021 * moved to an empty node, then there is nothing left worth migrating. 1022 */ 1023 1024 tmp = *from; 1025 while (!nodes_empty(tmp)) { 1026 int s,d; 1027 int source = NUMA_NO_NODE; 1028 int dest = 0; 1029 1030 for_each_node_mask(s, tmp) { 1031 1032 /* 1033 * do_migrate_pages() tries to maintain the relative 1034 * node relationship of the pages established between 1035 * threads and memory areas. 1036 * 1037 * However if the number of source nodes is not equal to 1038 * the number of destination nodes we can not preserve 1039 * this node relative relationship. In that case, skip 1040 * copying memory from a node that is in the destination 1041 * mask. 1042 * 1043 * Example: [2,3,4] -> [3,4,5] moves everything. 1044 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1045 */ 1046 1047 if ((nodes_weight(*from) != nodes_weight(*to)) && 1048 (node_isset(s, *to))) 1049 continue; 1050 1051 d = node_remap(s, *from, *to); 1052 if (s == d) 1053 continue; 1054 1055 source = s; /* Node moved. Memorize */ 1056 dest = d; 1057 1058 /* dest not in remaining from nodes? */ 1059 if (!node_isset(dest, tmp)) 1060 break; 1061 } 1062 if (source == NUMA_NO_NODE) 1063 break; 1064 1065 node_clear(source, tmp); 1066 err = migrate_to_node(mm, source, dest, flags); 1067 if (err > 0) 1068 busy += err; 1069 if (err < 0) 1070 break; 1071 } 1072 up_read(&mm->mmap_sem); 1073 if (err < 0) 1074 return err; 1075 return busy; 1076 1077 } 1078 1079 /* 1080 * Allocate a new page for page migration based on vma policy. 1081 * Start by assuming the page is mapped by the same vma as contains @start. 1082 * Search forward from there, if not. N.B., this assumes that the 1083 * list of pages handed to migrate_pages()--which is how we get here-- 1084 * is in virtual address order. 1085 */ 1086 static struct page *new_page(struct page *page, unsigned long start) 1087 { 1088 struct vm_area_struct *vma; 1089 unsigned long uninitialized_var(address); 1090 1091 vma = find_vma(current->mm, start); 1092 while (vma) { 1093 address = page_address_in_vma(page, vma); 1094 if (address != -EFAULT) 1095 break; 1096 vma = vma->vm_next; 1097 } 1098 1099 if (PageHuge(page)) { 1100 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1101 vma, address); 1102 } else if (PageTransHuge(page)) { 1103 struct page *thp; 1104 1105 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1106 HPAGE_PMD_ORDER); 1107 if (!thp) 1108 return NULL; 1109 prep_transhuge_page(thp); 1110 return thp; 1111 } 1112 /* 1113 * if !vma, alloc_page_vma() will use task or system default policy 1114 */ 1115 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1116 vma, address); 1117 } 1118 #else 1119 1120 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1121 unsigned long flags) 1122 { 1123 } 1124 1125 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1126 const nodemask_t *to, int flags) 1127 { 1128 return -ENOSYS; 1129 } 1130 1131 static struct page *new_page(struct page *page, unsigned long start) 1132 { 1133 return NULL; 1134 } 1135 #endif 1136 1137 static long do_mbind(unsigned long start, unsigned long len, 1138 unsigned short mode, unsigned short mode_flags, 1139 nodemask_t *nmask, unsigned long flags) 1140 { 1141 struct mm_struct *mm = current->mm; 1142 struct mempolicy *new; 1143 unsigned long end; 1144 int err; 1145 LIST_HEAD(pagelist); 1146 1147 if (flags & ~(unsigned long)MPOL_MF_VALID) 1148 return -EINVAL; 1149 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1150 return -EPERM; 1151 1152 if (start & ~PAGE_MASK) 1153 return -EINVAL; 1154 1155 if (mode == MPOL_DEFAULT) 1156 flags &= ~MPOL_MF_STRICT; 1157 1158 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1159 end = start + len; 1160 1161 if (end < start) 1162 return -EINVAL; 1163 if (end == start) 1164 return 0; 1165 1166 new = mpol_new(mode, mode_flags, nmask); 1167 if (IS_ERR(new)) 1168 return PTR_ERR(new); 1169 1170 if (flags & MPOL_MF_LAZY) 1171 new->flags |= MPOL_F_MOF; 1172 1173 /* 1174 * If we are using the default policy then operation 1175 * on discontinuous address spaces is okay after all 1176 */ 1177 if (!new) 1178 flags |= MPOL_MF_DISCONTIG_OK; 1179 1180 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1181 start, start + len, mode, mode_flags, 1182 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1183 1184 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1185 1186 err = migrate_prep(); 1187 if (err) 1188 goto mpol_out; 1189 } 1190 { 1191 NODEMASK_SCRATCH(scratch); 1192 if (scratch) { 1193 down_write(&mm->mmap_sem); 1194 task_lock(current); 1195 err = mpol_set_nodemask(new, nmask, scratch); 1196 task_unlock(current); 1197 if (err) 1198 up_write(&mm->mmap_sem); 1199 } else 1200 err = -ENOMEM; 1201 NODEMASK_SCRATCH_FREE(scratch); 1202 } 1203 if (err) 1204 goto mpol_out; 1205 1206 err = queue_pages_range(mm, start, end, nmask, 1207 flags | MPOL_MF_INVERT, &pagelist); 1208 if (!err) 1209 err = mbind_range(mm, start, end, new); 1210 1211 if (!err) { 1212 int nr_failed = 0; 1213 1214 if (!list_empty(&pagelist)) { 1215 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1216 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1217 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1218 if (nr_failed) 1219 putback_movable_pages(&pagelist); 1220 } 1221 1222 if (nr_failed && (flags & MPOL_MF_STRICT)) 1223 err = -EIO; 1224 } else 1225 putback_movable_pages(&pagelist); 1226 1227 up_write(&mm->mmap_sem); 1228 mpol_out: 1229 mpol_put(new); 1230 return err; 1231 } 1232 1233 /* 1234 * User space interface with variable sized bitmaps for nodelists. 1235 */ 1236 1237 /* Copy a node mask from user space. */ 1238 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1239 unsigned long maxnode) 1240 { 1241 unsigned long k; 1242 unsigned long t; 1243 unsigned long nlongs; 1244 unsigned long endmask; 1245 1246 --maxnode; 1247 nodes_clear(*nodes); 1248 if (maxnode == 0 || !nmask) 1249 return 0; 1250 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1251 return -EINVAL; 1252 1253 nlongs = BITS_TO_LONGS(maxnode); 1254 if ((maxnode % BITS_PER_LONG) == 0) 1255 endmask = ~0UL; 1256 else 1257 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1258 1259 /* 1260 * When the user specified more nodes than supported just check 1261 * if the non supported part is all zero. 1262 * 1263 * If maxnode have more longs than MAX_NUMNODES, check 1264 * the bits in that area first. And then go through to 1265 * check the rest bits which equal or bigger than MAX_NUMNODES. 1266 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1267 */ 1268 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1269 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1270 if (get_user(t, nmask + k)) 1271 return -EFAULT; 1272 if (k == nlongs - 1) { 1273 if (t & endmask) 1274 return -EINVAL; 1275 } else if (t) 1276 return -EINVAL; 1277 } 1278 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1279 endmask = ~0UL; 1280 } 1281 1282 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1283 unsigned long valid_mask = endmask; 1284 1285 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1286 if (get_user(t, nmask + nlongs - 1)) 1287 return -EFAULT; 1288 if (t & valid_mask) 1289 return -EINVAL; 1290 } 1291 1292 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1293 return -EFAULT; 1294 nodes_addr(*nodes)[nlongs-1] &= endmask; 1295 return 0; 1296 } 1297 1298 /* Copy a kernel node mask to user space */ 1299 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1300 nodemask_t *nodes) 1301 { 1302 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1303 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1304 1305 if (copy > nbytes) { 1306 if (copy > PAGE_SIZE) 1307 return -EINVAL; 1308 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1309 return -EFAULT; 1310 copy = nbytes; 1311 } 1312 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1313 } 1314 1315 static long kernel_mbind(unsigned long start, unsigned long len, 1316 unsigned long mode, const unsigned long __user *nmask, 1317 unsigned long maxnode, unsigned int flags) 1318 { 1319 nodemask_t nodes; 1320 int err; 1321 unsigned short mode_flags; 1322 1323 mode_flags = mode & MPOL_MODE_FLAGS; 1324 mode &= ~MPOL_MODE_FLAGS; 1325 if (mode >= MPOL_MAX) 1326 return -EINVAL; 1327 if ((mode_flags & MPOL_F_STATIC_NODES) && 1328 (mode_flags & MPOL_F_RELATIVE_NODES)) 1329 return -EINVAL; 1330 err = get_nodes(&nodes, nmask, maxnode); 1331 if (err) 1332 return err; 1333 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1334 } 1335 1336 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1337 unsigned long, mode, const unsigned long __user *, nmask, 1338 unsigned long, maxnode, unsigned int, flags) 1339 { 1340 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1341 } 1342 1343 /* Set the process memory policy */ 1344 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1345 unsigned long maxnode) 1346 { 1347 int err; 1348 nodemask_t nodes; 1349 unsigned short flags; 1350 1351 flags = mode & MPOL_MODE_FLAGS; 1352 mode &= ~MPOL_MODE_FLAGS; 1353 if ((unsigned int)mode >= MPOL_MAX) 1354 return -EINVAL; 1355 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1356 return -EINVAL; 1357 err = get_nodes(&nodes, nmask, maxnode); 1358 if (err) 1359 return err; 1360 return do_set_mempolicy(mode, flags, &nodes); 1361 } 1362 1363 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1364 unsigned long, maxnode) 1365 { 1366 return kernel_set_mempolicy(mode, nmask, maxnode); 1367 } 1368 1369 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1370 const unsigned long __user *old_nodes, 1371 const unsigned long __user *new_nodes) 1372 { 1373 struct mm_struct *mm = NULL; 1374 struct task_struct *task; 1375 nodemask_t task_nodes; 1376 int err; 1377 nodemask_t *old; 1378 nodemask_t *new; 1379 NODEMASK_SCRATCH(scratch); 1380 1381 if (!scratch) 1382 return -ENOMEM; 1383 1384 old = &scratch->mask1; 1385 new = &scratch->mask2; 1386 1387 err = get_nodes(old, old_nodes, maxnode); 1388 if (err) 1389 goto out; 1390 1391 err = get_nodes(new, new_nodes, maxnode); 1392 if (err) 1393 goto out; 1394 1395 /* Find the mm_struct */ 1396 rcu_read_lock(); 1397 task = pid ? find_task_by_vpid(pid) : current; 1398 if (!task) { 1399 rcu_read_unlock(); 1400 err = -ESRCH; 1401 goto out; 1402 } 1403 get_task_struct(task); 1404 1405 err = -EINVAL; 1406 1407 /* 1408 * Check if this process has the right to modify the specified process. 1409 * Use the regular "ptrace_may_access()" checks. 1410 */ 1411 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1412 rcu_read_unlock(); 1413 err = -EPERM; 1414 goto out_put; 1415 } 1416 rcu_read_unlock(); 1417 1418 task_nodes = cpuset_mems_allowed(task); 1419 /* Is the user allowed to access the target nodes? */ 1420 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1421 err = -EPERM; 1422 goto out_put; 1423 } 1424 1425 task_nodes = cpuset_mems_allowed(current); 1426 nodes_and(*new, *new, task_nodes); 1427 if (nodes_empty(*new)) 1428 goto out_put; 1429 1430 nodes_and(*new, *new, node_states[N_MEMORY]); 1431 if (nodes_empty(*new)) 1432 goto out_put; 1433 1434 err = security_task_movememory(task); 1435 if (err) 1436 goto out_put; 1437 1438 mm = get_task_mm(task); 1439 put_task_struct(task); 1440 1441 if (!mm) { 1442 err = -EINVAL; 1443 goto out; 1444 } 1445 1446 err = do_migrate_pages(mm, old, new, 1447 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1448 1449 mmput(mm); 1450 out: 1451 NODEMASK_SCRATCH_FREE(scratch); 1452 1453 return err; 1454 1455 out_put: 1456 put_task_struct(task); 1457 goto out; 1458 1459 } 1460 1461 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1462 const unsigned long __user *, old_nodes, 1463 const unsigned long __user *, new_nodes) 1464 { 1465 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1466 } 1467 1468 1469 /* Retrieve NUMA policy */ 1470 static int kernel_get_mempolicy(int __user *policy, 1471 unsigned long __user *nmask, 1472 unsigned long maxnode, 1473 unsigned long addr, 1474 unsigned long flags) 1475 { 1476 int err; 1477 int uninitialized_var(pval); 1478 nodemask_t nodes; 1479 1480 if (nmask != NULL && maxnode < MAX_NUMNODES) 1481 return -EINVAL; 1482 1483 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1484 1485 if (err) 1486 return err; 1487 1488 if (policy && put_user(pval, policy)) 1489 return -EFAULT; 1490 1491 if (nmask) 1492 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1493 1494 return err; 1495 } 1496 1497 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1498 unsigned long __user *, nmask, unsigned long, maxnode, 1499 unsigned long, addr, unsigned long, flags) 1500 { 1501 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1502 } 1503 1504 #ifdef CONFIG_COMPAT 1505 1506 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1507 compat_ulong_t __user *, nmask, 1508 compat_ulong_t, maxnode, 1509 compat_ulong_t, addr, compat_ulong_t, flags) 1510 { 1511 long err; 1512 unsigned long __user *nm = NULL; 1513 unsigned long nr_bits, alloc_size; 1514 DECLARE_BITMAP(bm, MAX_NUMNODES); 1515 1516 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1517 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1518 1519 if (nmask) 1520 nm = compat_alloc_user_space(alloc_size); 1521 1522 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1523 1524 if (!err && nmask) { 1525 unsigned long copy_size; 1526 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1527 err = copy_from_user(bm, nm, copy_size); 1528 /* ensure entire bitmap is zeroed */ 1529 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1530 err |= compat_put_bitmap(nmask, bm, nr_bits); 1531 } 1532 1533 return err; 1534 } 1535 1536 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1537 compat_ulong_t, maxnode) 1538 { 1539 unsigned long __user *nm = NULL; 1540 unsigned long nr_bits, alloc_size; 1541 DECLARE_BITMAP(bm, MAX_NUMNODES); 1542 1543 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1544 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1545 1546 if (nmask) { 1547 if (compat_get_bitmap(bm, nmask, nr_bits)) 1548 return -EFAULT; 1549 nm = compat_alloc_user_space(alloc_size); 1550 if (copy_to_user(nm, bm, alloc_size)) 1551 return -EFAULT; 1552 } 1553 1554 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1555 } 1556 1557 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1558 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1559 compat_ulong_t, maxnode, compat_ulong_t, flags) 1560 { 1561 unsigned long __user *nm = NULL; 1562 unsigned long nr_bits, alloc_size; 1563 nodemask_t bm; 1564 1565 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1566 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1567 1568 if (nmask) { 1569 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1570 return -EFAULT; 1571 nm = compat_alloc_user_space(alloc_size); 1572 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1573 return -EFAULT; 1574 } 1575 1576 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1577 } 1578 1579 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1580 compat_ulong_t, maxnode, 1581 const compat_ulong_t __user *, old_nodes, 1582 const compat_ulong_t __user *, new_nodes) 1583 { 1584 unsigned long __user *old = NULL; 1585 unsigned long __user *new = NULL; 1586 nodemask_t tmp_mask; 1587 unsigned long nr_bits; 1588 unsigned long size; 1589 1590 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1591 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1592 if (old_nodes) { 1593 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1594 return -EFAULT; 1595 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1596 if (new_nodes) 1597 new = old + size / sizeof(unsigned long); 1598 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1599 return -EFAULT; 1600 } 1601 if (new_nodes) { 1602 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1603 return -EFAULT; 1604 if (new == NULL) 1605 new = compat_alloc_user_space(size); 1606 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1607 return -EFAULT; 1608 } 1609 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1610 } 1611 1612 #endif /* CONFIG_COMPAT */ 1613 1614 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1615 unsigned long addr) 1616 { 1617 struct mempolicy *pol = NULL; 1618 1619 if (vma) { 1620 if (vma->vm_ops && vma->vm_ops->get_policy) { 1621 pol = vma->vm_ops->get_policy(vma, addr); 1622 } else if (vma->vm_policy) { 1623 pol = vma->vm_policy; 1624 1625 /* 1626 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1627 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1628 * count on these policies which will be dropped by 1629 * mpol_cond_put() later 1630 */ 1631 if (mpol_needs_cond_ref(pol)) 1632 mpol_get(pol); 1633 } 1634 } 1635 1636 return pol; 1637 } 1638 1639 /* 1640 * get_vma_policy(@vma, @addr) 1641 * @vma: virtual memory area whose policy is sought 1642 * @addr: address in @vma for shared policy lookup 1643 * 1644 * Returns effective policy for a VMA at specified address. 1645 * Falls back to current->mempolicy or system default policy, as necessary. 1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1647 * count--added by the get_policy() vm_op, as appropriate--to protect against 1648 * freeing by another task. It is the caller's responsibility to free the 1649 * extra reference for shared policies. 1650 */ 1651 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1652 unsigned long addr) 1653 { 1654 struct mempolicy *pol = __get_vma_policy(vma, addr); 1655 1656 if (!pol) 1657 pol = get_task_policy(current); 1658 1659 return pol; 1660 } 1661 1662 bool vma_policy_mof(struct vm_area_struct *vma) 1663 { 1664 struct mempolicy *pol; 1665 1666 if (vma->vm_ops && vma->vm_ops->get_policy) { 1667 bool ret = false; 1668 1669 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1670 if (pol && (pol->flags & MPOL_F_MOF)) 1671 ret = true; 1672 mpol_cond_put(pol); 1673 1674 return ret; 1675 } 1676 1677 pol = vma->vm_policy; 1678 if (!pol) 1679 pol = get_task_policy(current); 1680 1681 return pol->flags & MPOL_F_MOF; 1682 } 1683 1684 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1685 { 1686 enum zone_type dynamic_policy_zone = policy_zone; 1687 1688 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1689 1690 /* 1691 * if policy->v.nodes has movable memory only, 1692 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1693 * 1694 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1695 * so if the following test faile, it implies 1696 * policy->v.nodes has movable memory only. 1697 */ 1698 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1699 dynamic_policy_zone = ZONE_MOVABLE; 1700 1701 return zone >= dynamic_policy_zone; 1702 } 1703 1704 /* 1705 * Return a nodemask representing a mempolicy for filtering nodes for 1706 * page allocation 1707 */ 1708 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1709 { 1710 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1711 if (unlikely(policy->mode == MPOL_BIND) && 1712 apply_policy_zone(policy, gfp_zone(gfp)) && 1713 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1714 return &policy->v.nodes; 1715 1716 return NULL; 1717 } 1718 1719 /* Return the node id preferred by the given mempolicy, or the given id */ 1720 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1721 int nd) 1722 { 1723 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1724 nd = policy->v.preferred_node; 1725 else { 1726 /* 1727 * __GFP_THISNODE shouldn't even be used with the bind policy 1728 * because we might easily break the expectation to stay on the 1729 * requested node and not break the policy. 1730 */ 1731 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1732 } 1733 1734 return nd; 1735 } 1736 1737 /* Do dynamic interleaving for a process */ 1738 static unsigned interleave_nodes(struct mempolicy *policy) 1739 { 1740 unsigned next; 1741 struct task_struct *me = current; 1742 1743 next = next_node_in(me->il_prev, policy->v.nodes); 1744 if (next < MAX_NUMNODES) 1745 me->il_prev = next; 1746 return next; 1747 } 1748 1749 /* 1750 * Depending on the memory policy provide a node from which to allocate the 1751 * next slab entry. 1752 */ 1753 unsigned int mempolicy_slab_node(void) 1754 { 1755 struct mempolicy *policy; 1756 int node = numa_mem_id(); 1757 1758 if (in_interrupt()) 1759 return node; 1760 1761 policy = current->mempolicy; 1762 if (!policy || policy->flags & MPOL_F_LOCAL) 1763 return node; 1764 1765 switch (policy->mode) { 1766 case MPOL_PREFERRED: 1767 /* 1768 * handled MPOL_F_LOCAL above 1769 */ 1770 return policy->v.preferred_node; 1771 1772 case MPOL_INTERLEAVE: 1773 return interleave_nodes(policy); 1774 1775 case MPOL_BIND: { 1776 struct zoneref *z; 1777 1778 /* 1779 * Follow bind policy behavior and start allocation at the 1780 * first node. 1781 */ 1782 struct zonelist *zonelist; 1783 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1784 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1785 z = first_zones_zonelist(zonelist, highest_zoneidx, 1786 &policy->v.nodes); 1787 return z->zone ? z->zone->node : node; 1788 } 1789 1790 default: 1791 BUG(); 1792 } 1793 } 1794 1795 /* 1796 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1798 * number of present nodes. 1799 */ 1800 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1801 { 1802 unsigned nnodes = nodes_weight(pol->v.nodes); 1803 unsigned target; 1804 int i; 1805 int nid; 1806 1807 if (!nnodes) 1808 return numa_node_id(); 1809 target = (unsigned int)n % nnodes; 1810 nid = first_node(pol->v.nodes); 1811 for (i = 0; i < target; i++) 1812 nid = next_node(nid, pol->v.nodes); 1813 return nid; 1814 } 1815 1816 /* Determine a node number for interleave */ 1817 static inline unsigned interleave_nid(struct mempolicy *pol, 1818 struct vm_area_struct *vma, unsigned long addr, int shift) 1819 { 1820 if (vma) { 1821 unsigned long off; 1822 1823 /* 1824 * for small pages, there is no difference between 1825 * shift and PAGE_SHIFT, so the bit-shift is safe. 1826 * for huge pages, since vm_pgoff is in units of small 1827 * pages, we need to shift off the always 0 bits to get 1828 * a useful offset. 1829 */ 1830 BUG_ON(shift < PAGE_SHIFT); 1831 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1832 off += (addr - vma->vm_start) >> shift; 1833 return offset_il_node(pol, off); 1834 } else 1835 return interleave_nodes(pol); 1836 } 1837 1838 #ifdef CONFIG_HUGETLBFS 1839 /* 1840 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1841 * @vma: virtual memory area whose policy is sought 1842 * @addr: address in @vma for shared policy lookup and interleave policy 1843 * @gfp_flags: for requested zone 1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1846 * 1847 * Returns a nid suitable for a huge page allocation and a pointer 1848 * to the struct mempolicy for conditional unref after allocation. 1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1850 * @nodemask for filtering the zonelist. 1851 * 1852 * Must be protected by read_mems_allowed_begin() 1853 */ 1854 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1855 struct mempolicy **mpol, nodemask_t **nodemask) 1856 { 1857 int nid; 1858 1859 *mpol = get_vma_policy(vma, addr); 1860 *nodemask = NULL; /* assume !MPOL_BIND */ 1861 1862 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1863 nid = interleave_nid(*mpol, vma, addr, 1864 huge_page_shift(hstate_vma(vma))); 1865 } else { 1866 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1867 if ((*mpol)->mode == MPOL_BIND) 1868 *nodemask = &(*mpol)->v.nodes; 1869 } 1870 return nid; 1871 } 1872 1873 /* 1874 * init_nodemask_of_mempolicy 1875 * 1876 * If the current task's mempolicy is "default" [NULL], return 'false' 1877 * to indicate default policy. Otherwise, extract the policy nodemask 1878 * for 'bind' or 'interleave' policy into the argument nodemask, or 1879 * initialize the argument nodemask to contain the single node for 1880 * 'preferred' or 'local' policy and return 'true' to indicate presence 1881 * of non-default mempolicy. 1882 * 1883 * We don't bother with reference counting the mempolicy [mpol_get/put] 1884 * because the current task is examining it's own mempolicy and a task's 1885 * mempolicy is only ever changed by the task itself. 1886 * 1887 * N.B., it is the caller's responsibility to free a returned nodemask. 1888 */ 1889 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1890 { 1891 struct mempolicy *mempolicy; 1892 int nid; 1893 1894 if (!(mask && current->mempolicy)) 1895 return false; 1896 1897 task_lock(current); 1898 mempolicy = current->mempolicy; 1899 switch (mempolicy->mode) { 1900 case MPOL_PREFERRED: 1901 if (mempolicy->flags & MPOL_F_LOCAL) 1902 nid = numa_node_id(); 1903 else 1904 nid = mempolicy->v.preferred_node; 1905 init_nodemask_of_node(mask, nid); 1906 break; 1907 1908 case MPOL_BIND: 1909 /* Fall through */ 1910 case MPOL_INTERLEAVE: 1911 *mask = mempolicy->v.nodes; 1912 break; 1913 1914 default: 1915 BUG(); 1916 } 1917 task_unlock(current); 1918 1919 return true; 1920 } 1921 #endif 1922 1923 /* 1924 * mempolicy_nodemask_intersects 1925 * 1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1927 * policy. Otherwise, check for intersection between mask and the policy 1928 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1929 * policy, always return true since it may allocate elsewhere on fallback. 1930 * 1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1932 */ 1933 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1934 const nodemask_t *mask) 1935 { 1936 struct mempolicy *mempolicy; 1937 bool ret = true; 1938 1939 if (!mask) 1940 return ret; 1941 task_lock(tsk); 1942 mempolicy = tsk->mempolicy; 1943 if (!mempolicy) 1944 goto out; 1945 1946 switch (mempolicy->mode) { 1947 case MPOL_PREFERRED: 1948 /* 1949 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1950 * allocate from, they may fallback to other nodes when oom. 1951 * Thus, it's possible for tsk to have allocated memory from 1952 * nodes in mask. 1953 */ 1954 break; 1955 case MPOL_BIND: 1956 case MPOL_INTERLEAVE: 1957 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1958 break; 1959 default: 1960 BUG(); 1961 } 1962 out: 1963 task_unlock(tsk); 1964 return ret; 1965 } 1966 1967 /* Allocate a page in interleaved policy. 1968 Own path because it needs to do special accounting. */ 1969 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1970 unsigned nid) 1971 { 1972 struct page *page; 1973 1974 page = __alloc_pages(gfp, order, nid); 1975 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 1976 if (!static_branch_likely(&vm_numa_stat_key)) 1977 return page; 1978 if (page && page_to_nid(page) == nid) { 1979 preempt_disable(); 1980 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 1981 preempt_enable(); 1982 } 1983 return page; 1984 } 1985 1986 /** 1987 * alloc_pages_vma - Allocate a page for a VMA. 1988 * 1989 * @gfp: 1990 * %GFP_USER user allocation. 1991 * %GFP_KERNEL kernel allocations, 1992 * %GFP_HIGHMEM highmem/user allocations, 1993 * %GFP_FS allocation should not call back into a file system. 1994 * %GFP_ATOMIC don't sleep. 1995 * 1996 * @order:Order of the GFP allocation. 1997 * @vma: Pointer to VMA or NULL if not available. 1998 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1999 * @node: Which node to prefer for allocation (modulo policy). 2000 * @hugepage: for hugepages try only the preferred node if possible 2001 * 2002 * This function allocates a page from the kernel page pool and applies 2003 * a NUMA policy associated with the VMA or the current process. 2004 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2005 * mm_struct of the VMA to prevent it from going away. Should be used for 2006 * all allocations for pages that will be mapped into user space. Returns 2007 * NULL when no page can be allocated. 2008 */ 2009 struct page * 2010 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2011 unsigned long addr, int node, bool hugepage) 2012 { 2013 struct mempolicy *pol; 2014 struct page *page; 2015 int preferred_nid; 2016 nodemask_t *nmask; 2017 2018 pol = get_vma_policy(vma, addr); 2019 2020 if (pol->mode == MPOL_INTERLEAVE) { 2021 unsigned nid; 2022 2023 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2024 mpol_cond_put(pol); 2025 page = alloc_page_interleave(gfp, order, nid); 2026 goto out; 2027 } 2028 2029 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2030 int hpage_node = node; 2031 2032 /* 2033 * For hugepage allocation and non-interleave policy which 2034 * allows the current node (or other explicitly preferred 2035 * node) we only try to allocate from the current/preferred 2036 * node and don't fall back to other nodes, as the cost of 2037 * remote accesses would likely offset THP benefits. 2038 * 2039 * If the policy is interleave, or does not allow the current 2040 * node in its nodemask, we allocate the standard way. 2041 */ 2042 if (pol->mode == MPOL_PREFERRED && 2043 !(pol->flags & MPOL_F_LOCAL)) 2044 hpage_node = pol->v.preferred_node; 2045 2046 nmask = policy_nodemask(gfp, pol); 2047 if (!nmask || node_isset(hpage_node, *nmask)) { 2048 mpol_cond_put(pol); 2049 page = __alloc_pages_node(hpage_node, 2050 gfp | __GFP_THISNODE, order); 2051 goto out; 2052 } 2053 } 2054 2055 nmask = policy_nodemask(gfp, pol); 2056 preferred_nid = policy_node(gfp, pol, node); 2057 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2058 mpol_cond_put(pol); 2059 out: 2060 return page; 2061 } 2062 2063 /** 2064 * alloc_pages_current - Allocate pages. 2065 * 2066 * @gfp: 2067 * %GFP_USER user allocation, 2068 * %GFP_KERNEL kernel allocation, 2069 * %GFP_HIGHMEM highmem allocation, 2070 * %GFP_FS don't call back into a file system. 2071 * %GFP_ATOMIC don't sleep. 2072 * @order: Power of two of allocation size in pages. 0 is a single page. 2073 * 2074 * Allocate a page from the kernel page pool. When not in 2075 * interrupt context and apply the current process NUMA policy. 2076 * Returns NULL when no page can be allocated. 2077 */ 2078 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2079 { 2080 struct mempolicy *pol = &default_policy; 2081 struct page *page; 2082 2083 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2084 pol = get_task_policy(current); 2085 2086 /* 2087 * No reference counting needed for current->mempolicy 2088 * nor system default_policy 2089 */ 2090 if (pol->mode == MPOL_INTERLEAVE) 2091 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2092 else 2093 page = __alloc_pages_nodemask(gfp, order, 2094 policy_node(gfp, pol, numa_node_id()), 2095 policy_nodemask(gfp, pol)); 2096 2097 return page; 2098 } 2099 EXPORT_SYMBOL(alloc_pages_current); 2100 2101 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2102 { 2103 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2104 2105 if (IS_ERR(pol)) 2106 return PTR_ERR(pol); 2107 dst->vm_policy = pol; 2108 return 0; 2109 } 2110 2111 /* 2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2114 * with the mems_allowed returned by cpuset_mems_allowed(). This 2115 * keeps mempolicies cpuset relative after its cpuset moves. See 2116 * further kernel/cpuset.c update_nodemask(). 2117 * 2118 * current's mempolicy may be rebinded by the other task(the task that changes 2119 * cpuset's mems), so we needn't do rebind work for current task. 2120 */ 2121 2122 /* Slow path of a mempolicy duplicate */ 2123 struct mempolicy *__mpol_dup(struct mempolicy *old) 2124 { 2125 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2126 2127 if (!new) 2128 return ERR_PTR(-ENOMEM); 2129 2130 /* task's mempolicy is protected by alloc_lock */ 2131 if (old == current->mempolicy) { 2132 task_lock(current); 2133 *new = *old; 2134 task_unlock(current); 2135 } else 2136 *new = *old; 2137 2138 if (current_cpuset_is_being_rebound()) { 2139 nodemask_t mems = cpuset_mems_allowed(current); 2140 mpol_rebind_policy(new, &mems); 2141 } 2142 atomic_set(&new->refcnt, 1); 2143 return new; 2144 } 2145 2146 /* Slow path of a mempolicy comparison */ 2147 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2148 { 2149 if (!a || !b) 2150 return false; 2151 if (a->mode != b->mode) 2152 return false; 2153 if (a->flags != b->flags) 2154 return false; 2155 if (mpol_store_user_nodemask(a)) 2156 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2157 return false; 2158 2159 switch (a->mode) { 2160 case MPOL_BIND: 2161 /* Fall through */ 2162 case MPOL_INTERLEAVE: 2163 return !!nodes_equal(a->v.nodes, b->v.nodes); 2164 case MPOL_PREFERRED: 2165 /* a's ->flags is the same as b's */ 2166 if (a->flags & MPOL_F_LOCAL) 2167 return true; 2168 return a->v.preferred_node == b->v.preferred_node; 2169 default: 2170 BUG(); 2171 return false; 2172 } 2173 } 2174 2175 /* 2176 * Shared memory backing store policy support. 2177 * 2178 * Remember policies even when nobody has shared memory mapped. 2179 * The policies are kept in Red-Black tree linked from the inode. 2180 * They are protected by the sp->lock rwlock, which should be held 2181 * for any accesses to the tree. 2182 */ 2183 2184 /* 2185 * lookup first element intersecting start-end. Caller holds sp->lock for 2186 * reading or for writing 2187 */ 2188 static struct sp_node * 2189 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2190 { 2191 struct rb_node *n = sp->root.rb_node; 2192 2193 while (n) { 2194 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2195 2196 if (start >= p->end) 2197 n = n->rb_right; 2198 else if (end <= p->start) 2199 n = n->rb_left; 2200 else 2201 break; 2202 } 2203 if (!n) 2204 return NULL; 2205 for (;;) { 2206 struct sp_node *w = NULL; 2207 struct rb_node *prev = rb_prev(n); 2208 if (!prev) 2209 break; 2210 w = rb_entry(prev, struct sp_node, nd); 2211 if (w->end <= start) 2212 break; 2213 n = prev; 2214 } 2215 return rb_entry(n, struct sp_node, nd); 2216 } 2217 2218 /* 2219 * Insert a new shared policy into the list. Caller holds sp->lock for 2220 * writing. 2221 */ 2222 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2223 { 2224 struct rb_node **p = &sp->root.rb_node; 2225 struct rb_node *parent = NULL; 2226 struct sp_node *nd; 2227 2228 while (*p) { 2229 parent = *p; 2230 nd = rb_entry(parent, struct sp_node, nd); 2231 if (new->start < nd->start) 2232 p = &(*p)->rb_left; 2233 else if (new->end > nd->end) 2234 p = &(*p)->rb_right; 2235 else 2236 BUG(); 2237 } 2238 rb_link_node(&new->nd, parent, p); 2239 rb_insert_color(&new->nd, &sp->root); 2240 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2241 new->policy ? new->policy->mode : 0); 2242 } 2243 2244 /* Find shared policy intersecting idx */ 2245 struct mempolicy * 2246 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2247 { 2248 struct mempolicy *pol = NULL; 2249 struct sp_node *sn; 2250 2251 if (!sp->root.rb_node) 2252 return NULL; 2253 read_lock(&sp->lock); 2254 sn = sp_lookup(sp, idx, idx+1); 2255 if (sn) { 2256 mpol_get(sn->policy); 2257 pol = sn->policy; 2258 } 2259 read_unlock(&sp->lock); 2260 return pol; 2261 } 2262 2263 static void sp_free(struct sp_node *n) 2264 { 2265 mpol_put(n->policy); 2266 kmem_cache_free(sn_cache, n); 2267 } 2268 2269 /** 2270 * mpol_misplaced - check whether current page node is valid in policy 2271 * 2272 * @page: page to be checked 2273 * @vma: vm area where page mapped 2274 * @addr: virtual address where page mapped 2275 * 2276 * Lookup current policy node id for vma,addr and "compare to" page's 2277 * node id. 2278 * 2279 * Returns: 2280 * -1 - not misplaced, page is in the right node 2281 * node - node id where the page should be 2282 * 2283 * Policy determination "mimics" alloc_page_vma(). 2284 * Called from fault path where we know the vma and faulting address. 2285 */ 2286 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2287 { 2288 struct mempolicy *pol; 2289 struct zoneref *z; 2290 int curnid = page_to_nid(page); 2291 unsigned long pgoff; 2292 int thiscpu = raw_smp_processor_id(); 2293 int thisnid = cpu_to_node(thiscpu); 2294 int polnid = -1; 2295 int ret = -1; 2296 2297 pol = get_vma_policy(vma, addr); 2298 if (!(pol->flags & MPOL_F_MOF)) 2299 goto out; 2300 2301 switch (pol->mode) { 2302 case MPOL_INTERLEAVE: 2303 pgoff = vma->vm_pgoff; 2304 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2305 polnid = offset_il_node(pol, pgoff); 2306 break; 2307 2308 case MPOL_PREFERRED: 2309 if (pol->flags & MPOL_F_LOCAL) 2310 polnid = numa_node_id(); 2311 else 2312 polnid = pol->v.preferred_node; 2313 break; 2314 2315 case MPOL_BIND: 2316 2317 /* 2318 * allows binding to multiple nodes. 2319 * use current page if in policy nodemask, 2320 * else select nearest allowed node, if any. 2321 * If no allowed nodes, use current [!misplaced]. 2322 */ 2323 if (node_isset(curnid, pol->v.nodes)) 2324 goto out; 2325 z = first_zones_zonelist( 2326 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2327 gfp_zone(GFP_HIGHUSER), 2328 &pol->v.nodes); 2329 polnid = z->zone->node; 2330 break; 2331 2332 default: 2333 BUG(); 2334 } 2335 2336 /* Migrate the page towards the node whose CPU is referencing it */ 2337 if (pol->flags & MPOL_F_MORON) { 2338 polnid = thisnid; 2339 2340 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2341 goto out; 2342 } 2343 2344 if (curnid != polnid) 2345 ret = polnid; 2346 out: 2347 mpol_cond_put(pol); 2348 2349 return ret; 2350 } 2351 2352 /* 2353 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2354 * dropped after task->mempolicy is set to NULL so that any allocation done as 2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2356 * policy. 2357 */ 2358 void mpol_put_task_policy(struct task_struct *task) 2359 { 2360 struct mempolicy *pol; 2361 2362 task_lock(task); 2363 pol = task->mempolicy; 2364 task->mempolicy = NULL; 2365 task_unlock(task); 2366 mpol_put(pol); 2367 } 2368 2369 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2370 { 2371 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2372 rb_erase(&n->nd, &sp->root); 2373 sp_free(n); 2374 } 2375 2376 static void sp_node_init(struct sp_node *node, unsigned long start, 2377 unsigned long end, struct mempolicy *pol) 2378 { 2379 node->start = start; 2380 node->end = end; 2381 node->policy = pol; 2382 } 2383 2384 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2385 struct mempolicy *pol) 2386 { 2387 struct sp_node *n; 2388 struct mempolicy *newpol; 2389 2390 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2391 if (!n) 2392 return NULL; 2393 2394 newpol = mpol_dup(pol); 2395 if (IS_ERR(newpol)) { 2396 kmem_cache_free(sn_cache, n); 2397 return NULL; 2398 } 2399 newpol->flags |= MPOL_F_SHARED; 2400 sp_node_init(n, start, end, newpol); 2401 2402 return n; 2403 } 2404 2405 /* Replace a policy range. */ 2406 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2407 unsigned long end, struct sp_node *new) 2408 { 2409 struct sp_node *n; 2410 struct sp_node *n_new = NULL; 2411 struct mempolicy *mpol_new = NULL; 2412 int ret = 0; 2413 2414 restart: 2415 write_lock(&sp->lock); 2416 n = sp_lookup(sp, start, end); 2417 /* Take care of old policies in the same range. */ 2418 while (n && n->start < end) { 2419 struct rb_node *next = rb_next(&n->nd); 2420 if (n->start >= start) { 2421 if (n->end <= end) 2422 sp_delete(sp, n); 2423 else 2424 n->start = end; 2425 } else { 2426 /* Old policy spanning whole new range. */ 2427 if (n->end > end) { 2428 if (!n_new) 2429 goto alloc_new; 2430 2431 *mpol_new = *n->policy; 2432 atomic_set(&mpol_new->refcnt, 1); 2433 sp_node_init(n_new, end, n->end, mpol_new); 2434 n->end = start; 2435 sp_insert(sp, n_new); 2436 n_new = NULL; 2437 mpol_new = NULL; 2438 break; 2439 } else 2440 n->end = start; 2441 } 2442 if (!next) 2443 break; 2444 n = rb_entry(next, struct sp_node, nd); 2445 } 2446 if (new) 2447 sp_insert(sp, new); 2448 write_unlock(&sp->lock); 2449 ret = 0; 2450 2451 err_out: 2452 if (mpol_new) 2453 mpol_put(mpol_new); 2454 if (n_new) 2455 kmem_cache_free(sn_cache, n_new); 2456 2457 return ret; 2458 2459 alloc_new: 2460 write_unlock(&sp->lock); 2461 ret = -ENOMEM; 2462 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2463 if (!n_new) 2464 goto err_out; 2465 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2466 if (!mpol_new) 2467 goto err_out; 2468 goto restart; 2469 } 2470 2471 /** 2472 * mpol_shared_policy_init - initialize shared policy for inode 2473 * @sp: pointer to inode shared policy 2474 * @mpol: struct mempolicy to install 2475 * 2476 * Install non-NULL @mpol in inode's shared policy rb-tree. 2477 * On entry, the current task has a reference on a non-NULL @mpol. 2478 * This must be released on exit. 2479 * This is called at get_inode() calls and we can use GFP_KERNEL. 2480 */ 2481 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2482 { 2483 int ret; 2484 2485 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2486 rwlock_init(&sp->lock); 2487 2488 if (mpol) { 2489 struct vm_area_struct pvma; 2490 struct mempolicy *new; 2491 NODEMASK_SCRATCH(scratch); 2492 2493 if (!scratch) 2494 goto put_mpol; 2495 /* contextualize the tmpfs mount point mempolicy */ 2496 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2497 if (IS_ERR(new)) 2498 goto free_scratch; /* no valid nodemask intersection */ 2499 2500 task_lock(current); 2501 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2502 task_unlock(current); 2503 if (ret) 2504 goto put_new; 2505 2506 /* Create pseudo-vma that contains just the policy */ 2507 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2508 vma_init(&pvma, NULL); 2509 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2510 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2511 2512 put_new: 2513 mpol_put(new); /* drop initial ref */ 2514 free_scratch: 2515 NODEMASK_SCRATCH_FREE(scratch); 2516 put_mpol: 2517 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2518 } 2519 } 2520 2521 int mpol_set_shared_policy(struct shared_policy *info, 2522 struct vm_area_struct *vma, struct mempolicy *npol) 2523 { 2524 int err; 2525 struct sp_node *new = NULL; 2526 unsigned long sz = vma_pages(vma); 2527 2528 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2529 vma->vm_pgoff, 2530 sz, npol ? npol->mode : -1, 2531 npol ? npol->flags : -1, 2532 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2533 2534 if (npol) { 2535 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2536 if (!new) 2537 return -ENOMEM; 2538 } 2539 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2540 if (err && new) 2541 sp_free(new); 2542 return err; 2543 } 2544 2545 /* Free a backing policy store on inode delete. */ 2546 void mpol_free_shared_policy(struct shared_policy *p) 2547 { 2548 struct sp_node *n; 2549 struct rb_node *next; 2550 2551 if (!p->root.rb_node) 2552 return; 2553 write_lock(&p->lock); 2554 next = rb_first(&p->root); 2555 while (next) { 2556 n = rb_entry(next, struct sp_node, nd); 2557 next = rb_next(&n->nd); 2558 sp_delete(p, n); 2559 } 2560 write_unlock(&p->lock); 2561 } 2562 2563 #ifdef CONFIG_NUMA_BALANCING 2564 static int __initdata numabalancing_override; 2565 2566 static void __init check_numabalancing_enable(void) 2567 { 2568 bool numabalancing_default = false; 2569 2570 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2571 numabalancing_default = true; 2572 2573 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2574 if (numabalancing_override) 2575 set_numabalancing_state(numabalancing_override == 1); 2576 2577 if (num_online_nodes() > 1 && !numabalancing_override) { 2578 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2579 numabalancing_default ? "Enabling" : "Disabling"); 2580 set_numabalancing_state(numabalancing_default); 2581 } 2582 } 2583 2584 static int __init setup_numabalancing(char *str) 2585 { 2586 int ret = 0; 2587 if (!str) 2588 goto out; 2589 2590 if (!strcmp(str, "enable")) { 2591 numabalancing_override = 1; 2592 ret = 1; 2593 } else if (!strcmp(str, "disable")) { 2594 numabalancing_override = -1; 2595 ret = 1; 2596 } 2597 out: 2598 if (!ret) 2599 pr_warn("Unable to parse numa_balancing=\n"); 2600 2601 return ret; 2602 } 2603 __setup("numa_balancing=", setup_numabalancing); 2604 #else 2605 static inline void __init check_numabalancing_enable(void) 2606 { 2607 } 2608 #endif /* CONFIG_NUMA_BALANCING */ 2609 2610 /* assumes fs == KERNEL_DS */ 2611 void __init numa_policy_init(void) 2612 { 2613 nodemask_t interleave_nodes; 2614 unsigned long largest = 0; 2615 int nid, prefer = 0; 2616 2617 policy_cache = kmem_cache_create("numa_policy", 2618 sizeof(struct mempolicy), 2619 0, SLAB_PANIC, NULL); 2620 2621 sn_cache = kmem_cache_create("shared_policy_node", 2622 sizeof(struct sp_node), 2623 0, SLAB_PANIC, NULL); 2624 2625 for_each_node(nid) { 2626 preferred_node_policy[nid] = (struct mempolicy) { 2627 .refcnt = ATOMIC_INIT(1), 2628 .mode = MPOL_PREFERRED, 2629 .flags = MPOL_F_MOF | MPOL_F_MORON, 2630 .v = { .preferred_node = nid, }, 2631 }; 2632 } 2633 2634 /* 2635 * Set interleaving policy for system init. Interleaving is only 2636 * enabled across suitably sized nodes (default is >= 16MB), or 2637 * fall back to the largest node if they're all smaller. 2638 */ 2639 nodes_clear(interleave_nodes); 2640 for_each_node_state(nid, N_MEMORY) { 2641 unsigned long total_pages = node_present_pages(nid); 2642 2643 /* Preserve the largest node */ 2644 if (largest < total_pages) { 2645 largest = total_pages; 2646 prefer = nid; 2647 } 2648 2649 /* Interleave this node? */ 2650 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2651 node_set(nid, interleave_nodes); 2652 } 2653 2654 /* All too small, use the largest */ 2655 if (unlikely(nodes_empty(interleave_nodes))) 2656 node_set(prefer, interleave_nodes); 2657 2658 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2659 pr_err("%s: interleaving failed\n", __func__); 2660 2661 check_numabalancing_enable(); 2662 } 2663 2664 /* Reset policy of current process to default */ 2665 void numa_default_policy(void) 2666 { 2667 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2668 } 2669 2670 /* 2671 * Parse and format mempolicy from/to strings 2672 */ 2673 2674 /* 2675 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2676 */ 2677 static const char * const policy_modes[] = 2678 { 2679 [MPOL_DEFAULT] = "default", 2680 [MPOL_PREFERRED] = "prefer", 2681 [MPOL_BIND] = "bind", 2682 [MPOL_INTERLEAVE] = "interleave", 2683 [MPOL_LOCAL] = "local", 2684 }; 2685 2686 2687 #ifdef CONFIG_TMPFS 2688 /** 2689 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2690 * @str: string containing mempolicy to parse 2691 * @mpol: pointer to struct mempolicy pointer, returned on success. 2692 * 2693 * Format of input: 2694 * <mode>[=<flags>][:<nodelist>] 2695 * 2696 * On success, returns 0, else 1 2697 */ 2698 int mpol_parse_str(char *str, struct mempolicy **mpol) 2699 { 2700 struct mempolicy *new = NULL; 2701 unsigned short mode; 2702 unsigned short mode_flags; 2703 nodemask_t nodes; 2704 char *nodelist = strchr(str, ':'); 2705 char *flags = strchr(str, '='); 2706 int err = 1; 2707 2708 if (nodelist) { 2709 /* NUL-terminate mode or flags string */ 2710 *nodelist++ = '\0'; 2711 if (nodelist_parse(nodelist, nodes)) 2712 goto out; 2713 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2714 goto out; 2715 } else 2716 nodes_clear(nodes); 2717 2718 if (flags) 2719 *flags++ = '\0'; /* terminate mode string */ 2720 2721 for (mode = 0; mode < MPOL_MAX; mode++) { 2722 if (!strcmp(str, policy_modes[mode])) { 2723 break; 2724 } 2725 } 2726 if (mode >= MPOL_MAX) 2727 goto out; 2728 2729 switch (mode) { 2730 case MPOL_PREFERRED: 2731 /* 2732 * Insist on a nodelist of one node only 2733 */ 2734 if (nodelist) { 2735 char *rest = nodelist; 2736 while (isdigit(*rest)) 2737 rest++; 2738 if (*rest) 2739 goto out; 2740 } 2741 break; 2742 case MPOL_INTERLEAVE: 2743 /* 2744 * Default to online nodes with memory if no nodelist 2745 */ 2746 if (!nodelist) 2747 nodes = node_states[N_MEMORY]; 2748 break; 2749 case MPOL_LOCAL: 2750 /* 2751 * Don't allow a nodelist; mpol_new() checks flags 2752 */ 2753 if (nodelist) 2754 goto out; 2755 mode = MPOL_PREFERRED; 2756 break; 2757 case MPOL_DEFAULT: 2758 /* 2759 * Insist on a empty nodelist 2760 */ 2761 if (!nodelist) 2762 err = 0; 2763 goto out; 2764 case MPOL_BIND: 2765 /* 2766 * Insist on a nodelist 2767 */ 2768 if (!nodelist) 2769 goto out; 2770 } 2771 2772 mode_flags = 0; 2773 if (flags) { 2774 /* 2775 * Currently, we only support two mutually exclusive 2776 * mode flags. 2777 */ 2778 if (!strcmp(flags, "static")) 2779 mode_flags |= MPOL_F_STATIC_NODES; 2780 else if (!strcmp(flags, "relative")) 2781 mode_flags |= MPOL_F_RELATIVE_NODES; 2782 else 2783 goto out; 2784 } 2785 2786 new = mpol_new(mode, mode_flags, &nodes); 2787 if (IS_ERR(new)) 2788 goto out; 2789 2790 /* 2791 * Save nodes for mpol_to_str() to show the tmpfs mount options 2792 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2793 */ 2794 if (mode != MPOL_PREFERRED) 2795 new->v.nodes = nodes; 2796 else if (nodelist) 2797 new->v.preferred_node = first_node(nodes); 2798 else 2799 new->flags |= MPOL_F_LOCAL; 2800 2801 /* 2802 * Save nodes for contextualization: this will be used to "clone" 2803 * the mempolicy in a specific context [cpuset] at a later time. 2804 */ 2805 new->w.user_nodemask = nodes; 2806 2807 err = 0; 2808 2809 out: 2810 /* Restore string for error message */ 2811 if (nodelist) 2812 *--nodelist = ':'; 2813 if (flags) 2814 *--flags = '='; 2815 if (!err) 2816 *mpol = new; 2817 return err; 2818 } 2819 #endif /* CONFIG_TMPFS */ 2820 2821 /** 2822 * mpol_to_str - format a mempolicy structure for printing 2823 * @buffer: to contain formatted mempolicy string 2824 * @maxlen: length of @buffer 2825 * @pol: pointer to mempolicy to be formatted 2826 * 2827 * Convert @pol into a string. If @buffer is too short, truncate the string. 2828 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2829 * longest flag, "relative", and to display at least a few node ids. 2830 */ 2831 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2832 { 2833 char *p = buffer; 2834 nodemask_t nodes = NODE_MASK_NONE; 2835 unsigned short mode = MPOL_DEFAULT; 2836 unsigned short flags = 0; 2837 2838 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2839 mode = pol->mode; 2840 flags = pol->flags; 2841 } 2842 2843 switch (mode) { 2844 case MPOL_DEFAULT: 2845 break; 2846 case MPOL_PREFERRED: 2847 if (flags & MPOL_F_LOCAL) 2848 mode = MPOL_LOCAL; 2849 else 2850 node_set(pol->v.preferred_node, nodes); 2851 break; 2852 case MPOL_BIND: 2853 case MPOL_INTERLEAVE: 2854 nodes = pol->v.nodes; 2855 break; 2856 default: 2857 WARN_ON_ONCE(1); 2858 snprintf(p, maxlen, "unknown"); 2859 return; 2860 } 2861 2862 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2863 2864 if (flags & MPOL_MODE_FLAGS) { 2865 p += snprintf(p, buffer + maxlen - p, "="); 2866 2867 /* 2868 * Currently, the only defined flags are mutually exclusive 2869 */ 2870 if (flags & MPOL_F_STATIC_NODES) 2871 p += snprintf(p, buffer + maxlen - p, "static"); 2872 else if (flags & MPOL_F_RELATIVE_NODES) 2873 p += snprintf(p, buffer + maxlen - p, "relative"); 2874 } 2875 2876 if (!nodes_empty(nodes)) 2877 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2878 nodemask_pr_args(&nodes)); 2879 } 2880