xref: /openbmc/linux/mm/mempolicy.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = *nodes;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 /*
432  * queue_pages_pmd() has four possible return values:
433  * 0 - pages are placed on the right node or queued successfully.
434  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435  *     specified.
436  * 2 - THP was split.
437  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438  *        existing page was already on a node that does not follow the
439  *        policy.
440  */
441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 				unsigned long end, struct mm_walk *walk)
443 {
444 	int ret = 0;
445 	struct page *page;
446 	struct queue_pages *qp = walk->private;
447 	unsigned long flags;
448 
449 	if (unlikely(is_pmd_migration_entry(*pmd))) {
450 		ret = -EIO;
451 		goto unlock;
452 	}
453 	page = pmd_page(*pmd);
454 	if (is_huge_zero_page(page)) {
455 		spin_unlock(ptl);
456 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 		ret = 2;
458 		goto out;
459 	}
460 	if (!queue_pages_required(page, qp))
461 		goto unlock;
462 
463 	flags = qp->flags;
464 	/* go to thp migration */
465 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 		if (!vma_migratable(walk->vma) ||
467 		    migrate_page_add(page, qp->pagelist, flags)) {
468 			ret = 1;
469 			goto unlock;
470 		}
471 	} else
472 		ret = -EIO;
473 unlock:
474 	spin_unlock(ptl);
475 out:
476 	return ret;
477 }
478 
479 /*
480  * Scan through pages checking if pages follow certain conditions,
481  * and move them to the pagelist if they do.
482  *
483  * queue_pages_pte_range() has three possible return values:
484  * 0 - pages are placed on the right node or queued successfully.
485  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486  *     specified.
487  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488  *        on a node that does not follow the policy.
489  */
490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 			unsigned long end, struct mm_walk *walk)
492 {
493 	struct vm_area_struct *vma = walk->vma;
494 	struct page *page;
495 	struct queue_pages *qp = walk->private;
496 	unsigned long flags = qp->flags;
497 	int ret;
498 	bool has_unmovable = false;
499 	pte_t *pte;
500 	spinlock_t *ptl;
501 
502 	ptl = pmd_trans_huge_lock(pmd, vma);
503 	if (ptl) {
504 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 		if (ret != 2)
506 			return ret;
507 	}
508 	/* THP was split, fall through to pte walk */
509 
510 	if (pmd_trans_unstable(pmd))
511 		return 0;
512 
513 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 	for (; addr != end; pte++, addr += PAGE_SIZE) {
515 		if (!pte_present(*pte))
516 			continue;
517 		page = vm_normal_page(vma, addr, *pte);
518 		if (!page)
519 			continue;
520 		/*
521 		 * vm_normal_page() filters out zero pages, but there might
522 		 * still be PageReserved pages to skip, perhaps in a VDSO.
523 		 */
524 		if (PageReserved(page))
525 			continue;
526 		if (!queue_pages_required(page, qp))
527 			continue;
528 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 			/* MPOL_MF_STRICT must be specified if we get here */
530 			if (!vma_migratable(vma)) {
531 				has_unmovable = true;
532 				break;
533 			}
534 
535 			/*
536 			 * Do not abort immediately since there may be
537 			 * temporary off LRU pages in the range.  Still
538 			 * need migrate other LRU pages.
539 			 */
540 			if (migrate_page_add(page, qp->pagelist, flags))
541 				has_unmovable = true;
542 		} else
543 			break;
544 	}
545 	pte_unmap_unlock(pte - 1, ptl);
546 	cond_resched();
547 
548 	if (has_unmovable)
549 		return 1;
550 
551 	return addr != end ? -EIO : 0;
552 }
553 
554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 			       unsigned long addr, unsigned long end,
556 			       struct mm_walk *walk)
557 {
558 #ifdef CONFIG_HUGETLB_PAGE
559 	struct queue_pages *qp = walk->private;
560 	unsigned long flags = qp->flags;
561 	struct page *page;
562 	spinlock_t *ptl;
563 	pte_t entry;
564 
565 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 	entry = huge_ptep_get(pte);
567 	if (!pte_present(entry))
568 		goto unlock;
569 	page = pte_page(entry);
570 	if (!queue_pages_required(page, qp))
571 		goto unlock;
572 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 	if (flags & (MPOL_MF_MOVE_ALL) ||
574 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
575 		isolate_huge_page(page, qp->pagelist);
576 unlock:
577 	spin_unlock(ptl);
578 #else
579 	BUG();
580 #endif
581 	return 0;
582 }
583 
584 #ifdef CONFIG_NUMA_BALANCING
585 /*
586  * This is used to mark a range of virtual addresses to be inaccessible.
587  * These are later cleared by a NUMA hinting fault. Depending on these
588  * faults, pages may be migrated for better NUMA placement.
589  *
590  * This is assuming that NUMA faults are handled using PROT_NONE. If
591  * an architecture makes a different choice, it will need further
592  * changes to the core.
593  */
594 unsigned long change_prot_numa(struct vm_area_struct *vma,
595 			unsigned long addr, unsigned long end)
596 {
597 	int nr_updated;
598 
599 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
600 	if (nr_updated)
601 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
602 
603 	return nr_updated;
604 }
605 #else
606 static unsigned long change_prot_numa(struct vm_area_struct *vma,
607 			unsigned long addr, unsigned long end)
608 {
609 	return 0;
610 }
611 #endif /* CONFIG_NUMA_BALANCING */
612 
613 static int queue_pages_test_walk(unsigned long start, unsigned long end,
614 				struct mm_walk *walk)
615 {
616 	struct vm_area_struct *vma = walk->vma;
617 	struct queue_pages *qp = walk->private;
618 	unsigned long endvma = vma->vm_end;
619 	unsigned long flags = qp->flags;
620 
621 	/*
622 	 * Need check MPOL_MF_STRICT to return -EIO if possible
623 	 * regardless of vma_migratable
624 	 */
625 	if (!vma_migratable(vma) &&
626 	    !(flags & MPOL_MF_STRICT))
627 		return 1;
628 
629 	if (endvma > end)
630 		endvma = end;
631 	if (vma->vm_start > start)
632 		start = vma->vm_start;
633 
634 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 		if (!vma->vm_next && vma->vm_end < end)
636 			return -EFAULT;
637 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 			return -EFAULT;
639 	}
640 
641 	qp->prev = vma;
642 
643 	if (flags & MPOL_MF_LAZY) {
644 		/* Similar to task_numa_work, skip inaccessible VMAs */
645 		if (!is_vm_hugetlb_page(vma) &&
646 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 			!(vma->vm_flags & VM_MIXEDMAP))
648 			change_prot_numa(vma, start, endvma);
649 		return 1;
650 	}
651 
652 	/* queue pages from current vma */
653 	if (flags & MPOL_MF_VALID)
654 		return 0;
655 	return 1;
656 }
657 
658 /*
659  * Walk through page tables and collect pages to be migrated.
660  *
661  * If pages found in a given range are on a set of nodes (determined by
662  * @nodes and @flags,) it's isolated and queued to the pagelist which is
663  * passed via @private.
664  *
665  * queue_pages_range() has three possible return values:
666  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
667  *     specified.
668  * 0 - queue pages successfully or no misplaced page.
669  * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified.
670  */
671 static int
672 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
673 		nodemask_t *nodes, unsigned long flags,
674 		struct list_head *pagelist)
675 {
676 	struct queue_pages qp = {
677 		.pagelist = pagelist,
678 		.flags = flags,
679 		.nmask = nodes,
680 		.prev = NULL,
681 	};
682 	struct mm_walk queue_pages_walk = {
683 		.hugetlb_entry = queue_pages_hugetlb,
684 		.pmd_entry = queue_pages_pte_range,
685 		.test_walk = queue_pages_test_walk,
686 		.mm = mm,
687 		.private = &qp,
688 	};
689 
690 	return walk_page_range(start, end, &queue_pages_walk);
691 }
692 
693 /*
694  * Apply policy to a single VMA
695  * This must be called with the mmap_sem held for writing.
696  */
697 static int vma_replace_policy(struct vm_area_struct *vma,
698 						struct mempolicy *pol)
699 {
700 	int err;
701 	struct mempolicy *old;
702 	struct mempolicy *new;
703 
704 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
705 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
706 		 vma->vm_ops, vma->vm_file,
707 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
708 
709 	new = mpol_dup(pol);
710 	if (IS_ERR(new))
711 		return PTR_ERR(new);
712 
713 	if (vma->vm_ops && vma->vm_ops->set_policy) {
714 		err = vma->vm_ops->set_policy(vma, new);
715 		if (err)
716 			goto err_out;
717 	}
718 
719 	old = vma->vm_policy;
720 	vma->vm_policy = new; /* protected by mmap_sem */
721 	mpol_put(old);
722 
723 	return 0;
724  err_out:
725 	mpol_put(new);
726 	return err;
727 }
728 
729 /* Step 2: apply policy to a range and do splits. */
730 static int mbind_range(struct mm_struct *mm, unsigned long start,
731 		       unsigned long end, struct mempolicy *new_pol)
732 {
733 	struct vm_area_struct *next;
734 	struct vm_area_struct *prev;
735 	struct vm_area_struct *vma;
736 	int err = 0;
737 	pgoff_t pgoff;
738 	unsigned long vmstart;
739 	unsigned long vmend;
740 
741 	vma = find_vma(mm, start);
742 	if (!vma || vma->vm_start > start)
743 		return -EFAULT;
744 
745 	prev = vma->vm_prev;
746 	if (start > vma->vm_start)
747 		prev = vma;
748 
749 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
750 		next = vma->vm_next;
751 		vmstart = max(start, vma->vm_start);
752 		vmend   = min(end, vma->vm_end);
753 
754 		if (mpol_equal(vma_policy(vma), new_pol))
755 			continue;
756 
757 		pgoff = vma->vm_pgoff +
758 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
759 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
760 				 vma->anon_vma, vma->vm_file, pgoff,
761 				 new_pol, vma->vm_userfaultfd_ctx);
762 		if (prev) {
763 			vma = prev;
764 			next = vma->vm_next;
765 			if (mpol_equal(vma_policy(vma), new_pol))
766 				continue;
767 			/* vma_merge() joined vma && vma->next, case 8 */
768 			goto replace;
769 		}
770 		if (vma->vm_start != vmstart) {
771 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
772 			if (err)
773 				goto out;
774 		}
775 		if (vma->vm_end != vmend) {
776 			err = split_vma(vma->vm_mm, vma, vmend, 0);
777 			if (err)
778 				goto out;
779 		}
780  replace:
781 		err = vma_replace_policy(vma, new_pol);
782 		if (err)
783 			goto out;
784 	}
785 
786  out:
787 	return err;
788 }
789 
790 /* Set the process memory policy */
791 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
792 			     nodemask_t *nodes)
793 {
794 	struct mempolicy *new, *old;
795 	NODEMASK_SCRATCH(scratch);
796 	int ret;
797 
798 	if (!scratch)
799 		return -ENOMEM;
800 
801 	new = mpol_new(mode, flags, nodes);
802 	if (IS_ERR(new)) {
803 		ret = PTR_ERR(new);
804 		goto out;
805 	}
806 
807 	task_lock(current);
808 	ret = mpol_set_nodemask(new, nodes, scratch);
809 	if (ret) {
810 		task_unlock(current);
811 		mpol_put(new);
812 		goto out;
813 	}
814 	old = current->mempolicy;
815 	current->mempolicy = new;
816 	if (new && new->mode == MPOL_INTERLEAVE)
817 		current->il_prev = MAX_NUMNODES-1;
818 	task_unlock(current);
819 	mpol_put(old);
820 	ret = 0;
821 out:
822 	NODEMASK_SCRATCH_FREE(scratch);
823 	return ret;
824 }
825 
826 /*
827  * Return nodemask for policy for get_mempolicy() query
828  *
829  * Called with task's alloc_lock held
830  */
831 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
832 {
833 	nodes_clear(*nodes);
834 	if (p == &default_policy)
835 		return;
836 
837 	switch (p->mode) {
838 	case MPOL_BIND:
839 		/* Fall through */
840 	case MPOL_INTERLEAVE:
841 		*nodes = p->v.nodes;
842 		break;
843 	case MPOL_PREFERRED:
844 		if (!(p->flags & MPOL_F_LOCAL))
845 			node_set(p->v.preferred_node, *nodes);
846 		/* else return empty node mask for local allocation */
847 		break;
848 	default:
849 		BUG();
850 	}
851 }
852 
853 static int lookup_node(struct mm_struct *mm, unsigned long addr)
854 {
855 	struct page *p;
856 	int err;
857 
858 	int locked = 1;
859 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
860 	if (err >= 0) {
861 		err = page_to_nid(p);
862 		put_page(p);
863 	}
864 	if (locked)
865 		up_read(&mm->mmap_sem);
866 	return err;
867 }
868 
869 /* Retrieve NUMA policy */
870 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
871 			     unsigned long addr, unsigned long flags)
872 {
873 	int err;
874 	struct mm_struct *mm = current->mm;
875 	struct vm_area_struct *vma = NULL;
876 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
877 
878 	if (flags &
879 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
880 		return -EINVAL;
881 
882 	if (flags & MPOL_F_MEMS_ALLOWED) {
883 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
884 			return -EINVAL;
885 		*policy = 0;	/* just so it's initialized */
886 		task_lock(current);
887 		*nmask  = cpuset_current_mems_allowed;
888 		task_unlock(current);
889 		return 0;
890 	}
891 
892 	if (flags & MPOL_F_ADDR) {
893 		/*
894 		 * Do NOT fall back to task policy if the
895 		 * vma/shared policy at addr is NULL.  We
896 		 * want to return MPOL_DEFAULT in this case.
897 		 */
898 		down_read(&mm->mmap_sem);
899 		vma = find_vma_intersection(mm, addr, addr+1);
900 		if (!vma) {
901 			up_read(&mm->mmap_sem);
902 			return -EFAULT;
903 		}
904 		if (vma->vm_ops && vma->vm_ops->get_policy)
905 			pol = vma->vm_ops->get_policy(vma, addr);
906 		else
907 			pol = vma->vm_policy;
908 	} else if (addr)
909 		return -EINVAL;
910 
911 	if (!pol)
912 		pol = &default_policy;	/* indicates default behavior */
913 
914 	if (flags & MPOL_F_NODE) {
915 		if (flags & MPOL_F_ADDR) {
916 			/*
917 			 * Take a refcount on the mpol, lookup_node()
918 			 * wil drop the mmap_sem, so after calling
919 			 * lookup_node() only "pol" remains valid, "vma"
920 			 * is stale.
921 			 */
922 			pol_refcount = pol;
923 			vma = NULL;
924 			mpol_get(pol);
925 			err = lookup_node(mm, addr);
926 			if (err < 0)
927 				goto out;
928 			*policy = err;
929 		} else if (pol == current->mempolicy &&
930 				pol->mode == MPOL_INTERLEAVE) {
931 			*policy = next_node_in(current->il_prev, pol->v.nodes);
932 		} else {
933 			err = -EINVAL;
934 			goto out;
935 		}
936 	} else {
937 		*policy = pol == &default_policy ? MPOL_DEFAULT :
938 						pol->mode;
939 		/*
940 		 * Internal mempolicy flags must be masked off before exposing
941 		 * the policy to userspace.
942 		 */
943 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
944 	}
945 
946 	err = 0;
947 	if (nmask) {
948 		if (mpol_store_user_nodemask(pol)) {
949 			*nmask = pol->w.user_nodemask;
950 		} else {
951 			task_lock(current);
952 			get_policy_nodemask(pol, nmask);
953 			task_unlock(current);
954 		}
955 	}
956 
957  out:
958 	mpol_cond_put(pol);
959 	if (vma)
960 		up_read(&mm->mmap_sem);
961 	if (pol_refcount)
962 		mpol_put(pol_refcount);
963 	return err;
964 }
965 
966 #ifdef CONFIG_MIGRATION
967 /*
968  * page migration, thp tail pages can be passed.
969  */
970 static int migrate_page_add(struct page *page, struct list_head *pagelist,
971 				unsigned long flags)
972 {
973 	struct page *head = compound_head(page);
974 	/*
975 	 * Avoid migrating a page that is shared with others.
976 	 */
977 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
978 		if (!isolate_lru_page(head)) {
979 			list_add_tail(&head->lru, pagelist);
980 			mod_node_page_state(page_pgdat(head),
981 				NR_ISOLATED_ANON + page_is_file_cache(head),
982 				hpage_nr_pages(head));
983 		} else if (flags & MPOL_MF_STRICT) {
984 			/*
985 			 * Non-movable page may reach here.  And, there may be
986 			 * temporary off LRU pages or non-LRU movable pages.
987 			 * Treat them as unmovable pages since they can't be
988 			 * isolated, so they can't be moved at the moment.  It
989 			 * should return -EIO for this case too.
990 			 */
991 			return -EIO;
992 		}
993 	}
994 
995 	return 0;
996 }
997 
998 /* page allocation callback for NUMA node migration */
999 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1000 {
1001 	if (PageHuge(page))
1002 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1003 					node);
1004 	else if (PageTransHuge(page)) {
1005 		struct page *thp;
1006 
1007 		thp = alloc_pages_node(node,
1008 			(GFP_TRANSHUGE | __GFP_THISNODE),
1009 			HPAGE_PMD_ORDER);
1010 		if (!thp)
1011 			return NULL;
1012 		prep_transhuge_page(thp);
1013 		return thp;
1014 	} else
1015 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1016 						    __GFP_THISNODE, 0);
1017 }
1018 
1019 /*
1020  * Migrate pages from one node to a target node.
1021  * Returns error or the number of pages not migrated.
1022  */
1023 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1024 			   int flags)
1025 {
1026 	nodemask_t nmask;
1027 	LIST_HEAD(pagelist);
1028 	int err = 0;
1029 
1030 	nodes_clear(nmask);
1031 	node_set(source, nmask);
1032 
1033 	/*
1034 	 * This does not "check" the range but isolates all pages that
1035 	 * need migration.  Between passing in the full user address
1036 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1037 	 */
1038 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1039 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1040 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1041 
1042 	if (!list_empty(&pagelist)) {
1043 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1044 					MIGRATE_SYNC, MR_SYSCALL);
1045 		if (err)
1046 			putback_movable_pages(&pagelist);
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /*
1053  * Move pages between the two nodesets so as to preserve the physical
1054  * layout as much as possible.
1055  *
1056  * Returns the number of page that could not be moved.
1057  */
1058 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1059 		     const nodemask_t *to, int flags)
1060 {
1061 	int busy = 0;
1062 	int err;
1063 	nodemask_t tmp;
1064 
1065 	err = migrate_prep();
1066 	if (err)
1067 		return err;
1068 
1069 	down_read(&mm->mmap_sem);
1070 
1071 	/*
1072 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1073 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1074 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1075 	 * The pair of nodemasks 'to' and 'from' define the map.
1076 	 *
1077 	 * If no pair of bits is found that way, fallback to picking some
1078 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1079 	 * 'source' and 'dest' bits are the same, this represents a node
1080 	 * that will be migrating to itself, so no pages need move.
1081 	 *
1082 	 * If no bits are left in 'tmp', or if all remaining bits left
1083 	 * in 'tmp' correspond to the same bit in 'to', return false
1084 	 * (nothing left to migrate).
1085 	 *
1086 	 * This lets us pick a pair of nodes to migrate between, such that
1087 	 * if possible the dest node is not already occupied by some other
1088 	 * source node, minimizing the risk of overloading the memory on a
1089 	 * node that would happen if we migrated incoming memory to a node
1090 	 * before migrating outgoing memory source that same node.
1091 	 *
1092 	 * A single scan of tmp is sufficient.  As we go, we remember the
1093 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1094 	 * that not only moved, but what's better, moved to an empty slot
1095 	 * (d is not set in tmp), then we break out then, with that pair.
1096 	 * Otherwise when we finish scanning from_tmp, we at least have the
1097 	 * most recent <s, d> pair that moved.  If we get all the way through
1098 	 * the scan of tmp without finding any node that moved, much less
1099 	 * moved to an empty node, then there is nothing left worth migrating.
1100 	 */
1101 
1102 	tmp = *from;
1103 	while (!nodes_empty(tmp)) {
1104 		int s,d;
1105 		int source = NUMA_NO_NODE;
1106 		int dest = 0;
1107 
1108 		for_each_node_mask(s, tmp) {
1109 
1110 			/*
1111 			 * do_migrate_pages() tries to maintain the relative
1112 			 * node relationship of the pages established between
1113 			 * threads and memory areas.
1114                          *
1115 			 * However if the number of source nodes is not equal to
1116 			 * the number of destination nodes we can not preserve
1117 			 * this node relative relationship.  In that case, skip
1118 			 * copying memory from a node that is in the destination
1119 			 * mask.
1120 			 *
1121 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1122 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1123 			 */
1124 
1125 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1126 						(node_isset(s, *to)))
1127 				continue;
1128 
1129 			d = node_remap(s, *from, *to);
1130 			if (s == d)
1131 				continue;
1132 
1133 			source = s;	/* Node moved. Memorize */
1134 			dest = d;
1135 
1136 			/* dest not in remaining from nodes? */
1137 			if (!node_isset(dest, tmp))
1138 				break;
1139 		}
1140 		if (source == NUMA_NO_NODE)
1141 			break;
1142 
1143 		node_clear(source, tmp);
1144 		err = migrate_to_node(mm, source, dest, flags);
1145 		if (err > 0)
1146 			busy += err;
1147 		if (err < 0)
1148 			break;
1149 	}
1150 	up_read(&mm->mmap_sem);
1151 	if (err < 0)
1152 		return err;
1153 	return busy;
1154 
1155 }
1156 
1157 /*
1158  * Allocate a new page for page migration based on vma policy.
1159  * Start by assuming the page is mapped by the same vma as contains @start.
1160  * Search forward from there, if not.  N.B., this assumes that the
1161  * list of pages handed to migrate_pages()--which is how we get here--
1162  * is in virtual address order.
1163  */
1164 static struct page *new_page(struct page *page, unsigned long start)
1165 {
1166 	struct vm_area_struct *vma;
1167 	unsigned long uninitialized_var(address);
1168 
1169 	vma = find_vma(current->mm, start);
1170 	while (vma) {
1171 		address = page_address_in_vma(page, vma);
1172 		if (address != -EFAULT)
1173 			break;
1174 		vma = vma->vm_next;
1175 	}
1176 
1177 	if (PageHuge(page)) {
1178 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1179 				vma, address);
1180 	} else if (PageTransHuge(page)) {
1181 		struct page *thp;
1182 
1183 		thp = alloc_pages_vma(GFP_TRANSHUGE, HPAGE_PMD_ORDER, vma,
1184 				address, numa_node_id());
1185 		if (!thp)
1186 			return NULL;
1187 		prep_transhuge_page(thp);
1188 		return thp;
1189 	}
1190 	/*
1191 	 * if !vma, alloc_page_vma() will use task or system default policy
1192 	 */
1193 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1194 			vma, address);
1195 }
1196 #else
1197 
1198 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1199 				unsigned long flags)
1200 {
1201 	return -EIO;
1202 }
1203 
1204 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1205 		     const nodemask_t *to, int flags)
1206 {
1207 	return -ENOSYS;
1208 }
1209 
1210 static struct page *new_page(struct page *page, unsigned long start)
1211 {
1212 	return NULL;
1213 }
1214 #endif
1215 
1216 static long do_mbind(unsigned long start, unsigned long len,
1217 		     unsigned short mode, unsigned short mode_flags,
1218 		     nodemask_t *nmask, unsigned long flags)
1219 {
1220 	struct mm_struct *mm = current->mm;
1221 	struct mempolicy *new;
1222 	unsigned long end;
1223 	int err;
1224 	int ret;
1225 	LIST_HEAD(pagelist);
1226 
1227 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1228 		return -EINVAL;
1229 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1230 		return -EPERM;
1231 
1232 	if (start & ~PAGE_MASK)
1233 		return -EINVAL;
1234 
1235 	if (mode == MPOL_DEFAULT)
1236 		flags &= ~MPOL_MF_STRICT;
1237 
1238 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1239 	end = start + len;
1240 
1241 	if (end < start)
1242 		return -EINVAL;
1243 	if (end == start)
1244 		return 0;
1245 
1246 	new = mpol_new(mode, mode_flags, nmask);
1247 	if (IS_ERR(new))
1248 		return PTR_ERR(new);
1249 
1250 	if (flags & MPOL_MF_LAZY)
1251 		new->flags |= MPOL_F_MOF;
1252 
1253 	/*
1254 	 * If we are using the default policy then operation
1255 	 * on discontinuous address spaces is okay after all
1256 	 */
1257 	if (!new)
1258 		flags |= MPOL_MF_DISCONTIG_OK;
1259 
1260 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1261 		 start, start + len, mode, mode_flags,
1262 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1263 
1264 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1265 
1266 		err = migrate_prep();
1267 		if (err)
1268 			goto mpol_out;
1269 	}
1270 	{
1271 		NODEMASK_SCRATCH(scratch);
1272 		if (scratch) {
1273 			down_write(&mm->mmap_sem);
1274 			task_lock(current);
1275 			err = mpol_set_nodemask(new, nmask, scratch);
1276 			task_unlock(current);
1277 			if (err)
1278 				up_write(&mm->mmap_sem);
1279 		} else
1280 			err = -ENOMEM;
1281 		NODEMASK_SCRATCH_FREE(scratch);
1282 	}
1283 	if (err)
1284 		goto mpol_out;
1285 
1286 	ret = queue_pages_range(mm, start, end, nmask,
1287 			  flags | MPOL_MF_INVERT, &pagelist);
1288 
1289 	if (ret < 0) {
1290 		err = -EIO;
1291 		goto up_out;
1292 	}
1293 
1294 	err = mbind_range(mm, start, end, new);
1295 
1296 	if (!err) {
1297 		int nr_failed = 0;
1298 
1299 		if (!list_empty(&pagelist)) {
1300 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1301 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1302 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1303 			if (nr_failed)
1304 				putback_movable_pages(&pagelist);
1305 		}
1306 
1307 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1308 			err = -EIO;
1309 	} else
1310 		putback_movable_pages(&pagelist);
1311 
1312 up_out:
1313 	up_write(&mm->mmap_sem);
1314 mpol_out:
1315 	mpol_put(new);
1316 	return err;
1317 }
1318 
1319 /*
1320  * User space interface with variable sized bitmaps for nodelists.
1321  */
1322 
1323 /* Copy a node mask from user space. */
1324 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1325 		     unsigned long maxnode)
1326 {
1327 	unsigned long k;
1328 	unsigned long t;
1329 	unsigned long nlongs;
1330 	unsigned long endmask;
1331 
1332 	--maxnode;
1333 	nodes_clear(*nodes);
1334 	if (maxnode == 0 || !nmask)
1335 		return 0;
1336 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1337 		return -EINVAL;
1338 
1339 	nlongs = BITS_TO_LONGS(maxnode);
1340 	if ((maxnode % BITS_PER_LONG) == 0)
1341 		endmask = ~0UL;
1342 	else
1343 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1344 
1345 	/*
1346 	 * When the user specified more nodes than supported just check
1347 	 * if the non supported part is all zero.
1348 	 *
1349 	 * If maxnode have more longs than MAX_NUMNODES, check
1350 	 * the bits in that area first. And then go through to
1351 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1352 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1353 	 */
1354 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1355 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1356 			if (get_user(t, nmask + k))
1357 				return -EFAULT;
1358 			if (k == nlongs - 1) {
1359 				if (t & endmask)
1360 					return -EINVAL;
1361 			} else if (t)
1362 				return -EINVAL;
1363 		}
1364 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1365 		endmask = ~0UL;
1366 	}
1367 
1368 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1369 		unsigned long valid_mask = endmask;
1370 
1371 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1372 		if (get_user(t, nmask + nlongs - 1))
1373 			return -EFAULT;
1374 		if (t & valid_mask)
1375 			return -EINVAL;
1376 	}
1377 
1378 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1379 		return -EFAULT;
1380 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1381 	return 0;
1382 }
1383 
1384 /* Copy a kernel node mask to user space */
1385 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1386 			      nodemask_t *nodes)
1387 {
1388 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1389 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1390 
1391 	if (copy > nbytes) {
1392 		if (copy > PAGE_SIZE)
1393 			return -EINVAL;
1394 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1395 			return -EFAULT;
1396 		copy = nbytes;
1397 	}
1398 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1399 }
1400 
1401 static long kernel_mbind(unsigned long start, unsigned long len,
1402 			 unsigned long mode, const unsigned long __user *nmask,
1403 			 unsigned long maxnode, unsigned int flags)
1404 {
1405 	nodemask_t nodes;
1406 	int err;
1407 	unsigned short mode_flags;
1408 
1409 	mode_flags = mode & MPOL_MODE_FLAGS;
1410 	mode &= ~MPOL_MODE_FLAGS;
1411 	if (mode >= MPOL_MAX)
1412 		return -EINVAL;
1413 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1414 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1415 		return -EINVAL;
1416 	err = get_nodes(&nodes, nmask, maxnode);
1417 	if (err)
1418 		return err;
1419 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1420 }
1421 
1422 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1423 		unsigned long, mode, const unsigned long __user *, nmask,
1424 		unsigned long, maxnode, unsigned int, flags)
1425 {
1426 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1427 }
1428 
1429 /* Set the process memory policy */
1430 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1431 				 unsigned long maxnode)
1432 {
1433 	int err;
1434 	nodemask_t nodes;
1435 	unsigned short flags;
1436 
1437 	flags = mode & MPOL_MODE_FLAGS;
1438 	mode &= ~MPOL_MODE_FLAGS;
1439 	if ((unsigned int)mode >= MPOL_MAX)
1440 		return -EINVAL;
1441 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1442 		return -EINVAL;
1443 	err = get_nodes(&nodes, nmask, maxnode);
1444 	if (err)
1445 		return err;
1446 	return do_set_mempolicy(mode, flags, &nodes);
1447 }
1448 
1449 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1450 		unsigned long, maxnode)
1451 {
1452 	return kernel_set_mempolicy(mode, nmask, maxnode);
1453 }
1454 
1455 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1456 				const unsigned long __user *old_nodes,
1457 				const unsigned long __user *new_nodes)
1458 {
1459 	struct mm_struct *mm = NULL;
1460 	struct task_struct *task;
1461 	nodemask_t task_nodes;
1462 	int err;
1463 	nodemask_t *old;
1464 	nodemask_t *new;
1465 	NODEMASK_SCRATCH(scratch);
1466 
1467 	if (!scratch)
1468 		return -ENOMEM;
1469 
1470 	old = &scratch->mask1;
1471 	new = &scratch->mask2;
1472 
1473 	err = get_nodes(old, old_nodes, maxnode);
1474 	if (err)
1475 		goto out;
1476 
1477 	err = get_nodes(new, new_nodes, maxnode);
1478 	if (err)
1479 		goto out;
1480 
1481 	/* Find the mm_struct */
1482 	rcu_read_lock();
1483 	task = pid ? find_task_by_vpid(pid) : current;
1484 	if (!task) {
1485 		rcu_read_unlock();
1486 		err = -ESRCH;
1487 		goto out;
1488 	}
1489 	get_task_struct(task);
1490 
1491 	err = -EINVAL;
1492 
1493 	/*
1494 	 * Check if this process has the right to modify the specified process.
1495 	 * Use the regular "ptrace_may_access()" checks.
1496 	 */
1497 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1498 		rcu_read_unlock();
1499 		err = -EPERM;
1500 		goto out_put;
1501 	}
1502 	rcu_read_unlock();
1503 
1504 	task_nodes = cpuset_mems_allowed(task);
1505 	/* Is the user allowed to access the target nodes? */
1506 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1507 		err = -EPERM;
1508 		goto out_put;
1509 	}
1510 
1511 	task_nodes = cpuset_mems_allowed(current);
1512 	nodes_and(*new, *new, task_nodes);
1513 	if (nodes_empty(*new))
1514 		goto out_put;
1515 
1516 	nodes_and(*new, *new, node_states[N_MEMORY]);
1517 	if (nodes_empty(*new))
1518 		goto out_put;
1519 
1520 	err = security_task_movememory(task);
1521 	if (err)
1522 		goto out_put;
1523 
1524 	mm = get_task_mm(task);
1525 	put_task_struct(task);
1526 
1527 	if (!mm) {
1528 		err = -EINVAL;
1529 		goto out;
1530 	}
1531 
1532 	err = do_migrate_pages(mm, old, new,
1533 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1534 
1535 	mmput(mm);
1536 out:
1537 	NODEMASK_SCRATCH_FREE(scratch);
1538 
1539 	return err;
1540 
1541 out_put:
1542 	put_task_struct(task);
1543 	goto out;
1544 
1545 }
1546 
1547 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1548 		const unsigned long __user *, old_nodes,
1549 		const unsigned long __user *, new_nodes)
1550 {
1551 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1552 }
1553 
1554 
1555 /* Retrieve NUMA policy */
1556 static int kernel_get_mempolicy(int __user *policy,
1557 				unsigned long __user *nmask,
1558 				unsigned long maxnode,
1559 				unsigned long addr,
1560 				unsigned long flags)
1561 {
1562 	int err;
1563 	int uninitialized_var(pval);
1564 	nodemask_t nodes;
1565 
1566 	if (nmask != NULL && maxnode < nr_node_ids)
1567 		return -EINVAL;
1568 
1569 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1570 
1571 	if (err)
1572 		return err;
1573 
1574 	if (policy && put_user(pval, policy))
1575 		return -EFAULT;
1576 
1577 	if (nmask)
1578 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1579 
1580 	return err;
1581 }
1582 
1583 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1584 		unsigned long __user *, nmask, unsigned long, maxnode,
1585 		unsigned long, addr, unsigned long, flags)
1586 {
1587 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1588 }
1589 
1590 #ifdef CONFIG_COMPAT
1591 
1592 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1593 		       compat_ulong_t __user *, nmask,
1594 		       compat_ulong_t, maxnode,
1595 		       compat_ulong_t, addr, compat_ulong_t, flags)
1596 {
1597 	long err;
1598 	unsigned long __user *nm = NULL;
1599 	unsigned long nr_bits, alloc_size;
1600 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1601 
1602 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1603 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1604 
1605 	if (nmask)
1606 		nm = compat_alloc_user_space(alloc_size);
1607 
1608 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1609 
1610 	if (!err && nmask) {
1611 		unsigned long copy_size;
1612 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1613 		err = copy_from_user(bm, nm, copy_size);
1614 		/* ensure entire bitmap is zeroed */
1615 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1616 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1617 	}
1618 
1619 	return err;
1620 }
1621 
1622 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1623 		       compat_ulong_t, maxnode)
1624 {
1625 	unsigned long __user *nm = NULL;
1626 	unsigned long nr_bits, alloc_size;
1627 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1628 
1629 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1630 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1631 
1632 	if (nmask) {
1633 		if (compat_get_bitmap(bm, nmask, nr_bits))
1634 			return -EFAULT;
1635 		nm = compat_alloc_user_space(alloc_size);
1636 		if (copy_to_user(nm, bm, alloc_size))
1637 			return -EFAULT;
1638 	}
1639 
1640 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1641 }
1642 
1643 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1644 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1645 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1646 {
1647 	unsigned long __user *nm = NULL;
1648 	unsigned long nr_bits, alloc_size;
1649 	nodemask_t bm;
1650 
1651 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1652 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1653 
1654 	if (nmask) {
1655 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1656 			return -EFAULT;
1657 		nm = compat_alloc_user_space(alloc_size);
1658 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1659 			return -EFAULT;
1660 	}
1661 
1662 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1663 }
1664 
1665 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1666 		       compat_ulong_t, maxnode,
1667 		       const compat_ulong_t __user *, old_nodes,
1668 		       const compat_ulong_t __user *, new_nodes)
1669 {
1670 	unsigned long __user *old = NULL;
1671 	unsigned long __user *new = NULL;
1672 	nodemask_t tmp_mask;
1673 	unsigned long nr_bits;
1674 	unsigned long size;
1675 
1676 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1677 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678 	if (old_nodes) {
1679 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1680 			return -EFAULT;
1681 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1682 		if (new_nodes)
1683 			new = old + size / sizeof(unsigned long);
1684 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1685 			return -EFAULT;
1686 	}
1687 	if (new_nodes) {
1688 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1689 			return -EFAULT;
1690 		if (new == NULL)
1691 			new = compat_alloc_user_space(size);
1692 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1693 			return -EFAULT;
1694 	}
1695 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1696 }
1697 
1698 #endif /* CONFIG_COMPAT */
1699 
1700 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1701 						unsigned long addr)
1702 {
1703 	struct mempolicy *pol = NULL;
1704 
1705 	if (vma) {
1706 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1707 			pol = vma->vm_ops->get_policy(vma, addr);
1708 		} else if (vma->vm_policy) {
1709 			pol = vma->vm_policy;
1710 
1711 			/*
1712 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1713 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1714 			 * count on these policies which will be dropped by
1715 			 * mpol_cond_put() later
1716 			 */
1717 			if (mpol_needs_cond_ref(pol))
1718 				mpol_get(pol);
1719 		}
1720 	}
1721 
1722 	return pol;
1723 }
1724 
1725 /*
1726  * get_vma_policy(@vma, @addr)
1727  * @vma: virtual memory area whose policy is sought
1728  * @addr: address in @vma for shared policy lookup
1729  *
1730  * Returns effective policy for a VMA at specified address.
1731  * Falls back to current->mempolicy or system default policy, as necessary.
1732  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1733  * count--added by the get_policy() vm_op, as appropriate--to protect against
1734  * freeing by another task.  It is the caller's responsibility to free the
1735  * extra reference for shared policies.
1736  */
1737 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1738 						unsigned long addr)
1739 {
1740 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1741 
1742 	if (!pol)
1743 		pol = get_task_policy(current);
1744 
1745 	return pol;
1746 }
1747 
1748 bool vma_policy_mof(struct vm_area_struct *vma)
1749 {
1750 	struct mempolicy *pol;
1751 
1752 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1753 		bool ret = false;
1754 
1755 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1756 		if (pol && (pol->flags & MPOL_F_MOF))
1757 			ret = true;
1758 		mpol_cond_put(pol);
1759 
1760 		return ret;
1761 	}
1762 
1763 	pol = vma->vm_policy;
1764 	if (!pol)
1765 		pol = get_task_policy(current);
1766 
1767 	return pol->flags & MPOL_F_MOF;
1768 }
1769 
1770 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1771 {
1772 	enum zone_type dynamic_policy_zone = policy_zone;
1773 
1774 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1775 
1776 	/*
1777 	 * if policy->v.nodes has movable memory only,
1778 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1779 	 *
1780 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1781 	 * so if the following test faile, it implies
1782 	 * policy->v.nodes has movable memory only.
1783 	 */
1784 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1785 		dynamic_policy_zone = ZONE_MOVABLE;
1786 
1787 	return zone >= dynamic_policy_zone;
1788 }
1789 
1790 /*
1791  * Return a nodemask representing a mempolicy for filtering nodes for
1792  * page allocation
1793  */
1794 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1795 {
1796 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1797 	if (unlikely(policy->mode == MPOL_BIND) &&
1798 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1799 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1800 		return &policy->v.nodes;
1801 
1802 	return NULL;
1803 }
1804 
1805 /* Return the node id preferred by the given mempolicy, or the given id */
1806 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1807 								int nd)
1808 {
1809 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1810 		nd = policy->v.preferred_node;
1811 	else {
1812 		/*
1813 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1814 		 * because we might easily break the expectation to stay on the
1815 		 * requested node and not break the policy.
1816 		 */
1817 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1818 	}
1819 
1820 	return nd;
1821 }
1822 
1823 /* Do dynamic interleaving for a process */
1824 static unsigned interleave_nodes(struct mempolicy *policy)
1825 {
1826 	unsigned next;
1827 	struct task_struct *me = current;
1828 
1829 	next = next_node_in(me->il_prev, policy->v.nodes);
1830 	if (next < MAX_NUMNODES)
1831 		me->il_prev = next;
1832 	return next;
1833 }
1834 
1835 /*
1836  * Depending on the memory policy provide a node from which to allocate the
1837  * next slab entry.
1838  */
1839 unsigned int mempolicy_slab_node(void)
1840 {
1841 	struct mempolicy *policy;
1842 	int node = numa_mem_id();
1843 
1844 	if (in_interrupt())
1845 		return node;
1846 
1847 	policy = current->mempolicy;
1848 	if (!policy || policy->flags & MPOL_F_LOCAL)
1849 		return node;
1850 
1851 	switch (policy->mode) {
1852 	case MPOL_PREFERRED:
1853 		/*
1854 		 * handled MPOL_F_LOCAL above
1855 		 */
1856 		return policy->v.preferred_node;
1857 
1858 	case MPOL_INTERLEAVE:
1859 		return interleave_nodes(policy);
1860 
1861 	case MPOL_BIND: {
1862 		struct zoneref *z;
1863 
1864 		/*
1865 		 * Follow bind policy behavior and start allocation at the
1866 		 * first node.
1867 		 */
1868 		struct zonelist *zonelist;
1869 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1870 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1871 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1872 							&policy->v.nodes);
1873 		return z->zone ? zone_to_nid(z->zone) : node;
1874 	}
1875 
1876 	default:
1877 		BUG();
1878 	}
1879 }
1880 
1881 /*
1882  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1883  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1884  * number of present nodes.
1885  */
1886 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1887 {
1888 	unsigned nnodes = nodes_weight(pol->v.nodes);
1889 	unsigned target;
1890 	int i;
1891 	int nid;
1892 
1893 	if (!nnodes)
1894 		return numa_node_id();
1895 	target = (unsigned int)n % nnodes;
1896 	nid = first_node(pol->v.nodes);
1897 	for (i = 0; i < target; i++)
1898 		nid = next_node(nid, pol->v.nodes);
1899 	return nid;
1900 }
1901 
1902 /* Determine a node number for interleave */
1903 static inline unsigned interleave_nid(struct mempolicy *pol,
1904 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1905 {
1906 	if (vma) {
1907 		unsigned long off;
1908 
1909 		/*
1910 		 * for small pages, there is no difference between
1911 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1912 		 * for huge pages, since vm_pgoff is in units of small
1913 		 * pages, we need to shift off the always 0 bits to get
1914 		 * a useful offset.
1915 		 */
1916 		BUG_ON(shift < PAGE_SHIFT);
1917 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1918 		off += (addr - vma->vm_start) >> shift;
1919 		return offset_il_node(pol, off);
1920 	} else
1921 		return interleave_nodes(pol);
1922 }
1923 
1924 #ifdef CONFIG_HUGETLBFS
1925 /*
1926  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1927  * @vma: virtual memory area whose policy is sought
1928  * @addr: address in @vma for shared policy lookup and interleave policy
1929  * @gfp_flags: for requested zone
1930  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1931  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1932  *
1933  * Returns a nid suitable for a huge page allocation and a pointer
1934  * to the struct mempolicy for conditional unref after allocation.
1935  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1936  * @nodemask for filtering the zonelist.
1937  *
1938  * Must be protected by read_mems_allowed_begin()
1939  */
1940 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1941 				struct mempolicy **mpol, nodemask_t **nodemask)
1942 {
1943 	int nid;
1944 
1945 	*mpol = get_vma_policy(vma, addr);
1946 	*nodemask = NULL;	/* assume !MPOL_BIND */
1947 
1948 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1949 		nid = interleave_nid(*mpol, vma, addr,
1950 					huge_page_shift(hstate_vma(vma)));
1951 	} else {
1952 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1953 		if ((*mpol)->mode == MPOL_BIND)
1954 			*nodemask = &(*mpol)->v.nodes;
1955 	}
1956 	return nid;
1957 }
1958 
1959 /*
1960  * init_nodemask_of_mempolicy
1961  *
1962  * If the current task's mempolicy is "default" [NULL], return 'false'
1963  * to indicate default policy.  Otherwise, extract the policy nodemask
1964  * for 'bind' or 'interleave' policy into the argument nodemask, or
1965  * initialize the argument nodemask to contain the single node for
1966  * 'preferred' or 'local' policy and return 'true' to indicate presence
1967  * of non-default mempolicy.
1968  *
1969  * We don't bother with reference counting the mempolicy [mpol_get/put]
1970  * because the current task is examining it's own mempolicy and a task's
1971  * mempolicy is only ever changed by the task itself.
1972  *
1973  * N.B., it is the caller's responsibility to free a returned nodemask.
1974  */
1975 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1976 {
1977 	struct mempolicy *mempolicy;
1978 	int nid;
1979 
1980 	if (!(mask && current->mempolicy))
1981 		return false;
1982 
1983 	task_lock(current);
1984 	mempolicy = current->mempolicy;
1985 	switch (mempolicy->mode) {
1986 	case MPOL_PREFERRED:
1987 		if (mempolicy->flags & MPOL_F_LOCAL)
1988 			nid = numa_node_id();
1989 		else
1990 			nid = mempolicy->v.preferred_node;
1991 		init_nodemask_of_node(mask, nid);
1992 		break;
1993 
1994 	case MPOL_BIND:
1995 		/* Fall through */
1996 	case MPOL_INTERLEAVE:
1997 		*mask =  mempolicy->v.nodes;
1998 		break;
1999 
2000 	default:
2001 		BUG();
2002 	}
2003 	task_unlock(current);
2004 
2005 	return true;
2006 }
2007 #endif
2008 
2009 /*
2010  * mempolicy_nodemask_intersects
2011  *
2012  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2013  * policy.  Otherwise, check for intersection between mask and the policy
2014  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2015  * policy, always return true since it may allocate elsewhere on fallback.
2016  *
2017  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2018  */
2019 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2020 					const nodemask_t *mask)
2021 {
2022 	struct mempolicy *mempolicy;
2023 	bool ret = true;
2024 
2025 	if (!mask)
2026 		return ret;
2027 	task_lock(tsk);
2028 	mempolicy = tsk->mempolicy;
2029 	if (!mempolicy)
2030 		goto out;
2031 
2032 	switch (mempolicy->mode) {
2033 	case MPOL_PREFERRED:
2034 		/*
2035 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2036 		 * allocate from, they may fallback to other nodes when oom.
2037 		 * Thus, it's possible for tsk to have allocated memory from
2038 		 * nodes in mask.
2039 		 */
2040 		break;
2041 	case MPOL_BIND:
2042 	case MPOL_INTERLEAVE:
2043 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2044 		break;
2045 	default:
2046 		BUG();
2047 	}
2048 out:
2049 	task_unlock(tsk);
2050 	return ret;
2051 }
2052 
2053 /* Allocate a page in interleaved policy.
2054    Own path because it needs to do special accounting. */
2055 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2056 					unsigned nid)
2057 {
2058 	struct page *page;
2059 
2060 	page = __alloc_pages(gfp, order, nid);
2061 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2062 	if (!static_branch_likely(&vm_numa_stat_key))
2063 		return page;
2064 	if (page && page_to_nid(page) == nid) {
2065 		preempt_disable();
2066 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2067 		preempt_enable();
2068 	}
2069 	return page;
2070 }
2071 
2072 /**
2073  * 	alloc_pages_vma	- Allocate a page for a VMA.
2074  *
2075  * 	@gfp:
2076  *      %GFP_USER    user allocation.
2077  *      %GFP_KERNEL  kernel allocations,
2078  *      %GFP_HIGHMEM highmem/user allocations,
2079  *      %GFP_FS      allocation should not call back into a file system.
2080  *      %GFP_ATOMIC  don't sleep.
2081  *
2082  *	@order:Order of the GFP allocation.
2083  * 	@vma:  Pointer to VMA or NULL if not available.
2084  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2085  *	@node: Which node to prefer for allocation (modulo policy).
2086  *
2087  * 	This function allocates a page from the kernel page pool and applies
2088  *	a NUMA policy associated with the VMA or the current process.
2089  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2090  *	mm_struct of the VMA to prevent it from going away. Should be used for
2091  *	all allocations for pages that will be mapped into user space. Returns
2092  *	NULL when no page can be allocated.
2093  */
2094 struct page *
2095 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2096 		unsigned long addr, int node)
2097 {
2098 	struct mempolicy *pol;
2099 	struct page *page;
2100 	int preferred_nid;
2101 	nodemask_t *nmask;
2102 
2103 	pol = get_vma_policy(vma, addr);
2104 
2105 	if (pol->mode == MPOL_INTERLEAVE) {
2106 		unsigned nid;
2107 
2108 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2109 		mpol_cond_put(pol);
2110 		page = alloc_page_interleave(gfp, order, nid);
2111 		goto out;
2112 	}
2113 
2114 	nmask = policy_nodemask(gfp, pol);
2115 	preferred_nid = policy_node(gfp, pol, node);
2116 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2117 	mpol_cond_put(pol);
2118 out:
2119 	return page;
2120 }
2121 EXPORT_SYMBOL(alloc_pages_vma);
2122 
2123 /**
2124  * 	alloc_pages_current - Allocate pages.
2125  *
2126  *	@gfp:
2127  *		%GFP_USER   user allocation,
2128  *      	%GFP_KERNEL kernel allocation,
2129  *      	%GFP_HIGHMEM highmem allocation,
2130  *      	%GFP_FS     don't call back into a file system.
2131  *      	%GFP_ATOMIC don't sleep.
2132  *	@order: Power of two of allocation size in pages. 0 is a single page.
2133  *
2134  *	Allocate a page from the kernel page pool.  When not in
2135  *	interrupt context and apply the current process NUMA policy.
2136  *	Returns NULL when no page can be allocated.
2137  */
2138 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2139 {
2140 	struct mempolicy *pol = &default_policy;
2141 	struct page *page;
2142 
2143 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2144 		pol = get_task_policy(current);
2145 
2146 	/*
2147 	 * No reference counting needed for current->mempolicy
2148 	 * nor system default_policy
2149 	 */
2150 	if (pol->mode == MPOL_INTERLEAVE)
2151 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2152 	else
2153 		page = __alloc_pages_nodemask(gfp, order,
2154 				policy_node(gfp, pol, numa_node_id()),
2155 				policy_nodemask(gfp, pol));
2156 
2157 	return page;
2158 }
2159 EXPORT_SYMBOL(alloc_pages_current);
2160 
2161 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2162 {
2163 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2164 
2165 	if (IS_ERR(pol))
2166 		return PTR_ERR(pol);
2167 	dst->vm_policy = pol;
2168 	return 0;
2169 }
2170 
2171 /*
2172  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2173  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2174  * with the mems_allowed returned by cpuset_mems_allowed().  This
2175  * keeps mempolicies cpuset relative after its cpuset moves.  See
2176  * further kernel/cpuset.c update_nodemask().
2177  *
2178  * current's mempolicy may be rebinded by the other task(the task that changes
2179  * cpuset's mems), so we needn't do rebind work for current task.
2180  */
2181 
2182 /* Slow path of a mempolicy duplicate */
2183 struct mempolicy *__mpol_dup(struct mempolicy *old)
2184 {
2185 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2186 
2187 	if (!new)
2188 		return ERR_PTR(-ENOMEM);
2189 
2190 	/* task's mempolicy is protected by alloc_lock */
2191 	if (old == current->mempolicy) {
2192 		task_lock(current);
2193 		*new = *old;
2194 		task_unlock(current);
2195 	} else
2196 		*new = *old;
2197 
2198 	if (current_cpuset_is_being_rebound()) {
2199 		nodemask_t mems = cpuset_mems_allowed(current);
2200 		mpol_rebind_policy(new, &mems);
2201 	}
2202 	atomic_set(&new->refcnt, 1);
2203 	return new;
2204 }
2205 
2206 /* Slow path of a mempolicy comparison */
2207 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2208 {
2209 	if (!a || !b)
2210 		return false;
2211 	if (a->mode != b->mode)
2212 		return false;
2213 	if (a->flags != b->flags)
2214 		return false;
2215 	if (mpol_store_user_nodemask(a))
2216 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2217 			return false;
2218 
2219 	switch (a->mode) {
2220 	case MPOL_BIND:
2221 		/* Fall through */
2222 	case MPOL_INTERLEAVE:
2223 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2224 	case MPOL_PREFERRED:
2225 		/* a's ->flags is the same as b's */
2226 		if (a->flags & MPOL_F_LOCAL)
2227 			return true;
2228 		return a->v.preferred_node == b->v.preferred_node;
2229 	default:
2230 		BUG();
2231 		return false;
2232 	}
2233 }
2234 
2235 /*
2236  * Shared memory backing store policy support.
2237  *
2238  * Remember policies even when nobody has shared memory mapped.
2239  * The policies are kept in Red-Black tree linked from the inode.
2240  * They are protected by the sp->lock rwlock, which should be held
2241  * for any accesses to the tree.
2242  */
2243 
2244 /*
2245  * lookup first element intersecting start-end.  Caller holds sp->lock for
2246  * reading or for writing
2247  */
2248 static struct sp_node *
2249 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2250 {
2251 	struct rb_node *n = sp->root.rb_node;
2252 
2253 	while (n) {
2254 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2255 
2256 		if (start >= p->end)
2257 			n = n->rb_right;
2258 		else if (end <= p->start)
2259 			n = n->rb_left;
2260 		else
2261 			break;
2262 	}
2263 	if (!n)
2264 		return NULL;
2265 	for (;;) {
2266 		struct sp_node *w = NULL;
2267 		struct rb_node *prev = rb_prev(n);
2268 		if (!prev)
2269 			break;
2270 		w = rb_entry(prev, struct sp_node, nd);
2271 		if (w->end <= start)
2272 			break;
2273 		n = prev;
2274 	}
2275 	return rb_entry(n, struct sp_node, nd);
2276 }
2277 
2278 /*
2279  * Insert a new shared policy into the list.  Caller holds sp->lock for
2280  * writing.
2281  */
2282 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2283 {
2284 	struct rb_node **p = &sp->root.rb_node;
2285 	struct rb_node *parent = NULL;
2286 	struct sp_node *nd;
2287 
2288 	while (*p) {
2289 		parent = *p;
2290 		nd = rb_entry(parent, struct sp_node, nd);
2291 		if (new->start < nd->start)
2292 			p = &(*p)->rb_left;
2293 		else if (new->end > nd->end)
2294 			p = &(*p)->rb_right;
2295 		else
2296 			BUG();
2297 	}
2298 	rb_link_node(&new->nd, parent, p);
2299 	rb_insert_color(&new->nd, &sp->root);
2300 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2301 		 new->policy ? new->policy->mode : 0);
2302 }
2303 
2304 /* Find shared policy intersecting idx */
2305 struct mempolicy *
2306 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2307 {
2308 	struct mempolicy *pol = NULL;
2309 	struct sp_node *sn;
2310 
2311 	if (!sp->root.rb_node)
2312 		return NULL;
2313 	read_lock(&sp->lock);
2314 	sn = sp_lookup(sp, idx, idx+1);
2315 	if (sn) {
2316 		mpol_get(sn->policy);
2317 		pol = sn->policy;
2318 	}
2319 	read_unlock(&sp->lock);
2320 	return pol;
2321 }
2322 
2323 static void sp_free(struct sp_node *n)
2324 {
2325 	mpol_put(n->policy);
2326 	kmem_cache_free(sn_cache, n);
2327 }
2328 
2329 /**
2330  * mpol_misplaced - check whether current page node is valid in policy
2331  *
2332  * @page: page to be checked
2333  * @vma: vm area where page mapped
2334  * @addr: virtual address where page mapped
2335  *
2336  * Lookup current policy node id for vma,addr and "compare to" page's
2337  * node id.
2338  *
2339  * Returns:
2340  *	-1	- not misplaced, page is in the right node
2341  *	node	- node id where the page should be
2342  *
2343  * Policy determination "mimics" alloc_page_vma().
2344  * Called from fault path where we know the vma and faulting address.
2345  */
2346 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2347 {
2348 	struct mempolicy *pol;
2349 	struct zoneref *z;
2350 	int curnid = page_to_nid(page);
2351 	unsigned long pgoff;
2352 	int thiscpu = raw_smp_processor_id();
2353 	int thisnid = cpu_to_node(thiscpu);
2354 	int polnid = NUMA_NO_NODE;
2355 	int ret = -1;
2356 
2357 	pol = get_vma_policy(vma, addr);
2358 	if (!(pol->flags & MPOL_F_MOF))
2359 		goto out;
2360 
2361 	switch (pol->mode) {
2362 	case MPOL_INTERLEAVE:
2363 		pgoff = vma->vm_pgoff;
2364 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2365 		polnid = offset_il_node(pol, pgoff);
2366 		break;
2367 
2368 	case MPOL_PREFERRED:
2369 		if (pol->flags & MPOL_F_LOCAL)
2370 			polnid = numa_node_id();
2371 		else
2372 			polnid = pol->v.preferred_node;
2373 		break;
2374 
2375 	case MPOL_BIND:
2376 
2377 		/*
2378 		 * allows binding to multiple nodes.
2379 		 * use current page if in policy nodemask,
2380 		 * else select nearest allowed node, if any.
2381 		 * If no allowed nodes, use current [!misplaced].
2382 		 */
2383 		if (node_isset(curnid, pol->v.nodes))
2384 			goto out;
2385 		z = first_zones_zonelist(
2386 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2387 				gfp_zone(GFP_HIGHUSER),
2388 				&pol->v.nodes);
2389 		polnid = zone_to_nid(z->zone);
2390 		break;
2391 
2392 	default:
2393 		BUG();
2394 	}
2395 
2396 	/* Migrate the page towards the node whose CPU is referencing it */
2397 	if (pol->flags & MPOL_F_MORON) {
2398 		polnid = thisnid;
2399 
2400 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2401 			goto out;
2402 	}
2403 
2404 	if (curnid != polnid)
2405 		ret = polnid;
2406 out:
2407 	mpol_cond_put(pol);
2408 
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2414  * dropped after task->mempolicy is set to NULL so that any allocation done as
2415  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2416  * policy.
2417  */
2418 void mpol_put_task_policy(struct task_struct *task)
2419 {
2420 	struct mempolicy *pol;
2421 
2422 	task_lock(task);
2423 	pol = task->mempolicy;
2424 	task->mempolicy = NULL;
2425 	task_unlock(task);
2426 	mpol_put(pol);
2427 }
2428 
2429 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2430 {
2431 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2432 	rb_erase(&n->nd, &sp->root);
2433 	sp_free(n);
2434 }
2435 
2436 static void sp_node_init(struct sp_node *node, unsigned long start,
2437 			unsigned long end, struct mempolicy *pol)
2438 {
2439 	node->start = start;
2440 	node->end = end;
2441 	node->policy = pol;
2442 }
2443 
2444 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2445 				struct mempolicy *pol)
2446 {
2447 	struct sp_node *n;
2448 	struct mempolicy *newpol;
2449 
2450 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2451 	if (!n)
2452 		return NULL;
2453 
2454 	newpol = mpol_dup(pol);
2455 	if (IS_ERR(newpol)) {
2456 		kmem_cache_free(sn_cache, n);
2457 		return NULL;
2458 	}
2459 	newpol->flags |= MPOL_F_SHARED;
2460 	sp_node_init(n, start, end, newpol);
2461 
2462 	return n;
2463 }
2464 
2465 /* Replace a policy range. */
2466 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2467 				 unsigned long end, struct sp_node *new)
2468 {
2469 	struct sp_node *n;
2470 	struct sp_node *n_new = NULL;
2471 	struct mempolicy *mpol_new = NULL;
2472 	int ret = 0;
2473 
2474 restart:
2475 	write_lock(&sp->lock);
2476 	n = sp_lookup(sp, start, end);
2477 	/* Take care of old policies in the same range. */
2478 	while (n && n->start < end) {
2479 		struct rb_node *next = rb_next(&n->nd);
2480 		if (n->start >= start) {
2481 			if (n->end <= end)
2482 				sp_delete(sp, n);
2483 			else
2484 				n->start = end;
2485 		} else {
2486 			/* Old policy spanning whole new range. */
2487 			if (n->end > end) {
2488 				if (!n_new)
2489 					goto alloc_new;
2490 
2491 				*mpol_new = *n->policy;
2492 				atomic_set(&mpol_new->refcnt, 1);
2493 				sp_node_init(n_new, end, n->end, mpol_new);
2494 				n->end = start;
2495 				sp_insert(sp, n_new);
2496 				n_new = NULL;
2497 				mpol_new = NULL;
2498 				break;
2499 			} else
2500 				n->end = start;
2501 		}
2502 		if (!next)
2503 			break;
2504 		n = rb_entry(next, struct sp_node, nd);
2505 	}
2506 	if (new)
2507 		sp_insert(sp, new);
2508 	write_unlock(&sp->lock);
2509 	ret = 0;
2510 
2511 err_out:
2512 	if (mpol_new)
2513 		mpol_put(mpol_new);
2514 	if (n_new)
2515 		kmem_cache_free(sn_cache, n_new);
2516 
2517 	return ret;
2518 
2519 alloc_new:
2520 	write_unlock(&sp->lock);
2521 	ret = -ENOMEM;
2522 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2523 	if (!n_new)
2524 		goto err_out;
2525 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2526 	if (!mpol_new)
2527 		goto err_out;
2528 	goto restart;
2529 }
2530 
2531 /**
2532  * mpol_shared_policy_init - initialize shared policy for inode
2533  * @sp: pointer to inode shared policy
2534  * @mpol:  struct mempolicy to install
2535  *
2536  * Install non-NULL @mpol in inode's shared policy rb-tree.
2537  * On entry, the current task has a reference on a non-NULL @mpol.
2538  * This must be released on exit.
2539  * This is called at get_inode() calls and we can use GFP_KERNEL.
2540  */
2541 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2542 {
2543 	int ret;
2544 
2545 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2546 	rwlock_init(&sp->lock);
2547 
2548 	if (mpol) {
2549 		struct vm_area_struct pvma;
2550 		struct mempolicy *new;
2551 		NODEMASK_SCRATCH(scratch);
2552 
2553 		if (!scratch)
2554 			goto put_mpol;
2555 		/* contextualize the tmpfs mount point mempolicy */
2556 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2557 		if (IS_ERR(new))
2558 			goto free_scratch; /* no valid nodemask intersection */
2559 
2560 		task_lock(current);
2561 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2562 		task_unlock(current);
2563 		if (ret)
2564 			goto put_new;
2565 
2566 		/* Create pseudo-vma that contains just the policy */
2567 		vma_init(&pvma, NULL);
2568 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2569 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2570 
2571 put_new:
2572 		mpol_put(new);			/* drop initial ref */
2573 free_scratch:
2574 		NODEMASK_SCRATCH_FREE(scratch);
2575 put_mpol:
2576 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2577 	}
2578 }
2579 
2580 int mpol_set_shared_policy(struct shared_policy *info,
2581 			struct vm_area_struct *vma, struct mempolicy *npol)
2582 {
2583 	int err;
2584 	struct sp_node *new = NULL;
2585 	unsigned long sz = vma_pages(vma);
2586 
2587 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2588 		 vma->vm_pgoff,
2589 		 sz, npol ? npol->mode : -1,
2590 		 npol ? npol->flags : -1,
2591 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2592 
2593 	if (npol) {
2594 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2595 		if (!new)
2596 			return -ENOMEM;
2597 	}
2598 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2599 	if (err && new)
2600 		sp_free(new);
2601 	return err;
2602 }
2603 
2604 /* Free a backing policy store on inode delete. */
2605 void mpol_free_shared_policy(struct shared_policy *p)
2606 {
2607 	struct sp_node *n;
2608 	struct rb_node *next;
2609 
2610 	if (!p->root.rb_node)
2611 		return;
2612 	write_lock(&p->lock);
2613 	next = rb_first(&p->root);
2614 	while (next) {
2615 		n = rb_entry(next, struct sp_node, nd);
2616 		next = rb_next(&n->nd);
2617 		sp_delete(p, n);
2618 	}
2619 	write_unlock(&p->lock);
2620 }
2621 
2622 #ifdef CONFIG_NUMA_BALANCING
2623 static int __initdata numabalancing_override;
2624 
2625 static void __init check_numabalancing_enable(void)
2626 {
2627 	bool numabalancing_default = false;
2628 
2629 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2630 		numabalancing_default = true;
2631 
2632 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2633 	if (numabalancing_override)
2634 		set_numabalancing_state(numabalancing_override == 1);
2635 
2636 	if (num_online_nodes() > 1 && !numabalancing_override) {
2637 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2638 			numabalancing_default ? "Enabling" : "Disabling");
2639 		set_numabalancing_state(numabalancing_default);
2640 	}
2641 }
2642 
2643 static int __init setup_numabalancing(char *str)
2644 {
2645 	int ret = 0;
2646 	if (!str)
2647 		goto out;
2648 
2649 	if (!strcmp(str, "enable")) {
2650 		numabalancing_override = 1;
2651 		ret = 1;
2652 	} else if (!strcmp(str, "disable")) {
2653 		numabalancing_override = -1;
2654 		ret = 1;
2655 	}
2656 out:
2657 	if (!ret)
2658 		pr_warn("Unable to parse numa_balancing=\n");
2659 
2660 	return ret;
2661 }
2662 __setup("numa_balancing=", setup_numabalancing);
2663 #else
2664 static inline void __init check_numabalancing_enable(void)
2665 {
2666 }
2667 #endif /* CONFIG_NUMA_BALANCING */
2668 
2669 /* assumes fs == KERNEL_DS */
2670 void __init numa_policy_init(void)
2671 {
2672 	nodemask_t interleave_nodes;
2673 	unsigned long largest = 0;
2674 	int nid, prefer = 0;
2675 
2676 	policy_cache = kmem_cache_create("numa_policy",
2677 					 sizeof(struct mempolicy),
2678 					 0, SLAB_PANIC, NULL);
2679 
2680 	sn_cache = kmem_cache_create("shared_policy_node",
2681 				     sizeof(struct sp_node),
2682 				     0, SLAB_PANIC, NULL);
2683 
2684 	for_each_node(nid) {
2685 		preferred_node_policy[nid] = (struct mempolicy) {
2686 			.refcnt = ATOMIC_INIT(1),
2687 			.mode = MPOL_PREFERRED,
2688 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2689 			.v = { .preferred_node = nid, },
2690 		};
2691 	}
2692 
2693 	/*
2694 	 * Set interleaving policy for system init. Interleaving is only
2695 	 * enabled across suitably sized nodes (default is >= 16MB), or
2696 	 * fall back to the largest node if they're all smaller.
2697 	 */
2698 	nodes_clear(interleave_nodes);
2699 	for_each_node_state(nid, N_MEMORY) {
2700 		unsigned long total_pages = node_present_pages(nid);
2701 
2702 		/* Preserve the largest node */
2703 		if (largest < total_pages) {
2704 			largest = total_pages;
2705 			prefer = nid;
2706 		}
2707 
2708 		/* Interleave this node? */
2709 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2710 			node_set(nid, interleave_nodes);
2711 	}
2712 
2713 	/* All too small, use the largest */
2714 	if (unlikely(nodes_empty(interleave_nodes)))
2715 		node_set(prefer, interleave_nodes);
2716 
2717 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2718 		pr_err("%s: interleaving failed\n", __func__);
2719 
2720 	check_numabalancing_enable();
2721 }
2722 
2723 /* Reset policy of current process to default */
2724 void numa_default_policy(void)
2725 {
2726 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2727 }
2728 
2729 /*
2730  * Parse and format mempolicy from/to strings
2731  */
2732 
2733 /*
2734  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2735  */
2736 static const char * const policy_modes[] =
2737 {
2738 	[MPOL_DEFAULT]    = "default",
2739 	[MPOL_PREFERRED]  = "prefer",
2740 	[MPOL_BIND]       = "bind",
2741 	[MPOL_INTERLEAVE] = "interleave",
2742 	[MPOL_LOCAL]      = "local",
2743 };
2744 
2745 
2746 #ifdef CONFIG_TMPFS
2747 /**
2748  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2749  * @str:  string containing mempolicy to parse
2750  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2751  *
2752  * Format of input:
2753  *	<mode>[=<flags>][:<nodelist>]
2754  *
2755  * On success, returns 0, else 1
2756  */
2757 int mpol_parse_str(char *str, struct mempolicy **mpol)
2758 {
2759 	struct mempolicy *new = NULL;
2760 	unsigned short mode_flags;
2761 	nodemask_t nodes;
2762 	char *nodelist = strchr(str, ':');
2763 	char *flags = strchr(str, '=');
2764 	int err = 1, mode;
2765 
2766 	if (nodelist) {
2767 		/* NUL-terminate mode or flags string */
2768 		*nodelist++ = '\0';
2769 		if (nodelist_parse(nodelist, nodes))
2770 			goto out;
2771 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2772 			goto out;
2773 	} else
2774 		nodes_clear(nodes);
2775 
2776 	if (flags)
2777 		*flags++ = '\0';	/* terminate mode string */
2778 
2779 	mode = match_string(policy_modes, MPOL_MAX, str);
2780 	if (mode < 0)
2781 		goto out;
2782 
2783 	switch (mode) {
2784 	case MPOL_PREFERRED:
2785 		/*
2786 		 * Insist on a nodelist of one node only
2787 		 */
2788 		if (nodelist) {
2789 			char *rest = nodelist;
2790 			while (isdigit(*rest))
2791 				rest++;
2792 			if (*rest)
2793 				goto out;
2794 		}
2795 		break;
2796 	case MPOL_INTERLEAVE:
2797 		/*
2798 		 * Default to online nodes with memory if no nodelist
2799 		 */
2800 		if (!nodelist)
2801 			nodes = node_states[N_MEMORY];
2802 		break;
2803 	case MPOL_LOCAL:
2804 		/*
2805 		 * Don't allow a nodelist;  mpol_new() checks flags
2806 		 */
2807 		if (nodelist)
2808 			goto out;
2809 		mode = MPOL_PREFERRED;
2810 		break;
2811 	case MPOL_DEFAULT:
2812 		/*
2813 		 * Insist on a empty nodelist
2814 		 */
2815 		if (!nodelist)
2816 			err = 0;
2817 		goto out;
2818 	case MPOL_BIND:
2819 		/*
2820 		 * Insist on a nodelist
2821 		 */
2822 		if (!nodelist)
2823 			goto out;
2824 	}
2825 
2826 	mode_flags = 0;
2827 	if (flags) {
2828 		/*
2829 		 * Currently, we only support two mutually exclusive
2830 		 * mode flags.
2831 		 */
2832 		if (!strcmp(flags, "static"))
2833 			mode_flags |= MPOL_F_STATIC_NODES;
2834 		else if (!strcmp(flags, "relative"))
2835 			mode_flags |= MPOL_F_RELATIVE_NODES;
2836 		else
2837 			goto out;
2838 	}
2839 
2840 	new = mpol_new(mode, mode_flags, &nodes);
2841 	if (IS_ERR(new))
2842 		goto out;
2843 
2844 	/*
2845 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2846 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2847 	 */
2848 	if (mode != MPOL_PREFERRED)
2849 		new->v.nodes = nodes;
2850 	else if (nodelist)
2851 		new->v.preferred_node = first_node(nodes);
2852 	else
2853 		new->flags |= MPOL_F_LOCAL;
2854 
2855 	/*
2856 	 * Save nodes for contextualization: this will be used to "clone"
2857 	 * the mempolicy in a specific context [cpuset] at a later time.
2858 	 */
2859 	new->w.user_nodemask = nodes;
2860 
2861 	err = 0;
2862 
2863 out:
2864 	/* Restore string for error message */
2865 	if (nodelist)
2866 		*--nodelist = ':';
2867 	if (flags)
2868 		*--flags = '=';
2869 	if (!err)
2870 		*mpol = new;
2871 	return err;
2872 }
2873 #endif /* CONFIG_TMPFS */
2874 
2875 /**
2876  * mpol_to_str - format a mempolicy structure for printing
2877  * @buffer:  to contain formatted mempolicy string
2878  * @maxlen:  length of @buffer
2879  * @pol:  pointer to mempolicy to be formatted
2880  *
2881  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2882  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2883  * longest flag, "relative", and to display at least a few node ids.
2884  */
2885 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2886 {
2887 	char *p = buffer;
2888 	nodemask_t nodes = NODE_MASK_NONE;
2889 	unsigned short mode = MPOL_DEFAULT;
2890 	unsigned short flags = 0;
2891 
2892 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2893 		mode = pol->mode;
2894 		flags = pol->flags;
2895 	}
2896 
2897 	switch (mode) {
2898 	case MPOL_DEFAULT:
2899 		break;
2900 	case MPOL_PREFERRED:
2901 		if (flags & MPOL_F_LOCAL)
2902 			mode = MPOL_LOCAL;
2903 		else
2904 			node_set(pol->v.preferred_node, nodes);
2905 		break;
2906 	case MPOL_BIND:
2907 	case MPOL_INTERLEAVE:
2908 		nodes = pol->v.nodes;
2909 		break;
2910 	default:
2911 		WARN_ON_ONCE(1);
2912 		snprintf(p, maxlen, "unknown");
2913 		return;
2914 	}
2915 
2916 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2917 
2918 	if (flags & MPOL_MODE_FLAGS) {
2919 		p += snprintf(p, buffer + maxlen - p, "=");
2920 
2921 		/*
2922 		 * Currently, the only defined flags are mutually exclusive
2923 		 */
2924 		if (flags & MPOL_F_STATIC_NODES)
2925 			p += snprintf(p, buffer + maxlen - p, "static");
2926 		else if (flags & MPOL_F_RELATIVE_NODES)
2927 			p += snprintf(p, buffer + maxlen - p, "relative");
2928 	}
2929 
2930 	if (!nodes_empty(nodes))
2931 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2932 			       nodemask_pr_args(&nodes));
2933 }
2934