1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_page_add(struct page *page, struct list_head *pagelist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the page's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_pages_required(struct page *page, 436 struct queue_pages *qp) 437 { 438 int nid = page_to_nid(page); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_pages_pmd() has three possible return values: 446 * 0 - pages are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing page was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct page *page; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 page = pmd_page(*pmd); 468 if (is_huge_zero_page(page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_pages_pte_range() has three possible return values: 495 * 0 - pages are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct page *page; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_pages_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page || is_zone_device_page(page)) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 if (!queue_pages_required(page, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_page_add(page, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 if (!queue_pages_required(page, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced page and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced page but allow migrating pages which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 602 if (flags & (MPOL_MF_MOVE_ALL) || 603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 604 if (isolate_hugetlb(page, qp->pagelist) && 605 (flags & MPOL_MF_STRICT)) 606 /* 607 * Failed to isolate page but allow migrating pages 608 * which have been queued. 609 */ 610 ret = 1; 611 } 612 unlock: 613 spin_unlock(ptl); 614 #else 615 BUG(); 616 #endif 617 return ret; 618 } 619 620 #ifdef CONFIG_NUMA_BALANCING 621 /* 622 * This is used to mark a range of virtual addresses to be inaccessible. 623 * These are later cleared by a NUMA hinting fault. Depending on these 624 * faults, pages may be migrated for better NUMA placement. 625 * 626 * This is assuming that NUMA faults are handled using PROT_NONE. If 627 * an architecture makes a different choice, it will need further 628 * changes to the core. 629 */ 630 unsigned long change_prot_numa(struct vm_area_struct *vma, 631 unsigned long addr, unsigned long end) 632 { 633 struct mmu_gather tlb; 634 long nr_updated; 635 636 tlb_gather_mmu(&tlb, vma->vm_mm); 637 638 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 639 if (nr_updated > 0) 640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 641 642 tlb_finish_mmu(&tlb); 643 644 return nr_updated; 645 } 646 #else 647 static unsigned long change_prot_numa(struct vm_area_struct *vma, 648 unsigned long addr, unsigned long end) 649 { 650 return 0; 651 } 652 #endif /* CONFIG_NUMA_BALANCING */ 653 654 static int queue_pages_test_walk(unsigned long start, unsigned long end, 655 struct mm_walk *walk) 656 { 657 struct vm_area_struct *next, *vma = walk->vma; 658 struct queue_pages *qp = walk->private; 659 unsigned long endvma = vma->vm_end; 660 unsigned long flags = qp->flags; 661 662 /* range check first */ 663 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 664 665 if (!qp->first) { 666 qp->first = vma; 667 if (!(flags & MPOL_MF_DISCONTIG_OK) && 668 (qp->start < vma->vm_start)) 669 /* hole at head side of range */ 670 return -EFAULT; 671 } 672 next = find_vma(vma->vm_mm, vma->vm_end); 673 if (!(flags & MPOL_MF_DISCONTIG_OK) && 674 ((vma->vm_end < qp->end) && 675 (!next || vma->vm_end < next->vm_start))) 676 /* hole at middle or tail of range */ 677 return -EFAULT; 678 679 /* 680 * Need check MPOL_MF_STRICT to return -EIO if possible 681 * regardless of vma_migratable 682 */ 683 if (!vma_migratable(vma) && 684 !(flags & MPOL_MF_STRICT)) 685 return 1; 686 687 if (endvma > end) 688 endvma = end; 689 690 if (flags & MPOL_MF_LAZY) { 691 /* Similar to task_numa_work, skip inaccessible VMAs */ 692 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 693 !(vma->vm_flags & VM_MIXEDMAP)) 694 change_prot_numa(vma, start, endvma); 695 return 1; 696 } 697 698 /* queue pages from current vma */ 699 if (flags & MPOL_MF_VALID) 700 return 0; 701 return 1; 702 } 703 704 static const struct mm_walk_ops queue_pages_walk_ops = { 705 .hugetlb_entry = queue_pages_hugetlb, 706 .pmd_entry = queue_pages_pte_range, 707 .test_walk = queue_pages_test_walk, 708 }; 709 710 /* 711 * Walk through page tables and collect pages to be migrated. 712 * 713 * If pages found in a given range are on a set of nodes (determined by 714 * @nodes and @flags,) it's isolated and queued to the pagelist which is 715 * passed via @private. 716 * 717 * queue_pages_range() has three possible return values: 718 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 719 * specified. 720 * 0 - queue pages successfully or no misplaced page. 721 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 722 * memory range specified by nodemask and maxnode points outside 723 * your accessible address space (-EFAULT) 724 */ 725 static int 726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 727 nodemask_t *nodes, unsigned long flags, 728 struct list_head *pagelist) 729 { 730 int err; 731 struct queue_pages qp = { 732 .pagelist = pagelist, 733 .flags = flags, 734 .nmask = nodes, 735 .start = start, 736 .end = end, 737 .first = NULL, 738 }; 739 740 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 741 742 if (!qp.first) 743 /* whole range in hole */ 744 err = -EFAULT; 745 746 return err; 747 } 748 749 /* 750 * Apply policy to a single VMA 751 * This must be called with the mmap_lock held for writing. 752 */ 753 static int vma_replace_policy(struct vm_area_struct *vma, 754 struct mempolicy *pol) 755 { 756 int err; 757 struct mempolicy *old; 758 struct mempolicy *new; 759 760 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 761 vma->vm_start, vma->vm_end, vma->vm_pgoff, 762 vma->vm_ops, vma->vm_file, 763 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 764 765 new = mpol_dup(pol); 766 if (IS_ERR(new)) 767 return PTR_ERR(new); 768 769 if (vma->vm_ops && vma->vm_ops->set_policy) { 770 err = vma->vm_ops->set_policy(vma, new); 771 if (err) 772 goto err_out; 773 } 774 775 old = vma->vm_policy; 776 vma->vm_policy = new; /* protected by mmap_lock */ 777 mpol_put(old); 778 779 return 0; 780 err_out: 781 mpol_put(new); 782 return err; 783 } 784 785 /* Step 2: apply policy to a range and do splits. */ 786 static int mbind_range(struct mm_struct *mm, unsigned long start, 787 unsigned long end, struct mempolicy *new_pol) 788 { 789 MA_STATE(mas, &mm->mm_mt, start, start); 790 struct vm_area_struct *prev; 791 struct vm_area_struct *vma; 792 int err = 0; 793 pgoff_t pgoff; 794 795 prev = mas_prev(&mas, 0); 796 if (unlikely(!prev)) 797 mas_set(&mas, start); 798 799 vma = mas_find(&mas, end - 1); 800 if (WARN_ON(!vma)) 801 return 0; 802 803 if (start > vma->vm_start) 804 prev = vma; 805 806 for (; vma; vma = mas_next(&mas, end - 1)) { 807 unsigned long vmstart = max(start, vma->vm_start); 808 unsigned long vmend = min(end, vma->vm_end); 809 810 if (mpol_equal(vma_policy(vma), new_pol)) 811 goto next; 812 813 pgoff = vma->vm_pgoff + 814 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 815 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 816 vma->anon_vma, vma->vm_file, pgoff, 817 new_pol, vma->vm_userfaultfd_ctx, 818 anon_vma_name(vma)); 819 if (prev) { 820 /* vma_merge() invalidated the mas */ 821 mas_pause(&mas); 822 vma = prev; 823 goto replace; 824 } 825 if (vma->vm_start != vmstart) { 826 err = split_vma(vma->vm_mm, vma, vmstart, 1); 827 if (err) 828 goto out; 829 /* split_vma() invalidated the mas */ 830 mas_pause(&mas); 831 } 832 if (vma->vm_end != vmend) { 833 err = split_vma(vma->vm_mm, vma, vmend, 0); 834 if (err) 835 goto out; 836 /* split_vma() invalidated the mas */ 837 mas_pause(&mas); 838 } 839 replace: 840 err = vma_replace_policy(vma, new_pol); 841 if (err) 842 goto out; 843 next: 844 prev = vma; 845 } 846 847 out: 848 return err; 849 } 850 851 /* Set the process memory policy */ 852 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 853 nodemask_t *nodes) 854 { 855 struct mempolicy *new, *old; 856 NODEMASK_SCRATCH(scratch); 857 int ret; 858 859 if (!scratch) 860 return -ENOMEM; 861 862 new = mpol_new(mode, flags, nodes); 863 if (IS_ERR(new)) { 864 ret = PTR_ERR(new); 865 goto out; 866 } 867 868 task_lock(current); 869 ret = mpol_set_nodemask(new, nodes, scratch); 870 if (ret) { 871 task_unlock(current); 872 mpol_put(new); 873 goto out; 874 } 875 876 old = current->mempolicy; 877 current->mempolicy = new; 878 if (new && new->mode == MPOL_INTERLEAVE) 879 current->il_prev = MAX_NUMNODES-1; 880 task_unlock(current); 881 mpol_put(old); 882 ret = 0; 883 out: 884 NODEMASK_SCRATCH_FREE(scratch); 885 return ret; 886 } 887 888 /* 889 * Return nodemask for policy for get_mempolicy() query 890 * 891 * Called with task's alloc_lock held 892 */ 893 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 894 { 895 nodes_clear(*nodes); 896 if (p == &default_policy) 897 return; 898 899 switch (p->mode) { 900 case MPOL_BIND: 901 case MPOL_INTERLEAVE: 902 case MPOL_PREFERRED: 903 case MPOL_PREFERRED_MANY: 904 *nodes = p->nodes; 905 break; 906 case MPOL_LOCAL: 907 /* return empty node mask for local allocation */ 908 break; 909 default: 910 BUG(); 911 } 912 } 913 914 static int lookup_node(struct mm_struct *mm, unsigned long addr) 915 { 916 struct page *p = NULL; 917 int ret; 918 919 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 920 if (ret > 0) { 921 ret = page_to_nid(p); 922 put_page(p); 923 } 924 return ret; 925 } 926 927 /* Retrieve NUMA policy */ 928 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 929 unsigned long addr, unsigned long flags) 930 { 931 int err; 932 struct mm_struct *mm = current->mm; 933 struct vm_area_struct *vma = NULL; 934 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 935 936 if (flags & 937 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 938 return -EINVAL; 939 940 if (flags & MPOL_F_MEMS_ALLOWED) { 941 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 942 return -EINVAL; 943 *policy = 0; /* just so it's initialized */ 944 task_lock(current); 945 *nmask = cpuset_current_mems_allowed; 946 task_unlock(current); 947 return 0; 948 } 949 950 if (flags & MPOL_F_ADDR) { 951 /* 952 * Do NOT fall back to task policy if the 953 * vma/shared policy at addr is NULL. We 954 * want to return MPOL_DEFAULT in this case. 955 */ 956 mmap_read_lock(mm); 957 vma = vma_lookup(mm, addr); 958 if (!vma) { 959 mmap_read_unlock(mm); 960 return -EFAULT; 961 } 962 if (vma->vm_ops && vma->vm_ops->get_policy) 963 pol = vma->vm_ops->get_policy(vma, addr); 964 else 965 pol = vma->vm_policy; 966 } else if (addr) 967 return -EINVAL; 968 969 if (!pol) 970 pol = &default_policy; /* indicates default behavior */ 971 972 if (flags & MPOL_F_NODE) { 973 if (flags & MPOL_F_ADDR) { 974 /* 975 * Take a refcount on the mpol, because we are about to 976 * drop the mmap_lock, after which only "pol" remains 977 * valid, "vma" is stale. 978 */ 979 pol_refcount = pol; 980 vma = NULL; 981 mpol_get(pol); 982 mmap_read_unlock(mm); 983 err = lookup_node(mm, addr); 984 if (err < 0) 985 goto out; 986 *policy = err; 987 } else if (pol == current->mempolicy && 988 pol->mode == MPOL_INTERLEAVE) { 989 *policy = next_node_in(current->il_prev, pol->nodes); 990 } else { 991 err = -EINVAL; 992 goto out; 993 } 994 } else { 995 *policy = pol == &default_policy ? MPOL_DEFAULT : 996 pol->mode; 997 /* 998 * Internal mempolicy flags must be masked off before exposing 999 * the policy to userspace. 1000 */ 1001 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1002 } 1003 1004 err = 0; 1005 if (nmask) { 1006 if (mpol_store_user_nodemask(pol)) { 1007 *nmask = pol->w.user_nodemask; 1008 } else { 1009 task_lock(current); 1010 get_policy_nodemask(pol, nmask); 1011 task_unlock(current); 1012 } 1013 } 1014 1015 out: 1016 mpol_cond_put(pol); 1017 if (vma) 1018 mmap_read_unlock(mm); 1019 if (pol_refcount) 1020 mpol_put(pol_refcount); 1021 return err; 1022 } 1023 1024 #ifdef CONFIG_MIGRATION 1025 /* 1026 * page migration, thp tail pages can be passed. 1027 */ 1028 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1029 unsigned long flags) 1030 { 1031 struct page *head = compound_head(page); 1032 /* 1033 * Avoid migrating a page that is shared with others. 1034 */ 1035 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1036 if (!isolate_lru_page(head)) { 1037 list_add_tail(&head->lru, pagelist); 1038 mod_node_page_state(page_pgdat(head), 1039 NR_ISOLATED_ANON + page_is_file_lru(head), 1040 thp_nr_pages(head)); 1041 } else if (flags & MPOL_MF_STRICT) { 1042 /* 1043 * Non-movable page may reach here. And, there may be 1044 * temporary off LRU pages or non-LRU movable pages. 1045 * Treat them as unmovable pages since they can't be 1046 * isolated, so they can't be moved at the moment. It 1047 * should return -EIO for this case too. 1048 */ 1049 return -EIO; 1050 } 1051 } 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * Migrate pages from one node to a target node. 1058 * Returns error or the number of pages not migrated. 1059 */ 1060 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1061 int flags) 1062 { 1063 nodemask_t nmask; 1064 struct vm_area_struct *vma; 1065 LIST_HEAD(pagelist); 1066 int err = 0; 1067 struct migration_target_control mtc = { 1068 .nid = dest, 1069 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1070 }; 1071 1072 nodes_clear(nmask); 1073 node_set(source, nmask); 1074 1075 /* 1076 * This does not "check" the range but isolates all pages that 1077 * need migration. Between passing in the full user address 1078 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1079 */ 1080 vma = find_vma(mm, 0); 1081 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1082 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1083 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1084 1085 if (!list_empty(&pagelist)) { 1086 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1088 if (err) 1089 putback_movable_pages(&pagelist); 1090 } 1091 1092 return err; 1093 } 1094 1095 /* 1096 * Move pages between the two nodesets so as to preserve the physical 1097 * layout as much as possible. 1098 * 1099 * Returns the number of page that could not be moved. 1100 */ 1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1102 const nodemask_t *to, int flags) 1103 { 1104 int busy = 0; 1105 int err = 0; 1106 nodemask_t tmp; 1107 1108 lru_cache_disable(); 1109 1110 mmap_read_lock(mm); 1111 1112 /* 1113 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1114 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1115 * bit in 'tmp', and return that <source, dest> pair for migration. 1116 * The pair of nodemasks 'to' and 'from' define the map. 1117 * 1118 * If no pair of bits is found that way, fallback to picking some 1119 * pair of 'source' and 'dest' bits that are not the same. If the 1120 * 'source' and 'dest' bits are the same, this represents a node 1121 * that will be migrating to itself, so no pages need move. 1122 * 1123 * If no bits are left in 'tmp', or if all remaining bits left 1124 * in 'tmp' correspond to the same bit in 'to', return false 1125 * (nothing left to migrate). 1126 * 1127 * This lets us pick a pair of nodes to migrate between, such that 1128 * if possible the dest node is not already occupied by some other 1129 * source node, minimizing the risk of overloading the memory on a 1130 * node that would happen if we migrated incoming memory to a node 1131 * before migrating outgoing memory source that same node. 1132 * 1133 * A single scan of tmp is sufficient. As we go, we remember the 1134 * most recent <s, d> pair that moved (s != d). If we find a pair 1135 * that not only moved, but what's better, moved to an empty slot 1136 * (d is not set in tmp), then we break out then, with that pair. 1137 * Otherwise when we finish scanning from_tmp, we at least have the 1138 * most recent <s, d> pair that moved. If we get all the way through 1139 * the scan of tmp without finding any node that moved, much less 1140 * moved to an empty node, then there is nothing left worth migrating. 1141 */ 1142 1143 tmp = *from; 1144 while (!nodes_empty(tmp)) { 1145 int s, d; 1146 int source = NUMA_NO_NODE; 1147 int dest = 0; 1148 1149 for_each_node_mask(s, tmp) { 1150 1151 /* 1152 * do_migrate_pages() tries to maintain the relative 1153 * node relationship of the pages established between 1154 * threads and memory areas. 1155 * 1156 * However if the number of source nodes is not equal to 1157 * the number of destination nodes we can not preserve 1158 * this node relative relationship. In that case, skip 1159 * copying memory from a node that is in the destination 1160 * mask. 1161 * 1162 * Example: [2,3,4] -> [3,4,5] moves everything. 1163 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1164 */ 1165 1166 if ((nodes_weight(*from) != nodes_weight(*to)) && 1167 (node_isset(s, *to))) 1168 continue; 1169 1170 d = node_remap(s, *from, *to); 1171 if (s == d) 1172 continue; 1173 1174 source = s; /* Node moved. Memorize */ 1175 dest = d; 1176 1177 /* dest not in remaining from nodes? */ 1178 if (!node_isset(dest, tmp)) 1179 break; 1180 } 1181 if (source == NUMA_NO_NODE) 1182 break; 1183 1184 node_clear(source, tmp); 1185 err = migrate_to_node(mm, source, dest, flags); 1186 if (err > 0) 1187 busy += err; 1188 if (err < 0) 1189 break; 1190 } 1191 mmap_read_unlock(mm); 1192 1193 lru_cache_enable(); 1194 if (err < 0) 1195 return err; 1196 return busy; 1197 1198 } 1199 1200 /* 1201 * Allocate a new page for page migration based on vma policy. 1202 * Start by assuming the page is mapped by the same vma as contains @start. 1203 * Search forward from there, if not. N.B., this assumes that the 1204 * list of pages handed to migrate_pages()--which is how we get here-- 1205 * is in virtual address order. 1206 */ 1207 static struct page *new_page(struct page *page, unsigned long start) 1208 { 1209 struct folio *dst, *src = page_folio(page); 1210 struct vm_area_struct *vma; 1211 unsigned long address; 1212 VMA_ITERATOR(vmi, current->mm, start); 1213 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1214 1215 for_each_vma(vmi, vma) { 1216 address = page_address_in_vma(page, vma); 1217 if (address != -EFAULT) 1218 break; 1219 } 1220 1221 if (folio_test_hugetlb(src)) 1222 return alloc_huge_page_vma(page_hstate(&src->page), 1223 vma, address); 1224 1225 if (folio_test_large(src)) 1226 gfp = GFP_TRANSHUGE; 1227 1228 /* 1229 * if !vma, vma_alloc_folio() will use task or system default policy 1230 */ 1231 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1232 folio_test_large(src)); 1233 return &dst->page; 1234 } 1235 #else 1236 1237 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1238 unsigned long flags) 1239 { 1240 return -EIO; 1241 } 1242 1243 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1244 const nodemask_t *to, int flags) 1245 { 1246 return -ENOSYS; 1247 } 1248 1249 static struct page *new_page(struct page *page, unsigned long start) 1250 { 1251 return NULL; 1252 } 1253 #endif 1254 1255 static long do_mbind(unsigned long start, unsigned long len, 1256 unsigned short mode, unsigned short mode_flags, 1257 nodemask_t *nmask, unsigned long flags) 1258 { 1259 struct mm_struct *mm = current->mm; 1260 struct mempolicy *new; 1261 unsigned long end; 1262 int err; 1263 int ret; 1264 LIST_HEAD(pagelist); 1265 1266 if (flags & ~(unsigned long)MPOL_MF_VALID) 1267 return -EINVAL; 1268 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1269 return -EPERM; 1270 1271 if (start & ~PAGE_MASK) 1272 return -EINVAL; 1273 1274 if (mode == MPOL_DEFAULT) 1275 flags &= ~MPOL_MF_STRICT; 1276 1277 len = PAGE_ALIGN(len); 1278 end = start + len; 1279 1280 if (end < start) 1281 return -EINVAL; 1282 if (end == start) 1283 return 0; 1284 1285 new = mpol_new(mode, mode_flags, nmask); 1286 if (IS_ERR(new)) 1287 return PTR_ERR(new); 1288 1289 if (flags & MPOL_MF_LAZY) 1290 new->flags |= MPOL_F_MOF; 1291 1292 /* 1293 * If we are using the default policy then operation 1294 * on discontinuous address spaces is okay after all 1295 */ 1296 if (!new) 1297 flags |= MPOL_MF_DISCONTIG_OK; 1298 1299 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1300 start, start + len, mode, mode_flags, 1301 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1302 1303 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1304 1305 lru_cache_disable(); 1306 } 1307 { 1308 NODEMASK_SCRATCH(scratch); 1309 if (scratch) { 1310 mmap_write_lock(mm); 1311 err = mpol_set_nodemask(new, nmask, scratch); 1312 if (err) 1313 mmap_write_unlock(mm); 1314 } else 1315 err = -ENOMEM; 1316 NODEMASK_SCRATCH_FREE(scratch); 1317 } 1318 if (err) 1319 goto mpol_out; 1320 1321 ret = queue_pages_range(mm, start, end, nmask, 1322 flags | MPOL_MF_INVERT, &pagelist); 1323 1324 if (ret < 0) { 1325 err = ret; 1326 goto up_out; 1327 } 1328 1329 err = mbind_range(mm, start, end, new); 1330 1331 if (!err) { 1332 int nr_failed = 0; 1333 1334 if (!list_empty(&pagelist)) { 1335 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1336 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1337 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1338 if (nr_failed) 1339 putback_movable_pages(&pagelist); 1340 } 1341 1342 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1343 err = -EIO; 1344 } else { 1345 up_out: 1346 if (!list_empty(&pagelist)) 1347 putback_movable_pages(&pagelist); 1348 } 1349 1350 mmap_write_unlock(mm); 1351 mpol_out: 1352 mpol_put(new); 1353 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1354 lru_cache_enable(); 1355 return err; 1356 } 1357 1358 /* 1359 * User space interface with variable sized bitmaps for nodelists. 1360 */ 1361 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1362 unsigned long maxnode) 1363 { 1364 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1365 int ret; 1366 1367 if (in_compat_syscall()) 1368 ret = compat_get_bitmap(mask, 1369 (const compat_ulong_t __user *)nmask, 1370 maxnode); 1371 else 1372 ret = copy_from_user(mask, nmask, 1373 nlongs * sizeof(unsigned long)); 1374 1375 if (ret) 1376 return -EFAULT; 1377 1378 if (maxnode % BITS_PER_LONG) 1379 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1380 1381 return 0; 1382 } 1383 1384 /* Copy a node mask from user space. */ 1385 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1386 unsigned long maxnode) 1387 { 1388 --maxnode; 1389 nodes_clear(*nodes); 1390 if (maxnode == 0 || !nmask) 1391 return 0; 1392 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1393 return -EINVAL; 1394 1395 /* 1396 * When the user specified more nodes than supported just check 1397 * if the non supported part is all zero, one word at a time, 1398 * starting at the end. 1399 */ 1400 while (maxnode > MAX_NUMNODES) { 1401 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1402 unsigned long t; 1403 1404 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1405 return -EFAULT; 1406 1407 if (maxnode - bits >= MAX_NUMNODES) { 1408 maxnode -= bits; 1409 } else { 1410 maxnode = MAX_NUMNODES; 1411 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1412 } 1413 if (t) 1414 return -EINVAL; 1415 } 1416 1417 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1418 } 1419 1420 /* Copy a kernel node mask to user space */ 1421 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1422 nodemask_t *nodes) 1423 { 1424 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1425 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1426 bool compat = in_compat_syscall(); 1427 1428 if (compat) 1429 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1430 1431 if (copy > nbytes) { 1432 if (copy > PAGE_SIZE) 1433 return -EINVAL; 1434 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1435 return -EFAULT; 1436 copy = nbytes; 1437 maxnode = nr_node_ids; 1438 } 1439 1440 if (compat) 1441 return compat_put_bitmap((compat_ulong_t __user *)mask, 1442 nodes_addr(*nodes), maxnode); 1443 1444 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1445 } 1446 1447 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1448 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1449 { 1450 *flags = *mode & MPOL_MODE_FLAGS; 1451 *mode &= ~MPOL_MODE_FLAGS; 1452 1453 if ((unsigned int)(*mode) >= MPOL_MAX) 1454 return -EINVAL; 1455 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1456 return -EINVAL; 1457 if (*flags & MPOL_F_NUMA_BALANCING) { 1458 if (*mode != MPOL_BIND) 1459 return -EINVAL; 1460 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1461 } 1462 return 0; 1463 } 1464 1465 static long kernel_mbind(unsigned long start, unsigned long len, 1466 unsigned long mode, const unsigned long __user *nmask, 1467 unsigned long maxnode, unsigned int flags) 1468 { 1469 unsigned short mode_flags; 1470 nodemask_t nodes; 1471 int lmode = mode; 1472 int err; 1473 1474 start = untagged_addr(start); 1475 err = sanitize_mpol_flags(&lmode, &mode_flags); 1476 if (err) 1477 return err; 1478 1479 err = get_nodes(&nodes, nmask, maxnode); 1480 if (err) 1481 return err; 1482 1483 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1484 } 1485 1486 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1487 unsigned long, home_node, unsigned long, flags) 1488 { 1489 struct mm_struct *mm = current->mm; 1490 struct vm_area_struct *vma; 1491 struct mempolicy *new, *old; 1492 unsigned long vmstart; 1493 unsigned long vmend; 1494 unsigned long end; 1495 int err = -ENOENT; 1496 VMA_ITERATOR(vmi, mm, start); 1497 1498 start = untagged_addr(start); 1499 if (start & ~PAGE_MASK) 1500 return -EINVAL; 1501 /* 1502 * flags is used for future extension if any. 1503 */ 1504 if (flags != 0) 1505 return -EINVAL; 1506 1507 /* 1508 * Check home_node is online to avoid accessing uninitialized 1509 * NODE_DATA. 1510 */ 1511 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1512 return -EINVAL; 1513 1514 len = PAGE_ALIGN(len); 1515 end = start + len; 1516 1517 if (end < start) 1518 return -EINVAL; 1519 if (end == start) 1520 return 0; 1521 mmap_write_lock(mm); 1522 for_each_vma_range(vmi, vma, end) { 1523 /* 1524 * If any vma in the range got policy other than MPOL_BIND 1525 * or MPOL_PREFERRED_MANY we return error. We don't reset 1526 * the home node for vmas we already updated before. 1527 */ 1528 old = vma_policy(vma); 1529 if (!old) 1530 continue; 1531 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1532 err = -EOPNOTSUPP; 1533 break; 1534 } 1535 new = mpol_dup(old); 1536 if (IS_ERR(new)) { 1537 err = PTR_ERR(new); 1538 break; 1539 } 1540 1541 new->home_node = home_node; 1542 vmstart = max(start, vma->vm_start); 1543 vmend = min(end, vma->vm_end); 1544 err = mbind_range(mm, vmstart, vmend, new); 1545 mpol_put(new); 1546 if (err) 1547 break; 1548 } 1549 mmap_write_unlock(mm); 1550 return err; 1551 } 1552 1553 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1554 unsigned long, mode, const unsigned long __user *, nmask, 1555 unsigned long, maxnode, unsigned int, flags) 1556 { 1557 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1558 } 1559 1560 /* Set the process memory policy */ 1561 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1562 unsigned long maxnode) 1563 { 1564 unsigned short mode_flags; 1565 nodemask_t nodes; 1566 int lmode = mode; 1567 int err; 1568 1569 err = sanitize_mpol_flags(&lmode, &mode_flags); 1570 if (err) 1571 return err; 1572 1573 err = get_nodes(&nodes, nmask, maxnode); 1574 if (err) 1575 return err; 1576 1577 return do_set_mempolicy(lmode, mode_flags, &nodes); 1578 } 1579 1580 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1581 unsigned long, maxnode) 1582 { 1583 return kernel_set_mempolicy(mode, nmask, maxnode); 1584 } 1585 1586 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1587 const unsigned long __user *old_nodes, 1588 const unsigned long __user *new_nodes) 1589 { 1590 struct mm_struct *mm = NULL; 1591 struct task_struct *task; 1592 nodemask_t task_nodes; 1593 int err; 1594 nodemask_t *old; 1595 nodemask_t *new; 1596 NODEMASK_SCRATCH(scratch); 1597 1598 if (!scratch) 1599 return -ENOMEM; 1600 1601 old = &scratch->mask1; 1602 new = &scratch->mask2; 1603 1604 err = get_nodes(old, old_nodes, maxnode); 1605 if (err) 1606 goto out; 1607 1608 err = get_nodes(new, new_nodes, maxnode); 1609 if (err) 1610 goto out; 1611 1612 /* Find the mm_struct */ 1613 rcu_read_lock(); 1614 task = pid ? find_task_by_vpid(pid) : current; 1615 if (!task) { 1616 rcu_read_unlock(); 1617 err = -ESRCH; 1618 goto out; 1619 } 1620 get_task_struct(task); 1621 1622 err = -EINVAL; 1623 1624 /* 1625 * Check if this process has the right to modify the specified process. 1626 * Use the regular "ptrace_may_access()" checks. 1627 */ 1628 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1629 rcu_read_unlock(); 1630 err = -EPERM; 1631 goto out_put; 1632 } 1633 rcu_read_unlock(); 1634 1635 task_nodes = cpuset_mems_allowed(task); 1636 /* Is the user allowed to access the target nodes? */ 1637 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1638 err = -EPERM; 1639 goto out_put; 1640 } 1641 1642 task_nodes = cpuset_mems_allowed(current); 1643 nodes_and(*new, *new, task_nodes); 1644 if (nodes_empty(*new)) 1645 goto out_put; 1646 1647 err = security_task_movememory(task); 1648 if (err) 1649 goto out_put; 1650 1651 mm = get_task_mm(task); 1652 put_task_struct(task); 1653 1654 if (!mm) { 1655 err = -EINVAL; 1656 goto out; 1657 } 1658 1659 err = do_migrate_pages(mm, old, new, 1660 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1661 1662 mmput(mm); 1663 out: 1664 NODEMASK_SCRATCH_FREE(scratch); 1665 1666 return err; 1667 1668 out_put: 1669 put_task_struct(task); 1670 goto out; 1671 1672 } 1673 1674 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1675 const unsigned long __user *, old_nodes, 1676 const unsigned long __user *, new_nodes) 1677 { 1678 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1679 } 1680 1681 1682 /* Retrieve NUMA policy */ 1683 static int kernel_get_mempolicy(int __user *policy, 1684 unsigned long __user *nmask, 1685 unsigned long maxnode, 1686 unsigned long addr, 1687 unsigned long flags) 1688 { 1689 int err; 1690 int pval; 1691 nodemask_t nodes; 1692 1693 if (nmask != NULL && maxnode < nr_node_ids) 1694 return -EINVAL; 1695 1696 addr = untagged_addr(addr); 1697 1698 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1699 1700 if (err) 1701 return err; 1702 1703 if (policy && put_user(pval, policy)) 1704 return -EFAULT; 1705 1706 if (nmask) 1707 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1708 1709 return err; 1710 } 1711 1712 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1713 unsigned long __user *, nmask, unsigned long, maxnode, 1714 unsigned long, addr, unsigned long, flags) 1715 { 1716 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1717 } 1718 1719 bool vma_migratable(struct vm_area_struct *vma) 1720 { 1721 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1722 return false; 1723 1724 /* 1725 * DAX device mappings require predictable access latency, so avoid 1726 * incurring periodic faults. 1727 */ 1728 if (vma_is_dax(vma)) 1729 return false; 1730 1731 if (is_vm_hugetlb_page(vma) && 1732 !hugepage_migration_supported(hstate_vma(vma))) 1733 return false; 1734 1735 /* 1736 * Migration allocates pages in the highest zone. If we cannot 1737 * do so then migration (at least from node to node) is not 1738 * possible. 1739 */ 1740 if (vma->vm_file && 1741 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1742 < policy_zone) 1743 return false; 1744 return true; 1745 } 1746 1747 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1748 unsigned long addr) 1749 { 1750 struct mempolicy *pol = NULL; 1751 1752 if (vma) { 1753 if (vma->vm_ops && vma->vm_ops->get_policy) { 1754 pol = vma->vm_ops->get_policy(vma, addr); 1755 } else if (vma->vm_policy) { 1756 pol = vma->vm_policy; 1757 1758 /* 1759 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1760 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1761 * count on these policies which will be dropped by 1762 * mpol_cond_put() later 1763 */ 1764 if (mpol_needs_cond_ref(pol)) 1765 mpol_get(pol); 1766 } 1767 } 1768 1769 return pol; 1770 } 1771 1772 /* 1773 * get_vma_policy(@vma, @addr) 1774 * @vma: virtual memory area whose policy is sought 1775 * @addr: address in @vma for shared policy lookup 1776 * 1777 * Returns effective policy for a VMA at specified address. 1778 * Falls back to current->mempolicy or system default policy, as necessary. 1779 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1780 * count--added by the get_policy() vm_op, as appropriate--to protect against 1781 * freeing by another task. It is the caller's responsibility to free the 1782 * extra reference for shared policies. 1783 */ 1784 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1785 unsigned long addr) 1786 { 1787 struct mempolicy *pol = __get_vma_policy(vma, addr); 1788 1789 if (!pol) 1790 pol = get_task_policy(current); 1791 1792 return pol; 1793 } 1794 1795 bool vma_policy_mof(struct vm_area_struct *vma) 1796 { 1797 struct mempolicy *pol; 1798 1799 if (vma->vm_ops && vma->vm_ops->get_policy) { 1800 bool ret = false; 1801 1802 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1803 if (pol && (pol->flags & MPOL_F_MOF)) 1804 ret = true; 1805 mpol_cond_put(pol); 1806 1807 return ret; 1808 } 1809 1810 pol = vma->vm_policy; 1811 if (!pol) 1812 pol = get_task_policy(current); 1813 1814 return pol->flags & MPOL_F_MOF; 1815 } 1816 1817 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1818 { 1819 enum zone_type dynamic_policy_zone = policy_zone; 1820 1821 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1822 1823 /* 1824 * if policy->nodes has movable memory only, 1825 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1826 * 1827 * policy->nodes is intersect with node_states[N_MEMORY]. 1828 * so if the following test fails, it implies 1829 * policy->nodes has movable memory only. 1830 */ 1831 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1832 dynamic_policy_zone = ZONE_MOVABLE; 1833 1834 return zone >= dynamic_policy_zone; 1835 } 1836 1837 /* 1838 * Return a nodemask representing a mempolicy for filtering nodes for 1839 * page allocation 1840 */ 1841 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1842 { 1843 int mode = policy->mode; 1844 1845 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1846 if (unlikely(mode == MPOL_BIND) && 1847 apply_policy_zone(policy, gfp_zone(gfp)) && 1848 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1849 return &policy->nodes; 1850 1851 if (mode == MPOL_PREFERRED_MANY) 1852 return &policy->nodes; 1853 1854 return NULL; 1855 } 1856 1857 /* 1858 * Return the preferred node id for 'prefer' mempolicy, and return 1859 * the given id for all other policies. 1860 * 1861 * policy_node() is always coupled with policy_nodemask(), which 1862 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1863 */ 1864 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1865 { 1866 if (policy->mode == MPOL_PREFERRED) { 1867 nd = first_node(policy->nodes); 1868 } else { 1869 /* 1870 * __GFP_THISNODE shouldn't even be used with the bind policy 1871 * because we might easily break the expectation to stay on the 1872 * requested node and not break the policy. 1873 */ 1874 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1875 } 1876 1877 if ((policy->mode == MPOL_BIND || 1878 policy->mode == MPOL_PREFERRED_MANY) && 1879 policy->home_node != NUMA_NO_NODE) 1880 return policy->home_node; 1881 1882 return nd; 1883 } 1884 1885 /* Do dynamic interleaving for a process */ 1886 static unsigned interleave_nodes(struct mempolicy *policy) 1887 { 1888 unsigned next; 1889 struct task_struct *me = current; 1890 1891 next = next_node_in(me->il_prev, policy->nodes); 1892 if (next < MAX_NUMNODES) 1893 me->il_prev = next; 1894 return next; 1895 } 1896 1897 /* 1898 * Depending on the memory policy provide a node from which to allocate the 1899 * next slab entry. 1900 */ 1901 unsigned int mempolicy_slab_node(void) 1902 { 1903 struct mempolicy *policy; 1904 int node = numa_mem_id(); 1905 1906 if (!in_task()) 1907 return node; 1908 1909 policy = current->mempolicy; 1910 if (!policy) 1911 return node; 1912 1913 switch (policy->mode) { 1914 case MPOL_PREFERRED: 1915 return first_node(policy->nodes); 1916 1917 case MPOL_INTERLEAVE: 1918 return interleave_nodes(policy); 1919 1920 case MPOL_BIND: 1921 case MPOL_PREFERRED_MANY: 1922 { 1923 struct zoneref *z; 1924 1925 /* 1926 * Follow bind policy behavior and start allocation at the 1927 * first node. 1928 */ 1929 struct zonelist *zonelist; 1930 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1931 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1932 z = first_zones_zonelist(zonelist, highest_zoneidx, 1933 &policy->nodes); 1934 return z->zone ? zone_to_nid(z->zone) : node; 1935 } 1936 case MPOL_LOCAL: 1937 return node; 1938 1939 default: 1940 BUG(); 1941 } 1942 } 1943 1944 /* 1945 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1946 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1947 * number of present nodes. 1948 */ 1949 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1950 { 1951 nodemask_t nodemask = pol->nodes; 1952 unsigned int target, nnodes; 1953 int i; 1954 int nid; 1955 /* 1956 * The barrier will stabilize the nodemask in a register or on 1957 * the stack so that it will stop changing under the code. 1958 * 1959 * Between first_node() and next_node(), pol->nodes could be changed 1960 * by other threads. So we put pol->nodes in a local stack. 1961 */ 1962 barrier(); 1963 1964 nnodes = nodes_weight(nodemask); 1965 if (!nnodes) 1966 return numa_node_id(); 1967 target = (unsigned int)n % nnodes; 1968 nid = first_node(nodemask); 1969 for (i = 0; i < target; i++) 1970 nid = next_node(nid, nodemask); 1971 return nid; 1972 } 1973 1974 /* Determine a node number for interleave */ 1975 static inline unsigned interleave_nid(struct mempolicy *pol, 1976 struct vm_area_struct *vma, unsigned long addr, int shift) 1977 { 1978 if (vma) { 1979 unsigned long off; 1980 1981 /* 1982 * for small pages, there is no difference between 1983 * shift and PAGE_SHIFT, so the bit-shift is safe. 1984 * for huge pages, since vm_pgoff is in units of small 1985 * pages, we need to shift off the always 0 bits to get 1986 * a useful offset. 1987 */ 1988 BUG_ON(shift < PAGE_SHIFT); 1989 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1990 off += (addr - vma->vm_start) >> shift; 1991 return offset_il_node(pol, off); 1992 } else 1993 return interleave_nodes(pol); 1994 } 1995 1996 #ifdef CONFIG_HUGETLBFS 1997 /* 1998 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1999 * @vma: virtual memory area whose policy is sought 2000 * @addr: address in @vma for shared policy lookup and interleave policy 2001 * @gfp_flags: for requested zone 2002 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2003 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2004 * 2005 * Returns a nid suitable for a huge page allocation and a pointer 2006 * to the struct mempolicy for conditional unref after allocation. 2007 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2008 * to the mempolicy's @nodemask for filtering the zonelist. 2009 * 2010 * Must be protected by read_mems_allowed_begin() 2011 */ 2012 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2013 struct mempolicy **mpol, nodemask_t **nodemask) 2014 { 2015 int nid; 2016 int mode; 2017 2018 *mpol = get_vma_policy(vma, addr); 2019 *nodemask = NULL; 2020 mode = (*mpol)->mode; 2021 2022 if (unlikely(mode == MPOL_INTERLEAVE)) { 2023 nid = interleave_nid(*mpol, vma, addr, 2024 huge_page_shift(hstate_vma(vma))); 2025 } else { 2026 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2027 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2028 *nodemask = &(*mpol)->nodes; 2029 } 2030 return nid; 2031 } 2032 2033 /* 2034 * init_nodemask_of_mempolicy 2035 * 2036 * If the current task's mempolicy is "default" [NULL], return 'false' 2037 * to indicate default policy. Otherwise, extract the policy nodemask 2038 * for 'bind' or 'interleave' policy into the argument nodemask, or 2039 * initialize the argument nodemask to contain the single node for 2040 * 'preferred' or 'local' policy and return 'true' to indicate presence 2041 * of non-default mempolicy. 2042 * 2043 * We don't bother with reference counting the mempolicy [mpol_get/put] 2044 * because the current task is examining it's own mempolicy and a task's 2045 * mempolicy is only ever changed by the task itself. 2046 * 2047 * N.B., it is the caller's responsibility to free a returned nodemask. 2048 */ 2049 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2050 { 2051 struct mempolicy *mempolicy; 2052 2053 if (!(mask && current->mempolicy)) 2054 return false; 2055 2056 task_lock(current); 2057 mempolicy = current->mempolicy; 2058 switch (mempolicy->mode) { 2059 case MPOL_PREFERRED: 2060 case MPOL_PREFERRED_MANY: 2061 case MPOL_BIND: 2062 case MPOL_INTERLEAVE: 2063 *mask = mempolicy->nodes; 2064 break; 2065 2066 case MPOL_LOCAL: 2067 init_nodemask_of_node(mask, numa_node_id()); 2068 break; 2069 2070 default: 2071 BUG(); 2072 } 2073 task_unlock(current); 2074 2075 return true; 2076 } 2077 #endif 2078 2079 /* 2080 * mempolicy_in_oom_domain 2081 * 2082 * If tsk's mempolicy is "bind", check for intersection between mask and 2083 * the policy nodemask. Otherwise, return true for all other policies 2084 * including "interleave", as a tsk with "interleave" policy may have 2085 * memory allocated from all nodes in system. 2086 * 2087 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2088 */ 2089 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2090 const nodemask_t *mask) 2091 { 2092 struct mempolicy *mempolicy; 2093 bool ret = true; 2094 2095 if (!mask) 2096 return ret; 2097 2098 task_lock(tsk); 2099 mempolicy = tsk->mempolicy; 2100 if (mempolicy && mempolicy->mode == MPOL_BIND) 2101 ret = nodes_intersects(mempolicy->nodes, *mask); 2102 task_unlock(tsk); 2103 2104 return ret; 2105 } 2106 2107 /* Allocate a page in interleaved policy. 2108 Own path because it needs to do special accounting. */ 2109 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2110 unsigned nid) 2111 { 2112 struct page *page; 2113 2114 page = __alloc_pages(gfp, order, nid, NULL); 2115 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2116 if (!static_branch_likely(&vm_numa_stat_key)) 2117 return page; 2118 if (page && page_to_nid(page) == nid) { 2119 preempt_disable(); 2120 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2121 preempt_enable(); 2122 } 2123 return page; 2124 } 2125 2126 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2127 int nid, struct mempolicy *pol) 2128 { 2129 struct page *page; 2130 gfp_t preferred_gfp; 2131 2132 /* 2133 * This is a two pass approach. The first pass will only try the 2134 * preferred nodes but skip the direct reclaim and allow the 2135 * allocation to fail, while the second pass will try all the 2136 * nodes in system. 2137 */ 2138 preferred_gfp = gfp | __GFP_NOWARN; 2139 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2140 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2141 if (!page) 2142 page = __alloc_pages(gfp, order, nid, NULL); 2143 2144 return page; 2145 } 2146 2147 /** 2148 * vma_alloc_folio - Allocate a folio for a VMA. 2149 * @gfp: GFP flags. 2150 * @order: Order of the folio. 2151 * @vma: Pointer to VMA or NULL if not available. 2152 * @addr: Virtual address of the allocation. Must be inside @vma. 2153 * @hugepage: For hugepages try only the preferred node if possible. 2154 * 2155 * Allocate a folio for a specific address in @vma, using the appropriate 2156 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2157 * of the mm_struct of the VMA to prevent it from going away. Should be 2158 * used for all allocations for folios that will be mapped into user space. 2159 * 2160 * Return: The folio on success or NULL if allocation fails. 2161 */ 2162 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2163 unsigned long addr, bool hugepage) 2164 { 2165 struct mempolicy *pol; 2166 int node = numa_node_id(); 2167 struct folio *folio; 2168 int preferred_nid; 2169 nodemask_t *nmask; 2170 2171 pol = get_vma_policy(vma, addr); 2172 2173 if (pol->mode == MPOL_INTERLEAVE) { 2174 struct page *page; 2175 unsigned nid; 2176 2177 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2178 mpol_cond_put(pol); 2179 gfp |= __GFP_COMP; 2180 page = alloc_page_interleave(gfp, order, nid); 2181 if (page && order > 1) 2182 prep_transhuge_page(page); 2183 folio = (struct folio *)page; 2184 goto out; 2185 } 2186 2187 if (pol->mode == MPOL_PREFERRED_MANY) { 2188 struct page *page; 2189 2190 node = policy_node(gfp, pol, node); 2191 gfp |= __GFP_COMP; 2192 page = alloc_pages_preferred_many(gfp, order, node, pol); 2193 mpol_cond_put(pol); 2194 if (page && order > 1) 2195 prep_transhuge_page(page); 2196 folio = (struct folio *)page; 2197 goto out; 2198 } 2199 2200 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2201 int hpage_node = node; 2202 2203 /* 2204 * For hugepage allocation and non-interleave policy which 2205 * allows the current node (or other explicitly preferred 2206 * node) we only try to allocate from the current/preferred 2207 * node and don't fall back to other nodes, as the cost of 2208 * remote accesses would likely offset THP benefits. 2209 * 2210 * If the policy is interleave or does not allow the current 2211 * node in its nodemask, we allocate the standard way. 2212 */ 2213 if (pol->mode == MPOL_PREFERRED) 2214 hpage_node = first_node(pol->nodes); 2215 2216 nmask = policy_nodemask(gfp, pol); 2217 if (!nmask || node_isset(hpage_node, *nmask)) { 2218 mpol_cond_put(pol); 2219 /* 2220 * First, try to allocate THP only on local node, but 2221 * don't reclaim unnecessarily, just compact. 2222 */ 2223 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2224 __GFP_NORETRY, order, hpage_node); 2225 2226 /* 2227 * If hugepage allocations are configured to always 2228 * synchronous compact or the vma has been madvised 2229 * to prefer hugepage backing, retry allowing remote 2230 * memory with both reclaim and compact as well. 2231 */ 2232 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2233 folio = __folio_alloc(gfp, order, hpage_node, 2234 nmask); 2235 2236 goto out; 2237 } 2238 } 2239 2240 nmask = policy_nodemask(gfp, pol); 2241 preferred_nid = policy_node(gfp, pol, node); 2242 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2243 mpol_cond_put(pol); 2244 out: 2245 return folio; 2246 } 2247 EXPORT_SYMBOL(vma_alloc_folio); 2248 2249 /** 2250 * alloc_pages - Allocate pages. 2251 * @gfp: GFP flags. 2252 * @order: Power of two of number of pages to allocate. 2253 * 2254 * Allocate 1 << @order contiguous pages. The physical address of the 2255 * first page is naturally aligned (eg an order-3 allocation will be aligned 2256 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2257 * process is honoured when in process context. 2258 * 2259 * Context: Can be called from any context, providing the appropriate GFP 2260 * flags are used. 2261 * Return: The page on success or NULL if allocation fails. 2262 */ 2263 struct page *alloc_pages(gfp_t gfp, unsigned order) 2264 { 2265 struct mempolicy *pol = &default_policy; 2266 struct page *page; 2267 2268 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2269 pol = get_task_policy(current); 2270 2271 /* 2272 * No reference counting needed for current->mempolicy 2273 * nor system default_policy 2274 */ 2275 if (pol->mode == MPOL_INTERLEAVE) 2276 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2277 else if (pol->mode == MPOL_PREFERRED_MANY) 2278 page = alloc_pages_preferred_many(gfp, order, 2279 policy_node(gfp, pol, numa_node_id()), pol); 2280 else 2281 page = __alloc_pages(gfp, order, 2282 policy_node(gfp, pol, numa_node_id()), 2283 policy_nodemask(gfp, pol)); 2284 2285 return page; 2286 } 2287 EXPORT_SYMBOL(alloc_pages); 2288 2289 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2290 { 2291 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2292 2293 if (page && order > 1) 2294 prep_transhuge_page(page); 2295 return (struct folio *)page; 2296 } 2297 EXPORT_SYMBOL(folio_alloc); 2298 2299 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2300 struct mempolicy *pol, unsigned long nr_pages, 2301 struct page **page_array) 2302 { 2303 int nodes; 2304 unsigned long nr_pages_per_node; 2305 int delta; 2306 int i; 2307 unsigned long nr_allocated; 2308 unsigned long total_allocated = 0; 2309 2310 nodes = nodes_weight(pol->nodes); 2311 nr_pages_per_node = nr_pages / nodes; 2312 delta = nr_pages - nodes * nr_pages_per_node; 2313 2314 for (i = 0; i < nodes; i++) { 2315 if (delta) { 2316 nr_allocated = __alloc_pages_bulk(gfp, 2317 interleave_nodes(pol), NULL, 2318 nr_pages_per_node + 1, NULL, 2319 page_array); 2320 delta--; 2321 } else { 2322 nr_allocated = __alloc_pages_bulk(gfp, 2323 interleave_nodes(pol), NULL, 2324 nr_pages_per_node, NULL, page_array); 2325 } 2326 2327 page_array += nr_allocated; 2328 total_allocated += nr_allocated; 2329 } 2330 2331 return total_allocated; 2332 } 2333 2334 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2335 struct mempolicy *pol, unsigned long nr_pages, 2336 struct page **page_array) 2337 { 2338 gfp_t preferred_gfp; 2339 unsigned long nr_allocated = 0; 2340 2341 preferred_gfp = gfp | __GFP_NOWARN; 2342 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2343 2344 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2345 nr_pages, NULL, page_array); 2346 2347 if (nr_allocated < nr_pages) 2348 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2349 nr_pages - nr_allocated, NULL, 2350 page_array + nr_allocated); 2351 return nr_allocated; 2352 } 2353 2354 /* alloc pages bulk and mempolicy should be considered at the 2355 * same time in some situation such as vmalloc. 2356 * 2357 * It can accelerate memory allocation especially interleaving 2358 * allocate memory. 2359 */ 2360 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2361 unsigned long nr_pages, struct page **page_array) 2362 { 2363 struct mempolicy *pol = &default_policy; 2364 2365 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2366 pol = get_task_policy(current); 2367 2368 if (pol->mode == MPOL_INTERLEAVE) 2369 return alloc_pages_bulk_array_interleave(gfp, pol, 2370 nr_pages, page_array); 2371 2372 if (pol->mode == MPOL_PREFERRED_MANY) 2373 return alloc_pages_bulk_array_preferred_many(gfp, 2374 numa_node_id(), pol, nr_pages, page_array); 2375 2376 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2377 policy_nodemask(gfp, pol), nr_pages, NULL, 2378 page_array); 2379 } 2380 2381 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2382 { 2383 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2384 2385 if (IS_ERR(pol)) 2386 return PTR_ERR(pol); 2387 dst->vm_policy = pol; 2388 return 0; 2389 } 2390 2391 /* 2392 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2393 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2394 * with the mems_allowed returned by cpuset_mems_allowed(). This 2395 * keeps mempolicies cpuset relative after its cpuset moves. See 2396 * further kernel/cpuset.c update_nodemask(). 2397 * 2398 * current's mempolicy may be rebinded by the other task(the task that changes 2399 * cpuset's mems), so we needn't do rebind work for current task. 2400 */ 2401 2402 /* Slow path of a mempolicy duplicate */ 2403 struct mempolicy *__mpol_dup(struct mempolicy *old) 2404 { 2405 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2406 2407 if (!new) 2408 return ERR_PTR(-ENOMEM); 2409 2410 /* task's mempolicy is protected by alloc_lock */ 2411 if (old == current->mempolicy) { 2412 task_lock(current); 2413 *new = *old; 2414 task_unlock(current); 2415 } else 2416 *new = *old; 2417 2418 if (current_cpuset_is_being_rebound()) { 2419 nodemask_t mems = cpuset_mems_allowed(current); 2420 mpol_rebind_policy(new, &mems); 2421 } 2422 atomic_set(&new->refcnt, 1); 2423 return new; 2424 } 2425 2426 /* Slow path of a mempolicy comparison */ 2427 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2428 { 2429 if (!a || !b) 2430 return false; 2431 if (a->mode != b->mode) 2432 return false; 2433 if (a->flags != b->flags) 2434 return false; 2435 if (a->home_node != b->home_node) 2436 return false; 2437 if (mpol_store_user_nodemask(a)) 2438 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2439 return false; 2440 2441 switch (a->mode) { 2442 case MPOL_BIND: 2443 case MPOL_INTERLEAVE: 2444 case MPOL_PREFERRED: 2445 case MPOL_PREFERRED_MANY: 2446 return !!nodes_equal(a->nodes, b->nodes); 2447 case MPOL_LOCAL: 2448 return true; 2449 default: 2450 BUG(); 2451 return false; 2452 } 2453 } 2454 2455 /* 2456 * Shared memory backing store policy support. 2457 * 2458 * Remember policies even when nobody has shared memory mapped. 2459 * The policies are kept in Red-Black tree linked from the inode. 2460 * They are protected by the sp->lock rwlock, which should be held 2461 * for any accesses to the tree. 2462 */ 2463 2464 /* 2465 * lookup first element intersecting start-end. Caller holds sp->lock for 2466 * reading or for writing 2467 */ 2468 static struct sp_node * 2469 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2470 { 2471 struct rb_node *n = sp->root.rb_node; 2472 2473 while (n) { 2474 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2475 2476 if (start >= p->end) 2477 n = n->rb_right; 2478 else if (end <= p->start) 2479 n = n->rb_left; 2480 else 2481 break; 2482 } 2483 if (!n) 2484 return NULL; 2485 for (;;) { 2486 struct sp_node *w = NULL; 2487 struct rb_node *prev = rb_prev(n); 2488 if (!prev) 2489 break; 2490 w = rb_entry(prev, struct sp_node, nd); 2491 if (w->end <= start) 2492 break; 2493 n = prev; 2494 } 2495 return rb_entry(n, struct sp_node, nd); 2496 } 2497 2498 /* 2499 * Insert a new shared policy into the list. Caller holds sp->lock for 2500 * writing. 2501 */ 2502 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2503 { 2504 struct rb_node **p = &sp->root.rb_node; 2505 struct rb_node *parent = NULL; 2506 struct sp_node *nd; 2507 2508 while (*p) { 2509 parent = *p; 2510 nd = rb_entry(parent, struct sp_node, nd); 2511 if (new->start < nd->start) 2512 p = &(*p)->rb_left; 2513 else if (new->end > nd->end) 2514 p = &(*p)->rb_right; 2515 else 2516 BUG(); 2517 } 2518 rb_link_node(&new->nd, parent, p); 2519 rb_insert_color(&new->nd, &sp->root); 2520 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2521 new->policy ? new->policy->mode : 0); 2522 } 2523 2524 /* Find shared policy intersecting idx */ 2525 struct mempolicy * 2526 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2527 { 2528 struct mempolicy *pol = NULL; 2529 struct sp_node *sn; 2530 2531 if (!sp->root.rb_node) 2532 return NULL; 2533 read_lock(&sp->lock); 2534 sn = sp_lookup(sp, idx, idx+1); 2535 if (sn) { 2536 mpol_get(sn->policy); 2537 pol = sn->policy; 2538 } 2539 read_unlock(&sp->lock); 2540 return pol; 2541 } 2542 2543 static void sp_free(struct sp_node *n) 2544 { 2545 mpol_put(n->policy); 2546 kmem_cache_free(sn_cache, n); 2547 } 2548 2549 /** 2550 * mpol_misplaced - check whether current page node is valid in policy 2551 * 2552 * @page: page to be checked 2553 * @vma: vm area where page mapped 2554 * @addr: virtual address where page mapped 2555 * 2556 * Lookup current policy node id for vma,addr and "compare to" page's 2557 * node id. Policy determination "mimics" alloc_page_vma(). 2558 * Called from fault path where we know the vma and faulting address. 2559 * 2560 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2561 * policy, or a suitable node ID to allocate a replacement page from. 2562 */ 2563 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2564 { 2565 struct mempolicy *pol; 2566 struct zoneref *z; 2567 int curnid = page_to_nid(page); 2568 unsigned long pgoff; 2569 int thiscpu = raw_smp_processor_id(); 2570 int thisnid = cpu_to_node(thiscpu); 2571 int polnid = NUMA_NO_NODE; 2572 int ret = NUMA_NO_NODE; 2573 2574 pol = get_vma_policy(vma, addr); 2575 if (!(pol->flags & MPOL_F_MOF)) 2576 goto out; 2577 2578 switch (pol->mode) { 2579 case MPOL_INTERLEAVE: 2580 pgoff = vma->vm_pgoff; 2581 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2582 polnid = offset_il_node(pol, pgoff); 2583 break; 2584 2585 case MPOL_PREFERRED: 2586 if (node_isset(curnid, pol->nodes)) 2587 goto out; 2588 polnid = first_node(pol->nodes); 2589 break; 2590 2591 case MPOL_LOCAL: 2592 polnid = numa_node_id(); 2593 break; 2594 2595 case MPOL_BIND: 2596 /* Optimize placement among multiple nodes via NUMA balancing */ 2597 if (pol->flags & MPOL_F_MORON) { 2598 if (node_isset(thisnid, pol->nodes)) 2599 break; 2600 goto out; 2601 } 2602 fallthrough; 2603 2604 case MPOL_PREFERRED_MANY: 2605 /* 2606 * use current page if in policy nodemask, 2607 * else select nearest allowed node, if any. 2608 * If no allowed nodes, use current [!misplaced]. 2609 */ 2610 if (node_isset(curnid, pol->nodes)) 2611 goto out; 2612 z = first_zones_zonelist( 2613 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2614 gfp_zone(GFP_HIGHUSER), 2615 &pol->nodes); 2616 polnid = zone_to_nid(z->zone); 2617 break; 2618 2619 default: 2620 BUG(); 2621 } 2622 2623 /* Migrate the page towards the node whose CPU is referencing it */ 2624 if (pol->flags & MPOL_F_MORON) { 2625 polnid = thisnid; 2626 2627 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2628 goto out; 2629 } 2630 2631 if (curnid != polnid) 2632 ret = polnid; 2633 out: 2634 mpol_cond_put(pol); 2635 2636 return ret; 2637 } 2638 2639 /* 2640 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2641 * dropped after task->mempolicy is set to NULL so that any allocation done as 2642 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2643 * policy. 2644 */ 2645 void mpol_put_task_policy(struct task_struct *task) 2646 { 2647 struct mempolicy *pol; 2648 2649 task_lock(task); 2650 pol = task->mempolicy; 2651 task->mempolicy = NULL; 2652 task_unlock(task); 2653 mpol_put(pol); 2654 } 2655 2656 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2657 { 2658 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2659 rb_erase(&n->nd, &sp->root); 2660 sp_free(n); 2661 } 2662 2663 static void sp_node_init(struct sp_node *node, unsigned long start, 2664 unsigned long end, struct mempolicy *pol) 2665 { 2666 node->start = start; 2667 node->end = end; 2668 node->policy = pol; 2669 } 2670 2671 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2672 struct mempolicy *pol) 2673 { 2674 struct sp_node *n; 2675 struct mempolicy *newpol; 2676 2677 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2678 if (!n) 2679 return NULL; 2680 2681 newpol = mpol_dup(pol); 2682 if (IS_ERR(newpol)) { 2683 kmem_cache_free(sn_cache, n); 2684 return NULL; 2685 } 2686 newpol->flags |= MPOL_F_SHARED; 2687 sp_node_init(n, start, end, newpol); 2688 2689 return n; 2690 } 2691 2692 /* Replace a policy range. */ 2693 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2694 unsigned long end, struct sp_node *new) 2695 { 2696 struct sp_node *n; 2697 struct sp_node *n_new = NULL; 2698 struct mempolicy *mpol_new = NULL; 2699 int ret = 0; 2700 2701 restart: 2702 write_lock(&sp->lock); 2703 n = sp_lookup(sp, start, end); 2704 /* Take care of old policies in the same range. */ 2705 while (n && n->start < end) { 2706 struct rb_node *next = rb_next(&n->nd); 2707 if (n->start >= start) { 2708 if (n->end <= end) 2709 sp_delete(sp, n); 2710 else 2711 n->start = end; 2712 } else { 2713 /* Old policy spanning whole new range. */ 2714 if (n->end > end) { 2715 if (!n_new) 2716 goto alloc_new; 2717 2718 *mpol_new = *n->policy; 2719 atomic_set(&mpol_new->refcnt, 1); 2720 sp_node_init(n_new, end, n->end, mpol_new); 2721 n->end = start; 2722 sp_insert(sp, n_new); 2723 n_new = NULL; 2724 mpol_new = NULL; 2725 break; 2726 } else 2727 n->end = start; 2728 } 2729 if (!next) 2730 break; 2731 n = rb_entry(next, struct sp_node, nd); 2732 } 2733 if (new) 2734 sp_insert(sp, new); 2735 write_unlock(&sp->lock); 2736 ret = 0; 2737 2738 err_out: 2739 if (mpol_new) 2740 mpol_put(mpol_new); 2741 if (n_new) 2742 kmem_cache_free(sn_cache, n_new); 2743 2744 return ret; 2745 2746 alloc_new: 2747 write_unlock(&sp->lock); 2748 ret = -ENOMEM; 2749 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2750 if (!n_new) 2751 goto err_out; 2752 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2753 if (!mpol_new) 2754 goto err_out; 2755 atomic_set(&mpol_new->refcnt, 1); 2756 goto restart; 2757 } 2758 2759 /** 2760 * mpol_shared_policy_init - initialize shared policy for inode 2761 * @sp: pointer to inode shared policy 2762 * @mpol: struct mempolicy to install 2763 * 2764 * Install non-NULL @mpol in inode's shared policy rb-tree. 2765 * On entry, the current task has a reference on a non-NULL @mpol. 2766 * This must be released on exit. 2767 * This is called at get_inode() calls and we can use GFP_KERNEL. 2768 */ 2769 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2770 { 2771 int ret; 2772 2773 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2774 rwlock_init(&sp->lock); 2775 2776 if (mpol) { 2777 struct vm_area_struct pvma; 2778 struct mempolicy *new; 2779 NODEMASK_SCRATCH(scratch); 2780 2781 if (!scratch) 2782 goto put_mpol; 2783 /* contextualize the tmpfs mount point mempolicy */ 2784 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2785 if (IS_ERR(new)) 2786 goto free_scratch; /* no valid nodemask intersection */ 2787 2788 task_lock(current); 2789 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2790 task_unlock(current); 2791 if (ret) 2792 goto put_new; 2793 2794 /* Create pseudo-vma that contains just the policy */ 2795 vma_init(&pvma, NULL); 2796 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2797 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2798 2799 put_new: 2800 mpol_put(new); /* drop initial ref */ 2801 free_scratch: 2802 NODEMASK_SCRATCH_FREE(scratch); 2803 put_mpol: 2804 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2805 } 2806 } 2807 2808 int mpol_set_shared_policy(struct shared_policy *info, 2809 struct vm_area_struct *vma, struct mempolicy *npol) 2810 { 2811 int err; 2812 struct sp_node *new = NULL; 2813 unsigned long sz = vma_pages(vma); 2814 2815 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2816 vma->vm_pgoff, 2817 sz, npol ? npol->mode : -1, 2818 npol ? npol->flags : -1, 2819 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2820 2821 if (npol) { 2822 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2823 if (!new) 2824 return -ENOMEM; 2825 } 2826 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2827 if (err && new) 2828 sp_free(new); 2829 return err; 2830 } 2831 2832 /* Free a backing policy store on inode delete. */ 2833 void mpol_free_shared_policy(struct shared_policy *p) 2834 { 2835 struct sp_node *n; 2836 struct rb_node *next; 2837 2838 if (!p->root.rb_node) 2839 return; 2840 write_lock(&p->lock); 2841 next = rb_first(&p->root); 2842 while (next) { 2843 n = rb_entry(next, struct sp_node, nd); 2844 next = rb_next(&n->nd); 2845 sp_delete(p, n); 2846 } 2847 write_unlock(&p->lock); 2848 } 2849 2850 #ifdef CONFIG_NUMA_BALANCING 2851 static int __initdata numabalancing_override; 2852 2853 static void __init check_numabalancing_enable(void) 2854 { 2855 bool numabalancing_default = false; 2856 2857 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2858 numabalancing_default = true; 2859 2860 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2861 if (numabalancing_override) 2862 set_numabalancing_state(numabalancing_override == 1); 2863 2864 if (num_online_nodes() > 1 && !numabalancing_override) { 2865 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2866 numabalancing_default ? "Enabling" : "Disabling"); 2867 set_numabalancing_state(numabalancing_default); 2868 } 2869 } 2870 2871 static int __init setup_numabalancing(char *str) 2872 { 2873 int ret = 0; 2874 if (!str) 2875 goto out; 2876 2877 if (!strcmp(str, "enable")) { 2878 numabalancing_override = 1; 2879 ret = 1; 2880 } else if (!strcmp(str, "disable")) { 2881 numabalancing_override = -1; 2882 ret = 1; 2883 } 2884 out: 2885 if (!ret) 2886 pr_warn("Unable to parse numa_balancing=\n"); 2887 2888 return ret; 2889 } 2890 __setup("numa_balancing=", setup_numabalancing); 2891 #else 2892 static inline void __init check_numabalancing_enable(void) 2893 { 2894 } 2895 #endif /* CONFIG_NUMA_BALANCING */ 2896 2897 /* assumes fs == KERNEL_DS */ 2898 void __init numa_policy_init(void) 2899 { 2900 nodemask_t interleave_nodes; 2901 unsigned long largest = 0; 2902 int nid, prefer = 0; 2903 2904 policy_cache = kmem_cache_create("numa_policy", 2905 sizeof(struct mempolicy), 2906 0, SLAB_PANIC, NULL); 2907 2908 sn_cache = kmem_cache_create("shared_policy_node", 2909 sizeof(struct sp_node), 2910 0, SLAB_PANIC, NULL); 2911 2912 for_each_node(nid) { 2913 preferred_node_policy[nid] = (struct mempolicy) { 2914 .refcnt = ATOMIC_INIT(1), 2915 .mode = MPOL_PREFERRED, 2916 .flags = MPOL_F_MOF | MPOL_F_MORON, 2917 .nodes = nodemask_of_node(nid), 2918 }; 2919 } 2920 2921 /* 2922 * Set interleaving policy for system init. Interleaving is only 2923 * enabled across suitably sized nodes (default is >= 16MB), or 2924 * fall back to the largest node if they're all smaller. 2925 */ 2926 nodes_clear(interleave_nodes); 2927 for_each_node_state(nid, N_MEMORY) { 2928 unsigned long total_pages = node_present_pages(nid); 2929 2930 /* Preserve the largest node */ 2931 if (largest < total_pages) { 2932 largest = total_pages; 2933 prefer = nid; 2934 } 2935 2936 /* Interleave this node? */ 2937 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2938 node_set(nid, interleave_nodes); 2939 } 2940 2941 /* All too small, use the largest */ 2942 if (unlikely(nodes_empty(interleave_nodes))) 2943 node_set(prefer, interleave_nodes); 2944 2945 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2946 pr_err("%s: interleaving failed\n", __func__); 2947 2948 check_numabalancing_enable(); 2949 } 2950 2951 /* Reset policy of current process to default */ 2952 void numa_default_policy(void) 2953 { 2954 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2955 } 2956 2957 /* 2958 * Parse and format mempolicy from/to strings 2959 */ 2960 2961 static const char * const policy_modes[] = 2962 { 2963 [MPOL_DEFAULT] = "default", 2964 [MPOL_PREFERRED] = "prefer", 2965 [MPOL_BIND] = "bind", 2966 [MPOL_INTERLEAVE] = "interleave", 2967 [MPOL_LOCAL] = "local", 2968 [MPOL_PREFERRED_MANY] = "prefer (many)", 2969 }; 2970 2971 2972 #ifdef CONFIG_TMPFS 2973 /** 2974 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2975 * @str: string containing mempolicy to parse 2976 * @mpol: pointer to struct mempolicy pointer, returned on success. 2977 * 2978 * Format of input: 2979 * <mode>[=<flags>][:<nodelist>] 2980 * 2981 * Return: %0 on success, else %1 2982 */ 2983 int mpol_parse_str(char *str, struct mempolicy **mpol) 2984 { 2985 struct mempolicy *new = NULL; 2986 unsigned short mode_flags; 2987 nodemask_t nodes; 2988 char *nodelist = strchr(str, ':'); 2989 char *flags = strchr(str, '='); 2990 int err = 1, mode; 2991 2992 if (flags) 2993 *flags++ = '\0'; /* terminate mode string */ 2994 2995 if (nodelist) { 2996 /* NUL-terminate mode or flags string */ 2997 *nodelist++ = '\0'; 2998 if (nodelist_parse(nodelist, nodes)) 2999 goto out; 3000 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3001 goto out; 3002 } else 3003 nodes_clear(nodes); 3004 3005 mode = match_string(policy_modes, MPOL_MAX, str); 3006 if (mode < 0) 3007 goto out; 3008 3009 switch (mode) { 3010 case MPOL_PREFERRED: 3011 /* 3012 * Insist on a nodelist of one node only, although later 3013 * we use first_node(nodes) to grab a single node, so here 3014 * nodelist (or nodes) cannot be empty. 3015 */ 3016 if (nodelist) { 3017 char *rest = nodelist; 3018 while (isdigit(*rest)) 3019 rest++; 3020 if (*rest) 3021 goto out; 3022 if (nodes_empty(nodes)) 3023 goto out; 3024 } 3025 break; 3026 case MPOL_INTERLEAVE: 3027 /* 3028 * Default to online nodes with memory if no nodelist 3029 */ 3030 if (!nodelist) 3031 nodes = node_states[N_MEMORY]; 3032 break; 3033 case MPOL_LOCAL: 3034 /* 3035 * Don't allow a nodelist; mpol_new() checks flags 3036 */ 3037 if (nodelist) 3038 goto out; 3039 break; 3040 case MPOL_DEFAULT: 3041 /* 3042 * Insist on a empty nodelist 3043 */ 3044 if (!nodelist) 3045 err = 0; 3046 goto out; 3047 case MPOL_PREFERRED_MANY: 3048 case MPOL_BIND: 3049 /* 3050 * Insist on a nodelist 3051 */ 3052 if (!nodelist) 3053 goto out; 3054 } 3055 3056 mode_flags = 0; 3057 if (flags) { 3058 /* 3059 * Currently, we only support two mutually exclusive 3060 * mode flags. 3061 */ 3062 if (!strcmp(flags, "static")) 3063 mode_flags |= MPOL_F_STATIC_NODES; 3064 else if (!strcmp(flags, "relative")) 3065 mode_flags |= MPOL_F_RELATIVE_NODES; 3066 else 3067 goto out; 3068 } 3069 3070 new = mpol_new(mode, mode_flags, &nodes); 3071 if (IS_ERR(new)) 3072 goto out; 3073 3074 /* 3075 * Save nodes for mpol_to_str() to show the tmpfs mount options 3076 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3077 */ 3078 if (mode != MPOL_PREFERRED) { 3079 new->nodes = nodes; 3080 } else if (nodelist) { 3081 nodes_clear(new->nodes); 3082 node_set(first_node(nodes), new->nodes); 3083 } else { 3084 new->mode = MPOL_LOCAL; 3085 } 3086 3087 /* 3088 * Save nodes for contextualization: this will be used to "clone" 3089 * the mempolicy in a specific context [cpuset] at a later time. 3090 */ 3091 new->w.user_nodemask = nodes; 3092 3093 err = 0; 3094 3095 out: 3096 /* Restore string for error message */ 3097 if (nodelist) 3098 *--nodelist = ':'; 3099 if (flags) 3100 *--flags = '='; 3101 if (!err) 3102 *mpol = new; 3103 return err; 3104 } 3105 #endif /* CONFIG_TMPFS */ 3106 3107 /** 3108 * mpol_to_str - format a mempolicy structure for printing 3109 * @buffer: to contain formatted mempolicy string 3110 * @maxlen: length of @buffer 3111 * @pol: pointer to mempolicy to be formatted 3112 * 3113 * Convert @pol into a string. If @buffer is too short, truncate the string. 3114 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3115 * longest flag, "relative", and to display at least a few node ids. 3116 */ 3117 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3118 { 3119 char *p = buffer; 3120 nodemask_t nodes = NODE_MASK_NONE; 3121 unsigned short mode = MPOL_DEFAULT; 3122 unsigned short flags = 0; 3123 3124 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3125 mode = pol->mode; 3126 flags = pol->flags; 3127 } 3128 3129 switch (mode) { 3130 case MPOL_DEFAULT: 3131 case MPOL_LOCAL: 3132 break; 3133 case MPOL_PREFERRED: 3134 case MPOL_PREFERRED_MANY: 3135 case MPOL_BIND: 3136 case MPOL_INTERLEAVE: 3137 nodes = pol->nodes; 3138 break; 3139 default: 3140 WARN_ON_ONCE(1); 3141 snprintf(p, maxlen, "unknown"); 3142 return; 3143 } 3144 3145 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3146 3147 if (flags & MPOL_MODE_FLAGS) { 3148 p += snprintf(p, buffer + maxlen - p, "="); 3149 3150 /* 3151 * Currently, the only defined flags are mutually exclusive 3152 */ 3153 if (flags & MPOL_F_STATIC_NODES) 3154 p += snprintf(p, buffer + maxlen - p, "static"); 3155 else if (flags & MPOL_F_RELATIVE_NODES) 3156 p += snprintf(p, buffer + maxlen - p, "relative"); 3157 } 3158 3159 if (!nodes_empty(nodes)) 3160 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3161 nodemask_pr_args(&nodes)); 3162 } 3163