xref: /openbmc/linux/mm/mempolicy.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the page's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_pages_required(struct page *page,
436 					struct queue_pages *qp)
437 {
438 	int nid = page_to_nid(page);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_pages_pmd() has three possible return values:
446  * 0 - pages are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing page was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct page *page;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	page = pmd_page(*pmd);
468 	if (is_huge_zero_page(page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_pages_pte_range() has three possible return values:
495  * 0 - pages are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct page *page;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_pages_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		page = vm_normal_page(vma, addr, *pte);
525 		if (!page || is_zone_device_page(page))
526 			continue;
527 		/*
528 		 * vm_normal_page() filters out zero pages, but there might
529 		 * still be PageReserved pages to skip, perhaps in a VDSO.
530 		 */
531 		if (PageReserved(page))
532 			continue;
533 		if (!queue_pages_required(page, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_page_add(page, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct page *page;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	page = pte_page(entry);
578 	if (!queue_pages_required(page, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced page and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced page but allow migrating pages which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 	if (flags & (MPOL_MF_MOVE_ALL) ||
603 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 		if (isolate_hugetlb(page, qp->pagelist) &&
605 			(flags & MPOL_MF_STRICT))
606 			/*
607 			 * Failed to isolate page but allow migrating pages
608 			 * which have been queued.
609 			 */
610 			ret = 1;
611 	}
612 unlock:
613 	spin_unlock(ptl);
614 #else
615 	BUG();
616 #endif
617 	return ret;
618 }
619 
620 #ifdef CONFIG_NUMA_BALANCING
621 /*
622  * This is used to mark a range of virtual addresses to be inaccessible.
623  * These are later cleared by a NUMA hinting fault. Depending on these
624  * faults, pages may be migrated for better NUMA placement.
625  *
626  * This is assuming that NUMA faults are handled using PROT_NONE. If
627  * an architecture makes a different choice, it will need further
628  * changes to the core.
629  */
630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 			unsigned long addr, unsigned long end)
632 {
633 	struct mmu_gather tlb;
634 	long nr_updated;
635 
636 	tlb_gather_mmu(&tlb, vma->vm_mm);
637 
638 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
639 	if (nr_updated > 0)
640 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641 
642 	tlb_finish_mmu(&tlb);
643 
644 	return nr_updated;
645 }
646 #else
647 static unsigned long change_prot_numa(struct vm_area_struct *vma,
648 			unsigned long addr, unsigned long end)
649 {
650 	return 0;
651 }
652 #endif /* CONFIG_NUMA_BALANCING */
653 
654 static int queue_pages_test_walk(unsigned long start, unsigned long end,
655 				struct mm_walk *walk)
656 {
657 	struct vm_area_struct *next, *vma = walk->vma;
658 	struct queue_pages *qp = walk->private;
659 	unsigned long endvma = vma->vm_end;
660 	unsigned long flags = qp->flags;
661 
662 	/* range check first */
663 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
664 
665 	if (!qp->first) {
666 		qp->first = vma;
667 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
668 			(qp->start < vma->vm_start))
669 			/* hole at head side of range */
670 			return -EFAULT;
671 	}
672 	next = find_vma(vma->vm_mm, vma->vm_end);
673 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
674 		((vma->vm_end < qp->end) &&
675 		(!next || vma->vm_end < next->vm_start)))
676 		/* hole at middle or tail of range */
677 		return -EFAULT;
678 
679 	/*
680 	 * Need check MPOL_MF_STRICT to return -EIO if possible
681 	 * regardless of vma_migratable
682 	 */
683 	if (!vma_migratable(vma) &&
684 	    !(flags & MPOL_MF_STRICT))
685 		return 1;
686 
687 	if (endvma > end)
688 		endvma = end;
689 
690 	if (flags & MPOL_MF_LAZY) {
691 		/* Similar to task_numa_work, skip inaccessible VMAs */
692 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
693 			!(vma->vm_flags & VM_MIXEDMAP))
694 			change_prot_numa(vma, start, endvma);
695 		return 1;
696 	}
697 
698 	/* queue pages from current vma */
699 	if (flags & MPOL_MF_VALID)
700 		return 0;
701 	return 1;
702 }
703 
704 static const struct mm_walk_ops queue_pages_walk_ops = {
705 	.hugetlb_entry		= queue_pages_hugetlb,
706 	.pmd_entry		= queue_pages_pte_range,
707 	.test_walk		= queue_pages_test_walk,
708 };
709 
710 /*
711  * Walk through page tables and collect pages to be migrated.
712  *
713  * If pages found in a given range are on a set of nodes (determined by
714  * @nodes and @flags,) it's isolated and queued to the pagelist which is
715  * passed via @private.
716  *
717  * queue_pages_range() has three possible return values:
718  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
719  *     specified.
720  * 0 - queue pages successfully or no misplaced page.
721  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
722  *         memory range specified by nodemask and maxnode points outside
723  *         your accessible address space (-EFAULT)
724  */
725 static int
726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
727 		nodemask_t *nodes, unsigned long flags,
728 		struct list_head *pagelist)
729 {
730 	int err;
731 	struct queue_pages qp = {
732 		.pagelist = pagelist,
733 		.flags = flags,
734 		.nmask = nodes,
735 		.start = start,
736 		.end = end,
737 		.first = NULL,
738 	};
739 
740 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
741 
742 	if (!qp.first)
743 		/* whole range in hole */
744 		err = -EFAULT;
745 
746 	return err;
747 }
748 
749 /*
750  * Apply policy to a single VMA
751  * This must be called with the mmap_lock held for writing.
752  */
753 static int vma_replace_policy(struct vm_area_struct *vma,
754 						struct mempolicy *pol)
755 {
756 	int err;
757 	struct mempolicy *old;
758 	struct mempolicy *new;
759 
760 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
761 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
762 		 vma->vm_ops, vma->vm_file,
763 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
764 
765 	new = mpol_dup(pol);
766 	if (IS_ERR(new))
767 		return PTR_ERR(new);
768 
769 	if (vma->vm_ops && vma->vm_ops->set_policy) {
770 		err = vma->vm_ops->set_policy(vma, new);
771 		if (err)
772 			goto err_out;
773 	}
774 
775 	old = vma->vm_policy;
776 	vma->vm_policy = new; /* protected by mmap_lock */
777 	mpol_put(old);
778 
779 	return 0;
780  err_out:
781 	mpol_put(new);
782 	return err;
783 }
784 
785 /* Step 2: apply policy to a range and do splits. */
786 static int mbind_range(struct mm_struct *mm, unsigned long start,
787 		       unsigned long end, struct mempolicy *new_pol)
788 {
789 	MA_STATE(mas, &mm->mm_mt, start, start);
790 	struct vm_area_struct *prev;
791 	struct vm_area_struct *vma;
792 	int err = 0;
793 	pgoff_t pgoff;
794 
795 	prev = mas_prev(&mas, 0);
796 	if (unlikely(!prev))
797 		mas_set(&mas, start);
798 
799 	vma = mas_find(&mas, end - 1);
800 	if (WARN_ON(!vma))
801 		return 0;
802 
803 	if (start > vma->vm_start)
804 		prev = vma;
805 
806 	for (; vma; vma = mas_next(&mas, end - 1)) {
807 		unsigned long vmstart = max(start, vma->vm_start);
808 		unsigned long vmend = min(end, vma->vm_end);
809 
810 		if (mpol_equal(vma_policy(vma), new_pol))
811 			goto next;
812 
813 		pgoff = vma->vm_pgoff +
814 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
815 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
816 				 vma->anon_vma, vma->vm_file, pgoff,
817 				 new_pol, vma->vm_userfaultfd_ctx,
818 				 anon_vma_name(vma));
819 		if (prev) {
820 			/* vma_merge() invalidated the mas */
821 			mas_pause(&mas);
822 			vma = prev;
823 			goto replace;
824 		}
825 		if (vma->vm_start != vmstart) {
826 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
827 			if (err)
828 				goto out;
829 			/* split_vma() invalidated the mas */
830 			mas_pause(&mas);
831 		}
832 		if (vma->vm_end != vmend) {
833 			err = split_vma(vma->vm_mm, vma, vmend, 0);
834 			if (err)
835 				goto out;
836 			/* split_vma() invalidated the mas */
837 			mas_pause(&mas);
838 		}
839 replace:
840 		err = vma_replace_policy(vma, new_pol);
841 		if (err)
842 			goto out;
843 next:
844 		prev = vma;
845 	}
846 
847 out:
848 	return err;
849 }
850 
851 /* Set the process memory policy */
852 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
853 			     nodemask_t *nodes)
854 {
855 	struct mempolicy *new, *old;
856 	NODEMASK_SCRATCH(scratch);
857 	int ret;
858 
859 	if (!scratch)
860 		return -ENOMEM;
861 
862 	new = mpol_new(mode, flags, nodes);
863 	if (IS_ERR(new)) {
864 		ret = PTR_ERR(new);
865 		goto out;
866 	}
867 
868 	task_lock(current);
869 	ret = mpol_set_nodemask(new, nodes, scratch);
870 	if (ret) {
871 		task_unlock(current);
872 		mpol_put(new);
873 		goto out;
874 	}
875 
876 	old = current->mempolicy;
877 	current->mempolicy = new;
878 	if (new && new->mode == MPOL_INTERLEAVE)
879 		current->il_prev = MAX_NUMNODES-1;
880 	task_unlock(current);
881 	mpol_put(old);
882 	ret = 0;
883 out:
884 	NODEMASK_SCRATCH_FREE(scratch);
885 	return ret;
886 }
887 
888 /*
889  * Return nodemask for policy for get_mempolicy() query
890  *
891  * Called with task's alloc_lock held
892  */
893 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
894 {
895 	nodes_clear(*nodes);
896 	if (p == &default_policy)
897 		return;
898 
899 	switch (p->mode) {
900 	case MPOL_BIND:
901 	case MPOL_INTERLEAVE:
902 	case MPOL_PREFERRED:
903 	case MPOL_PREFERRED_MANY:
904 		*nodes = p->nodes;
905 		break;
906 	case MPOL_LOCAL:
907 		/* return empty node mask for local allocation */
908 		break;
909 	default:
910 		BUG();
911 	}
912 }
913 
914 static int lookup_node(struct mm_struct *mm, unsigned long addr)
915 {
916 	struct page *p = NULL;
917 	int ret;
918 
919 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
920 	if (ret > 0) {
921 		ret = page_to_nid(p);
922 		put_page(p);
923 	}
924 	return ret;
925 }
926 
927 /* Retrieve NUMA policy */
928 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
929 			     unsigned long addr, unsigned long flags)
930 {
931 	int err;
932 	struct mm_struct *mm = current->mm;
933 	struct vm_area_struct *vma = NULL;
934 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
935 
936 	if (flags &
937 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
938 		return -EINVAL;
939 
940 	if (flags & MPOL_F_MEMS_ALLOWED) {
941 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
942 			return -EINVAL;
943 		*policy = 0;	/* just so it's initialized */
944 		task_lock(current);
945 		*nmask  = cpuset_current_mems_allowed;
946 		task_unlock(current);
947 		return 0;
948 	}
949 
950 	if (flags & MPOL_F_ADDR) {
951 		/*
952 		 * Do NOT fall back to task policy if the
953 		 * vma/shared policy at addr is NULL.  We
954 		 * want to return MPOL_DEFAULT in this case.
955 		 */
956 		mmap_read_lock(mm);
957 		vma = vma_lookup(mm, addr);
958 		if (!vma) {
959 			mmap_read_unlock(mm);
960 			return -EFAULT;
961 		}
962 		if (vma->vm_ops && vma->vm_ops->get_policy)
963 			pol = vma->vm_ops->get_policy(vma, addr);
964 		else
965 			pol = vma->vm_policy;
966 	} else if (addr)
967 		return -EINVAL;
968 
969 	if (!pol)
970 		pol = &default_policy;	/* indicates default behavior */
971 
972 	if (flags & MPOL_F_NODE) {
973 		if (flags & MPOL_F_ADDR) {
974 			/*
975 			 * Take a refcount on the mpol, because we are about to
976 			 * drop the mmap_lock, after which only "pol" remains
977 			 * valid, "vma" is stale.
978 			 */
979 			pol_refcount = pol;
980 			vma = NULL;
981 			mpol_get(pol);
982 			mmap_read_unlock(mm);
983 			err = lookup_node(mm, addr);
984 			if (err < 0)
985 				goto out;
986 			*policy = err;
987 		} else if (pol == current->mempolicy &&
988 				pol->mode == MPOL_INTERLEAVE) {
989 			*policy = next_node_in(current->il_prev, pol->nodes);
990 		} else {
991 			err = -EINVAL;
992 			goto out;
993 		}
994 	} else {
995 		*policy = pol == &default_policy ? MPOL_DEFAULT :
996 						pol->mode;
997 		/*
998 		 * Internal mempolicy flags must be masked off before exposing
999 		 * the policy to userspace.
1000 		 */
1001 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1002 	}
1003 
1004 	err = 0;
1005 	if (nmask) {
1006 		if (mpol_store_user_nodemask(pol)) {
1007 			*nmask = pol->w.user_nodemask;
1008 		} else {
1009 			task_lock(current);
1010 			get_policy_nodemask(pol, nmask);
1011 			task_unlock(current);
1012 		}
1013 	}
1014 
1015  out:
1016 	mpol_cond_put(pol);
1017 	if (vma)
1018 		mmap_read_unlock(mm);
1019 	if (pol_refcount)
1020 		mpol_put(pol_refcount);
1021 	return err;
1022 }
1023 
1024 #ifdef CONFIG_MIGRATION
1025 /*
1026  * page migration, thp tail pages can be passed.
1027  */
1028 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1029 				unsigned long flags)
1030 {
1031 	struct page *head = compound_head(page);
1032 	/*
1033 	 * Avoid migrating a page that is shared with others.
1034 	 */
1035 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1036 		if (!isolate_lru_page(head)) {
1037 			list_add_tail(&head->lru, pagelist);
1038 			mod_node_page_state(page_pgdat(head),
1039 				NR_ISOLATED_ANON + page_is_file_lru(head),
1040 				thp_nr_pages(head));
1041 		} else if (flags & MPOL_MF_STRICT) {
1042 			/*
1043 			 * Non-movable page may reach here.  And, there may be
1044 			 * temporary off LRU pages or non-LRU movable pages.
1045 			 * Treat them as unmovable pages since they can't be
1046 			 * isolated, so they can't be moved at the moment.  It
1047 			 * should return -EIO for this case too.
1048 			 */
1049 			return -EIO;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Migrate pages from one node to a target node.
1058  * Returns error or the number of pages not migrated.
1059  */
1060 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1061 			   int flags)
1062 {
1063 	nodemask_t nmask;
1064 	struct vm_area_struct *vma;
1065 	LIST_HEAD(pagelist);
1066 	int err = 0;
1067 	struct migration_target_control mtc = {
1068 		.nid = dest,
1069 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1070 	};
1071 
1072 	nodes_clear(nmask);
1073 	node_set(source, nmask);
1074 
1075 	/*
1076 	 * This does not "check" the range but isolates all pages that
1077 	 * need migration.  Between passing in the full user address
1078 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1079 	 */
1080 	vma = find_vma(mm, 0);
1081 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1082 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1083 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1084 
1085 	if (!list_empty(&pagelist)) {
1086 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1087 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1088 		if (err)
1089 			putback_movable_pages(&pagelist);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 /*
1096  * Move pages between the two nodesets so as to preserve the physical
1097  * layout as much as possible.
1098  *
1099  * Returns the number of page that could not be moved.
1100  */
1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1102 		     const nodemask_t *to, int flags)
1103 {
1104 	int busy = 0;
1105 	int err = 0;
1106 	nodemask_t tmp;
1107 
1108 	lru_cache_disable();
1109 
1110 	mmap_read_lock(mm);
1111 
1112 	/*
1113 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1114 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1115 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1116 	 * The pair of nodemasks 'to' and 'from' define the map.
1117 	 *
1118 	 * If no pair of bits is found that way, fallback to picking some
1119 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1120 	 * 'source' and 'dest' bits are the same, this represents a node
1121 	 * that will be migrating to itself, so no pages need move.
1122 	 *
1123 	 * If no bits are left in 'tmp', or if all remaining bits left
1124 	 * in 'tmp' correspond to the same bit in 'to', return false
1125 	 * (nothing left to migrate).
1126 	 *
1127 	 * This lets us pick a pair of nodes to migrate between, such that
1128 	 * if possible the dest node is not already occupied by some other
1129 	 * source node, minimizing the risk of overloading the memory on a
1130 	 * node that would happen if we migrated incoming memory to a node
1131 	 * before migrating outgoing memory source that same node.
1132 	 *
1133 	 * A single scan of tmp is sufficient.  As we go, we remember the
1134 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1135 	 * that not only moved, but what's better, moved to an empty slot
1136 	 * (d is not set in tmp), then we break out then, with that pair.
1137 	 * Otherwise when we finish scanning from_tmp, we at least have the
1138 	 * most recent <s, d> pair that moved.  If we get all the way through
1139 	 * the scan of tmp without finding any node that moved, much less
1140 	 * moved to an empty node, then there is nothing left worth migrating.
1141 	 */
1142 
1143 	tmp = *from;
1144 	while (!nodes_empty(tmp)) {
1145 		int s, d;
1146 		int source = NUMA_NO_NODE;
1147 		int dest = 0;
1148 
1149 		for_each_node_mask(s, tmp) {
1150 
1151 			/*
1152 			 * do_migrate_pages() tries to maintain the relative
1153 			 * node relationship of the pages established between
1154 			 * threads and memory areas.
1155                          *
1156 			 * However if the number of source nodes is not equal to
1157 			 * the number of destination nodes we can not preserve
1158 			 * this node relative relationship.  In that case, skip
1159 			 * copying memory from a node that is in the destination
1160 			 * mask.
1161 			 *
1162 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1163 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1164 			 */
1165 
1166 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1167 						(node_isset(s, *to)))
1168 				continue;
1169 
1170 			d = node_remap(s, *from, *to);
1171 			if (s == d)
1172 				continue;
1173 
1174 			source = s;	/* Node moved. Memorize */
1175 			dest = d;
1176 
1177 			/* dest not in remaining from nodes? */
1178 			if (!node_isset(dest, tmp))
1179 				break;
1180 		}
1181 		if (source == NUMA_NO_NODE)
1182 			break;
1183 
1184 		node_clear(source, tmp);
1185 		err = migrate_to_node(mm, source, dest, flags);
1186 		if (err > 0)
1187 			busy += err;
1188 		if (err < 0)
1189 			break;
1190 	}
1191 	mmap_read_unlock(mm);
1192 
1193 	lru_cache_enable();
1194 	if (err < 0)
1195 		return err;
1196 	return busy;
1197 
1198 }
1199 
1200 /*
1201  * Allocate a new page for page migration based on vma policy.
1202  * Start by assuming the page is mapped by the same vma as contains @start.
1203  * Search forward from there, if not.  N.B., this assumes that the
1204  * list of pages handed to migrate_pages()--which is how we get here--
1205  * is in virtual address order.
1206  */
1207 static struct page *new_page(struct page *page, unsigned long start)
1208 {
1209 	struct folio *dst, *src = page_folio(page);
1210 	struct vm_area_struct *vma;
1211 	unsigned long address;
1212 	VMA_ITERATOR(vmi, current->mm, start);
1213 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1214 
1215 	for_each_vma(vmi, vma) {
1216 		address = page_address_in_vma(page, vma);
1217 		if (address != -EFAULT)
1218 			break;
1219 	}
1220 
1221 	if (folio_test_hugetlb(src))
1222 		return alloc_huge_page_vma(page_hstate(&src->page),
1223 				vma, address);
1224 
1225 	if (folio_test_large(src))
1226 		gfp = GFP_TRANSHUGE;
1227 
1228 	/*
1229 	 * if !vma, vma_alloc_folio() will use task or system default policy
1230 	 */
1231 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1232 			folio_test_large(src));
1233 	return &dst->page;
1234 }
1235 #else
1236 
1237 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1238 				unsigned long flags)
1239 {
1240 	return -EIO;
1241 }
1242 
1243 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1244 		     const nodemask_t *to, int flags)
1245 {
1246 	return -ENOSYS;
1247 }
1248 
1249 static struct page *new_page(struct page *page, unsigned long start)
1250 {
1251 	return NULL;
1252 }
1253 #endif
1254 
1255 static long do_mbind(unsigned long start, unsigned long len,
1256 		     unsigned short mode, unsigned short mode_flags,
1257 		     nodemask_t *nmask, unsigned long flags)
1258 {
1259 	struct mm_struct *mm = current->mm;
1260 	struct mempolicy *new;
1261 	unsigned long end;
1262 	int err;
1263 	int ret;
1264 	LIST_HEAD(pagelist);
1265 
1266 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1267 		return -EINVAL;
1268 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1269 		return -EPERM;
1270 
1271 	if (start & ~PAGE_MASK)
1272 		return -EINVAL;
1273 
1274 	if (mode == MPOL_DEFAULT)
1275 		flags &= ~MPOL_MF_STRICT;
1276 
1277 	len = PAGE_ALIGN(len);
1278 	end = start + len;
1279 
1280 	if (end < start)
1281 		return -EINVAL;
1282 	if (end == start)
1283 		return 0;
1284 
1285 	new = mpol_new(mode, mode_flags, nmask);
1286 	if (IS_ERR(new))
1287 		return PTR_ERR(new);
1288 
1289 	if (flags & MPOL_MF_LAZY)
1290 		new->flags |= MPOL_F_MOF;
1291 
1292 	/*
1293 	 * If we are using the default policy then operation
1294 	 * on discontinuous address spaces is okay after all
1295 	 */
1296 	if (!new)
1297 		flags |= MPOL_MF_DISCONTIG_OK;
1298 
1299 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1300 		 start, start + len, mode, mode_flags,
1301 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1302 
1303 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1304 
1305 		lru_cache_disable();
1306 	}
1307 	{
1308 		NODEMASK_SCRATCH(scratch);
1309 		if (scratch) {
1310 			mmap_write_lock(mm);
1311 			err = mpol_set_nodemask(new, nmask, scratch);
1312 			if (err)
1313 				mmap_write_unlock(mm);
1314 		} else
1315 			err = -ENOMEM;
1316 		NODEMASK_SCRATCH_FREE(scratch);
1317 	}
1318 	if (err)
1319 		goto mpol_out;
1320 
1321 	ret = queue_pages_range(mm, start, end, nmask,
1322 			  flags | MPOL_MF_INVERT, &pagelist);
1323 
1324 	if (ret < 0) {
1325 		err = ret;
1326 		goto up_out;
1327 	}
1328 
1329 	err = mbind_range(mm, start, end, new);
1330 
1331 	if (!err) {
1332 		int nr_failed = 0;
1333 
1334 		if (!list_empty(&pagelist)) {
1335 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1336 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1337 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1338 			if (nr_failed)
1339 				putback_movable_pages(&pagelist);
1340 		}
1341 
1342 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1343 			err = -EIO;
1344 	} else {
1345 up_out:
1346 		if (!list_empty(&pagelist))
1347 			putback_movable_pages(&pagelist);
1348 	}
1349 
1350 	mmap_write_unlock(mm);
1351 mpol_out:
1352 	mpol_put(new);
1353 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1354 		lru_cache_enable();
1355 	return err;
1356 }
1357 
1358 /*
1359  * User space interface with variable sized bitmaps for nodelists.
1360  */
1361 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1362 		      unsigned long maxnode)
1363 {
1364 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1365 	int ret;
1366 
1367 	if (in_compat_syscall())
1368 		ret = compat_get_bitmap(mask,
1369 					(const compat_ulong_t __user *)nmask,
1370 					maxnode);
1371 	else
1372 		ret = copy_from_user(mask, nmask,
1373 				     nlongs * sizeof(unsigned long));
1374 
1375 	if (ret)
1376 		return -EFAULT;
1377 
1378 	if (maxnode % BITS_PER_LONG)
1379 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1380 
1381 	return 0;
1382 }
1383 
1384 /* Copy a node mask from user space. */
1385 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1386 		     unsigned long maxnode)
1387 {
1388 	--maxnode;
1389 	nodes_clear(*nodes);
1390 	if (maxnode == 0 || !nmask)
1391 		return 0;
1392 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1393 		return -EINVAL;
1394 
1395 	/*
1396 	 * When the user specified more nodes than supported just check
1397 	 * if the non supported part is all zero, one word at a time,
1398 	 * starting at the end.
1399 	 */
1400 	while (maxnode > MAX_NUMNODES) {
1401 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1402 		unsigned long t;
1403 
1404 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1405 			return -EFAULT;
1406 
1407 		if (maxnode - bits >= MAX_NUMNODES) {
1408 			maxnode -= bits;
1409 		} else {
1410 			maxnode = MAX_NUMNODES;
1411 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1412 		}
1413 		if (t)
1414 			return -EINVAL;
1415 	}
1416 
1417 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1418 }
1419 
1420 /* Copy a kernel node mask to user space */
1421 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1422 			      nodemask_t *nodes)
1423 {
1424 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1425 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1426 	bool compat = in_compat_syscall();
1427 
1428 	if (compat)
1429 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1430 
1431 	if (copy > nbytes) {
1432 		if (copy > PAGE_SIZE)
1433 			return -EINVAL;
1434 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1435 			return -EFAULT;
1436 		copy = nbytes;
1437 		maxnode = nr_node_ids;
1438 	}
1439 
1440 	if (compat)
1441 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1442 					 nodes_addr(*nodes), maxnode);
1443 
1444 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1445 }
1446 
1447 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1448 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1449 {
1450 	*flags = *mode & MPOL_MODE_FLAGS;
1451 	*mode &= ~MPOL_MODE_FLAGS;
1452 
1453 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1454 		return -EINVAL;
1455 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1456 		return -EINVAL;
1457 	if (*flags & MPOL_F_NUMA_BALANCING) {
1458 		if (*mode != MPOL_BIND)
1459 			return -EINVAL;
1460 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1461 	}
1462 	return 0;
1463 }
1464 
1465 static long kernel_mbind(unsigned long start, unsigned long len,
1466 			 unsigned long mode, const unsigned long __user *nmask,
1467 			 unsigned long maxnode, unsigned int flags)
1468 {
1469 	unsigned short mode_flags;
1470 	nodemask_t nodes;
1471 	int lmode = mode;
1472 	int err;
1473 
1474 	start = untagged_addr(start);
1475 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1476 	if (err)
1477 		return err;
1478 
1479 	err = get_nodes(&nodes, nmask, maxnode);
1480 	if (err)
1481 		return err;
1482 
1483 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1484 }
1485 
1486 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1487 		unsigned long, home_node, unsigned long, flags)
1488 {
1489 	struct mm_struct *mm = current->mm;
1490 	struct vm_area_struct *vma;
1491 	struct mempolicy *new, *old;
1492 	unsigned long vmstart;
1493 	unsigned long vmend;
1494 	unsigned long end;
1495 	int err = -ENOENT;
1496 	VMA_ITERATOR(vmi, mm, start);
1497 
1498 	start = untagged_addr(start);
1499 	if (start & ~PAGE_MASK)
1500 		return -EINVAL;
1501 	/*
1502 	 * flags is used for future extension if any.
1503 	 */
1504 	if (flags != 0)
1505 		return -EINVAL;
1506 
1507 	/*
1508 	 * Check home_node is online to avoid accessing uninitialized
1509 	 * NODE_DATA.
1510 	 */
1511 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1512 		return -EINVAL;
1513 
1514 	len = PAGE_ALIGN(len);
1515 	end = start + len;
1516 
1517 	if (end < start)
1518 		return -EINVAL;
1519 	if (end == start)
1520 		return 0;
1521 	mmap_write_lock(mm);
1522 	for_each_vma_range(vmi, vma, end) {
1523 		/*
1524 		 * If any vma in the range got policy other than MPOL_BIND
1525 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1526 		 * the home node for vmas we already updated before.
1527 		 */
1528 		old = vma_policy(vma);
1529 		if (!old)
1530 			continue;
1531 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1532 			err = -EOPNOTSUPP;
1533 			break;
1534 		}
1535 		new = mpol_dup(old);
1536 		if (IS_ERR(new)) {
1537 			err = PTR_ERR(new);
1538 			break;
1539 		}
1540 
1541 		new->home_node = home_node;
1542 		vmstart = max(start, vma->vm_start);
1543 		vmend   = min(end, vma->vm_end);
1544 		err = mbind_range(mm, vmstart, vmend, new);
1545 		mpol_put(new);
1546 		if (err)
1547 			break;
1548 	}
1549 	mmap_write_unlock(mm);
1550 	return err;
1551 }
1552 
1553 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1554 		unsigned long, mode, const unsigned long __user *, nmask,
1555 		unsigned long, maxnode, unsigned int, flags)
1556 {
1557 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1558 }
1559 
1560 /* Set the process memory policy */
1561 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1562 				 unsigned long maxnode)
1563 {
1564 	unsigned short mode_flags;
1565 	nodemask_t nodes;
1566 	int lmode = mode;
1567 	int err;
1568 
1569 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1570 	if (err)
1571 		return err;
1572 
1573 	err = get_nodes(&nodes, nmask, maxnode);
1574 	if (err)
1575 		return err;
1576 
1577 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1578 }
1579 
1580 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1581 		unsigned long, maxnode)
1582 {
1583 	return kernel_set_mempolicy(mode, nmask, maxnode);
1584 }
1585 
1586 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1587 				const unsigned long __user *old_nodes,
1588 				const unsigned long __user *new_nodes)
1589 {
1590 	struct mm_struct *mm = NULL;
1591 	struct task_struct *task;
1592 	nodemask_t task_nodes;
1593 	int err;
1594 	nodemask_t *old;
1595 	nodemask_t *new;
1596 	NODEMASK_SCRATCH(scratch);
1597 
1598 	if (!scratch)
1599 		return -ENOMEM;
1600 
1601 	old = &scratch->mask1;
1602 	new = &scratch->mask2;
1603 
1604 	err = get_nodes(old, old_nodes, maxnode);
1605 	if (err)
1606 		goto out;
1607 
1608 	err = get_nodes(new, new_nodes, maxnode);
1609 	if (err)
1610 		goto out;
1611 
1612 	/* Find the mm_struct */
1613 	rcu_read_lock();
1614 	task = pid ? find_task_by_vpid(pid) : current;
1615 	if (!task) {
1616 		rcu_read_unlock();
1617 		err = -ESRCH;
1618 		goto out;
1619 	}
1620 	get_task_struct(task);
1621 
1622 	err = -EINVAL;
1623 
1624 	/*
1625 	 * Check if this process has the right to modify the specified process.
1626 	 * Use the regular "ptrace_may_access()" checks.
1627 	 */
1628 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1629 		rcu_read_unlock();
1630 		err = -EPERM;
1631 		goto out_put;
1632 	}
1633 	rcu_read_unlock();
1634 
1635 	task_nodes = cpuset_mems_allowed(task);
1636 	/* Is the user allowed to access the target nodes? */
1637 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1638 		err = -EPERM;
1639 		goto out_put;
1640 	}
1641 
1642 	task_nodes = cpuset_mems_allowed(current);
1643 	nodes_and(*new, *new, task_nodes);
1644 	if (nodes_empty(*new))
1645 		goto out_put;
1646 
1647 	err = security_task_movememory(task);
1648 	if (err)
1649 		goto out_put;
1650 
1651 	mm = get_task_mm(task);
1652 	put_task_struct(task);
1653 
1654 	if (!mm) {
1655 		err = -EINVAL;
1656 		goto out;
1657 	}
1658 
1659 	err = do_migrate_pages(mm, old, new,
1660 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1661 
1662 	mmput(mm);
1663 out:
1664 	NODEMASK_SCRATCH_FREE(scratch);
1665 
1666 	return err;
1667 
1668 out_put:
1669 	put_task_struct(task);
1670 	goto out;
1671 
1672 }
1673 
1674 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1675 		const unsigned long __user *, old_nodes,
1676 		const unsigned long __user *, new_nodes)
1677 {
1678 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1679 }
1680 
1681 
1682 /* Retrieve NUMA policy */
1683 static int kernel_get_mempolicy(int __user *policy,
1684 				unsigned long __user *nmask,
1685 				unsigned long maxnode,
1686 				unsigned long addr,
1687 				unsigned long flags)
1688 {
1689 	int err;
1690 	int pval;
1691 	nodemask_t nodes;
1692 
1693 	if (nmask != NULL && maxnode < nr_node_ids)
1694 		return -EINVAL;
1695 
1696 	addr = untagged_addr(addr);
1697 
1698 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1699 
1700 	if (err)
1701 		return err;
1702 
1703 	if (policy && put_user(pval, policy))
1704 		return -EFAULT;
1705 
1706 	if (nmask)
1707 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1708 
1709 	return err;
1710 }
1711 
1712 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1713 		unsigned long __user *, nmask, unsigned long, maxnode,
1714 		unsigned long, addr, unsigned long, flags)
1715 {
1716 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1717 }
1718 
1719 bool vma_migratable(struct vm_area_struct *vma)
1720 {
1721 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1722 		return false;
1723 
1724 	/*
1725 	 * DAX device mappings require predictable access latency, so avoid
1726 	 * incurring periodic faults.
1727 	 */
1728 	if (vma_is_dax(vma))
1729 		return false;
1730 
1731 	if (is_vm_hugetlb_page(vma) &&
1732 		!hugepage_migration_supported(hstate_vma(vma)))
1733 		return false;
1734 
1735 	/*
1736 	 * Migration allocates pages in the highest zone. If we cannot
1737 	 * do so then migration (at least from node to node) is not
1738 	 * possible.
1739 	 */
1740 	if (vma->vm_file &&
1741 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1742 			< policy_zone)
1743 		return false;
1744 	return true;
1745 }
1746 
1747 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1748 						unsigned long addr)
1749 {
1750 	struct mempolicy *pol = NULL;
1751 
1752 	if (vma) {
1753 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1754 			pol = vma->vm_ops->get_policy(vma, addr);
1755 		} else if (vma->vm_policy) {
1756 			pol = vma->vm_policy;
1757 
1758 			/*
1759 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1760 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1761 			 * count on these policies which will be dropped by
1762 			 * mpol_cond_put() later
1763 			 */
1764 			if (mpol_needs_cond_ref(pol))
1765 				mpol_get(pol);
1766 		}
1767 	}
1768 
1769 	return pol;
1770 }
1771 
1772 /*
1773  * get_vma_policy(@vma, @addr)
1774  * @vma: virtual memory area whose policy is sought
1775  * @addr: address in @vma for shared policy lookup
1776  *
1777  * Returns effective policy for a VMA at specified address.
1778  * Falls back to current->mempolicy or system default policy, as necessary.
1779  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1780  * count--added by the get_policy() vm_op, as appropriate--to protect against
1781  * freeing by another task.  It is the caller's responsibility to free the
1782  * extra reference for shared policies.
1783  */
1784 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1785 						unsigned long addr)
1786 {
1787 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1788 
1789 	if (!pol)
1790 		pol = get_task_policy(current);
1791 
1792 	return pol;
1793 }
1794 
1795 bool vma_policy_mof(struct vm_area_struct *vma)
1796 {
1797 	struct mempolicy *pol;
1798 
1799 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1800 		bool ret = false;
1801 
1802 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1803 		if (pol && (pol->flags & MPOL_F_MOF))
1804 			ret = true;
1805 		mpol_cond_put(pol);
1806 
1807 		return ret;
1808 	}
1809 
1810 	pol = vma->vm_policy;
1811 	if (!pol)
1812 		pol = get_task_policy(current);
1813 
1814 	return pol->flags & MPOL_F_MOF;
1815 }
1816 
1817 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1818 {
1819 	enum zone_type dynamic_policy_zone = policy_zone;
1820 
1821 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1822 
1823 	/*
1824 	 * if policy->nodes has movable memory only,
1825 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1826 	 *
1827 	 * policy->nodes is intersect with node_states[N_MEMORY].
1828 	 * so if the following test fails, it implies
1829 	 * policy->nodes has movable memory only.
1830 	 */
1831 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1832 		dynamic_policy_zone = ZONE_MOVABLE;
1833 
1834 	return zone >= dynamic_policy_zone;
1835 }
1836 
1837 /*
1838  * Return a nodemask representing a mempolicy for filtering nodes for
1839  * page allocation
1840  */
1841 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1842 {
1843 	int mode = policy->mode;
1844 
1845 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1846 	if (unlikely(mode == MPOL_BIND) &&
1847 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1848 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1849 		return &policy->nodes;
1850 
1851 	if (mode == MPOL_PREFERRED_MANY)
1852 		return &policy->nodes;
1853 
1854 	return NULL;
1855 }
1856 
1857 /*
1858  * Return the  preferred node id for 'prefer' mempolicy, and return
1859  * the given id for all other policies.
1860  *
1861  * policy_node() is always coupled with policy_nodemask(), which
1862  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1863  */
1864 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1865 {
1866 	if (policy->mode == MPOL_PREFERRED) {
1867 		nd = first_node(policy->nodes);
1868 	} else {
1869 		/*
1870 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1871 		 * because we might easily break the expectation to stay on the
1872 		 * requested node and not break the policy.
1873 		 */
1874 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1875 	}
1876 
1877 	if ((policy->mode == MPOL_BIND ||
1878 	     policy->mode == MPOL_PREFERRED_MANY) &&
1879 	    policy->home_node != NUMA_NO_NODE)
1880 		return policy->home_node;
1881 
1882 	return nd;
1883 }
1884 
1885 /* Do dynamic interleaving for a process */
1886 static unsigned interleave_nodes(struct mempolicy *policy)
1887 {
1888 	unsigned next;
1889 	struct task_struct *me = current;
1890 
1891 	next = next_node_in(me->il_prev, policy->nodes);
1892 	if (next < MAX_NUMNODES)
1893 		me->il_prev = next;
1894 	return next;
1895 }
1896 
1897 /*
1898  * Depending on the memory policy provide a node from which to allocate the
1899  * next slab entry.
1900  */
1901 unsigned int mempolicy_slab_node(void)
1902 {
1903 	struct mempolicy *policy;
1904 	int node = numa_mem_id();
1905 
1906 	if (!in_task())
1907 		return node;
1908 
1909 	policy = current->mempolicy;
1910 	if (!policy)
1911 		return node;
1912 
1913 	switch (policy->mode) {
1914 	case MPOL_PREFERRED:
1915 		return first_node(policy->nodes);
1916 
1917 	case MPOL_INTERLEAVE:
1918 		return interleave_nodes(policy);
1919 
1920 	case MPOL_BIND:
1921 	case MPOL_PREFERRED_MANY:
1922 	{
1923 		struct zoneref *z;
1924 
1925 		/*
1926 		 * Follow bind policy behavior and start allocation at the
1927 		 * first node.
1928 		 */
1929 		struct zonelist *zonelist;
1930 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1931 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1932 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1933 							&policy->nodes);
1934 		return z->zone ? zone_to_nid(z->zone) : node;
1935 	}
1936 	case MPOL_LOCAL:
1937 		return node;
1938 
1939 	default:
1940 		BUG();
1941 	}
1942 }
1943 
1944 /*
1945  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1946  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1947  * number of present nodes.
1948  */
1949 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1950 {
1951 	nodemask_t nodemask = pol->nodes;
1952 	unsigned int target, nnodes;
1953 	int i;
1954 	int nid;
1955 	/*
1956 	 * The barrier will stabilize the nodemask in a register or on
1957 	 * the stack so that it will stop changing under the code.
1958 	 *
1959 	 * Between first_node() and next_node(), pol->nodes could be changed
1960 	 * by other threads. So we put pol->nodes in a local stack.
1961 	 */
1962 	barrier();
1963 
1964 	nnodes = nodes_weight(nodemask);
1965 	if (!nnodes)
1966 		return numa_node_id();
1967 	target = (unsigned int)n % nnodes;
1968 	nid = first_node(nodemask);
1969 	for (i = 0; i < target; i++)
1970 		nid = next_node(nid, nodemask);
1971 	return nid;
1972 }
1973 
1974 /* Determine a node number for interleave */
1975 static inline unsigned interleave_nid(struct mempolicy *pol,
1976 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1977 {
1978 	if (vma) {
1979 		unsigned long off;
1980 
1981 		/*
1982 		 * for small pages, there is no difference between
1983 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1984 		 * for huge pages, since vm_pgoff is in units of small
1985 		 * pages, we need to shift off the always 0 bits to get
1986 		 * a useful offset.
1987 		 */
1988 		BUG_ON(shift < PAGE_SHIFT);
1989 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1990 		off += (addr - vma->vm_start) >> shift;
1991 		return offset_il_node(pol, off);
1992 	} else
1993 		return interleave_nodes(pol);
1994 }
1995 
1996 #ifdef CONFIG_HUGETLBFS
1997 /*
1998  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1999  * @vma: virtual memory area whose policy is sought
2000  * @addr: address in @vma for shared policy lookup and interleave policy
2001  * @gfp_flags: for requested zone
2002  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2003  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2004  *
2005  * Returns a nid suitable for a huge page allocation and a pointer
2006  * to the struct mempolicy for conditional unref after allocation.
2007  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2008  * to the mempolicy's @nodemask for filtering the zonelist.
2009  *
2010  * Must be protected by read_mems_allowed_begin()
2011  */
2012 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2013 				struct mempolicy **mpol, nodemask_t **nodemask)
2014 {
2015 	int nid;
2016 	int mode;
2017 
2018 	*mpol = get_vma_policy(vma, addr);
2019 	*nodemask = NULL;
2020 	mode = (*mpol)->mode;
2021 
2022 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2023 		nid = interleave_nid(*mpol, vma, addr,
2024 					huge_page_shift(hstate_vma(vma)));
2025 	} else {
2026 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2027 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2028 			*nodemask = &(*mpol)->nodes;
2029 	}
2030 	return nid;
2031 }
2032 
2033 /*
2034  * init_nodemask_of_mempolicy
2035  *
2036  * If the current task's mempolicy is "default" [NULL], return 'false'
2037  * to indicate default policy.  Otherwise, extract the policy nodemask
2038  * for 'bind' or 'interleave' policy into the argument nodemask, or
2039  * initialize the argument nodemask to contain the single node for
2040  * 'preferred' or 'local' policy and return 'true' to indicate presence
2041  * of non-default mempolicy.
2042  *
2043  * We don't bother with reference counting the mempolicy [mpol_get/put]
2044  * because the current task is examining it's own mempolicy and a task's
2045  * mempolicy is only ever changed by the task itself.
2046  *
2047  * N.B., it is the caller's responsibility to free a returned nodemask.
2048  */
2049 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 {
2051 	struct mempolicy *mempolicy;
2052 
2053 	if (!(mask && current->mempolicy))
2054 		return false;
2055 
2056 	task_lock(current);
2057 	mempolicy = current->mempolicy;
2058 	switch (mempolicy->mode) {
2059 	case MPOL_PREFERRED:
2060 	case MPOL_PREFERRED_MANY:
2061 	case MPOL_BIND:
2062 	case MPOL_INTERLEAVE:
2063 		*mask = mempolicy->nodes;
2064 		break;
2065 
2066 	case MPOL_LOCAL:
2067 		init_nodemask_of_node(mask, numa_node_id());
2068 		break;
2069 
2070 	default:
2071 		BUG();
2072 	}
2073 	task_unlock(current);
2074 
2075 	return true;
2076 }
2077 #endif
2078 
2079 /*
2080  * mempolicy_in_oom_domain
2081  *
2082  * If tsk's mempolicy is "bind", check for intersection between mask and
2083  * the policy nodemask. Otherwise, return true for all other policies
2084  * including "interleave", as a tsk with "interleave" policy may have
2085  * memory allocated from all nodes in system.
2086  *
2087  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2088  */
2089 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2090 					const nodemask_t *mask)
2091 {
2092 	struct mempolicy *mempolicy;
2093 	bool ret = true;
2094 
2095 	if (!mask)
2096 		return ret;
2097 
2098 	task_lock(tsk);
2099 	mempolicy = tsk->mempolicy;
2100 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2101 		ret = nodes_intersects(mempolicy->nodes, *mask);
2102 	task_unlock(tsk);
2103 
2104 	return ret;
2105 }
2106 
2107 /* Allocate a page in interleaved policy.
2108    Own path because it needs to do special accounting. */
2109 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2110 					unsigned nid)
2111 {
2112 	struct page *page;
2113 
2114 	page = __alloc_pages(gfp, order, nid, NULL);
2115 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2116 	if (!static_branch_likely(&vm_numa_stat_key))
2117 		return page;
2118 	if (page && page_to_nid(page) == nid) {
2119 		preempt_disable();
2120 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2121 		preempt_enable();
2122 	}
2123 	return page;
2124 }
2125 
2126 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2127 						int nid, struct mempolicy *pol)
2128 {
2129 	struct page *page;
2130 	gfp_t preferred_gfp;
2131 
2132 	/*
2133 	 * This is a two pass approach. The first pass will only try the
2134 	 * preferred nodes but skip the direct reclaim and allow the
2135 	 * allocation to fail, while the second pass will try all the
2136 	 * nodes in system.
2137 	 */
2138 	preferred_gfp = gfp | __GFP_NOWARN;
2139 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2140 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2141 	if (!page)
2142 		page = __alloc_pages(gfp, order, nid, NULL);
2143 
2144 	return page;
2145 }
2146 
2147 /**
2148  * vma_alloc_folio - Allocate a folio for a VMA.
2149  * @gfp: GFP flags.
2150  * @order: Order of the folio.
2151  * @vma: Pointer to VMA or NULL if not available.
2152  * @addr: Virtual address of the allocation.  Must be inside @vma.
2153  * @hugepage: For hugepages try only the preferred node if possible.
2154  *
2155  * Allocate a folio for a specific address in @vma, using the appropriate
2156  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2157  * of the mm_struct of the VMA to prevent it from going away.  Should be
2158  * used for all allocations for folios that will be mapped into user space.
2159  *
2160  * Return: The folio on success or NULL if allocation fails.
2161  */
2162 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2163 		unsigned long addr, bool hugepage)
2164 {
2165 	struct mempolicy *pol;
2166 	int node = numa_node_id();
2167 	struct folio *folio;
2168 	int preferred_nid;
2169 	nodemask_t *nmask;
2170 
2171 	pol = get_vma_policy(vma, addr);
2172 
2173 	if (pol->mode == MPOL_INTERLEAVE) {
2174 		struct page *page;
2175 		unsigned nid;
2176 
2177 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2178 		mpol_cond_put(pol);
2179 		gfp |= __GFP_COMP;
2180 		page = alloc_page_interleave(gfp, order, nid);
2181 		if (page && order > 1)
2182 			prep_transhuge_page(page);
2183 		folio = (struct folio *)page;
2184 		goto out;
2185 	}
2186 
2187 	if (pol->mode == MPOL_PREFERRED_MANY) {
2188 		struct page *page;
2189 
2190 		node = policy_node(gfp, pol, node);
2191 		gfp |= __GFP_COMP;
2192 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2193 		mpol_cond_put(pol);
2194 		if (page && order > 1)
2195 			prep_transhuge_page(page);
2196 		folio = (struct folio *)page;
2197 		goto out;
2198 	}
2199 
2200 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2201 		int hpage_node = node;
2202 
2203 		/*
2204 		 * For hugepage allocation and non-interleave policy which
2205 		 * allows the current node (or other explicitly preferred
2206 		 * node) we only try to allocate from the current/preferred
2207 		 * node and don't fall back to other nodes, as the cost of
2208 		 * remote accesses would likely offset THP benefits.
2209 		 *
2210 		 * If the policy is interleave or does not allow the current
2211 		 * node in its nodemask, we allocate the standard way.
2212 		 */
2213 		if (pol->mode == MPOL_PREFERRED)
2214 			hpage_node = first_node(pol->nodes);
2215 
2216 		nmask = policy_nodemask(gfp, pol);
2217 		if (!nmask || node_isset(hpage_node, *nmask)) {
2218 			mpol_cond_put(pol);
2219 			/*
2220 			 * First, try to allocate THP only on local node, but
2221 			 * don't reclaim unnecessarily, just compact.
2222 			 */
2223 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2224 					__GFP_NORETRY, order, hpage_node);
2225 
2226 			/*
2227 			 * If hugepage allocations are configured to always
2228 			 * synchronous compact or the vma has been madvised
2229 			 * to prefer hugepage backing, retry allowing remote
2230 			 * memory with both reclaim and compact as well.
2231 			 */
2232 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2233 				folio = __folio_alloc(gfp, order, hpage_node,
2234 						      nmask);
2235 
2236 			goto out;
2237 		}
2238 	}
2239 
2240 	nmask = policy_nodemask(gfp, pol);
2241 	preferred_nid = policy_node(gfp, pol, node);
2242 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2243 	mpol_cond_put(pol);
2244 out:
2245 	return folio;
2246 }
2247 EXPORT_SYMBOL(vma_alloc_folio);
2248 
2249 /**
2250  * alloc_pages - Allocate pages.
2251  * @gfp: GFP flags.
2252  * @order: Power of two of number of pages to allocate.
2253  *
2254  * Allocate 1 << @order contiguous pages.  The physical address of the
2255  * first page is naturally aligned (eg an order-3 allocation will be aligned
2256  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2257  * process is honoured when in process context.
2258  *
2259  * Context: Can be called from any context, providing the appropriate GFP
2260  * flags are used.
2261  * Return: The page on success or NULL if allocation fails.
2262  */
2263 struct page *alloc_pages(gfp_t gfp, unsigned order)
2264 {
2265 	struct mempolicy *pol = &default_policy;
2266 	struct page *page;
2267 
2268 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2269 		pol = get_task_policy(current);
2270 
2271 	/*
2272 	 * No reference counting needed for current->mempolicy
2273 	 * nor system default_policy
2274 	 */
2275 	if (pol->mode == MPOL_INTERLEAVE)
2276 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2277 	else if (pol->mode == MPOL_PREFERRED_MANY)
2278 		page = alloc_pages_preferred_many(gfp, order,
2279 				  policy_node(gfp, pol, numa_node_id()), pol);
2280 	else
2281 		page = __alloc_pages(gfp, order,
2282 				policy_node(gfp, pol, numa_node_id()),
2283 				policy_nodemask(gfp, pol));
2284 
2285 	return page;
2286 }
2287 EXPORT_SYMBOL(alloc_pages);
2288 
2289 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2290 {
2291 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2292 
2293 	if (page && order > 1)
2294 		prep_transhuge_page(page);
2295 	return (struct folio *)page;
2296 }
2297 EXPORT_SYMBOL(folio_alloc);
2298 
2299 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2300 		struct mempolicy *pol, unsigned long nr_pages,
2301 		struct page **page_array)
2302 {
2303 	int nodes;
2304 	unsigned long nr_pages_per_node;
2305 	int delta;
2306 	int i;
2307 	unsigned long nr_allocated;
2308 	unsigned long total_allocated = 0;
2309 
2310 	nodes = nodes_weight(pol->nodes);
2311 	nr_pages_per_node = nr_pages / nodes;
2312 	delta = nr_pages - nodes * nr_pages_per_node;
2313 
2314 	for (i = 0; i < nodes; i++) {
2315 		if (delta) {
2316 			nr_allocated = __alloc_pages_bulk(gfp,
2317 					interleave_nodes(pol), NULL,
2318 					nr_pages_per_node + 1, NULL,
2319 					page_array);
2320 			delta--;
2321 		} else {
2322 			nr_allocated = __alloc_pages_bulk(gfp,
2323 					interleave_nodes(pol), NULL,
2324 					nr_pages_per_node, NULL, page_array);
2325 		}
2326 
2327 		page_array += nr_allocated;
2328 		total_allocated += nr_allocated;
2329 	}
2330 
2331 	return total_allocated;
2332 }
2333 
2334 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2335 		struct mempolicy *pol, unsigned long nr_pages,
2336 		struct page **page_array)
2337 {
2338 	gfp_t preferred_gfp;
2339 	unsigned long nr_allocated = 0;
2340 
2341 	preferred_gfp = gfp | __GFP_NOWARN;
2342 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2343 
2344 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2345 					   nr_pages, NULL, page_array);
2346 
2347 	if (nr_allocated < nr_pages)
2348 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2349 				nr_pages - nr_allocated, NULL,
2350 				page_array + nr_allocated);
2351 	return nr_allocated;
2352 }
2353 
2354 /* alloc pages bulk and mempolicy should be considered at the
2355  * same time in some situation such as vmalloc.
2356  *
2357  * It can accelerate memory allocation especially interleaving
2358  * allocate memory.
2359  */
2360 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2361 		unsigned long nr_pages, struct page **page_array)
2362 {
2363 	struct mempolicy *pol = &default_policy;
2364 
2365 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2366 		pol = get_task_policy(current);
2367 
2368 	if (pol->mode == MPOL_INTERLEAVE)
2369 		return alloc_pages_bulk_array_interleave(gfp, pol,
2370 							 nr_pages, page_array);
2371 
2372 	if (pol->mode == MPOL_PREFERRED_MANY)
2373 		return alloc_pages_bulk_array_preferred_many(gfp,
2374 				numa_node_id(), pol, nr_pages, page_array);
2375 
2376 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2377 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2378 				  page_array);
2379 }
2380 
2381 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2382 {
2383 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2384 
2385 	if (IS_ERR(pol))
2386 		return PTR_ERR(pol);
2387 	dst->vm_policy = pol;
2388 	return 0;
2389 }
2390 
2391 /*
2392  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2393  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2394  * with the mems_allowed returned by cpuset_mems_allowed().  This
2395  * keeps mempolicies cpuset relative after its cpuset moves.  See
2396  * further kernel/cpuset.c update_nodemask().
2397  *
2398  * current's mempolicy may be rebinded by the other task(the task that changes
2399  * cpuset's mems), so we needn't do rebind work for current task.
2400  */
2401 
2402 /* Slow path of a mempolicy duplicate */
2403 struct mempolicy *__mpol_dup(struct mempolicy *old)
2404 {
2405 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2406 
2407 	if (!new)
2408 		return ERR_PTR(-ENOMEM);
2409 
2410 	/* task's mempolicy is protected by alloc_lock */
2411 	if (old == current->mempolicy) {
2412 		task_lock(current);
2413 		*new = *old;
2414 		task_unlock(current);
2415 	} else
2416 		*new = *old;
2417 
2418 	if (current_cpuset_is_being_rebound()) {
2419 		nodemask_t mems = cpuset_mems_allowed(current);
2420 		mpol_rebind_policy(new, &mems);
2421 	}
2422 	atomic_set(&new->refcnt, 1);
2423 	return new;
2424 }
2425 
2426 /* Slow path of a mempolicy comparison */
2427 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2428 {
2429 	if (!a || !b)
2430 		return false;
2431 	if (a->mode != b->mode)
2432 		return false;
2433 	if (a->flags != b->flags)
2434 		return false;
2435 	if (a->home_node != b->home_node)
2436 		return false;
2437 	if (mpol_store_user_nodemask(a))
2438 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2439 			return false;
2440 
2441 	switch (a->mode) {
2442 	case MPOL_BIND:
2443 	case MPOL_INTERLEAVE:
2444 	case MPOL_PREFERRED:
2445 	case MPOL_PREFERRED_MANY:
2446 		return !!nodes_equal(a->nodes, b->nodes);
2447 	case MPOL_LOCAL:
2448 		return true;
2449 	default:
2450 		BUG();
2451 		return false;
2452 	}
2453 }
2454 
2455 /*
2456  * Shared memory backing store policy support.
2457  *
2458  * Remember policies even when nobody has shared memory mapped.
2459  * The policies are kept in Red-Black tree linked from the inode.
2460  * They are protected by the sp->lock rwlock, which should be held
2461  * for any accesses to the tree.
2462  */
2463 
2464 /*
2465  * lookup first element intersecting start-end.  Caller holds sp->lock for
2466  * reading or for writing
2467  */
2468 static struct sp_node *
2469 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2470 {
2471 	struct rb_node *n = sp->root.rb_node;
2472 
2473 	while (n) {
2474 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2475 
2476 		if (start >= p->end)
2477 			n = n->rb_right;
2478 		else if (end <= p->start)
2479 			n = n->rb_left;
2480 		else
2481 			break;
2482 	}
2483 	if (!n)
2484 		return NULL;
2485 	for (;;) {
2486 		struct sp_node *w = NULL;
2487 		struct rb_node *prev = rb_prev(n);
2488 		if (!prev)
2489 			break;
2490 		w = rb_entry(prev, struct sp_node, nd);
2491 		if (w->end <= start)
2492 			break;
2493 		n = prev;
2494 	}
2495 	return rb_entry(n, struct sp_node, nd);
2496 }
2497 
2498 /*
2499  * Insert a new shared policy into the list.  Caller holds sp->lock for
2500  * writing.
2501  */
2502 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2503 {
2504 	struct rb_node **p = &sp->root.rb_node;
2505 	struct rb_node *parent = NULL;
2506 	struct sp_node *nd;
2507 
2508 	while (*p) {
2509 		parent = *p;
2510 		nd = rb_entry(parent, struct sp_node, nd);
2511 		if (new->start < nd->start)
2512 			p = &(*p)->rb_left;
2513 		else if (new->end > nd->end)
2514 			p = &(*p)->rb_right;
2515 		else
2516 			BUG();
2517 	}
2518 	rb_link_node(&new->nd, parent, p);
2519 	rb_insert_color(&new->nd, &sp->root);
2520 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2521 		 new->policy ? new->policy->mode : 0);
2522 }
2523 
2524 /* Find shared policy intersecting idx */
2525 struct mempolicy *
2526 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2527 {
2528 	struct mempolicy *pol = NULL;
2529 	struct sp_node *sn;
2530 
2531 	if (!sp->root.rb_node)
2532 		return NULL;
2533 	read_lock(&sp->lock);
2534 	sn = sp_lookup(sp, idx, idx+1);
2535 	if (sn) {
2536 		mpol_get(sn->policy);
2537 		pol = sn->policy;
2538 	}
2539 	read_unlock(&sp->lock);
2540 	return pol;
2541 }
2542 
2543 static void sp_free(struct sp_node *n)
2544 {
2545 	mpol_put(n->policy);
2546 	kmem_cache_free(sn_cache, n);
2547 }
2548 
2549 /**
2550  * mpol_misplaced - check whether current page node is valid in policy
2551  *
2552  * @page: page to be checked
2553  * @vma: vm area where page mapped
2554  * @addr: virtual address where page mapped
2555  *
2556  * Lookup current policy node id for vma,addr and "compare to" page's
2557  * node id.  Policy determination "mimics" alloc_page_vma().
2558  * Called from fault path where we know the vma and faulting address.
2559  *
2560  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2561  * policy, or a suitable node ID to allocate a replacement page from.
2562  */
2563 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2564 {
2565 	struct mempolicy *pol;
2566 	struct zoneref *z;
2567 	int curnid = page_to_nid(page);
2568 	unsigned long pgoff;
2569 	int thiscpu = raw_smp_processor_id();
2570 	int thisnid = cpu_to_node(thiscpu);
2571 	int polnid = NUMA_NO_NODE;
2572 	int ret = NUMA_NO_NODE;
2573 
2574 	pol = get_vma_policy(vma, addr);
2575 	if (!(pol->flags & MPOL_F_MOF))
2576 		goto out;
2577 
2578 	switch (pol->mode) {
2579 	case MPOL_INTERLEAVE:
2580 		pgoff = vma->vm_pgoff;
2581 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2582 		polnid = offset_il_node(pol, pgoff);
2583 		break;
2584 
2585 	case MPOL_PREFERRED:
2586 		if (node_isset(curnid, pol->nodes))
2587 			goto out;
2588 		polnid = first_node(pol->nodes);
2589 		break;
2590 
2591 	case MPOL_LOCAL:
2592 		polnid = numa_node_id();
2593 		break;
2594 
2595 	case MPOL_BIND:
2596 		/* Optimize placement among multiple nodes via NUMA balancing */
2597 		if (pol->flags & MPOL_F_MORON) {
2598 			if (node_isset(thisnid, pol->nodes))
2599 				break;
2600 			goto out;
2601 		}
2602 		fallthrough;
2603 
2604 	case MPOL_PREFERRED_MANY:
2605 		/*
2606 		 * use current page if in policy nodemask,
2607 		 * else select nearest allowed node, if any.
2608 		 * If no allowed nodes, use current [!misplaced].
2609 		 */
2610 		if (node_isset(curnid, pol->nodes))
2611 			goto out;
2612 		z = first_zones_zonelist(
2613 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2614 				gfp_zone(GFP_HIGHUSER),
2615 				&pol->nodes);
2616 		polnid = zone_to_nid(z->zone);
2617 		break;
2618 
2619 	default:
2620 		BUG();
2621 	}
2622 
2623 	/* Migrate the page towards the node whose CPU is referencing it */
2624 	if (pol->flags & MPOL_F_MORON) {
2625 		polnid = thisnid;
2626 
2627 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2628 			goto out;
2629 	}
2630 
2631 	if (curnid != polnid)
2632 		ret = polnid;
2633 out:
2634 	mpol_cond_put(pol);
2635 
2636 	return ret;
2637 }
2638 
2639 /*
2640  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2641  * dropped after task->mempolicy is set to NULL so that any allocation done as
2642  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2643  * policy.
2644  */
2645 void mpol_put_task_policy(struct task_struct *task)
2646 {
2647 	struct mempolicy *pol;
2648 
2649 	task_lock(task);
2650 	pol = task->mempolicy;
2651 	task->mempolicy = NULL;
2652 	task_unlock(task);
2653 	mpol_put(pol);
2654 }
2655 
2656 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2657 {
2658 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2659 	rb_erase(&n->nd, &sp->root);
2660 	sp_free(n);
2661 }
2662 
2663 static void sp_node_init(struct sp_node *node, unsigned long start,
2664 			unsigned long end, struct mempolicy *pol)
2665 {
2666 	node->start = start;
2667 	node->end = end;
2668 	node->policy = pol;
2669 }
2670 
2671 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2672 				struct mempolicy *pol)
2673 {
2674 	struct sp_node *n;
2675 	struct mempolicy *newpol;
2676 
2677 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2678 	if (!n)
2679 		return NULL;
2680 
2681 	newpol = mpol_dup(pol);
2682 	if (IS_ERR(newpol)) {
2683 		kmem_cache_free(sn_cache, n);
2684 		return NULL;
2685 	}
2686 	newpol->flags |= MPOL_F_SHARED;
2687 	sp_node_init(n, start, end, newpol);
2688 
2689 	return n;
2690 }
2691 
2692 /* Replace a policy range. */
2693 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2694 				 unsigned long end, struct sp_node *new)
2695 {
2696 	struct sp_node *n;
2697 	struct sp_node *n_new = NULL;
2698 	struct mempolicy *mpol_new = NULL;
2699 	int ret = 0;
2700 
2701 restart:
2702 	write_lock(&sp->lock);
2703 	n = sp_lookup(sp, start, end);
2704 	/* Take care of old policies in the same range. */
2705 	while (n && n->start < end) {
2706 		struct rb_node *next = rb_next(&n->nd);
2707 		if (n->start >= start) {
2708 			if (n->end <= end)
2709 				sp_delete(sp, n);
2710 			else
2711 				n->start = end;
2712 		} else {
2713 			/* Old policy spanning whole new range. */
2714 			if (n->end > end) {
2715 				if (!n_new)
2716 					goto alloc_new;
2717 
2718 				*mpol_new = *n->policy;
2719 				atomic_set(&mpol_new->refcnt, 1);
2720 				sp_node_init(n_new, end, n->end, mpol_new);
2721 				n->end = start;
2722 				sp_insert(sp, n_new);
2723 				n_new = NULL;
2724 				mpol_new = NULL;
2725 				break;
2726 			} else
2727 				n->end = start;
2728 		}
2729 		if (!next)
2730 			break;
2731 		n = rb_entry(next, struct sp_node, nd);
2732 	}
2733 	if (new)
2734 		sp_insert(sp, new);
2735 	write_unlock(&sp->lock);
2736 	ret = 0;
2737 
2738 err_out:
2739 	if (mpol_new)
2740 		mpol_put(mpol_new);
2741 	if (n_new)
2742 		kmem_cache_free(sn_cache, n_new);
2743 
2744 	return ret;
2745 
2746 alloc_new:
2747 	write_unlock(&sp->lock);
2748 	ret = -ENOMEM;
2749 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2750 	if (!n_new)
2751 		goto err_out;
2752 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2753 	if (!mpol_new)
2754 		goto err_out;
2755 	atomic_set(&mpol_new->refcnt, 1);
2756 	goto restart;
2757 }
2758 
2759 /**
2760  * mpol_shared_policy_init - initialize shared policy for inode
2761  * @sp: pointer to inode shared policy
2762  * @mpol:  struct mempolicy to install
2763  *
2764  * Install non-NULL @mpol in inode's shared policy rb-tree.
2765  * On entry, the current task has a reference on a non-NULL @mpol.
2766  * This must be released on exit.
2767  * This is called at get_inode() calls and we can use GFP_KERNEL.
2768  */
2769 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2770 {
2771 	int ret;
2772 
2773 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2774 	rwlock_init(&sp->lock);
2775 
2776 	if (mpol) {
2777 		struct vm_area_struct pvma;
2778 		struct mempolicy *new;
2779 		NODEMASK_SCRATCH(scratch);
2780 
2781 		if (!scratch)
2782 			goto put_mpol;
2783 		/* contextualize the tmpfs mount point mempolicy */
2784 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2785 		if (IS_ERR(new))
2786 			goto free_scratch; /* no valid nodemask intersection */
2787 
2788 		task_lock(current);
2789 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2790 		task_unlock(current);
2791 		if (ret)
2792 			goto put_new;
2793 
2794 		/* Create pseudo-vma that contains just the policy */
2795 		vma_init(&pvma, NULL);
2796 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2797 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2798 
2799 put_new:
2800 		mpol_put(new);			/* drop initial ref */
2801 free_scratch:
2802 		NODEMASK_SCRATCH_FREE(scratch);
2803 put_mpol:
2804 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2805 	}
2806 }
2807 
2808 int mpol_set_shared_policy(struct shared_policy *info,
2809 			struct vm_area_struct *vma, struct mempolicy *npol)
2810 {
2811 	int err;
2812 	struct sp_node *new = NULL;
2813 	unsigned long sz = vma_pages(vma);
2814 
2815 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2816 		 vma->vm_pgoff,
2817 		 sz, npol ? npol->mode : -1,
2818 		 npol ? npol->flags : -1,
2819 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2820 
2821 	if (npol) {
2822 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2823 		if (!new)
2824 			return -ENOMEM;
2825 	}
2826 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2827 	if (err && new)
2828 		sp_free(new);
2829 	return err;
2830 }
2831 
2832 /* Free a backing policy store on inode delete. */
2833 void mpol_free_shared_policy(struct shared_policy *p)
2834 {
2835 	struct sp_node *n;
2836 	struct rb_node *next;
2837 
2838 	if (!p->root.rb_node)
2839 		return;
2840 	write_lock(&p->lock);
2841 	next = rb_first(&p->root);
2842 	while (next) {
2843 		n = rb_entry(next, struct sp_node, nd);
2844 		next = rb_next(&n->nd);
2845 		sp_delete(p, n);
2846 	}
2847 	write_unlock(&p->lock);
2848 }
2849 
2850 #ifdef CONFIG_NUMA_BALANCING
2851 static int __initdata numabalancing_override;
2852 
2853 static void __init check_numabalancing_enable(void)
2854 {
2855 	bool numabalancing_default = false;
2856 
2857 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2858 		numabalancing_default = true;
2859 
2860 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2861 	if (numabalancing_override)
2862 		set_numabalancing_state(numabalancing_override == 1);
2863 
2864 	if (num_online_nodes() > 1 && !numabalancing_override) {
2865 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2866 			numabalancing_default ? "Enabling" : "Disabling");
2867 		set_numabalancing_state(numabalancing_default);
2868 	}
2869 }
2870 
2871 static int __init setup_numabalancing(char *str)
2872 {
2873 	int ret = 0;
2874 	if (!str)
2875 		goto out;
2876 
2877 	if (!strcmp(str, "enable")) {
2878 		numabalancing_override = 1;
2879 		ret = 1;
2880 	} else if (!strcmp(str, "disable")) {
2881 		numabalancing_override = -1;
2882 		ret = 1;
2883 	}
2884 out:
2885 	if (!ret)
2886 		pr_warn("Unable to parse numa_balancing=\n");
2887 
2888 	return ret;
2889 }
2890 __setup("numa_balancing=", setup_numabalancing);
2891 #else
2892 static inline void __init check_numabalancing_enable(void)
2893 {
2894 }
2895 #endif /* CONFIG_NUMA_BALANCING */
2896 
2897 /* assumes fs == KERNEL_DS */
2898 void __init numa_policy_init(void)
2899 {
2900 	nodemask_t interleave_nodes;
2901 	unsigned long largest = 0;
2902 	int nid, prefer = 0;
2903 
2904 	policy_cache = kmem_cache_create("numa_policy",
2905 					 sizeof(struct mempolicy),
2906 					 0, SLAB_PANIC, NULL);
2907 
2908 	sn_cache = kmem_cache_create("shared_policy_node",
2909 				     sizeof(struct sp_node),
2910 				     0, SLAB_PANIC, NULL);
2911 
2912 	for_each_node(nid) {
2913 		preferred_node_policy[nid] = (struct mempolicy) {
2914 			.refcnt = ATOMIC_INIT(1),
2915 			.mode = MPOL_PREFERRED,
2916 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2917 			.nodes = nodemask_of_node(nid),
2918 		};
2919 	}
2920 
2921 	/*
2922 	 * Set interleaving policy for system init. Interleaving is only
2923 	 * enabled across suitably sized nodes (default is >= 16MB), or
2924 	 * fall back to the largest node if they're all smaller.
2925 	 */
2926 	nodes_clear(interleave_nodes);
2927 	for_each_node_state(nid, N_MEMORY) {
2928 		unsigned long total_pages = node_present_pages(nid);
2929 
2930 		/* Preserve the largest node */
2931 		if (largest < total_pages) {
2932 			largest = total_pages;
2933 			prefer = nid;
2934 		}
2935 
2936 		/* Interleave this node? */
2937 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2938 			node_set(nid, interleave_nodes);
2939 	}
2940 
2941 	/* All too small, use the largest */
2942 	if (unlikely(nodes_empty(interleave_nodes)))
2943 		node_set(prefer, interleave_nodes);
2944 
2945 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2946 		pr_err("%s: interleaving failed\n", __func__);
2947 
2948 	check_numabalancing_enable();
2949 }
2950 
2951 /* Reset policy of current process to default */
2952 void numa_default_policy(void)
2953 {
2954 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2955 }
2956 
2957 /*
2958  * Parse and format mempolicy from/to strings
2959  */
2960 
2961 static const char * const policy_modes[] =
2962 {
2963 	[MPOL_DEFAULT]    = "default",
2964 	[MPOL_PREFERRED]  = "prefer",
2965 	[MPOL_BIND]       = "bind",
2966 	[MPOL_INTERLEAVE] = "interleave",
2967 	[MPOL_LOCAL]      = "local",
2968 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2969 };
2970 
2971 
2972 #ifdef CONFIG_TMPFS
2973 /**
2974  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2975  * @str:  string containing mempolicy to parse
2976  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2977  *
2978  * Format of input:
2979  *	<mode>[=<flags>][:<nodelist>]
2980  *
2981  * Return: %0 on success, else %1
2982  */
2983 int mpol_parse_str(char *str, struct mempolicy **mpol)
2984 {
2985 	struct mempolicy *new = NULL;
2986 	unsigned short mode_flags;
2987 	nodemask_t nodes;
2988 	char *nodelist = strchr(str, ':');
2989 	char *flags = strchr(str, '=');
2990 	int err = 1, mode;
2991 
2992 	if (flags)
2993 		*flags++ = '\0';	/* terminate mode string */
2994 
2995 	if (nodelist) {
2996 		/* NUL-terminate mode or flags string */
2997 		*nodelist++ = '\0';
2998 		if (nodelist_parse(nodelist, nodes))
2999 			goto out;
3000 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3001 			goto out;
3002 	} else
3003 		nodes_clear(nodes);
3004 
3005 	mode = match_string(policy_modes, MPOL_MAX, str);
3006 	if (mode < 0)
3007 		goto out;
3008 
3009 	switch (mode) {
3010 	case MPOL_PREFERRED:
3011 		/*
3012 		 * Insist on a nodelist of one node only, although later
3013 		 * we use first_node(nodes) to grab a single node, so here
3014 		 * nodelist (or nodes) cannot be empty.
3015 		 */
3016 		if (nodelist) {
3017 			char *rest = nodelist;
3018 			while (isdigit(*rest))
3019 				rest++;
3020 			if (*rest)
3021 				goto out;
3022 			if (nodes_empty(nodes))
3023 				goto out;
3024 		}
3025 		break;
3026 	case MPOL_INTERLEAVE:
3027 		/*
3028 		 * Default to online nodes with memory if no nodelist
3029 		 */
3030 		if (!nodelist)
3031 			nodes = node_states[N_MEMORY];
3032 		break;
3033 	case MPOL_LOCAL:
3034 		/*
3035 		 * Don't allow a nodelist;  mpol_new() checks flags
3036 		 */
3037 		if (nodelist)
3038 			goto out;
3039 		break;
3040 	case MPOL_DEFAULT:
3041 		/*
3042 		 * Insist on a empty nodelist
3043 		 */
3044 		if (!nodelist)
3045 			err = 0;
3046 		goto out;
3047 	case MPOL_PREFERRED_MANY:
3048 	case MPOL_BIND:
3049 		/*
3050 		 * Insist on a nodelist
3051 		 */
3052 		if (!nodelist)
3053 			goto out;
3054 	}
3055 
3056 	mode_flags = 0;
3057 	if (flags) {
3058 		/*
3059 		 * Currently, we only support two mutually exclusive
3060 		 * mode flags.
3061 		 */
3062 		if (!strcmp(flags, "static"))
3063 			mode_flags |= MPOL_F_STATIC_NODES;
3064 		else if (!strcmp(flags, "relative"))
3065 			mode_flags |= MPOL_F_RELATIVE_NODES;
3066 		else
3067 			goto out;
3068 	}
3069 
3070 	new = mpol_new(mode, mode_flags, &nodes);
3071 	if (IS_ERR(new))
3072 		goto out;
3073 
3074 	/*
3075 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3076 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3077 	 */
3078 	if (mode != MPOL_PREFERRED) {
3079 		new->nodes = nodes;
3080 	} else if (nodelist) {
3081 		nodes_clear(new->nodes);
3082 		node_set(first_node(nodes), new->nodes);
3083 	} else {
3084 		new->mode = MPOL_LOCAL;
3085 	}
3086 
3087 	/*
3088 	 * Save nodes for contextualization: this will be used to "clone"
3089 	 * the mempolicy in a specific context [cpuset] at a later time.
3090 	 */
3091 	new->w.user_nodemask = nodes;
3092 
3093 	err = 0;
3094 
3095 out:
3096 	/* Restore string for error message */
3097 	if (nodelist)
3098 		*--nodelist = ':';
3099 	if (flags)
3100 		*--flags = '=';
3101 	if (!err)
3102 		*mpol = new;
3103 	return err;
3104 }
3105 #endif /* CONFIG_TMPFS */
3106 
3107 /**
3108  * mpol_to_str - format a mempolicy structure for printing
3109  * @buffer:  to contain formatted mempolicy string
3110  * @maxlen:  length of @buffer
3111  * @pol:  pointer to mempolicy to be formatted
3112  *
3113  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3114  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3115  * longest flag, "relative", and to display at least a few node ids.
3116  */
3117 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3118 {
3119 	char *p = buffer;
3120 	nodemask_t nodes = NODE_MASK_NONE;
3121 	unsigned short mode = MPOL_DEFAULT;
3122 	unsigned short flags = 0;
3123 
3124 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3125 		mode = pol->mode;
3126 		flags = pol->flags;
3127 	}
3128 
3129 	switch (mode) {
3130 	case MPOL_DEFAULT:
3131 	case MPOL_LOCAL:
3132 		break;
3133 	case MPOL_PREFERRED:
3134 	case MPOL_PREFERRED_MANY:
3135 	case MPOL_BIND:
3136 	case MPOL_INTERLEAVE:
3137 		nodes = pol->nodes;
3138 		break;
3139 	default:
3140 		WARN_ON_ONCE(1);
3141 		snprintf(p, maxlen, "unknown");
3142 		return;
3143 	}
3144 
3145 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3146 
3147 	if (flags & MPOL_MODE_FLAGS) {
3148 		p += snprintf(p, buffer + maxlen - p, "=");
3149 
3150 		/*
3151 		 * Currently, the only defined flags are mutually exclusive
3152 		 */
3153 		if (flags & MPOL_F_STATIC_NODES)
3154 			p += snprintf(p, buffer + maxlen - p, "static");
3155 		else if (flags & MPOL_F_RELATIVE_NODES)
3156 			p += snprintf(p, buffer + maxlen - p, "relative");
3157 	}
3158 
3159 	if (!nodes_empty(nodes))
3160 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3161 			       nodemask_pr_args(&nodes));
3162 }
3163