xref: /openbmc/linux/mm/mempolicy.c (revision e6c81cce)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 	return pol->flags & MPOL_MODE_FLAGS;
168 }
169 
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 				   const nodemask_t *rel)
172 {
173 	nodemask_t tmp;
174 	nodes_fold(tmp, *orig, nodes_weight(*rel));
175 	nodes_onto(*ret, tmp, *rel);
176 }
177 
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 	if (nodes_empty(*nodes))
181 		return -EINVAL;
182 	pol->v.nodes = *nodes;
183 	return 0;
184 }
185 
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (!nodes)
189 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
190 	else if (nodes_empty(*nodes))
191 		return -EINVAL;			/*  no allowed nodes */
192 	else
193 		pol->v.preferred_node = first_node(*nodes);
194 	return 0;
195 }
196 
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->v.nodes = *nodes;
202 	return 0;
203 }
204 
205 /*
206  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207  * any, for the new policy.  mpol_new() has already validated the nodes
208  * parameter with respect to the policy mode and flags.  But, we need to
209  * handle an empty nodemask with MPOL_PREFERRED here.
210  *
211  * Must be called holding task's alloc_lock to protect task's mems_allowed
212  * and mempolicy.  May also be called holding the mmap_semaphore for write.
213  */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 	int ret;
218 
219 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 	if (pol == NULL)
221 		return 0;
222 	/* Check N_MEMORY */
223 	nodes_and(nsc->mask1,
224 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 
226 	VM_BUG_ON(!nodes);
227 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 		nodes = NULL;	/* explicit local allocation */
229 	else {
230 		if (pol->flags & MPOL_F_RELATIVE_NODES)
231 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 		else
233 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 
235 		if (mpol_store_user_nodemask(pol))
236 			pol->w.user_nodemask = *nodes;
237 		else
238 			pol->w.cpuset_mems_allowed =
239 						cpuset_current_mems_allowed;
240 	}
241 
242 	if (nodes)
243 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 	else
245 		ret = mpol_ops[pol->mode].create(pol, NULL);
246 	return ret;
247 }
248 
249 /*
250  * This function just creates a new policy, does some check and simple
251  * initialization. You must invoke mpol_set_nodemask() to set nodes.
252  */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 				  nodemask_t *nodes)
255 {
256 	struct mempolicy *policy;
257 
258 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 
261 	if (mode == MPOL_DEFAULT) {
262 		if (nodes && !nodes_empty(*nodes))
263 			return ERR_PTR(-EINVAL);
264 		return NULL;
265 	}
266 	VM_BUG_ON(!nodes);
267 
268 	/*
269 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 	 * All other modes require a valid pointer to a non-empty nodemask.
272 	 */
273 	if (mode == MPOL_PREFERRED) {
274 		if (nodes_empty(*nodes)) {
275 			if (((flags & MPOL_F_STATIC_NODES) ||
276 			     (flags & MPOL_F_RELATIVE_NODES)))
277 				return ERR_PTR(-EINVAL);
278 		}
279 	} else if (mode == MPOL_LOCAL) {
280 		if (!nodes_empty(*nodes))
281 			return ERR_PTR(-EINVAL);
282 		mode = MPOL_PREFERRED;
283 	} else if (nodes_empty(*nodes))
284 		return ERR_PTR(-EINVAL);
285 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 	if (!policy)
287 		return ERR_PTR(-ENOMEM);
288 	atomic_set(&policy->refcnt, 1);
289 	policy->mode = mode;
290 	policy->flags = flags;
291 
292 	return policy;
293 }
294 
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 	if (!atomic_dec_and_test(&p->refcnt))
299 		return;
300 	kmem_cache_free(policy_cache, p);
301 }
302 
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 				enum mpol_rebind_step step)
305 {
306 }
307 
308 /*
309  * step:
310  * 	MPOL_REBIND_ONCE  - do rebind work at once
311  * 	MPOL_REBIND_STEP1 - set all the newly nodes
312  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
313  */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 				 enum mpol_rebind_step step)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		/*
325 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 		 * result
327 		 */
328 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 			nodes_remap(tmp, pol->v.nodes,
330 					pol->w.cpuset_mems_allowed, *nodes);
331 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 		} else if (step == MPOL_REBIND_STEP2) {
333 			tmp = pol->w.cpuset_mems_allowed;
334 			pol->w.cpuset_mems_allowed = *nodes;
335 		} else
336 			BUG();
337 	}
338 
339 	if (nodes_empty(tmp))
340 		tmp = *nodes;
341 
342 	if (step == MPOL_REBIND_STEP1)
343 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 		pol->v.nodes = tmp;
346 	else
347 		BUG();
348 
349 	if (!node_isset(current->il_next, tmp)) {
350 		current->il_next = next_node(current->il_next, tmp);
351 		if (current->il_next >= MAX_NUMNODES)
352 			current->il_next = first_node(tmp);
353 		if (current->il_next >= MAX_NUMNODES)
354 			current->il_next = numa_node_id();
355 	}
356 }
357 
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 				  const nodemask_t *nodes,
360 				  enum mpol_rebind_step step)
361 {
362 	nodemask_t tmp;
363 
364 	if (pol->flags & MPOL_F_STATIC_NODES) {
365 		int node = first_node(pol->w.user_nodemask);
366 
367 		if (node_isset(node, *nodes)) {
368 			pol->v.preferred_node = node;
369 			pol->flags &= ~MPOL_F_LOCAL;
370 		} else
371 			pol->flags |= MPOL_F_LOCAL;
372 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 		pol->v.preferred_node = first_node(tmp);
375 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
376 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 						   pol->w.cpuset_mems_allowed,
378 						   *nodes);
379 		pol->w.cpuset_mems_allowed = *nodes;
380 	}
381 }
382 
383 /*
384  * mpol_rebind_policy - Migrate a policy to a different set of nodes
385  *
386  * If read-side task has no lock to protect task->mempolicy, write-side
387  * task will rebind the task->mempolicy by two step. The first step is
388  * setting all the newly nodes, and the second step is cleaning all the
389  * disallowed nodes. In this way, we can avoid finding no node to alloc
390  * page.
391  * If we have a lock to protect task->mempolicy in read-side, we do
392  * rebind directly.
393  *
394  * step:
395  * 	MPOL_REBIND_ONCE  - do rebind work at once
396  * 	MPOL_REBIND_STEP1 - set all the newly nodes
397  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
398  */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 				enum mpol_rebind_step step)
401 {
402 	if (!pol)
403 		return;
404 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 		return;
407 
408 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 		return;
410 
411 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 		BUG();
413 
414 	if (step == MPOL_REBIND_STEP1)
415 		pol->flags |= MPOL_F_REBINDING;
416 	else if (step == MPOL_REBIND_STEP2)
417 		pol->flags &= ~MPOL_F_REBINDING;
418 	else if (step >= MPOL_REBIND_NSTEP)
419 		BUG();
420 
421 	mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423 
424 /*
425  * Wrapper for mpol_rebind_policy() that just requires task
426  * pointer, and updates task mempolicy.
427  *
428  * Called with task's alloc_lock held.
429  */
430 
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 			enum mpol_rebind_step step)
433 {
434 	mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436 
437 /*
438  * Rebind each vma in mm to new nodemask.
439  *
440  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
441  */
442 
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 	struct vm_area_struct *vma;
446 
447 	down_write(&mm->mmap_sem);
448 	for (vma = mm->mmap; vma; vma = vma->vm_next)
449 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 	up_write(&mm->mmap_sem);
451 }
452 
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 	[MPOL_DEFAULT] = {
455 		.rebind = mpol_rebind_default,
456 	},
457 	[MPOL_INTERLEAVE] = {
458 		.create = mpol_new_interleave,
459 		.rebind = mpol_rebind_nodemask,
460 	},
461 	[MPOL_PREFERRED] = {
462 		.create = mpol_new_preferred,
463 		.rebind = mpol_rebind_preferred,
464 	},
465 	[MPOL_BIND] = {
466 		.create = mpol_new_bind,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 };
470 
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 				unsigned long flags);
473 
474 struct queue_pages {
475 	struct list_head *pagelist;
476 	unsigned long flags;
477 	nodemask_t *nmask;
478 	struct vm_area_struct *prev;
479 };
480 
481 /*
482  * Scan through pages checking if pages follow certain conditions,
483  * and move them to the pagelist if they do.
484  */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 			unsigned long end, struct mm_walk *walk)
487 {
488 	struct vm_area_struct *vma = walk->vma;
489 	struct page *page;
490 	struct queue_pages *qp = walk->private;
491 	unsigned long flags = qp->flags;
492 	int nid;
493 	pte_t *pte;
494 	spinlock_t *ptl;
495 
496 	split_huge_page_pmd(vma, addr, pmd);
497 	if (pmd_trans_unstable(pmd))
498 		return 0;
499 
500 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 	for (; addr != end; pte++, addr += PAGE_SIZE) {
502 		if (!pte_present(*pte))
503 			continue;
504 		page = vm_normal_page(vma, addr, *pte);
505 		if (!page)
506 			continue;
507 		/*
508 		 * vm_normal_page() filters out zero pages, but there might
509 		 * still be PageReserved pages to skip, perhaps in a VDSO.
510 		 */
511 		if (PageReserved(page))
512 			continue;
513 		nid = page_to_nid(page);
514 		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 			continue;
516 
517 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 			migrate_page_add(page, qp->pagelist, flags);
519 	}
520 	pte_unmap_unlock(pte - 1, ptl);
521 	cond_resched();
522 	return 0;
523 }
524 
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 			       unsigned long addr, unsigned long end,
527 			       struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 	struct queue_pages *qp = walk->private;
531 	unsigned long flags = qp->flags;
532 	int nid;
533 	struct page *page;
534 	spinlock_t *ptl;
535 	pte_t entry;
536 
537 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 	entry = huge_ptep_get(pte);
539 	if (!pte_present(entry))
540 		goto unlock;
541 	page = pte_page(entry);
542 	nid = page_to_nid(page);
543 	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 		goto unlock;
545 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 	if (flags & (MPOL_MF_MOVE_ALL) ||
547 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 		isolate_huge_page(page, qp->pagelist);
549 unlock:
550 	spin_unlock(ptl);
551 #else
552 	BUG();
553 #endif
554 	return 0;
555 }
556 
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559  * This is used to mark a range of virtual addresses to be inaccessible.
560  * These are later cleared by a NUMA hinting fault. Depending on these
561  * faults, pages may be migrated for better NUMA placement.
562  *
563  * This is assuming that NUMA faults are handled using PROT_NONE. If
564  * an architecture makes a different choice, it will need further
565  * changes to the core.
566  */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 			unsigned long addr, unsigned long end)
569 {
570 	int nr_updated;
571 
572 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 	if (nr_updated)
574 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575 
576 	return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 			unsigned long addr, unsigned long end)
581 {
582 	return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585 
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 				struct mm_walk *walk)
588 {
589 	struct vm_area_struct *vma = walk->vma;
590 	struct queue_pages *qp = walk->private;
591 	unsigned long endvma = vma->vm_end;
592 	unsigned long flags = qp->flags;
593 
594 	if (vma->vm_flags & VM_PFNMAP)
595 		return 1;
596 
597 	if (endvma > end)
598 		endvma = end;
599 	if (vma->vm_start > start)
600 		start = vma->vm_start;
601 
602 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 		if (!vma->vm_next && vma->vm_end < end)
604 			return -EFAULT;
605 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 			return -EFAULT;
607 	}
608 
609 	qp->prev = vma;
610 
611 	if (vma->vm_flags & VM_PFNMAP)
612 		return 1;
613 
614 	if (flags & MPOL_MF_LAZY) {
615 		/* Similar to task_numa_work, skip inaccessible VMAs */
616 		if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 			change_prot_numa(vma, start, endvma);
618 		return 1;
619 	}
620 
621 	if ((flags & MPOL_MF_STRICT) ||
622 	    ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 	     vma_migratable(vma)))
624 		/* queue pages from current vma */
625 		return 0;
626 	return 1;
627 }
628 
629 /*
630  * Walk through page tables and collect pages to be migrated.
631  *
632  * If pages found in a given range are on a set of nodes (determined by
633  * @nodes and @flags,) it's isolated and queued to the pagelist which is
634  * passed via @private.)
635  */
636 static int
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 		nodemask_t *nodes, unsigned long flags,
639 		struct list_head *pagelist)
640 {
641 	struct queue_pages qp = {
642 		.pagelist = pagelist,
643 		.flags = flags,
644 		.nmask = nodes,
645 		.prev = NULL,
646 	};
647 	struct mm_walk queue_pages_walk = {
648 		.hugetlb_entry = queue_pages_hugetlb,
649 		.pmd_entry = queue_pages_pte_range,
650 		.test_walk = queue_pages_test_walk,
651 		.mm = mm,
652 		.private = &qp,
653 	};
654 
655 	return walk_page_range(start, end, &queue_pages_walk);
656 }
657 
658 /*
659  * Apply policy to a single VMA
660  * This must be called with the mmap_sem held for writing.
661  */
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 						struct mempolicy *pol)
664 {
665 	int err;
666 	struct mempolicy *old;
667 	struct mempolicy *new;
668 
669 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 		 vma->vm_ops, vma->vm_file,
672 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
673 
674 	new = mpol_dup(pol);
675 	if (IS_ERR(new))
676 		return PTR_ERR(new);
677 
678 	if (vma->vm_ops && vma->vm_ops->set_policy) {
679 		err = vma->vm_ops->set_policy(vma, new);
680 		if (err)
681 			goto err_out;
682 	}
683 
684 	old = vma->vm_policy;
685 	vma->vm_policy = new; /* protected by mmap_sem */
686 	mpol_put(old);
687 
688 	return 0;
689  err_out:
690 	mpol_put(new);
691 	return err;
692 }
693 
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 		       unsigned long end, struct mempolicy *new_pol)
697 {
698 	struct vm_area_struct *next;
699 	struct vm_area_struct *prev;
700 	struct vm_area_struct *vma;
701 	int err = 0;
702 	pgoff_t pgoff;
703 	unsigned long vmstart;
704 	unsigned long vmend;
705 
706 	vma = find_vma(mm, start);
707 	if (!vma || vma->vm_start > start)
708 		return -EFAULT;
709 
710 	prev = vma->vm_prev;
711 	if (start > vma->vm_start)
712 		prev = vma;
713 
714 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
715 		next = vma->vm_next;
716 		vmstart = max(start, vma->vm_start);
717 		vmend   = min(end, vma->vm_end);
718 
719 		if (mpol_equal(vma_policy(vma), new_pol))
720 			continue;
721 
722 		pgoff = vma->vm_pgoff +
723 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 				  vma->anon_vma, vma->vm_file, pgoff,
726 				  new_pol);
727 		if (prev) {
728 			vma = prev;
729 			next = vma->vm_next;
730 			if (mpol_equal(vma_policy(vma), new_pol))
731 				continue;
732 			/* vma_merge() joined vma && vma->next, case 8 */
733 			goto replace;
734 		}
735 		if (vma->vm_start != vmstart) {
736 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
737 			if (err)
738 				goto out;
739 		}
740 		if (vma->vm_end != vmend) {
741 			err = split_vma(vma->vm_mm, vma, vmend, 0);
742 			if (err)
743 				goto out;
744 		}
745  replace:
746 		err = vma_replace_policy(vma, new_pol);
747 		if (err)
748 			goto out;
749 	}
750 
751  out:
752 	return err;
753 }
754 
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 			     nodemask_t *nodes)
758 {
759 	struct mempolicy *new, *old;
760 	NODEMASK_SCRATCH(scratch);
761 	int ret;
762 
763 	if (!scratch)
764 		return -ENOMEM;
765 
766 	new = mpol_new(mode, flags, nodes);
767 	if (IS_ERR(new)) {
768 		ret = PTR_ERR(new);
769 		goto out;
770 	}
771 
772 	task_lock(current);
773 	ret = mpol_set_nodemask(new, nodes, scratch);
774 	if (ret) {
775 		task_unlock(current);
776 		mpol_put(new);
777 		goto out;
778 	}
779 	old = current->mempolicy;
780 	current->mempolicy = new;
781 	if (new && new->mode == MPOL_INTERLEAVE &&
782 	    nodes_weight(new->v.nodes))
783 		current->il_next = first_node(new->v.nodes);
784 	task_unlock(current);
785 	mpol_put(old);
786 	ret = 0;
787 out:
788 	NODEMASK_SCRATCH_FREE(scratch);
789 	return ret;
790 }
791 
792 /*
793  * Return nodemask for policy for get_mempolicy() query
794  *
795  * Called with task's alloc_lock held
796  */
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
798 {
799 	nodes_clear(*nodes);
800 	if (p == &default_policy)
801 		return;
802 
803 	switch (p->mode) {
804 	case MPOL_BIND:
805 		/* Fall through */
806 	case MPOL_INTERLEAVE:
807 		*nodes = p->v.nodes;
808 		break;
809 	case MPOL_PREFERRED:
810 		if (!(p->flags & MPOL_F_LOCAL))
811 			node_set(p->v.preferred_node, *nodes);
812 		/* else return empty node mask for local allocation */
813 		break;
814 	default:
815 		BUG();
816 	}
817 }
818 
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
820 {
821 	struct page *p;
822 	int err;
823 
824 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
825 	if (err >= 0) {
826 		err = page_to_nid(p);
827 		put_page(p);
828 	}
829 	return err;
830 }
831 
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 			     unsigned long addr, unsigned long flags)
835 {
836 	int err;
837 	struct mm_struct *mm = current->mm;
838 	struct vm_area_struct *vma = NULL;
839 	struct mempolicy *pol = current->mempolicy;
840 
841 	if (flags &
842 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 		return -EINVAL;
844 
845 	if (flags & MPOL_F_MEMS_ALLOWED) {
846 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
847 			return -EINVAL;
848 		*policy = 0;	/* just so it's initialized */
849 		task_lock(current);
850 		*nmask  = cpuset_current_mems_allowed;
851 		task_unlock(current);
852 		return 0;
853 	}
854 
855 	if (flags & MPOL_F_ADDR) {
856 		/*
857 		 * Do NOT fall back to task policy if the
858 		 * vma/shared policy at addr is NULL.  We
859 		 * want to return MPOL_DEFAULT in this case.
860 		 */
861 		down_read(&mm->mmap_sem);
862 		vma = find_vma_intersection(mm, addr, addr+1);
863 		if (!vma) {
864 			up_read(&mm->mmap_sem);
865 			return -EFAULT;
866 		}
867 		if (vma->vm_ops && vma->vm_ops->get_policy)
868 			pol = vma->vm_ops->get_policy(vma, addr);
869 		else
870 			pol = vma->vm_policy;
871 	} else if (addr)
872 		return -EINVAL;
873 
874 	if (!pol)
875 		pol = &default_policy;	/* indicates default behavior */
876 
877 	if (flags & MPOL_F_NODE) {
878 		if (flags & MPOL_F_ADDR) {
879 			err = lookup_node(mm, addr);
880 			if (err < 0)
881 				goto out;
882 			*policy = err;
883 		} else if (pol == current->mempolicy &&
884 				pol->mode == MPOL_INTERLEAVE) {
885 			*policy = current->il_next;
886 		} else {
887 			err = -EINVAL;
888 			goto out;
889 		}
890 	} else {
891 		*policy = pol == &default_policy ? MPOL_DEFAULT :
892 						pol->mode;
893 		/*
894 		 * Internal mempolicy flags must be masked off before exposing
895 		 * the policy to userspace.
896 		 */
897 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
898 	}
899 
900 	if (vma) {
901 		up_read(&current->mm->mmap_sem);
902 		vma = NULL;
903 	}
904 
905 	err = 0;
906 	if (nmask) {
907 		if (mpol_store_user_nodemask(pol)) {
908 			*nmask = pol->w.user_nodemask;
909 		} else {
910 			task_lock(current);
911 			get_policy_nodemask(pol, nmask);
912 			task_unlock(current);
913 		}
914 	}
915 
916  out:
917 	mpol_cond_put(pol);
918 	if (vma)
919 		up_read(&current->mm->mmap_sem);
920 	return err;
921 }
922 
923 #ifdef CONFIG_MIGRATION
924 /*
925  * page migration
926  */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 				unsigned long flags)
929 {
930 	/*
931 	 * Avoid migrating a page that is shared with others.
932 	 */
933 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 		if (!isolate_lru_page(page)) {
935 			list_add_tail(&page->lru, pagelist);
936 			inc_zone_page_state(page, NR_ISOLATED_ANON +
937 					    page_is_file_cache(page));
938 		}
939 	}
940 }
941 
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
943 {
944 	if (PageHuge(page))
945 		return alloc_huge_page_node(page_hstate(compound_head(page)),
946 					node);
947 	else
948 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE |
949 						    __GFP_THISNODE, 0);
950 }
951 
952 /*
953  * Migrate pages from one node to a target node.
954  * Returns error or the number of pages not migrated.
955  */
956 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
957 			   int flags)
958 {
959 	nodemask_t nmask;
960 	LIST_HEAD(pagelist);
961 	int err = 0;
962 
963 	nodes_clear(nmask);
964 	node_set(source, nmask);
965 
966 	/*
967 	 * This does not "check" the range but isolates all pages that
968 	 * need migration.  Between passing in the full user address
969 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
970 	 */
971 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
972 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
973 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
974 
975 	if (!list_empty(&pagelist)) {
976 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
977 					MIGRATE_SYNC, MR_SYSCALL);
978 		if (err)
979 			putback_movable_pages(&pagelist);
980 	}
981 
982 	return err;
983 }
984 
985 /*
986  * Move pages between the two nodesets so as to preserve the physical
987  * layout as much as possible.
988  *
989  * Returns the number of page that could not be moved.
990  */
991 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
992 		     const nodemask_t *to, int flags)
993 {
994 	int busy = 0;
995 	int err;
996 	nodemask_t tmp;
997 
998 	err = migrate_prep();
999 	if (err)
1000 		return err;
1001 
1002 	down_read(&mm->mmap_sem);
1003 
1004 	/*
1005 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1006 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1007 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1008 	 * The pair of nodemasks 'to' and 'from' define the map.
1009 	 *
1010 	 * If no pair of bits is found that way, fallback to picking some
1011 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1012 	 * 'source' and 'dest' bits are the same, this represents a node
1013 	 * that will be migrating to itself, so no pages need move.
1014 	 *
1015 	 * If no bits are left in 'tmp', or if all remaining bits left
1016 	 * in 'tmp' correspond to the same bit in 'to', return false
1017 	 * (nothing left to migrate).
1018 	 *
1019 	 * This lets us pick a pair of nodes to migrate between, such that
1020 	 * if possible the dest node is not already occupied by some other
1021 	 * source node, minimizing the risk of overloading the memory on a
1022 	 * node that would happen if we migrated incoming memory to a node
1023 	 * before migrating outgoing memory source that same node.
1024 	 *
1025 	 * A single scan of tmp is sufficient.  As we go, we remember the
1026 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1027 	 * that not only moved, but what's better, moved to an empty slot
1028 	 * (d is not set in tmp), then we break out then, with that pair.
1029 	 * Otherwise when we finish scanning from_tmp, we at least have the
1030 	 * most recent <s, d> pair that moved.  If we get all the way through
1031 	 * the scan of tmp without finding any node that moved, much less
1032 	 * moved to an empty node, then there is nothing left worth migrating.
1033 	 */
1034 
1035 	tmp = *from;
1036 	while (!nodes_empty(tmp)) {
1037 		int s,d;
1038 		int source = NUMA_NO_NODE;
1039 		int dest = 0;
1040 
1041 		for_each_node_mask(s, tmp) {
1042 
1043 			/*
1044 			 * do_migrate_pages() tries to maintain the relative
1045 			 * node relationship of the pages established between
1046 			 * threads and memory areas.
1047                          *
1048 			 * However if the number of source nodes is not equal to
1049 			 * the number of destination nodes we can not preserve
1050 			 * this node relative relationship.  In that case, skip
1051 			 * copying memory from a node that is in the destination
1052 			 * mask.
1053 			 *
1054 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1055 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1056 			 */
1057 
1058 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1059 						(node_isset(s, *to)))
1060 				continue;
1061 
1062 			d = node_remap(s, *from, *to);
1063 			if (s == d)
1064 				continue;
1065 
1066 			source = s;	/* Node moved. Memorize */
1067 			dest = d;
1068 
1069 			/* dest not in remaining from nodes? */
1070 			if (!node_isset(dest, tmp))
1071 				break;
1072 		}
1073 		if (source == NUMA_NO_NODE)
1074 			break;
1075 
1076 		node_clear(source, tmp);
1077 		err = migrate_to_node(mm, source, dest, flags);
1078 		if (err > 0)
1079 			busy += err;
1080 		if (err < 0)
1081 			break;
1082 	}
1083 	up_read(&mm->mmap_sem);
1084 	if (err < 0)
1085 		return err;
1086 	return busy;
1087 
1088 }
1089 
1090 /*
1091  * Allocate a new page for page migration based on vma policy.
1092  * Start by assuming the page is mapped by the same vma as contains @start.
1093  * Search forward from there, if not.  N.B., this assumes that the
1094  * list of pages handed to migrate_pages()--which is how we get here--
1095  * is in virtual address order.
1096  */
1097 static struct page *new_page(struct page *page, unsigned long start, int **x)
1098 {
1099 	struct vm_area_struct *vma;
1100 	unsigned long uninitialized_var(address);
1101 
1102 	vma = find_vma(current->mm, start);
1103 	while (vma) {
1104 		address = page_address_in_vma(page, vma);
1105 		if (address != -EFAULT)
1106 			break;
1107 		vma = vma->vm_next;
1108 	}
1109 
1110 	if (PageHuge(page)) {
1111 		BUG_ON(!vma);
1112 		return alloc_huge_page_noerr(vma, address, 1);
1113 	}
1114 	/*
1115 	 * if !vma, alloc_page_vma() will use task or system default policy
1116 	 */
1117 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1118 }
1119 #else
1120 
1121 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1122 				unsigned long flags)
1123 {
1124 }
1125 
1126 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1127 		     const nodemask_t *to, int flags)
1128 {
1129 	return -ENOSYS;
1130 }
1131 
1132 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 {
1134 	return NULL;
1135 }
1136 #endif
1137 
1138 static long do_mbind(unsigned long start, unsigned long len,
1139 		     unsigned short mode, unsigned short mode_flags,
1140 		     nodemask_t *nmask, unsigned long flags)
1141 {
1142 	struct mm_struct *mm = current->mm;
1143 	struct mempolicy *new;
1144 	unsigned long end;
1145 	int err;
1146 	LIST_HEAD(pagelist);
1147 
1148 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1149 		return -EINVAL;
1150 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1151 		return -EPERM;
1152 
1153 	if (start & ~PAGE_MASK)
1154 		return -EINVAL;
1155 
1156 	if (mode == MPOL_DEFAULT)
1157 		flags &= ~MPOL_MF_STRICT;
1158 
1159 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1160 	end = start + len;
1161 
1162 	if (end < start)
1163 		return -EINVAL;
1164 	if (end == start)
1165 		return 0;
1166 
1167 	new = mpol_new(mode, mode_flags, nmask);
1168 	if (IS_ERR(new))
1169 		return PTR_ERR(new);
1170 
1171 	if (flags & MPOL_MF_LAZY)
1172 		new->flags |= MPOL_F_MOF;
1173 
1174 	/*
1175 	 * If we are using the default policy then operation
1176 	 * on discontinuous address spaces is okay after all
1177 	 */
1178 	if (!new)
1179 		flags |= MPOL_MF_DISCONTIG_OK;
1180 
1181 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1182 		 start, start + len, mode, mode_flags,
1183 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1184 
1185 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1186 
1187 		err = migrate_prep();
1188 		if (err)
1189 			goto mpol_out;
1190 	}
1191 	{
1192 		NODEMASK_SCRATCH(scratch);
1193 		if (scratch) {
1194 			down_write(&mm->mmap_sem);
1195 			task_lock(current);
1196 			err = mpol_set_nodemask(new, nmask, scratch);
1197 			task_unlock(current);
1198 			if (err)
1199 				up_write(&mm->mmap_sem);
1200 		} else
1201 			err = -ENOMEM;
1202 		NODEMASK_SCRATCH_FREE(scratch);
1203 	}
1204 	if (err)
1205 		goto mpol_out;
1206 
1207 	err = queue_pages_range(mm, start, end, nmask,
1208 			  flags | MPOL_MF_INVERT, &pagelist);
1209 	if (!err)
1210 		err = mbind_range(mm, start, end, new);
1211 
1212 	if (!err) {
1213 		int nr_failed = 0;
1214 
1215 		if (!list_empty(&pagelist)) {
1216 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1217 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1218 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1219 			if (nr_failed)
1220 				putback_movable_pages(&pagelist);
1221 		}
1222 
1223 		if (nr_failed && (flags & MPOL_MF_STRICT))
1224 			err = -EIO;
1225 	} else
1226 		putback_movable_pages(&pagelist);
1227 
1228 	up_write(&mm->mmap_sem);
1229  mpol_out:
1230 	mpol_put(new);
1231 	return err;
1232 }
1233 
1234 /*
1235  * User space interface with variable sized bitmaps for nodelists.
1236  */
1237 
1238 /* Copy a node mask from user space. */
1239 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1240 		     unsigned long maxnode)
1241 {
1242 	unsigned long k;
1243 	unsigned long nlongs;
1244 	unsigned long endmask;
1245 
1246 	--maxnode;
1247 	nodes_clear(*nodes);
1248 	if (maxnode == 0 || !nmask)
1249 		return 0;
1250 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 		return -EINVAL;
1252 
1253 	nlongs = BITS_TO_LONGS(maxnode);
1254 	if ((maxnode % BITS_PER_LONG) == 0)
1255 		endmask = ~0UL;
1256 	else
1257 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258 
1259 	/* When the user specified more nodes than supported just check
1260 	   if the non supported part is all zero. */
1261 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1262 		if (nlongs > PAGE_SIZE/sizeof(long))
1263 			return -EINVAL;
1264 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1265 			unsigned long t;
1266 			if (get_user(t, nmask + k))
1267 				return -EFAULT;
1268 			if (k == nlongs - 1) {
1269 				if (t & endmask)
1270 					return -EINVAL;
1271 			} else if (t)
1272 				return -EINVAL;
1273 		}
1274 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1275 		endmask = ~0UL;
1276 	}
1277 
1278 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1279 		return -EFAULT;
1280 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1281 	return 0;
1282 }
1283 
1284 /* Copy a kernel node mask to user space */
1285 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1286 			      nodemask_t *nodes)
1287 {
1288 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1289 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1290 
1291 	if (copy > nbytes) {
1292 		if (copy > PAGE_SIZE)
1293 			return -EINVAL;
1294 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1295 			return -EFAULT;
1296 		copy = nbytes;
1297 	}
1298 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1299 }
1300 
1301 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1302 		unsigned long, mode, const unsigned long __user *, nmask,
1303 		unsigned long, maxnode, unsigned, flags)
1304 {
1305 	nodemask_t nodes;
1306 	int err;
1307 	unsigned short mode_flags;
1308 
1309 	mode_flags = mode & MPOL_MODE_FLAGS;
1310 	mode &= ~MPOL_MODE_FLAGS;
1311 	if (mode >= MPOL_MAX)
1312 		return -EINVAL;
1313 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1314 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1315 		return -EINVAL;
1316 	err = get_nodes(&nodes, nmask, maxnode);
1317 	if (err)
1318 		return err;
1319 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1320 }
1321 
1322 /* Set the process memory policy */
1323 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1324 		unsigned long, maxnode)
1325 {
1326 	int err;
1327 	nodemask_t nodes;
1328 	unsigned short flags;
1329 
1330 	flags = mode & MPOL_MODE_FLAGS;
1331 	mode &= ~MPOL_MODE_FLAGS;
1332 	if ((unsigned int)mode >= MPOL_MAX)
1333 		return -EINVAL;
1334 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1335 		return -EINVAL;
1336 	err = get_nodes(&nodes, nmask, maxnode);
1337 	if (err)
1338 		return err;
1339 	return do_set_mempolicy(mode, flags, &nodes);
1340 }
1341 
1342 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1343 		const unsigned long __user *, old_nodes,
1344 		const unsigned long __user *, new_nodes)
1345 {
1346 	const struct cred *cred = current_cred(), *tcred;
1347 	struct mm_struct *mm = NULL;
1348 	struct task_struct *task;
1349 	nodemask_t task_nodes;
1350 	int err;
1351 	nodemask_t *old;
1352 	nodemask_t *new;
1353 	NODEMASK_SCRATCH(scratch);
1354 
1355 	if (!scratch)
1356 		return -ENOMEM;
1357 
1358 	old = &scratch->mask1;
1359 	new = &scratch->mask2;
1360 
1361 	err = get_nodes(old, old_nodes, maxnode);
1362 	if (err)
1363 		goto out;
1364 
1365 	err = get_nodes(new, new_nodes, maxnode);
1366 	if (err)
1367 		goto out;
1368 
1369 	/* Find the mm_struct */
1370 	rcu_read_lock();
1371 	task = pid ? find_task_by_vpid(pid) : current;
1372 	if (!task) {
1373 		rcu_read_unlock();
1374 		err = -ESRCH;
1375 		goto out;
1376 	}
1377 	get_task_struct(task);
1378 
1379 	err = -EINVAL;
1380 
1381 	/*
1382 	 * Check if this process has the right to modify the specified
1383 	 * process. The right exists if the process has administrative
1384 	 * capabilities, superuser privileges or the same
1385 	 * userid as the target process.
1386 	 */
1387 	tcred = __task_cred(task);
1388 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1389 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1390 	    !capable(CAP_SYS_NICE)) {
1391 		rcu_read_unlock();
1392 		err = -EPERM;
1393 		goto out_put;
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	task_nodes = cpuset_mems_allowed(task);
1398 	/* Is the user allowed to access the target nodes? */
1399 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1400 		err = -EPERM;
1401 		goto out_put;
1402 	}
1403 
1404 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1405 		err = -EINVAL;
1406 		goto out_put;
1407 	}
1408 
1409 	err = security_task_movememory(task);
1410 	if (err)
1411 		goto out_put;
1412 
1413 	mm = get_task_mm(task);
1414 	put_task_struct(task);
1415 
1416 	if (!mm) {
1417 		err = -EINVAL;
1418 		goto out;
1419 	}
1420 
1421 	err = do_migrate_pages(mm, old, new,
1422 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1423 
1424 	mmput(mm);
1425 out:
1426 	NODEMASK_SCRATCH_FREE(scratch);
1427 
1428 	return err;
1429 
1430 out_put:
1431 	put_task_struct(task);
1432 	goto out;
1433 
1434 }
1435 
1436 
1437 /* Retrieve NUMA policy */
1438 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1439 		unsigned long __user *, nmask, unsigned long, maxnode,
1440 		unsigned long, addr, unsigned long, flags)
1441 {
1442 	int err;
1443 	int uninitialized_var(pval);
1444 	nodemask_t nodes;
1445 
1446 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1447 		return -EINVAL;
1448 
1449 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1450 
1451 	if (err)
1452 		return err;
1453 
1454 	if (policy && put_user(pval, policy))
1455 		return -EFAULT;
1456 
1457 	if (nmask)
1458 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1459 
1460 	return err;
1461 }
1462 
1463 #ifdef CONFIG_COMPAT
1464 
1465 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1466 		       compat_ulong_t __user *, nmask,
1467 		       compat_ulong_t, maxnode,
1468 		       compat_ulong_t, addr, compat_ulong_t, flags)
1469 {
1470 	long err;
1471 	unsigned long __user *nm = NULL;
1472 	unsigned long nr_bits, alloc_size;
1473 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1474 
1475 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1476 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1477 
1478 	if (nmask)
1479 		nm = compat_alloc_user_space(alloc_size);
1480 
1481 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1482 
1483 	if (!err && nmask) {
1484 		unsigned long copy_size;
1485 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1486 		err = copy_from_user(bm, nm, copy_size);
1487 		/* ensure entire bitmap is zeroed */
1488 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1489 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1490 	}
1491 
1492 	return err;
1493 }
1494 
1495 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1496 		       compat_ulong_t, maxnode)
1497 {
1498 	long err = 0;
1499 	unsigned long __user *nm = NULL;
1500 	unsigned long nr_bits, alloc_size;
1501 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1502 
1503 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1504 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1505 
1506 	if (nmask) {
1507 		err = compat_get_bitmap(bm, nmask, nr_bits);
1508 		nm = compat_alloc_user_space(alloc_size);
1509 		err |= copy_to_user(nm, bm, alloc_size);
1510 	}
1511 
1512 	if (err)
1513 		return -EFAULT;
1514 
1515 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1516 }
1517 
1518 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1519 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1520 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1521 {
1522 	long err = 0;
1523 	unsigned long __user *nm = NULL;
1524 	unsigned long nr_bits, alloc_size;
1525 	nodemask_t bm;
1526 
1527 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1528 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529 
1530 	if (nmask) {
1531 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1532 		nm = compat_alloc_user_space(alloc_size);
1533 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1534 	}
1535 
1536 	if (err)
1537 		return -EFAULT;
1538 
1539 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1540 }
1541 
1542 #endif
1543 
1544 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1545 						unsigned long addr)
1546 {
1547 	struct mempolicy *pol = NULL;
1548 
1549 	if (vma) {
1550 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 			pol = vma->vm_ops->get_policy(vma, addr);
1552 		} else if (vma->vm_policy) {
1553 			pol = vma->vm_policy;
1554 
1555 			/*
1556 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1557 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1558 			 * count on these policies which will be dropped by
1559 			 * mpol_cond_put() later
1560 			 */
1561 			if (mpol_needs_cond_ref(pol))
1562 				mpol_get(pol);
1563 		}
1564 	}
1565 
1566 	return pol;
1567 }
1568 
1569 /*
1570  * get_vma_policy(@vma, @addr)
1571  * @vma: virtual memory area whose policy is sought
1572  * @addr: address in @vma for shared policy lookup
1573  *
1574  * Returns effective policy for a VMA at specified address.
1575  * Falls back to current->mempolicy or system default policy, as necessary.
1576  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1577  * count--added by the get_policy() vm_op, as appropriate--to protect against
1578  * freeing by another task.  It is the caller's responsibility to free the
1579  * extra reference for shared policies.
1580  */
1581 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1582 						unsigned long addr)
1583 {
1584 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1585 
1586 	if (!pol)
1587 		pol = get_task_policy(current);
1588 
1589 	return pol;
1590 }
1591 
1592 bool vma_policy_mof(struct vm_area_struct *vma)
1593 {
1594 	struct mempolicy *pol;
1595 
1596 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1597 		bool ret = false;
1598 
1599 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1600 		if (pol && (pol->flags & MPOL_F_MOF))
1601 			ret = true;
1602 		mpol_cond_put(pol);
1603 
1604 		return ret;
1605 	}
1606 
1607 	pol = vma->vm_policy;
1608 	if (!pol)
1609 		pol = get_task_policy(current);
1610 
1611 	return pol->flags & MPOL_F_MOF;
1612 }
1613 
1614 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1615 {
1616 	enum zone_type dynamic_policy_zone = policy_zone;
1617 
1618 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1619 
1620 	/*
1621 	 * if policy->v.nodes has movable memory only,
1622 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1623 	 *
1624 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1625 	 * so if the following test faile, it implies
1626 	 * policy->v.nodes has movable memory only.
1627 	 */
1628 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1629 		dynamic_policy_zone = ZONE_MOVABLE;
1630 
1631 	return zone >= dynamic_policy_zone;
1632 }
1633 
1634 /*
1635  * Return a nodemask representing a mempolicy for filtering nodes for
1636  * page allocation
1637  */
1638 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1639 {
1640 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1641 	if (unlikely(policy->mode == MPOL_BIND) &&
1642 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1643 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1644 		return &policy->v.nodes;
1645 
1646 	return NULL;
1647 }
1648 
1649 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1650 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1651 	int nd)
1652 {
1653 	switch (policy->mode) {
1654 	case MPOL_PREFERRED:
1655 		if (!(policy->flags & MPOL_F_LOCAL))
1656 			nd = policy->v.preferred_node;
1657 		break;
1658 	case MPOL_BIND:
1659 		/*
1660 		 * Normally, MPOL_BIND allocations are node-local within the
1661 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1662 		 * current node isn't part of the mask, we use the zonelist for
1663 		 * the first node in the mask instead.
1664 		 */
1665 		if (unlikely(gfp & __GFP_THISNODE) &&
1666 				unlikely(!node_isset(nd, policy->v.nodes)))
1667 			nd = first_node(policy->v.nodes);
1668 		break;
1669 	default:
1670 		BUG();
1671 	}
1672 	return node_zonelist(nd, gfp);
1673 }
1674 
1675 /* Do dynamic interleaving for a process */
1676 static unsigned interleave_nodes(struct mempolicy *policy)
1677 {
1678 	unsigned nid, next;
1679 	struct task_struct *me = current;
1680 
1681 	nid = me->il_next;
1682 	next = next_node(nid, policy->v.nodes);
1683 	if (next >= MAX_NUMNODES)
1684 		next = first_node(policy->v.nodes);
1685 	if (next < MAX_NUMNODES)
1686 		me->il_next = next;
1687 	return nid;
1688 }
1689 
1690 /*
1691  * Depending on the memory policy provide a node from which to allocate the
1692  * next slab entry.
1693  */
1694 unsigned int mempolicy_slab_node(void)
1695 {
1696 	struct mempolicy *policy;
1697 	int node = numa_mem_id();
1698 
1699 	if (in_interrupt())
1700 		return node;
1701 
1702 	policy = current->mempolicy;
1703 	if (!policy || policy->flags & MPOL_F_LOCAL)
1704 		return node;
1705 
1706 	switch (policy->mode) {
1707 	case MPOL_PREFERRED:
1708 		/*
1709 		 * handled MPOL_F_LOCAL above
1710 		 */
1711 		return policy->v.preferred_node;
1712 
1713 	case MPOL_INTERLEAVE:
1714 		return interleave_nodes(policy);
1715 
1716 	case MPOL_BIND: {
1717 		/*
1718 		 * Follow bind policy behavior and start allocation at the
1719 		 * first node.
1720 		 */
1721 		struct zonelist *zonelist;
1722 		struct zone *zone;
1723 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1724 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1725 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1726 							&policy->v.nodes,
1727 							&zone);
1728 		return zone ? zone->node : node;
1729 	}
1730 
1731 	default:
1732 		BUG();
1733 	}
1734 }
1735 
1736 /* Do static interleaving for a VMA with known offset. */
1737 static unsigned offset_il_node(struct mempolicy *pol,
1738 		struct vm_area_struct *vma, unsigned long off)
1739 {
1740 	unsigned nnodes = nodes_weight(pol->v.nodes);
1741 	unsigned target;
1742 	int c;
1743 	int nid = NUMA_NO_NODE;
1744 
1745 	if (!nnodes)
1746 		return numa_node_id();
1747 	target = (unsigned int)off % nnodes;
1748 	c = 0;
1749 	do {
1750 		nid = next_node(nid, pol->v.nodes);
1751 		c++;
1752 	} while (c <= target);
1753 	return nid;
1754 }
1755 
1756 /* Determine a node number for interleave */
1757 static inline unsigned interleave_nid(struct mempolicy *pol,
1758 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1759 {
1760 	if (vma) {
1761 		unsigned long off;
1762 
1763 		/*
1764 		 * for small pages, there is no difference between
1765 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1766 		 * for huge pages, since vm_pgoff is in units of small
1767 		 * pages, we need to shift off the always 0 bits to get
1768 		 * a useful offset.
1769 		 */
1770 		BUG_ON(shift < PAGE_SHIFT);
1771 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1772 		off += (addr - vma->vm_start) >> shift;
1773 		return offset_il_node(pol, vma, off);
1774 	} else
1775 		return interleave_nodes(pol);
1776 }
1777 
1778 /*
1779  * Return the bit number of a random bit set in the nodemask.
1780  * (returns NUMA_NO_NODE if nodemask is empty)
1781  */
1782 int node_random(const nodemask_t *maskp)
1783 {
1784 	int w, bit = NUMA_NO_NODE;
1785 
1786 	w = nodes_weight(*maskp);
1787 	if (w)
1788 		bit = bitmap_ord_to_pos(maskp->bits,
1789 			get_random_int() % w, MAX_NUMNODES);
1790 	return bit;
1791 }
1792 
1793 #ifdef CONFIG_HUGETLBFS
1794 /*
1795  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1796  * @vma: virtual memory area whose policy is sought
1797  * @addr: address in @vma for shared policy lookup and interleave policy
1798  * @gfp_flags: for requested zone
1799  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1800  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1801  *
1802  * Returns a zonelist suitable for a huge page allocation and a pointer
1803  * to the struct mempolicy for conditional unref after allocation.
1804  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1805  * @nodemask for filtering the zonelist.
1806  *
1807  * Must be protected by read_mems_allowed_begin()
1808  */
1809 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1810 				gfp_t gfp_flags, struct mempolicy **mpol,
1811 				nodemask_t **nodemask)
1812 {
1813 	struct zonelist *zl;
1814 
1815 	*mpol = get_vma_policy(vma, addr);
1816 	*nodemask = NULL;	/* assume !MPOL_BIND */
1817 
1818 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1819 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1820 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1821 	} else {
1822 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1823 		if ((*mpol)->mode == MPOL_BIND)
1824 			*nodemask = &(*mpol)->v.nodes;
1825 	}
1826 	return zl;
1827 }
1828 
1829 /*
1830  * init_nodemask_of_mempolicy
1831  *
1832  * If the current task's mempolicy is "default" [NULL], return 'false'
1833  * to indicate default policy.  Otherwise, extract the policy nodemask
1834  * for 'bind' or 'interleave' policy into the argument nodemask, or
1835  * initialize the argument nodemask to contain the single node for
1836  * 'preferred' or 'local' policy and return 'true' to indicate presence
1837  * of non-default mempolicy.
1838  *
1839  * We don't bother with reference counting the mempolicy [mpol_get/put]
1840  * because the current task is examining it's own mempolicy and a task's
1841  * mempolicy is only ever changed by the task itself.
1842  *
1843  * N.B., it is the caller's responsibility to free a returned nodemask.
1844  */
1845 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1846 {
1847 	struct mempolicy *mempolicy;
1848 	int nid;
1849 
1850 	if (!(mask && current->mempolicy))
1851 		return false;
1852 
1853 	task_lock(current);
1854 	mempolicy = current->mempolicy;
1855 	switch (mempolicy->mode) {
1856 	case MPOL_PREFERRED:
1857 		if (mempolicy->flags & MPOL_F_LOCAL)
1858 			nid = numa_node_id();
1859 		else
1860 			nid = mempolicy->v.preferred_node;
1861 		init_nodemask_of_node(mask, nid);
1862 		break;
1863 
1864 	case MPOL_BIND:
1865 		/* Fall through */
1866 	case MPOL_INTERLEAVE:
1867 		*mask =  mempolicy->v.nodes;
1868 		break;
1869 
1870 	default:
1871 		BUG();
1872 	}
1873 	task_unlock(current);
1874 
1875 	return true;
1876 }
1877 #endif
1878 
1879 /*
1880  * mempolicy_nodemask_intersects
1881  *
1882  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1883  * policy.  Otherwise, check for intersection between mask and the policy
1884  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1885  * policy, always return true since it may allocate elsewhere on fallback.
1886  *
1887  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1888  */
1889 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1890 					const nodemask_t *mask)
1891 {
1892 	struct mempolicy *mempolicy;
1893 	bool ret = true;
1894 
1895 	if (!mask)
1896 		return ret;
1897 	task_lock(tsk);
1898 	mempolicy = tsk->mempolicy;
1899 	if (!mempolicy)
1900 		goto out;
1901 
1902 	switch (mempolicy->mode) {
1903 	case MPOL_PREFERRED:
1904 		/*
1905 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1906 		 * allocate from, they may fallback to other nodes when oom.
1907 		 * Thus, it's possible for tsk to have allocated memory from
1908 		 * nodes in mask.
1909 		 */
1910 		break;
1911 	case MPOL_BIND:
1912 	case MPOL_INTERLEAVE:
1913 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1914 		break;
1915 	default:
1916 		BUG();
1917 	}
1918 out:
1919 	task_unlock(tsk);
1920 	return ret;
1921 }
1922 
1923 /* Allocate a page in interleaved policy.
1924    Own path because it needs to do special accounting. */
1925 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1926 					unsigned nid)
1927 {
1928 	struct zonelist *zl;
1929 	struct page *page;
1930 
1931 	zl = node_zonelist(nid, gfp);
1932 	page = __alloc_pages(gfp, order, zl);
1933 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1934 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1935 	return page;
1936 }
1937 
1938 /**
1939  * 	alloc_pages_vma	- Allocate a page for a VMA.
1940  *
1941  * 	@gfp:
1942  *      %GFP_USER    user allocation.
1943  *      %GFP_KERNEL  kernel allocations,
1944  *      %GFP_HIGHMEM highmem/user allocations,
1945  *      %GFP_FS      allocation should not call back into a file system.
1946  *      %GFP_ATOMIC  don't sleep.
1947  *
1948  *	@order:Order of the GFP allocation.
1949  * 	@vma:  Pointer to VMA or NULL if not available.
1950  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1951  *	@node: Which node to prefer for allocation (modulo policy).
1952  *	@hugepage: for hugepages try only the preferred node if possible
1953  *
1954  * 	This function allocates a page from the kernel page pool and applies
1955  *	a NUMA policy associated with the VMA or the current process.
1956  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1957  *	mm_struct of the VMA to prevent it from going away. Should be used for
1958  *	all allocations for pages that will be mapped into user space. Returns
1959  *	NULL when no page can be allocated.
1960  */
1961 struct page *
1962 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1963 		unsigned long addr, int node, bool hugepage)
1964 {
1965 	struct mempolicy *pol;
1966 	struct page *page;
1967 	unsigned int cpuset_mems_cookie;
1968 	struct zonelist *zl;
1969 	nodemask_t *nmask;
1970 
1971 retry_cpuset:
1972 	pol = get_vma_policy(vma, addr);
1973 	cpuset_mems_cookie = read_mems_allowed_begin();
1974 
1975 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
1976 					pol->mode != MPOL_INTERLEAVE)) {
1977 		/*
1978 		 * For hugepage allocation and non-interleave policy which
1979 		 * allows the current node, we only try to allocate from the
1980 		 * current node and don't fall back to other nodes, as the
1981 		 * cost of remote accesses would likely offset THP benefits.
1982 		 *
1983 		 * If the policy is interleave, or does not allow the current
1984 		 * node in its nodemask, we allocate the standard way.
1985 		 */
1986 		nmask = policy_nodemask(gfp, pol);
1987 		if (!nmask || node_isset(node, *nmask)) {
1988 			mpol_cond_put(pol);
1989 			page = alloc_pages_exact_node(node,
1990 						gfp | __GFP_THISNODE, order);
1991 			goto out;
1992 		}
1993 	}
1994 
1995 	if (pol->mode == MPOL_INTERLEAVE) {
1996 		unsigned nid;
1997 
1998 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1999 		mpol_cond_put(pol);
2000 		page = alloc_page_interleave(gfp, order, nid);
2001 		goto out;
2002 	}
2003 
2004 	nmask = policy_nodemask(gfp, pol);
2005 	zl = policy_zonelist(gfp, pol, node);
2006 	mpol_cond_put(pol);
2007 	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2008 out:
2009 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2010 		goto retry_cpuset;
2011 	return page;
2012 }
2013 
2014 /**
2015  * 	alloc_pages_current - Allocate pages.
2016  *
2017  *	@gfp:
2018  *		%GFP_USER   user allocation,
2019  *      	%GFP_KERNEL kernel allocation,
2020  *      	%GFP_HIGHMEM highmem allocation,
2021  *      	%GFP_FS     don't call back into a file system.
2022  *      	%GFP_ATOMIC don't sleep.
2023  *	@order: Power of two of allocation size in pages. 0 is a single page.
2024  *
2025  *	Allocate a page from the kernel page pool.  When not in
2026  *	interrupt context and apply the current process NUMA policy.
2027  *	Returns NULL when no page can be allocated.
2028  *
2029  *	Don't call cpuset_update_task_memory_state() unless
2030  *	1) it's ok to take cpuset_sem (can WAIT), and
2031  *	2) allocating for current task (not interrupt).
2032  */
2033 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2034 {
2035 	struct mempolicy *pol = &default_policy;
2036 	struct page *page;
2037 	unsigned int cpuset_mems_cookie;
2038 
2039 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2040 		pol = get_task_policy(current);
2041 
2042 retry_cpuset:
2043 	cpuset_mems_cookie = read_mems_allowed_begin();
2044 
2045 	/*
2046 	 * No reference counting needed for current->mempolicy
2047 	 * nor system default_policy
2048 	 */
2049 	if (pol->mode == MPOL_INTERLEAVE)
2050 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2051 	else
2052 		page = __alloc_pages_nodemask(gfp, order,
2053 				policy_zonelist(gfp, pol, numa_node_id()),
2054 				policy_nodemask(gfp, pol));
2055 
2056 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2057 		goto retry_cpuset;
2058 
2059 	return page;
2060 }
2061 EXPORT_SYMBOL(alloc_pages_current);
2062 
2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2064 {
2065 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2066 
2067 	if (IS_ERR(pol))
2068 		return PTR_ERR(pol);
2069 	dst->vm_policy = pol;
2070 	return 0;
2071 }
2072 
2073 /*
2074  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2075  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2076  * with the mems_allowed returned by cpuset_mems_allowed().  This
2077  * keeps mempolicies cpuset relative after its cpuset moves.  See
2078  * further kernel/cpuset.c update_nodemask().
2079  *
2080  * current's mempolicy may be rebinded by the other task(the task that changes
2081  * cpuset's mems), so we needn't do rebind work for current task.
2082  */
2083 
2084 /* Slow path of a mempolicy duplicate */
2085 struct mempolicy *__mpol_dup(struct mempolicy *old)
2086 {
2087 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2088 
2089 	if (!new)
2090 		return ERR_PTR(-ENOMEM);
2091 
2092 	/* task's mempolicy is protected by alloc_lock */
2093 	if (old == current->mempolicy) {
2094 		task_lock(current);
2095 		*new = *old;
2096 		task_unlock(current);
2097 	} else
2098 		*new = *old;
2099 
2100 	if (current_cpuset_is_being_rebound()) {
2101 		nodemask_t mems = cpuset_mems_allowed(current);
2102 		if (new->flags & MPOL_F_REBINDING)
2103 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2104 		else
2105 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2106 	}
2107 	atomic_set(&new->refcnt, 1);
2108 	return new;
2109 }
2110 
2111 /* Slow path of a mempolicy comparison */
2112 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2113 {
2114 	if (!a || !b)
2115 		return false;
2116 	if (a->mode != b->mode)
2117 		return false;
2118 	if (a->flags != b->flags)
2119 		return false;
2120 	if (mpol_store_user_nodemask(a))
2121 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2122 			return false;
2123 
2124 	switch (a->mode) {
2125 	case MPOL_BIND:
2126 		/* Fall through */
2127 	case MPOL_INTERLEAVE:
2128 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2129 	case MPOL_PREFERRED:
2130 		return a->v.preferred_node == b->v.preferred_node;
2131 	default:
2132 		BUG();
2133 		return false;
2134 	}
2135 }
2136 
2137 /*
2138  * Shared memory backing store policy support.
2139  *
2140  * Remember policies even when nobody has shared memory mapped.
2141  * The policies are kept in Red-Black tree linked from the inode.
2142  * They are protected by the sp->lock spinlock, which should be held
2143  * for any accesses to the tree.
2144  */
2145 
2146 /* lookup first element intersecting start-end */
2147 /* Caller holds sp->lock */
2148 static struct sp_node *
2149 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2150 {
2151 	struct rb_node *n = sp->root.rb_node;
2152 
2153 	while (n) {
2154 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2155 
2156 		if (start >= p->end)
2157 			n = n->rb_right;
2158 		else if (end <= p->start)
2159 			n = n->rb_left;
2160 		else
2161 			break;
2162 	}
2163 	if (!n)
2164 		return NULL;
2165 	for (;;) {
2166 		struct sp_node *w = NULL;
2167 		struct rb_node *prev = rb_prev(n);
2168 		if (!prev)
2169 			break;
2170 		w = rb_entry(prev, struct sp_node, nd);
2171 		if (w->end <= start)
2172 			break;
2173 		n = prev;
2174 	}
2175 	return rb_entry(n, struct sp_node, nd);
2176 }
2177 
2178 /* Insert a new shared policy into the list. */
2179 /* Caller holds sp->lock */
2180 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2181 {
2182 	struct rb_node **p = &sp->root.rb_node;
2183 	struct rb_node *parent = NULL;
2184 	struct sp_node *nd;
2185 
2186 	while (*p) {
2187 		parent = *p;
2188 		nd = rb_entry(parent, struct sp_node, nd);
2189 		if (new->start < nd->start)
2190 			p = &(*p)->rb_left;
2191 		else if (new->end > nd->end)
2192 			p = &(*p)->rb_right;
2193 		else
2194 			BUG();
2195 	}
2196 	rb_link_node(&new->nd, parent, p);
2197 	rb_insert_color(&new->nd, &sp->root);
2198 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2199 		 new->policy ? new->policy->mode : 0);
2200 }
2201 
2202 /* Find shared policy intersecting idx */
2203 struct mempolicy *
2204 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2205 {
2206 	struct mempolicy *pol = NULL;
2207 	struct sp_node *sn;
2208 
2209 	if (!sp->root.rb_node)
2210 		return NULL;
2211 	spin_lock(&sp->lock);
2212 	sn = sp_lookup(sp, idx, idx+1);
2213 	if (sn) {
2214 		mpol_get(sn->policy);
2215 		pol = sn->policy;
2216 	}
2217 	spin_unlock(&sp->lock);
2218 	return pol;
2219 }
2220 
2221 static void sp_free(struct sp_node *n)
2222 {
2223 	mpol_put(n->policy);
2224 	kmem_cache_free(sn_cache, n);
2225 }
2226 
2227 /**
2228  * mpol_misplaced - check whether current page node is valid in policy
2229  *
2230  * @page: page to be checked
2231  * @vma: vm area where page mapped
2232  * @addr: virtual address where page mapped
2233  *
2234  * Lookup current policy node id for vma,addr and "compare to" page's
2235  * node id.
2236  *
2237  * Returns:
2238  *	-1	- not misplaced, page is in the right node
2239  *	node	- node id where the page should be
2240  *
2241  * Policy determination "mimics" alloc_page_vma().
2242  * Called from fault path where we know the vma and faulting address.
2243  */
2244 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2245 {
2246 	struct mempolicy *pol;
2247 	struct zone *zone;
2248 	int curnid = page_to_nid(page);
2249 	unsigned long pgoff;
2250 	int thiscpu = raw_smp_processor_id();
2251 	int thisnid = cpu_to_node(thiscpu);
2252 	int polnid = -1;
2253 	int ret = -1;
2254 
2255 	BUG_ON(!vma);
2256 
2257 	pol = get_vma_policy(vma, addr);
2258 	if (!(pol->flags & MPOL_F_MOF))
2259 		goto out;
2260 
2261 	switch (pol->mode) {
2262 	case MPOL_INTERLEAVE:
2263 		BUG_ON(addr >= vma->vm_end);
2264 		BUG_ON(addr < vma->vm_start);
2265 
2266 		pgoff = vma->vm_pgoff;
2267 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2268 		polnid = offset_il_node(pol, vma, pgoff);
2269 		break;
2270 
2271 	case MPOL_PREFERRED:
2272 		if (pol->flags & MPOL_F_LOCAL)
2273 			polnid = numa_node_id();
2274 		else
2275 			polnid = pol->v.preferred_node;
2276 		break;
2277 
2278 	case MPOL_BIND:
2279 		/*
2280 		 * allows binding to multiple nodes.
2281 		 * use current page if in policy nodemask,
2282 		 * else select nearest allowed node, if any.
2283 		 * If no allowed nodes, use current [!misplaced].
2284 		 */
2285 		if (node_isset(curnid, pol->v.nodes))
2286 			goto out;
2287 		(void)first_zones_zonelist(
2288 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2289 				gfp_zone(GFP_HIGHUSER),
2290 				&pol->v.nodes, &zone);
2291 		polnid = zone->node;
2292 		break;
2293 
2294 	default:
2295 		BUG();
2296 	}
2297 
2298 	/* Migrate the page towards the node whose CPU is referencing it */
2299 	if (pol->flags & MPOL_F_MORON) {
2300 		polnid = thisnid;
2301 
2302 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2303 			goto out;
2304 	}
2305 
2306 	if (curnid != polnid)
2307 		ret = polnid;
2308 out:
2309 	mpol_cond_put(pol);
2310 
2311 	return ret;
2312 }
2313 
2314 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2315 {
2316 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2317 	rb_erase(&n->nd, &sp->root);
2318 	sp_free(n);
2319 }
2320 
2321 static void sp_node_init(struct sp_node *node, unsigned long start,
2322 			unsigned long end, struct mempolicy *pol)
2323 {
2324 	node->start = start;
2325 	node->end = end;
2326 	node->policy = pol;
2327 }
2328 
2329 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2330 				struct mempolicy *pol)
2331 {
2332 	struct sp_node *n;
2333 	struct mempolicy *newpol;
2334 
2335 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2336 	if (!n)
2337 		return NULL;
2338 
2339 	newpol = mpol_dup(pol);
2340 	if (IS_ERR(newpol)) {
2341 		kmem_cache_free(sn_cache, n);
2342 		return NULL;
2343 	}
2344 	newpol->flags |= MPOL_F_SHARED;
2345 	sp_node_init(n, start, end, newpol);
2346 
2347 	return n;
2348 }
2349 
2350 /* Replace a policy range. */
2351 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2352 				 unsigned long end, struct sp_node *new)
2353 {
2354 	struct sp_node *n;
2355 	struct sp_node *n_new = NULL;
2356 	struct mempolicy *mpol_new = NULL;
2357 	int ret = 0;
2358 
2359 restart:
2360 	spin_lock(&sp->lock);
2361 	n = sp_lookup(sp, start, end);
2362 	/* Take care of old policies in the same range. */
2363 	while (n && n->start < end) {
2364 		struct rb_node *next = rb_next(&n->nd);
2365 		if (n->start >= start) {
2366 			if (n->end <= end)
2367 				sp_delete(sp, n);
2368 			else
2369 				n->start = end;
2370 		} else {
2371 			/* Old policy spanning whole new range. */
2372 			if (n->end > end) {
2373 				if (!n_new)
2374 					goto alloc_new;
2375 
2376 				*mpol_new = *n->policy;
2377 				atomic_set(&mpol_new->refcnt, 1);
2378 				sp_node_init(n_new, end, n->end, mpol_new);
2379 				n->end = start;
2380 				sp_insert(sp, n_new);
2381 				n_new = NULL;
2382 				mpol_new = NULL;
2383 				break;
2384 			} else
2385 				n->end = start;
2386 		}
2387 		if (!next)
2388 			break;
2389 		n = rb_entry(next, struct sp_node, nd);
2390 	}
2391 	if (new)
2392 		sp_insert(sp, new);
2393 	spin_unlock(&sp->lock);
2394 	ret = 0;
2395 
2396 err_out:
2397 	if (mpol_new)
2398 		mpol_put(mpol_new);
2399 	if (n_new)
2400 		kmem_cache_free(sn_cache, n_new);
2401 
2402 	return ret;
2403 
2404 alloc_new:
2405 	spin_unlock(&sp->lock);
2406 	ret = -ENOMEM;
2407 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2408 	if (!n_new)
2409 		goto err_out;
2410 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2411 	if (!mpol_new)
2412 		goto err_out;
2413 	goto restart;
2414 }
2415 
2416 /**
2417  * mpol_shared_policy_init - initialize shared policy for inode
2418  * @sp: pointer to inode shared policy
2419  * @mpol:  struct mempolicy to install
2420  *
2421  * Install non-NULL @mpol in inode's shared policy rb-tree.
2422  * On entry, the current task has a reference on a non-NULL @mpol.
2423  * This must be released on exit.
2424  * This is called at get_inode() calls and we can use GFP_KERNEL.
2425  */
2426 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2427 {
2428 	int ret;
2429 
2430 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2431 	spin_lock_init(&sp->lock);
2432 
2433 	if (mpol) {
2434 		struct vm_area_struct pvma;
2435 		struct mempolicy *new;
2436 		NODEMASK_SCRATCH(scratch);
2437 
2438 		if (!scratch)
2439 			goto put_mpol;
2440 		/* contextualize the tmpfs mount point mempolicy */
2441 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2442 		if (IS_ERR(new))
2443 			goto free_scratch; /* no valid nodemask intersection */
2444 
2445 		task_lock(current);
2446 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2447 		task_unlock(current);
2448 		if (ret)
2449 			goto put_new;
2450 
2451 		/* Create pseudo-vma that contains just the policy */
2452 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2453 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2454 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2455 
2456 put_new:
2457 		mpol_put(new);			/* drop initial ref */
2458 free_scratch:
2459 		NODEMASK_SCRATCH_FREE(scratch);
2460 put_mpol:
2461 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2462 	}
2463 }
2464 
2465 int mpol_set_shared_policy(struct shared_policy *info,
2466 			struct vm_area_struct *vma, struct mempolicy *npol)
2467 {
2468 	int err;
2469 	struct sp_node *new = NULL;
2470 	unsigned long sz = vma_pages(vma);
2471 
2472 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2473 		 vma->vm_pgoff,
2474 		 sz, npol ? npol->mode : -1,
2475 		 npol ? npol->flags : -1,
2476 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2477 
2478 	if (npol) {
2479 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2480 		if (!new)
2481 			return -ENOMEM;
2482 	}
2483 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2484 	if (err && new)
2485 		sp_free(new);
2486 	return err;
2487 }
2488 
2489 /* Free a backing policy store on inode delete. */
2490 void mpol_free_shared_policy(struct shared_policy *p)
2491 {
2492 	struct sp_node *n;
2493 	struct rb_node *next;
2494 
2495 	if (!p->root.rb_node)
2496 		return;
2497 	spin_lock(&p->lock);
2498 	next = rb_first(&p->root);
2499 	while (next) {
2500 		n = rb_entry(next, struct sp_node, nd);
2501 		next = rb_next(&n->nd);
2502 		sp_delete(p, n);
2503 	}
2504 	spin_unlock(&p->lock);
2505 }
2506 
2507 #ifdef CONFIG_NUMA_BALANCING
2508 static int __initdata numabalancing_override;
2509 
2510 static void __init check_numabalancing_enable(void)
2511 {
2512 	bool numabalancing_default = false;
2513 
2514 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2515 		numabalancing_default = true;
2516 
2517 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2518 	if (numabalancing_override)
2519 		set_numabalancing_state(numabalancing_override == 1);
2520 
2521 	if (nr_node_ids > 1 && !numabalancing_override) {
2522 		pr_info("%s automatic NUMA balancing. "
2523 			"Configure with numa_balancing= or the "
2524 			"kernel.numa_balancing sysctl",
2525 			numabalancing_default ? "Enabling" : "Disabling");
2526 		set_numabalancing_state(numabalancing_default);
2527 	}
2528 }
2529 
2530 static int __init setup_numabalancing(char *str)
2531 {
2532 	int ret = 0;
2533 	if (!str)
2534 		goto out;
2535 
2536 	if (!strcmp(str, "enable")) {
2537 		numabalancing_override = 1;
2538 		ret = 1;
2539 	} else if (!strcmp(str, "disable")) {
2540 		numabalancing_override = -1;
2541 		ret = 1;
2542 	}
2543 out:
2544 	if (!ret)
2545 		pr_warn("Unable to parse numa_balancing=\n");
2546 
2547 	return ret;
2548 }
2549 __setup("numa_balancing=", setup_numabalancing);
2550 #else
2551 static inline void __init check_numabalancing_enable(void)
2552 {
2553 }
2554 #endif /* CONFIG_NUMA_BALANCING */
2555 
2556 /* assumes fs == KERNEL_DS */
2557 void __init numa_policy_init(void)
2558 {
2559 	nodemask_t interleave_nodes;
2560 	unsigned long largest = 0;
2561 	int nid, prefer = 0;
2562 
2563 	policy_cache = kmem_cache_create("numa_policy",
2564 					 sizeof(struct mempolicy),
2565 					 0, SLAB_PANIC, NULL);
2566 
2567 	sn_cache = kmem_cache_create("shared_policy_node",
2568 				     sizeof(struct sp_node),
2569 				     0, SLAB_PANIC, NULL);
2570 
2571 	for_each_node(nid) {
2572 		preferred_node_policy[nid] = (struct mempolicy) {
2573 			.refcnt = ATOMIC_INIT(1),
2574 			.mode = MPOL_PREFERRED,
2575 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2576 			.v = { .preferred_node = nid, },
2577 		};
2578 	}
2579 
2580 	/*
2581 	 * Set interleaving policy for system init. Interleaving is only
2582 	 * enabled across suitably sized nodes (default is >= 16MB), or
2583 	 * fall back to the largest node if they're all smaller.
2584 	 */
2585 	nodes_clear(interleave_nodes);
2586 	for_each_node_state(nid, N_MEMORY) {
2587 		unsigned long total_pages = node_present_pages(nid);
2588 
2589 		/* Preserve the largest node */
2590 		if (largest < total_pages) {
2591 			largest = total_pages;
2592 			prefer = nid;
2593 		}
2594 
2595 		/* Interleave this node? */
2596 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2597 			node_set(nid, interleave_nodes);
2598 	}
2599 
2600 	/* All too small, use the largest */
2601 	if (unlikely(nodes_empty(interleave_nodes)))
2602 		node_set(prefer, interleave_nodes);
2603 
2604 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2605 		pr_err("%s: interleaving failed\n", __func__);
2606 
2607 	check_numabalancing_enable();
2608 }
2609 
2610 /* Reset policy of current process to default */
2611 void numa_default_policy(void)
2612 {
2613 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2614 }
2615 
2616 /*
2617  * Parse and format mempolicy from/to strings
2618  */
2619 
2620 /*
2621  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2622  */
2623 static const char * const policy_modes[] =
2624 {
2625 	[MPOL_DEFAULT]    = "default",
2626 	[MPOL_PREFERRED]  = "prefer",
2627 	[MPOL_BIND]       = "bind",
2628 	[MPOL_INTERLEAVE] = "interleave",
2629 	[MPOL_LOCAL]      = "local",
2630 };
2631 
2632 
2633 #ifdef CONFIG_TMPFS
2634 /**
2635  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2636  * @str:  string containing mempolicy to parse
2637  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2638  *
2639  * Format of input:
2640  *	<mode>[=<flags>][:<nodelist>]
2641  *
2642  * On success, returns 0, else 1
2643  */
2644 int mpol_parse_str(char *str, struct mempolicy **mpol)
2645 {
2646 	struct mempolicy *new = NULL;
2647 	unsigned short mode;
2648 	unsigned short mode_flags;
2649 	nodemask_t nodes;
2650 	char *nodelist = strchr(str, ':');
2651 	char *flags = strchr(str, '=');
2652 	int err = 1;
2653 
2654 	if (nodelist) {
2655 		/* NUL-terminate mode or flags string */
2656 		*nodelist++ = '\0';
2657 		if (nodelist_parse(nodelist, nodes))
2658 			goto out;
2659 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2660 			goto out;
2661 	} else
2662 		nodes_clear(nodes);
2663 
2664 	if (flags)
2665 		*flags++ = '\0';	/* terminate mode string */
2666 
2667 	for (mode = 0; mode < MPOL_MAX; mode++) {
2668 		if (!strcmp(str, policy_modes[mode])) {
2669 			break;
2670 		}
2671 	}
2672 	if (mode >= MPOL_MAX)
2673 		goto out;
2674 
2675 	switch (mode) {
2676 	case MPOL_PREFERRED:
2677 		/*
2678 		 * Insist on a nodelist of one node only
2679 		 */
2680 		if (nodelist) {
2681 			char *rest = nodelist;
2682 			while (isdigit(*rest))
2683 				rest++;
2684 			if (*rest)
2685 				goto out;
2686 		}
2687 		break;
2688 	case MPOL_INTERLEAVE:
2689 		/*
2690 		 * Default to online nodes with memory if no nodelist
2691 		 */
2692 		if (!nodelist)
2693 			nodes = node_states[N_MEMORY];
2694 		break;
2695 	case MPOL_LOCAL:
2696 		/*
2697 		 * Don't allow a nodelist;  mpol_new() checks flags
2698 		 */
2699 		if (nodelist)
2700 			goto out;
2701 		mode = MPOL_PREFERRED;
2702 		break;
2703 	case MPOL_DEFAULT:
2704 		/*
2705 		 * Insist on a empty nodelist
2706 		 */
2707 		if (!nodelist)
2708 			err = 0;
2709 		goto out;
2710 	case MPOL_BIND:
2711 		/*
2712 		 * Insist on a nodelist
2713 		 */
2714 		if (!nodelist)
2715 			goto out;
2716 	}
2717 
2718 	mode_flags = 0;
2719 	if (flags) {
2720 		/*
2721 		 * Currently, we only support two mutually exclusive
2722 		 * mode flags.
2723 		 */
2724 		if (!strcmp(flags, "static"))
2725 			mode_flags |= MPOL_F_STATIC_NODES;
2726 		else if (!strcmp(flags, "relative"))
2727 			mode_flags |= MPOL_F_RELATIVE_NODES;
2728 		else
2729 			goto out;
2730 	}
2731 
2732 	new = mpol_new(mode, mode_flags, &nodes);
2733 	if (IS_ERR(new))
2734 		goto out;
2735 
2736 	/*
2737 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2738 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2739 	 */
2740 	if (mode != MPOL_PREFERRED)
2741 		new->v.nodes = nodes;
2742 	else if (nodelist)
2743 		new->v.preferred_node = first_node(nodes);
2744 	else
2745 		new->flags |= MPOL_F_LOCAL;
2746 
2747 	/*
2748 	 * Save nodes for contextualization: this will be used to "clone"
2749 	 * the mempolicy in a specific context [cpuset] at a later time.
2750 	 */
2751 	new->w.user_nodemask = nodes;
2752 
2753 	err = 0;
2754 
2755 out:
2756 	/* Restore string for error message */
2757 	if (nodelist)
2758 		*--nodelist = ':';
2759 	if (flags)
2760 		*--flags = '=';
2761 	if (!err)
2762 		*mpol = new;
2763 	return err;
2764 }
2765 #endif /* CONFIG_TMPFS */
2766 
2767 /**
2768  * mpol_to_str - format a mempolicy structure for printing
2769  * @buffer:  to contain formatted mempolicy string
2770  * @maxlen:  length of @buffer
2771  * @pol:  pointer to mempolicy to be formatted
2772  *
2773  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2774  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2775  * longest flag, "relative", and to display at least a few node ids.
2776  */
2777 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2778 {
2779 	char *p = buffer;
2780 	nodemask_t nodes = NODE_MASK_NONE;
2781 	unsigned short mode = MPOL_DEFAULT;
2782 	unsigned short flags = 0;
2783 
2784 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2785 		mode = pol->mode;
2786 		flags = pol->flags;
2787 	}
2788 
2789 	switch (mode) {
2790 	case MPOL_DEFAULT:
2791 		break;
2792 	case MPOL_PREFERRED:
2793 		if (flags & MPOL_F_LOCAL)
2794 			mode = MPOL_LOCAL;
2795 		else
2796 			node_set(pol->v.preferred_node, nodes);
2797 		break;
2798 	case MPOL_BIND:
2799 	case MPOL_INTERLEAVE:
2800 		nodes = pol->v.nodes;
2801 		break;
2802 	default:
2803 		WARN_ON_ONCE(1);
2804 		snprintf(p, maxlen, "unknown");
2805 		return;
2806 	}
2807 
2808 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2809 
2810 	if (flags & MPOL_MODE_FLAGS) {
2811 		p += snprintf(p, buffer + maxlen - p, "=");
2812 
2813 		/*
2814 		 * Currently, the only defined flags are mutually exclusive
2815 		 */
2816 		if (flags & MPOL_F_STATIC_NODES)
2817 			p += snprintf(p, buffer + maxlen - p, "static");
2818 		else if (flags & MPOL_F_RELATIVE_NODES)
2819 			p += snprintf(p, buffer + maxlen - p, "relative");
2820 	}
2821 
2822 	if (!nodes_empty(nodes))
2823 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2824 			       nodemask_pr_args(&nodes));
2825 }
2826