xref: /openbmc/linux/mm/mempolicy.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108 
109 #include "internal.h"
110 
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
114 
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117 
118 /* Highest zone. An specific allocation for a zone below that is not
119    policied. */
120 enum zone_type policy_zone = 0;
121 
122 /*
123  * run-time system-wide default policy => local allocation
124  */
125 static struct mempolicy default_policy = {
126 	.refcnt = ATOMIC_INIT(1), /* never free it */
127 	.mode = MPOL_LOCAL,
128 };
129 
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131 
132 /**
133  * numa_map_to_online_node - Find closest online node
134  * @node: Node id to start the search
135  *
136  * Lookup the next closest node by distance if @nid is not online.
137  */
138 int numa_map_to_online_node(int node)
139 {
140 	int min_dist = INT_MAX, dist, n, min_node;
141 
142 	if (node == NUMA_NO_NODE || node_online(node))
143 		return node;
144 
145 	min_node = node;
146 	for_each_online_node(n) {
147 		dist = node_distance(node, n);
148 		if (dist < min_dist) {
149 			min_dist = dist;
150 			min_node = n;
151 		}
152 	}
153 
154 	return min_node;
155 }
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
157 
158 struct mempolicy *get_task_policy(struct task_struct *p)
159 {
160 	struct mempolicy *pol = p->mempolicy;
161 	int node;
162 
163 	if (pol)
164 		return pol;
165 
166 	node = numa_node_id();
167 	if (node != NUMA_NO_NODE) {
168 		pol = &preferred_node_policy[node];
169 		/* preferred_node_policy is not initialised early in boot */
170 		if (pol->mode)
171 			return pol;
172 	}
173 
174 	return &default_policy;
175 }
176 
177 static const struct mempolicy_operations {
178 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
181 
182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
183 {
184 	return pol->flags & MPOL_MODE_FLAGS;
185 }
186 
187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 				   const nodemask_t *rel)
189 {
190 	nodemask_t tmp;
191 	nodes_fold(tmp, *orig, nodes_weight(*rel));
192 	nodes_onto(*ret, tmp, *rel);
193 }
194 
195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
196 {
197 	if (nodes_empty(*nodes))
198 		return -EINVAL;
199 	pol->nodes = *nodes;
200 	return 0;
201 }
202 
203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 	if (nodes_empty(*nodes))
206 		return -EINVAL;
207 
208 	nodes_clear(pol->nodes);
209 	node_set(first_node(*nodes), pol->nodes);
210 	return 0;
211 }
212 
213 /*
214  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215  * any, for the new policy.  mpol_new() has already validated the nodes
216  * parameter with respect to the policy mode and flags.
217  *
218  * Must be called holding task's alloc_lock to protect task's mems_allowed
219  * and mempolicy.  May also be called holding the mmap_lock for write.
220  */
221 static int mpol_set_nodemask(struct mempolicy *pol,
222 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
223 {
224 	int ret;
225 
226 	/*
227 	 * Default (pol==NULL) resp. local memory policies are not a
228 	 * subject of any remapping. They also do not need any special
229 	 * constructor.
230 	 */
231 	if (!pol || pol->mode == MPOL_LOCAL)
232 		return 0;
233 
234 	/* Check N_MEMORY */
235 	nodes_and(nsc->mask1,
236 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
237 
238 	VM_BUG_ON(!nodes);
239 
240 	if (pol->flags & MPOL_F_RELATIVE_NODES)
241 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
242 	else
243 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
244 
245 	if (mpol_store_user_nodemask(pol))
246 		pol->w.user_nodemask = *nodes;
247 	else
248 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
249 
250 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
251 	return ret;
252 }
253 
254 /*
255  * This function just creates a new policy, does some check and simple
256  * initialization. You must invoke mpol_set_nodemask() to set nodes.
257  */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 				  nodemask_t *nodes)
260 {
261 	struct mempolicy *policy;
262 
263 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265 
266 	if (mode == MPOL_DEFAULT) {
267 		if (nodes && !nodes_empty(*nodes))
268 			return ERR_PTR(-EINVAL);
269 		return NULL;
270 	}
271 	VM_BUG_ON(!nodes);
272 
273 	/*
274 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 	 * All other modes require a valid pointer to a non-empty nodemask.
277 	 */
278 	if (mode == MPOL_PREFERRED) {
279 		if (nodes_empty(*nodes)) {
280 			if (((flags & MPOL_F_STATIC_NODES) ||
281 			     (flags & MPOL_F_RELATIVE_NODES)))
282 				return ERR_PTR(-EINVAL);
283 
284 			mode = MPOL_LOCAL;
285 		}
286 	} else if (mode == MPOL_LOCAL) {
287 		if (!nodes_empty(*nodes) ||
288 		    (flags & MPOL_F_STATIC_NODES) ||
289 		    (flags & MPOL_F_RELATIVE_NODES))
290 			return ERR_PTR(-EINVAL);
291 	} else if (nodes_empty(*nodes))
292 		return ERR_PTR(-EINVAL);
293 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 	if (!policy)
295 		return ERR_PTR(-ENOMEM);
296 	atomic_set(&policy->refcnt, 1);
297 	policy->mode = mode;
298 	policy->flags = flags;
299 
300 	return policy;
301 }
302 
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 	if (!atomic_dec_and_test(&p->refcnt))
307 		return;
308 	kmem_cache_free(policy_cache, p);
309 }
310 
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
312 {
313 }
314 
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
325 								*nodes);
326 		pol->w.cpuset_mems_allowed = *nodes;
327 	}
328 
329 	if (nodes_empty(tmp))
330 		tmp = *nodes;
331 
332 	pol->nodes = tmp;
333 }
334 
335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 						const nodemask_t *nodes)
337 {
338 	pol->w.cpuset_mems_allowed = *nodes;
339 }
340 
341 /*
342  * mpol_rebind_policy - Migrate a policy to a different set of nodes
343  *
344  * Per-vma policies are protected by mmap_lock. Allocations using per-task
345  * policies are protected by task->mems_allowed_seq to prevent a premature
346  * OOM/allocation failure due to parallel nodemask modification.
347  */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 	if (!pol)
351 		return;
352 	if (!mpol_store_user_nodemask(pol) &&
353 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 		return;
355 
356 	mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358 
359 /*
360  * Wrapper for mpol_rebind_policy() that just requires task
361  * pointer, and updates task mempolicy.
362  *
363  * Called with task's alloc_lock held.
364  */
365 
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 	mpol_rebind_policy(tsk->mempolicy, new);
369 }
370 
371 /*
372  * Rebind each vma in mm to new nodemask.
373  *
374  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
375  */
376 
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 	struct vm_area_struct *vma;
380 
381 	mmap_write_lock(mm);
382 	for (vma = mm->mmap; vma; vma = vma->vm_next)
383 		mpol_rebind_policy(vma->vm_policy, new);
384 	mmap_write_unlock(mm);
385 }
386 
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 	[MPOL_DEFAULT] = {
389 		.rebind = mpol_rebind_default,
390 	},
391 	[MPOL_INTERLEAVE] = {
392 		.create = mpol_new_nodemask,
393 		.rebind = mpol_rebind_nodemask,
394 	},
395 	[MPOL_PREFERRED] = {
396 		.create = mpol_new_preferred,
397 		.rebind = mpol_rebind_preferred,
398 	},
399 	[MPOL_BIND] = {
400 		.create = mpol_new_nodemask,
401 		.rebind = mpol_rebind_nodemask,
402 	},
403 	[MPOL_LOCAL] = {
404 		.rebind = mpol_rebind_default,
405 	},
406 	[MPOL_PREFERRED_MANY] = {
407 		.create = mpol_new_nodemask,
408 		.rebind = mpol_rebind_preferred,
409 	},
410 };
411 
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 				unsigned long flags);
414 
415 struct queue_pages {
416 	struct list_head *pagelist;
417 	unsigned long flags;
418 	nodemask_t *nmask;
419 	unsigned long start;
420 	unsigned long end;
421 	struct vm_area_struct *first;
422 };
423 
424 /*
425  * Check if the page's nid is in qp->nmask.
426  *
427  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428  * in the invert of qp->nmask.
429  */
430 static inline bool queue_pages_required(struct page *page,
431 					struct queue_pages *qp)
432 {
433 	int nid = page_to_nid(page);
434 	unsigned long flags = qp->flags;
435 
436 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
437 }
438 
439 /*
440  * queue_pages_pmd() has four possible return values:
441  * 0 - pages are placed on the right node or queued successfully, or
442  *     special page is met, i.e. huge zero page.
443  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
444  *     specified.
445  * 2 - THP was split.
446  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447  *        existing page was already on a node that does not follow the
448  *        policy.
449  */
450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 				unsigned long end, struct mm_walk *walk)
452 	__releases(ptl)
453 {
454 	int ret = 0;
455 	struct page *page;
456 	struct queue_pages *qp = walk->private;
457 	unsigned long flags;
458 
459 	if (unlikely(is_pmd_migration_entry(*pmd))) {
460 		ret = -EIO;
461 		goto unlock;
462 	}
463 	page = pmd_page(*pmd);
464 	if (is_huge_zero_page(page)) {
465 		spin_unlock(ptl);
466 		walk->action = ACTION_CONTINUE;
467 		goto out;
468 	}
469 	if (!queue_pages_required(page, qp))
470 		goto unlock;
471 
472 	flags = qp->flags;
473 	/* go to thp migration */
474 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 		if (!vma_migratable(walk->vma) ||
476 		    migrate_page_add(page, qp->pagelist, flags)) {
477 			ret = 1;
478 			goto unlock;
479 		}
480 	} else
481 		ret = -EIO;
482 unlock:
483 	spin_unlock(ptl);
484 out:
485 	return ret;
486 }
487 
488 /*
489  * Scan through pages checking if pages follow certain conditions,
490  * and move them to the pagelist if they do.
491  *
492  * queue_pages_pte_range() has three possible return values:
493  * 0 - pages are placed on the right node or queued successfully, or
494  *     special page is met, i.e. zero page.
495  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
496  *     specified.
497  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498  *        on a node that does not follow the policy.
499  */
500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 			unsigned long end, struct mm_walk *walk)
502 {
503 	struct vm_area_struct *vma = walk->vma;
504 	struct page *page;
505 	struct queue_pages *qp = walk->private;
506 	unsigned long flags = qp->flags;
507 	int ret;
508 	bool has_unmovable = false;
509 	pte_t *pte, *mapped_pte;
510 	spinlock_t *ptl;
511 
512 	ptl = pmd_trans_huge_lock(pmd, vma);
513 	if (ptl) {
514 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
515 		if (ret != 2)
516 			return ret;
517 	}
518 	/* THP was split, fall through to pte walk */
519 
520 	if (pmd_trans_unstable(pmd))
521 		return 0;
522 
523 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 	for (; addr != end; pte++, addr += PAGE_SIZE) {
525 		if (!pte_present(*pte))
526 			continue;
527 		page = vm_normal_page(vma, addr, *pte);
528 		if (!page)
529 			continue;
530 		/*
531 		 * vm_normal_page() filters out zero pages, but there might
532 		 * still be PageReserved pages to skip, perhaps in a VDSO.
533 		 */
534 		if (PageReserved(page))
535 			continue;
536 		if (!queue_pages_required(page, qp))
537 			continue;
538 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 			/* MPOL_MF_STRICT must be specified if we get here */
540 			if (!vma_migratable(vma)) {
541 				has_unmovable = true;
542 				break;
543 			}
544 
545 			/*
546 			 * Do not abort immediately since there may be
547 			 * temporary off LRU pages in the range.  Still
548 			 * need migrate other LRU pages.
549 			 */
550 			if (migrate_page_add(page, qp->pagelist, flags))
551 				has_unmovable = true;
552 		} else
553 			break;
554 	}
555 	pte_unmap_unlock(mapped_pte, ptl);
556 	cond_resched();
557 
558 	if (has_unmovable)
559 		return 1;
560 
561 	return addr != end ? -EIO : 0;
562 }
563 
564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 			       unsigned long addr, unsigned long end,
566 			       struct mm_walk *walk)
567 {
568 	int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 	struct queue_pages *qp = walk->private;
571 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 	struct page *page;
573 	spinlock_t *ptl;
574 	pte_t entry;
575 
576 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 	entry = huge_ptep_get(pte);
578 	if (!pte_present(entry))
579 		goto unlock;
580 	page = pte_page(entry);
581 	if (!queue_pages_required(page, qp))
582 		goto unlock;
583 
584 	if (flags == MPOL_MF_STRICT) {
585 		/*
586 		 * STRICT alone means only detecting misplaced page and no
587 		 * need to further check other vma.
588 		 */
589 		ret = -EIO;
590 		goto unlock;
591 	}
592 
593 	if (!vma_migratable(walk->vma)) {
594 		/*
595 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 		 * stopped walking current vma.
597 		 * Detecting misplaced page but allow migrating pages which
598 		 * have been queued.
599 		 */
600 		ret = 1;
601 		goto unlock;
602 	}
603 
604 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 	if (flags & (MPOL_MF_MOVE_ALL) ||
606 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
607 		if (!isolate_huge_page(page, qp->pagelist) &&
608 			(flags & MPOL_MF_STRICT))
609 			/*
610 			 * Failed to isolate page but allow migrating pages
611 			 * which have been queued.
612 			 */
613 			ret = 1;
614 	}
615 unlock:
616 	spin_unlock(ptl);
617 #else
618 	BUG();
619 #endif
620 	return ret;
621 }
622 
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625  * This is used to mark a range of virtual addresses to be inaccessible.
626  * These are later cleared by a NUMA hinting fault. Depending on these
627  * faults, pages may be migrated for better NUMA placement.
628  *
629  * This is assuming that NUMA faults are handled using PROT_NONE. If
630  * an architecture makes a different choice, it will need further
631  * changes to the core.
632  */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 			unsigned long addr, unsigned long end)
635 {
636 	int nr_updated;
637 
638 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
639 	if (nr_updated)
640 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641 
642 	return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 			unsigned long addr, unsigned long end)
647 {
648 	return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651 
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 				struct mm_walk *walk)
654 {
655 	struct vm_area_struct *vma = walk->vma;
656 	struct queue_pages *qp = walk->private;
657 	unsigned long endvma = vma->vm_end;
658 	unsigned long flags = qp->flags;
659 
660 	/* range check first */
661 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
662 
663 	if (!qp->first) {
664 		qp->first = vma;
665 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 			(qp->start < vma->vm_start))
667 			/* hole at head side of range */
668 			return -EFAULT;
669 	}
670 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
671 		((vma->vm_end < qp->end) &&
672 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
673 		/* hole at middle or tail of range */
674 		return -EFAULT;
675 
676 	/*
677 	 * Need check MPOL_MF_STRICT to return -EIO if possible
678 	 * regardless of vma_migratable
679 	 */
680 	if (!vma_migratable(vma) &&
681 	    !(flags & MPOL_MF_STRICT))
682 		return 1;
683 
684 	if (endvma > end)
685 		endvma = end;
686 
687 	if (flags & MPOL_MF_LAZY) {
688 		/* Similar to task_numa_work, skip inaccessible VMAs */
689 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
690 			!(vma->vm_flags & VM_MIXEDMAP))
691 			change_prot_numa(vma, start, endvma);
692 		return 1;
693 	}
694 
695 	/* queue pages from current vma */
696 	if (flags & MPOL_MF_VALID)
697 		return 0;
698 	return 1;
699 }
700 
701 static const struct mm_walk_ops queue_pages_walk_ops = {
702 	.hugetlb_entry		= queue_pages_hugetlb,
703 	.pmd_entry		= queue_pages_pte_range,
704 	.test_walk		= queue_pages_test_walk,
705 };
706 
707 /*
708  * Walk through page tables and collect pages to be migrated.
709  *
710  * If pages found in a given range are on a set of nodes (determined by
711  * @nodes and @flags,) it's isolated and queued to the pagelist which is
712  * passed via @private.
713  *
714  * queue_pages_range() has three possible return values:
715  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
716  *     specified.
717  * 0 - queue pages successfully or no misplaced page.
718  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
719  *         memory range specified by nodemask and maxnode points outside
720  *         your accessible address space (-EFAULT)
721  */
722 static int
723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
724 		nodemask_t *nodes, unsigned long flags,
725 		struct list_head *pagelist)
726 {
727 	int err;
728 	struct queue_pages qp = {
729 		.pagelist = pagelist,
730 		.flags = flags,
731 		.nmask = nodes,
732 		.start = start,
733 		.end = end,
734 		.first = NULL,
735 	};
736 
737 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
738 
739 	if (!qp.first)
740 		/* whole range in hole */
741 		err = -EFAULT;
742 
743 	return err;
744 }
745 
746 /*
747  * Apply policy to a single VMA
748  * This must be called with the mmap_lock held for writing.
749  */
750 static int vma_replace_policy(struct vm_area_struct *vma,
751 						struct mempolicy *pol)
752 {
753 	int err;
754 	struct mempolicy *old;
755 	struct mempolicy *new;
756 
757 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
758 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
759 		 vma->vm_ops, vma->vm_file,
760 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
761 
762 	new = mpol_dup(pol);
763 	if (IS_ERR(new))
764 		return PTR_ERR(new);
765 
766 	if (vma->vm_ops && vma->vm_ops->set_policy) {
767 		err = vma->vm_ops->set_policy(vma, new);
768 		if (err)
769 			goto err_out;
770 	}
771 
772 	old = vma->vm_policy;
773 	vma->vm_policy = new; /* protected by mmap_lock */
774 	mpol_put(old);
775 
776 	return 0;
777  err_out:
778 	mpol_put(new);
779 	return err;
780 }
781 
782 /* Step 2: apply policy to a range and do splits. */
783 static int mbind_range(struct mm_struct *mm, unsigned long start,
784 		       unsigned long end, struct mempolicy *new_pol)
785 {
786 	struct vm_area_struct *next;
787 	struct vm_area_struct *prev;
788 	struct vm_area_struct *vma;
789 	int err = 0;
790 	pgoff_t pgoff;
791 	unsigned long vmstart;
792 	unsigned long vmend;
793 
794 	vma = find_vma(mm, start);
795 	VM_BUG_ON(!vma);
796 
797 	prev = vma->vm_prev;
798 	if (start > vma->vm_start)
799 		prev = vma;
800 
801 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
802 		next = vma->vm_next;
803 		vmstart = max(start, vma->vm_start);
804 		vmend   = min(end, vma->vm_end);
805 
806 		if (mpol_equal(vma_policy(vma), new_pol))
807 			continue;
808 
809 		pgoff = vma->vm_pgoff +
810 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 				 vma->anon_vma, vma->vm_file, pgoff,
813 				 new_pol, vma->vm_userfaultfd_ctx);
814 		if (prev) {
815 			vma = prev;
816 			next = vma->vm_next;
817 			if (mpol_equal(vma_policy(vma), new_pol))
818 				continue;
819 			/* vma_merge() joined vma && vma->next, case 8 */
820 			goto replace;
821 		}
822 		if (vma->vm_start != vmstart) {
823 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
824 			if (err)
825 				goto out;
826 		}
827 		if (vma->vm_end != vmend) {
828 			err = split_vma(vma->vm_mm, vma, vmend, 0);
829 			if (err)
830 				goto out;
831 		}
832  replace:
833 		err = vma_replace_policy(vma, new_pol);
834 		if (err)
835 			goto out;
836 	}
837 
838  out:
839 	return err;
840 }
841 
842 /* Set the process memory policy */
843 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
844 			     nodemask_t *nodes)
845 {
846 	struct mempolicy *new, *old;
847 	NODEMASK_SCRATCH(scratch);
848 	int ret;
849 
850 	if (!scratch)
851 		return -ENOMEM;
852 
853 	new = mpol_new(mode, flags, nodes);
854 	if (IS_ERR(new)) {
855 		ret = PTR_ERR(new);
856 		goto out;
857 	}
858 
859 	if (flags & MPOL_F_NUMA_BALANCING) {
860 		if (new && new->mode == MPOL_BIND) {
861 			new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
862 		} else {
863 			ret = -EINVAL;
864 			mpol_put(new);
865 			goto out;
866 		}
867 	}
868 
869 	ret = mpol_set_nodemask(new, nodes, scratch);
870 	if (ret) {
871 		mpol_put(new);
872 		goto out;
873 	}
874 	task_lock(current);
875 	old = current->mempolicy;
876 	current->mempolicy = new;
877 	if (new && new->mode == MPOL_INTERLEAVE)
878 		current->il_prev = MAX_NUMNODES-1;
879 	task_unlock(current);
880 	mpol_put(old);
881 	ret = 0;
882 out:
883 	NODEMASK_SCRATCH_FREE(scratch);
884 	return ret;
885 }
886 
887 /*
888  * Return nodemask for policy for get_mempolicy() query
889  *
890  * Called with task's alloc_lock held
891  */
892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
893 {
894 	nodes_clear(*nodes);
895 	if (p == &default_policy)
896 		return;
897 
898 	switch (p->mode) {
899 	case MPOL_BIND:
900 	case MPOL_INTERLEAVE:
901 	case MPOL_PREFERRED:
902 	case MPOL_PREFERRED_MANY:
903 		*nodes = p->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int err;
917 
918 	int locked = 1;
919 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
920 	if (err > 0) {
921 		err = page_to_nid(p);
922 		put_page(p);
923 	}
924 	if (locked)
925 		mmap_read_unlock(mm);
926 	return err;
927 }
928 
929 /* Retrieve NUMA policy */
930 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
931 			     unsigned long addr, unsigned long flags)
932 {
933 	int err;
934 	struct mm_struct *mm = current->mm;
935 	struct vm_area_struct *vma = NULL;
936 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
937 
938 	if (flags &
939 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
940 		return -EINVAL;
941 
942 	if (flags & MPOL_F_MEMS_ALLOWED) {
943 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
944 			return -EINVAL;
945 		*policy = 0;	/* just so it's initialized */
946 		task_lock(current);
947 		*nmask  = cpuset_current_mems_allowed;
948 		task_unlock(current);
949 		return 0;
950 	}
951 
952 	if (flags & MPOL_F_ADDR) {
953 		/*
954 		 * Do NOT fall back to task policy if the
955 		 * vma/shared policy at addr is NULL.  We
956 		 * want to return MPOL_DEFAULT in this case.
957 		 */
958 		mmap_read_lock(mm);
959 		vma = vma_lookup(mm, addr);
960 		if (!vma) {
961 			mmap_read_unlock(mm);
962 			return -EFAULT;
963 		}
964 		if (vma->vm_ops && vma->vm_ops->get_policy)
965 			pol = vma->vm_ops->get_policy(vma, addr);
966 		else
967 			pol = vma->vm_policy;
968 	} else if (addr)
969 		return -EINVAL;
970 
971 	if (!pol)
972 		pol = &default_policy;	/* indicates default behavior */
973 
974 	if (flags & MPOL_F_NODE) {
975 		if (flags & MPOL_F_ADDR) {
976 			/*
977 			 * Take a refcount on the mpol, lookup_node()
978 			 * will drop the mmap_lock, so after calling
979 			 * lookup_node() only "pol" remains valid, "vma"
980 			 * is stale.
981 			 */
982 			pol_refcount = pol;
983 			vma = NULL;
984 			mpol_get(pol);
985 			err = lookup_node(mm, addr);
986 			if (err < 0)
987 				goto out;
988 			*policy = err;
989 		} else if (pol == current->mempolicy &&
990 				pol->mode == MPOL_INTERLEAVE) {
991 			*policy = next_node_in(current->il_prev, pol->nodes);
992 		} else {
993 			err = -EINVAL;
994 			goto out;
995 		}
996 	} else {
997 		*policy = pol == &default_policy ? MPOL_DEFAULT :
998 						pol->mode;
999 		/*
1000 		 * Internal mempolicy flags must be masked off before exposing
1001 		 * the policy to userspace.
1002 		 */
1003 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 	}
1005 
1006 	err = 0;
1007 	if (nmask) {
1008 		if (mpol_store_user_nodemask(pol)) {
1009 			*nmask = pol->w.user_nodemask;
1010 		} else {
1011 			task_lock(current);
1012 			get_policy_nodemask(pol, nmask);
1013 			task_unlock(current);
1014 		}
1015 	}
1016 
1017  out:
1018 	mpol_cond_put(pol);
1019 	if (vma)
1020 		mmap_read_unlock(mm);
1021 	if (pol_refcount)
1022 		mpol_put(pol_refcount);
1023 	return err;
1024 }
1025 
1026 #ifdef CONFIG_MIGRATION
1027 /*
1028  * page migration, thp tail pages can be passed.
1029  */
1030 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031 				unsigned long flags)
1032 {
1033 	struct page *head = compound_head(page);
1034 	/*
1035 	 * Avoid migrating a page that is shared with others.
1036 	 */
1037 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038 		if (!isolate_lru_page(head)) {
1039 			list_add_tail(&head->lru, pagelist);
1040 			mod_node_page_state(page_pgdat(head),
1041 				NR_ISOLATED_ANON + page_is_file_lru(head),
1042 				thp_nr_pages(head));
1043 		} else if (flags & MPOL_MF_STRICT) {
1044 			/*
1045 			 * Non-movable page may reach here.  And, there may be
1046 			 * temporary off LRU pages or non-LRU movable pages.
1047 			 * Treat them as unmovable pages since they can't be
1048 			 * isolated, so they can't be moved at the moment.  It
1049 			 * should return -EIO for this case too.
1050 			 */
1051 			return -EIO;
1052 		}
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Migrate pages from one node to a target node.
1060  * Returns error or the number of pages not migrated.
1061  */
1062 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 			   int flags)
1064 {
1065 	nodemask_t nmask;
1066 	LIST_HEAD(pagelist);
1067 	int err = 0;
1068 	struct migration_target_control mtc = {
1069 		.nid = dest,
1070 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 	};
1072 
1073 	nodes_clear(nmask);
1074 	node_set(source, nmask);
1075 
1076 	/*
1077 	 * This does not "check" the range but isolates all pages that
1078 	 * need migration.  Between passing in the full user address
1079 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1080 	 */
1081 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1082 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1083 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1084 
1085 	if (!list_empty(&pagelist)) {
1086 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1087 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1088 		if (err)
1089 			putback_movable_pages(&pagelist);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 /*
1096  * Move pages between the two nodesets so as to preserve the physical
1097  * layout as much as possible.
1098  *
1099  * Returns the number of page that could not be moved.
1100  */
1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1102 		     const nodemask_t *to, int flags)
1103 {
1104 	int busy = 0;
1105 	int err = 0;
1106 	nodemask_t tmp;
1107 
1108 	lru_cache_disable();
1109 
1110 	mmap_read_lock(mm);
1111 
1112 	/*
1113 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1114 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1115 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1116 	 * The pair of nodemasks 'to' and 'from' define the map.
1117 	 *
1118 	 * If no pair of bits is found that way, fallback to picking some
1119 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1120 	 * 'source' and 'dest' bits are the same, this represents a node
1121 	 * that will be migrating to itself, so no pages need move.
1122 	 *
1123 	 * If no bits are left in 'tmp', or if all remaining bits left
1124 	 * in 'tmp' correspond to the same bit in 'to', return false
1125 	 * (nothing left to migrate).
1126 	 *
1127 	 * This lets us pick a pair of nodes to migrate between, such that
1128 	 * if possible the dest node is not already occupied by some other
1129 	 * source node, minimizing the risk of overloading the memory on a
1130 	 * node that would happen if we migrated incoming memory to a node
1131 	 * before migrating outgoing memory source that same node.
1132 	 *
1133 	 * A single scan of tmp is sufficient.  As we go, we remember the
1134 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1135 	 * that not only moved, but what's better, moved to an empty slot
1136 	 * (d is not set in tmp), then we break out then, with that pair.
1137 	 * Otherwise when we finish scanning from_tmp, we at least have the
1138 	 * most recent <s, d> pair that moved.  If we get all the way through
1139 	 * the scan of tmp without finding any node that moved, much less
1140 	 * moved to an empty node, then there is nothing left worth migrating.
1141 	 */
1142 
1143 	tmp = *from;
1144 	while (!nodes_empty(tmp)) {
1145 		int s, d;
1146 		int source = NUMA_NO_NODE;
1147 		int dest = 0;
1148 
1149 		for_each_node_mask(s, tmp) {
1150 
1151 			/*
1152 			 * do_migrate_pages() tries to maintain the relative
1153 			 * node relationship of the pages established between
1154 			 * threads and memory areas.
1155                          *
1156 			 * However if the number of source nodes is not equal to
1157 			 * the number of destination nodes we can not preserve
1158 			 * this node relative relationship.  In that case, skip
1159 			 * copying memory from a node that is in the destination
1160 			 * mask.
1161 			 *
1162 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1163 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1164 			 */
1165 
1166 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1167 						(node_isset(s, *to)))
1168 				continue;
1169 
1170 			d = node_remap(s, *from, *to);
1171 			if (s == d)
1172 				continue;
1173 
1174 			source = s;	/* Node moved. Memorize */
1175 			dest = d;
1176 
1177 			/* dest not in remaining from nodes? */
1178 			if (!node_isset(dest, tmp))
1179 				break;
1180 		}
1181 		if (source == NUMA_NO_NODE)
1182 			break;
1183 
1184 		node_clear(source, tmp);
1185 		err = migrate_to_node(mm, source, dest, flags);
1186 		if (err > 0)
1187 			busy += err;
1188 		if (err < 0)
1189 			break;
1190 	}
1191 	mmap_read_unlock(mm);
1192 
1193 	lru_cache_enable();
1194 	if (err < 0)
1195 		return err;
1196 	return busy;
1197 
1198 }
1199 
1200 /*
1201  * Allocate a new page for page migration based on vma policy.
1202  * Start by assuming the page is mapped by the same vma as contains @start.
1203  * Search forward from there, if not.  N.B., this assumes that the
1204  * list of pages handed to migrate_pages()--which is how we get here--
1205  * is in virtual address order.
1206  */
1207 static struct page *new_page(struct page *page, unsigned long start)
1208 {
1209 	struct vm_area_struct *vma;
1210 	unsigned long address;
1211 
1212 	vma = find_vma(current->mm, start);
1213 	while (vma) {
1214 		address = page_address_in_vma(page, vma);
1215 		if (address != -EFAULT)
1216 			break;
1217 		vma = vma->vm_next;
1218 	}
1219 
1220 	if (PageHuge(page)) {
1221 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1222 				vma, address);
1223 	} else if (PageTransHuge(page)) {
1224 		struct page *thp;
1225 
1226 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1227 					 HPAGE_PMD_ORDER);
1228 		if (!thp)
1229 			return NULL;
1230 		prep_transhuge_page(thp);
1231 		return thp;
1232 	}
1233 	/*
1234 	 * if !vma, alloc_page_vma() will use task or system default policy
1235 	 */
1236 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1237 			vma, address);
1238 }
1239 #else
1240 
1241 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1242 				unsigned long flags)
1243 {
1244 	return -EIO;
1245 }
1246 
1247 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1248 		     const nodemask_t *to, int flags)
1249 {
1250 	return -ENOSYS;
1251 }
1252 
1253 static struct page *new_page(struct page *page, unsigned long start)
1254 {
1255 	return NULL;
1256 }
1257 #endif
1258 
1259 static long do_mbind(unsigned long start, unsigned long len,
1260 		     unsigned short mode, unsigned short mode_flags,
1261 		     nodemask_t *nmask, unsigned long flags)
1262 {
1263 	struct mm_struct *mm = current->mm;
1264 	struct mempolicy *new;
1265 	unsigned long end;
1266 	int err;
1267 	int ret;
1268 	LIST_HEAD(pagelist);
1269 
1270 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1271 		return -EINVAL;
1272 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1273 		return -EPERM;
1274 
1275 	if (start & ~PAGE_MASK)
1276 		return -EINVAL;
1277 
1278 	if (mode == MPOL_DEFAULT)
1279 		flags &= ~MPOL_MF_STRICT;
1280 
1281 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1282 	end = start + len;
1283 
1284 	if (end < start)
1285 		return -EINVAL;
1286 	if (end == start)
1287 		return 0;
1288 
1289 	new = mpol_new(mode, mode_flags, nmask);
1290 	if (IS_ERR(new))
1291 		return PTR_ERR(new);
1292 
1293 	if (flags & MPOL_MF_LAZY)
1294 		new->flags |= MPOL_F_MOF;
1295 
1296 	/*
1297 	 * If we are using the default policy then operation
1298 	 * on discontinuous address spaces is okay after all
1299 	 */
1300 	if (!new)
1301 		flags |= MPOL_MF_DISCONTIG_OK;
1302 
1303 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1304 		 start, start + len, mode, mode_flags,
1305 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1306 
1307 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1308 
1309 		lru_cache_disable();
1310 	}
1311 	{
1312 		NODEMASK_SCRATCH(scratch);
1313 		if (scratch) {
1314 			mmap_write_lock(mm);
1315 			err = mpol_set_nodemask(new, nmask, scratch);
1316 			if (err)
1317 				mmap_write_unlock(mm);
1318 		} else
1319 			err = -ENOMEM;
1320 		NODEMASK_SCRATCH_FREE(scratch);
1321 	}
1322 	if (err)
1323 		goto mpol_out;
1324 
1325 	ret = queue_pages_range(mm, start, end, nmask,
1326 			  flags | MPOL_MF_INVERT, &pagelist);
1327 
1328 	if (ret < 0) {
1329 		err = ret;
1330 		goto up_out;
1331 	}
1332 
1333 	err = mbind_range(mm, start, end, new);
1334 
1335 	if (!err) {
1336 		int nr_failed = 0;
1337 
1338 		if (!list_empty(&pagelist)) {
1339 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1340 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1341 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1342 			if (nr_failed)
1343 				putback_movable_pages(&pagelist);
1344 		}
1345 
1346 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1347 			err = -EIO;
1348 	} else {
1349 up_out:
1350 		if (!list_empty(&pagelist))
1351 			putback_movable_pages(&pagelist);
1352 	}
1353 
1354 	mmap_write_unlock(mm);
1355 mpol_out:
1356 	mpol_put(new);
1357 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1358 		lru_cache_enable();
1359 	return err;
1360 }
1361 
1362 /*
1363  * User space interface with variable sized bitmaps for nodelists.
1364  */
1365 
1366 /* Copy a node mask from user space. */
1367 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1368 		     unsigned long maxnode)
1369 {
1370 	unsigned long k;
1371 	unsigned long t;
1372 	unsigned long nlongs;
1373 	unsigned long endmask;
1374 
1375 	--maxnode;
1376 	nodes_clear(*nodes);
1377 	if (maxnode == 0 || !nmask)
1378 		return 0;
1379 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1380 		return -EINVAL;
1381 
1382 	nlongs = BITS_TO_LONGS(maxnode);
1383 	if ((maxnode % BITS_PER_LONG) == 0)
1384 		endmask = ~0UL;
1385 	else
1386 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1387 
1388 	/*
1389 	 * When the user specified more nodes than supported just check
1390 	 * if the non supported part is all zero.
1391 	 *
1392 	 * If maxnode have more longs than MAX_NUMNODES, check
1393 	 * the bits in that area first. And then go through to
1394 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1395 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1396 	 */
1397 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1398 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1399 			if (get_user(t, nmask + k))
1400 				return -EFAULT;
1401 			if (k == nlongs - 1) {
1402 				if (t & endmask)
1403 					return -EINVAL;
1404 			} else if (t)
1405 				return -EINVAL;
1406 		}
1407 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1408 		endmask = ~0UL;
1409 	}
1410 
1411 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1412 		unsigned long valid_mask = endmask;
1413 
1414 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1415 		if (get_user(t, nmask + nlongs - 1))
1416 			return -EFAULT;
1417 		if (t & valid_mask)
1418 			return -EINVAL;
1419 	}
1420 
1421 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1422 		return -EFAULT;
1423 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1424 	return 0;
1425 }
1426 
1427 /* Copy a kernel node mask to user space */
1428 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1429 			      nodemask_t *nodes)
1430 {
1431 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1432 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1433 
1434 	if (copy > nbytes) {
1435 		if (copy > PAGE_SIZE)
1436 			return -EINVAL;
1437 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1438 			return -EFAULT;
1439 		copy = nbytes;
1440 	}
1441 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1442 }
1443 
1444 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1445 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1446 {
1447 	*flags = *mode & MPOL_MODE_FLAGS;
1448 	*mode &= ~MPOL_MODE_FLAGS;
1449 
1450 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1451 		return -EINVAL;
1452 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1453 		return -EINVAL;
1454 
1455 	return 0;
1456 }
1457 
1458 static long kernel_mbind(unsigned long start, unsigned long len,
1459 			 unsigned long mode, const unsigned long __user *nmask,
1460 			 unsigned long maxnode, unsigned int flags)
1461 {
1462 	unsigned short mode_flags;
1463 	nodemask_t nodes;
1464 	int lmode = mode;
1465 	int err;
1466 
1467 	start = untagged_addr(start);
1468 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1469 	if (err)
1470 		return err;
1471 
1472 	err = get_nodes(&nodes, nmask, maxnode);
1473 	if (err)
1474 		return err;
1475 
1476 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1477 }
1478 
1479 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1480 		unsigned long, mode, const unsigned long __user *, nmask,
1481 		unsigned long, maxnode, unsigned int, flags)
1482 {
1483 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1484 }
1485 
1486 /* Set the process memory policy */
1487 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1488 				 unsigned long maxnode)
1489 {
1490 	unsigned short mode_flags;
1491 	nodemask_t nodes;
1492 	int lmode = mode;
1493 	int err;
1494 
1495 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1496 	if (err)
1497 		return err;
1498 
1499 	err = get_nodes(&nodes, nmask, maxnode);
1500 	if (err)
1501 		return err;
1502 
1503 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1504 }
1505 
1506 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1507 		unsigned long, maxnode)
1508 {
1509 	return kernel_set_mempolicy(mode, nmask, maxnode);
1510 }
1511 
1512 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1513 				const unsigned long __user *old_nodes,
1514 				const unsigned long __user *new_nodes)
1515 {
1516 	struct mm_struct *mm = NULL;
1517 	struct task_struct *task;
1518 	nodemask_t task_nodes;
1519 	int err;
1520 	nodemask_t *old;
1521 	nodemask_t *new;
1522 	NODEMASK_SCRATCH(scratch);
1523 
1524 	if (!scratch)
1525 		return -ENOMEM;
1526 
1527 	old = &scratch->mask1;
1528 	new = &scratch->mask2;
1529 
1530 	err = get_nodes(old, old_nodes, maxnode);
1531 	if (err)
1532 		goto out;
1533 
1534 	err = get_nodes(new, new_nodes, maxnode);
1535 	if (err)
1536 		goto out;
1537 
1538 	/* Find the mm_struct */
1539 	rcu_read_lock();
1540 	task = pid ? find_task_by_vpid(pid) : current;
1541 	if (!task) {
1542 		rcu_read_unlock();
1543 		err = -ESRCH;
1544 		goto out;
1545 	}
1546 	get_task_struct(task);
1547 
1548 	err = -EINVAL;
1549 
1550 	/*
1551 	 * Check if this process has the right to modify the specified process.
1552 	 * Use the regular "ptrace_may_access()" checks.
1553 	 */
1554 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1555 		rcu_read_unlock();
1556 		err = -EPERM;
1557 		goto out_put;
1558 	}
1559 	rcu_read_unlock();
1560 
1561 	task_nodes = cpuset_mems_allowed(task);
1562 	/* Is the user allowed to access the target nodes? */
1563 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1564 		err = -EPERM;
1565 		goto out_put;
1566 	}
1567 
1568 	task_nodes = cpuset_mems_allowed(current);
1569 	nodes_and(*new, *new, task_nodes);
1570 	if (nodes_empty(*new))
1571 		goto out_put;
1572 
1573 	err = security_task_movememory(task);
1574 	if (err)
1575 		goto out_put;
1576 
1577 	mm = get_task_mm(task);
1578 	put_task_struct(task);
1579 
1580 	if (!mm) {
1581 		err = -EINVAL;
1582 		goto out;
1583 	}
1584 
1585 	err = do_migrate_pages(mm, old, new,
1586 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1587 
1588 	mmput(mm);
1589 out:
1590 	NODEMASK_SCRATCH_FREE(scratch);
1591 
1592 	return err;
1593 
1594 out_put:
1595 	put_task_struct(task);
1596 	goto out;
1597 
1598 }
1599 
1600 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1601 		const unsigned long __user *, old_nodes,
1602 		const unsigned long __user *, new_nodes)
1603 {
1604 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1605 }
1606 
1607 
1608 /* Retrieve NUMA policy */
1609 static int kernel_get_mempolicy(int __user *policy,
1610 				unsigned long __user *nmask,
1611 				unsigned long maxnode,
1612 				unsigned long addr,
1613 				unsigned long flags)
1614 {
1615 	int err;
1616 	int pval;
1617 	nodemask_t nodes;
1618 
1619 	if (nmask != NULL && maxnode < nr_node_ids)
1620 		return -EINVAL;
1621 
1622 	addr = untagged_addr(addr);
1623 
1624 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1625 
1626 	if (err)
1627 		return err;
1628 
1629 	if (policy && put_user(pval, policy))
1630 		return -EFAULT;
1631 
1632 	if (nmask)
1633 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1634 
1635 	return err;
1636 }
1637 
1638 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1639 		unsigned long __user *, nmask, unsigned long, maxnode,
1640 		unsigned long, addr, unsigned long, flags)
1641 {
1642 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1643 }
1644 
1645 #ifdef CONFIG_COMPAT
1646 
1647 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1648 		       compat_ulong_t __user *, nmask,
1649 		       compat_ulong_t, maxnode,
1650 		       compat_ulong_t, addr, compat_ulong_t, flags)
1651 {
1652 	long err;
1653 	unsigned long __user *nm = NULL;
1654 	unsigned long nr_bits, alloc_size;
1655 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1656 
1657 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1658 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1659 
1660 	if (nmask)
1661 		nm = compat_alloc_user_space(alloc_size);
1662 
1663 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1664 
1665 	if (!err && nmask) {
1666 		unsigned long copy_size;
1667 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1668 		err = copy_from_user(bm, nm, copy_size);
1669 		/* ensure entire bitmap is zeroed */
1670 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1671 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1672 	}
1673 
1674 	return err;
1675 }
1676 
1677 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1678 		       compat_ulong_t, maxnode)
1679 {
1680 	unsigned long __user *nm = NULL;
1681 	unsigned long nr_bits, alloc_size;
1682 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1683 
1684 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1685 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1686 
1687 	if (nmask) {
1688 		if (compat_get_bitmap(bm, nmask, nr_bits))
1689 			return -EFAULT;
1690 		nm = compat_alloc_user_space(alloc_size);
1691 		if (copy_to_user(nm, bm, alloc_size))
1692 			return -EFAULT;
1693 	}
1694 
1695 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1696 }
1697 
1698 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1699 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1700 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1701 {
1702 	unsigned long __user *nm = NULL;
1703 	unsigned long nr_bits, alloc_size;
1704 	nodemask_t bm;
1705 
1706 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1707 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1708 
1709 	if (nmask) {
1710 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1711 			return -EFAULT;
1712 		nm = compat_alloc_user_space(alloc_size);
1713 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1714 			return -EFAULT;
1715 	}
1716 
1717 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1718 }
1719 
1720 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1721 		       compat_ulong_t, maxnode,
1722 		       const compat_ulong_t __user *, old_nodes,
1723 		       const compat_ulong_t __user *, new_nodes)
1724 {
1725 	unsigned long __user *old = NULL;
1726 	unsigned long __user *new = NULL;
1727 	nodemask_t tmp_mask;
1728 	unsigned long nr_bits;
1729 	unsigned long size;
1730 
1731 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1732 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1733 	if (old_nodes) {
1734 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1735 			return -EFAULT;
1736 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1737 		if (new_nodes)
1738 			new = old + size / sizeof(unsigned long);
1739 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1740 			return -EFAULT;
1741 	}
1742 	if (new_nodes) {
1743 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1744 			return -EFAULT;
1745 		if (new == NULL)
1746 			new = compat_alloc_user_space(size);
1747 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1748 			return -EFAULT;
1749 	}
1750 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1751 }
1752 
1753 #endif /* CONFIG_COMPAT */
1754 
1755 bool vma_migratable(struct vm_area_struct *vma)
1756 {
1757 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1758 		return false;
1759 
1760 	/*
1761 	 * DAX device mappings require predictable access latency, so avoid
1762 	 * incurring periodic faults.
1763 	 */
1764 	if (vma_is_dax(vma))
1765 		return false;
1766 
1767 	if (is_vm_hugetlb_page(vma) &&
1768 		!hugepage_migration_supported(hstate_vma(vma)))
1769 		return false;
1770 
1771 	/*
1772 	 * Migration allocates pages in the highest zone. If we cannot
1773 	 * do so then migration (at least from node to node) is not
1774 	 * possible.
1775 	 */
1776 	if (vma->vm_file &&
1777 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1778 			< policy_zone)
1779 		return false;
1780 	return true;
1781 }
1782 
1783 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1784 						unsigned long addr)
1785 {
1786 	struct mempolicy *pol = NULL;
1787 
1788 	if (vma) {
1789 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1790 			pol = vma->vm_ops->get_policy(vma, addr);
1791 		} else if (vma->vm_policy) {
1792 			pol = vma->vm_policy;
1793 
1794 			/*
1795 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1796 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1797 			 * count on these policies which will be dropped by
1798 			 * mpol_cond_put() later
1799 			 */
1800 			if (mpol_needs_cond_ref(pol))
1801 				mpol_get(pol);
1802 		}
1803 	}
1804 
1805 	return pol;
1806 }
1807 
1808 /*
1809  * get_vma_policy(@vma, @addr)
1810  * @vma: virtual memory area whose policy is sought
1811  * @addr: address in @vma for shared policy lookup
1812  *
1813  * Returns effective policy for a VMA at specified address.
1814  * Falls back to current->mempolicy or system default policy, as necessary.
1815  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1816  * count--added by the get_policy() vm_op, as appropriate--to protect against
1817  * freeing by another task.  It is the caller's responsibility to free the
1818  * extra reference for shared policies.
1819  */
1820 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1821 						unsigned long addr)
1822 {
1823 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1824 
1825 	if (!pol)
1826 		pol = get_task_policy(current);
1827 
1828 	return pol;
1829 }
1830 
1831 bool vma_policy_mof(struct vm_area_struct *vma)
1832 {
1833 	struct mempolicy *pol;
1834 
1835 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1836 		bool ret = false;
1837 
1838 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1839 		if (pol && (pol->flags & MPOL_F_MOF))
1840 			ret = true;
1841 		mpol_cond_put(pol);
1842 
1843 		return ret;
1844 	}
1845 
1846 	pol = vma->vm_policy;
1847 	if (!pol)
1848 		pol = get_task_policy(current);
1849 
1850 	return pol->flags & MPOL_F_MOF;
1851 }
1852 
1853 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1854 {
1855 	enum zone_type dynamic_policy_zone = policy_zone;
1856 
1857 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1858 
1859 	/*
1860 	 * if policy->nodes has movable memory only,
1861 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1862 	 *
1863 	 * policy->nodes is intersect with node_states[N_MEMORY].
1864 	 * so if the following test fails, it implies
1865 	 * policy->nodes has movable memory only.
1866 	 */
1867 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1868 		dynamic_policy_zone = ZONE_MOVABLE;
1869 
1870 	return zone >= dynamic_policy_zone;
1871 }
1872 
1873 /*
1874  * Return a nodemask representing a mempolicy for filtering nodes for
1875  * page allocation
1876  */
1877 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1878 {
1879 	int mode = policy->mode;
1880 
1881 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1882 	if (unlikely(mode == MPOL_BIND) &&
1883 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1884 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1885 		return &policy->nodes;
1886 
1887 	if (mode == MPOL_PREFERRED_MANY)
1888 		return &policy->nodes;
1889 
1890 	return NULL;
1891 }
1892 
1893 /*
1894  * Return the  preferred node id for 'prefer' mempolicy, and return
1895  * the given id for all other policies.
1896  *
1897  * policy_node() is always coupled with policy_nodemask(), which
1898  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1899  */
1900 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1901 {
1902 	if (policy->mode == MPOL_PREFERRED) {
1903 		nd = first_node(policy->nodes);
1904 	} else {
1905 		/*
1906 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1907 		 * because we might easily break the expectation to stay on the
1908 		 * requested node and not break the policy.
1909 		 */
1910 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1911 	}
1912 
1913 	return nd;
1914 }
1915 
1916 /* Do dynamic interleaving for a process */
1917 static unsigned interleave_nodes(struct mempolicy *policy)
1918 {
1919 	unsigned next;
1920 	struct task_struct *me = current;
1921 
1922 	next = next_node_in(me->il_prev, policy->nodes);
1923 	if (next < MAX_NUMNODES)
1924 		me->il_prev = next;
1925 	return next;
1926 }
1927 
1928 /*
1929  * Depending on the memory policy provide a node from which to allocate the
1930  * next slab entry.
1931  */
1932 unsigned int mempolicy_slab_node(void)
1933 {
1934 	struct mempolicy *policy;
1935 	int node = numa_mem_id();
1936 
1937 	if (!in_task())
1938 		return node;
1939 
1940 	policy = current->mempolicy;
1941 	if (!policy)
1942 		return node;
1943 
1944 	switch (policy->mode) {
1945 	case MPOL_PREFERRED:
1946 		return first_node(policy->nodes);
1947 
1948 	case MPOL_INTERLEAVE:
1949 		return interleave_nodes(policy);
1950 
1951 	case MPOL_BIND:
1952 	case MPOL_PREFERRED_MANY:
1953 	{
1954 		struct zoneref *z;
1955 
1956 		/*
1957 		 * Follow bind policy behavior and start allocation at the
1958 		 * first node.
1959 		 */
1960 		struct zonelist *zonelist;
1961 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1962 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1963 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1964 							&policy->nodes);
1965 		return z->zone ? zone_to_nid(z->zone) : node;
1966 	}
1967 	case MPOL_LOCAL:
1968 		return node;
1969 
1970 	default:
1971 		BUG();
1972 	}
1973 }
1974 
1975 /*
1976  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1977  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1978  * number of present nodes.
1979  */
1980 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1981 {
1982 	unsigned nnodes = nodes_weight(pol->nodes);
1983 	unsigned target;
1984 	int i;
1985 	int nid;
1986 
1987 	if (!nnodes)
1988 		return numa_node_id();
1989 	target = (unsigned int)n % nnodes;
1990 	nid = first_node(pol->nodes);
1991 	for (i = 0; i < target; i++)
1992 		nid = next_node(nid, pol->nodes);
1993 	return nid;
1994 }
1995 
1996 /* Determine a node number for interleave */
1997 static inline unsigned interleave_nid(struct mempolicy *pol,
1998 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1999 {
2000 	if (vma) {
2001 		unsigned long off;
2002 
2003 		/*
2004 		 * for small pages, there is no difference between
2005 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2006 		 * for huge pages, since vm_pgoff is in units of small
2007 		 * pages, we need to shift off the always 0 bits to get
2008 		 * a useful offset.
2009 		 */
2010 		BUG_ON(shift < PAGE_SHIFT);
2011 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2012 		off += (addr - vma->vm_start) >> shift;
2013 		return offset_il_node(pol, off);
2014 	} else
2015 		return interleave_nodes(pol);
2016 }
2017 
2018 #ifdef CONFIG_HUGETLBFS
2019 /*
2020  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2021  * @vma: virtual memory area whose policy is sought
2022  * @addr: address in @vma for shared policy lookup and interleave policy
2023  * @gfp_flags: for requested zone
2024  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2025  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2026  *
2027  * Returns a nid suitable for a huge page allocation and a pointer
2028  * to the struct mempolicy for conditional unref after allocation.
2029  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2030  * to the mempolicy's @nodemask for filtering the zonelist.
2031  *
2032  * Must be protected by read_mems_allowed_begin()
2033  */
2034 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2035 				struct mempolicy **mpol, nodemask_t **nodemask)
2036 {
2037 	int nid;
2038 	int mode;
2039 
2040 	*mpol = get_vma_policy(vma, addr);
2041 	*nodemask = NULL;
2042 	mode = (*mpol)->mode;
2043 
2044 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2045 		nid = interleave_nid(*mpol, vma, addr,
2046 					huge_page_shift(hstate_vma(vma)));
2047 	} else {
2048 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2049 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2050 			*nodemask = &(*mpol)->nodes;
2051 	}
2052 	return nid;
2053 }
2054 
2055 /*
2056  * init_nodemask_of_mempolicy
2057  *
2058  * If the current task's mempolicy is "default" [NULL], return 'false'
2059  * to indicate default policy.  Otherwise, extract the policy nodemask
2060  * for 'bind' or 'interleave' policy into the argument nodemask, or
2061  * initialize the argument nodemask to contain the single node for
2062  * 'preferred' or 'local' policy and return 'true' to indicate presence
2063  * of non-default mempolicy.
2064  *
2065  * We don't bother with reference counting the mempolicy [mpol_get/put]
2066  * because the current task is examining it's own mempolicy and a task's
2067  * mempolicy is only ever changed by the task itself.
2068  *
2069  * N.B., it is the caller's responsibility to free a returned nodemask.
2070  */
2071 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2072 {
2073 	struct mempolicy *mempolicy;
2074 
2075 	if (!(mask && current->mempolicy))
2076 		return false;
2077 
2078 	task_lock(current);
2079 	mempolicy = current->mempolicy;
2080 	switch (mempolicy->mode) {
2081 	case MPOL_PREFERRED:
2082 	case MPOL_PREFERRED_MANY:
2083 	case MPOL_BIND:
2084 	case MPOL_INTERLEAVE:
2085 		*mask = mempolicy->nodes;
2086 		break;
2087 
2088 	case MPOL_LOCAL:
2089 		init_nodemask_of_node(mask, numa_node_id());
2090 		break;
2091 
2092 	default:
2093 		BUG();
2094 	}
2095 	task_unlock(current);
2096 
2097 	return true;
2098 }
2099 #endif
2100 
2101 /*
2102  * mempolicy_in_oom_domain
2103  *
2104  * If tsk's mempolicy is "bind", check for intersection between mask and
2105  * the policy nodemask. Otherwise, return true for all other policies
2106  * including "interleave", as a tsk with "interleave" policy may have
2107  * memory allocated from all nodes in system.
2108  *
2109  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2110  */
2111 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2112 					const nodemask_t *mask)
2113 {
2114 	struct mempolicy *mempolicy;
2115 	bool ret = true;
2116 
2117 	if (!mask)
2118 		return ret;
2119 
2120 	task_lock(tsk);
2121 	mempolicy = tsk->mempolicy;
2122 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2123 		ret = nodes_intersects(mempolicy->nodes, *mask);
2124 	task_unlock(tsk);
2125 
2126 	return ret;
2127 }
2128 
2129 /* Allocate a page in interleaved policy.
2130    Own path because it needs to do special accounting. */
2131 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2132 					unsigned nid)
2133 {
2134 	struct page *page;
2135 
2136 	page = __alloc_pages(gfp, order, nid, NULL);
2137 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2138 	if (!static_branch_likely(&vm_numa_stat_key))
2139 		return page;
2140 	if (page && page_to_nid(page) == nid) {
2141 		preempt_disable();
2142 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2143 		preempt_enable();
2144 	}
2145 	return page;
2146 }
2147 
2148 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2149 						int nid, struct mempolicy *pol)
2150 {
2151 	struct page *page;
2152 	gfp_t preferred_gfp;
2153 
2154 	/*
2155 	 * This is a two pass approach. The first pass will only try the
2156 	 * preferred nodes but skip the direct reclaim and allow the
2157 	 * allocation to fail, while the second pass will try all the
2158 	 * nodes in system.
2159 	 */
2160 	preferred_gfp = gfp | __GFP_NOWARN;
2161 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2162 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2163 	if (!page)
2164 		page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2165 
2166 	return page;
2167 }
2168 
2169 /**
2170  * alloc_pages_vma - Allocate a page for a VMA.
2171  * @gfp: GFP flags.
2172  * @order: Order of the GFP allocation.
2173  * @vma: Pointer to VMA or NULL if not available.
2174  * @addr: Virtual address of the allocation.  Must be inside @vma.
2175  * @node: Which node to prefer for allocation (modulo policy).
2176  * @hugepage: For hugepages try only the preferred node if possible.
2177  *
2178  * Allocate a page for a specific address in @vma, using the appropriate
2179  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2180  * of the mm_struct of the VMA to prevent it from going away.  Should be
2181  * used for all allocations for pages that will be mapped into user space.
2182  *
2183  * Return: The page on success or NULL if allocation fails.
2184  */
2185 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2186 		unsigned long addr, int node, bool hugepage)
2187 {
2188 	struct mempolicy *pol;
2189 	struct page *page;
2190 	int preferred_nid;
2191 	nodemask_t *nmask;
2192 
2193 	pol = get_vma_policy(vma, addr);
2194 
2195 	if (pol->mode == MPOL_INTERLEAVE) {
2196 		unsigned nid;
2197 
2198 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2199 		mpol_cond_put(pol);
2200 		page = alloc_page_interleave(gfp, order, nid);
2201 		goto out;
2202 	}
2203 
2204 	if (pol->mode == MPOL_PREFERRED_MANY) {
2205 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2206 		mpol_cond_put(pol);
2207 		goto out;
2208 	}
2209 
2210 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2211 		int hpage_node = node;
2212 
2213 		/*
2214 		 * For hugepage allocation and non-interleave policy which
2215 		 * allows the current node (or other explicitly preferred
2216 		 * node) we only try to allocate from the current/preferred
2217 		 * node and don't fall back to other nodes, as the cost of
2218 		 * remote accesses would likely offset THP benefits.
2219 		 *
2220 		 * If the policy is interleave or does not allow the current
2221 		 * node in its nodemask, we allocate the standard way.
2222 		 */
2223 		if (pol->mode == MPOL_PREFERRED)
2224 			hpage_node = first_node(pol->nodes);
2225 
2226 		nmask = policy_nodemask(gfp, pol);
2227 		if (!nmask || node_isset(hpage_node, *nmask)) {
2228 			mpol_cond_put(pol);
2229 			/*
2230 			 * First, try to allocate THP only on local node, but
2231 			 * don't reclaim unnecessarily, just compact.
2232 			 */
2233 			page = __alloc_pages_node(hpage_node,
2234 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2235 
2236 			/*
2237 			 * If hugepage allocations are configured to always
2238 			 * synchronous compact or the vma has been madvised
2239 			 * to prefer hugepage backing, retry allowing remote
2240 			 * memory with both reclaim and compact as well.
2241 			 */
2242 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2243 				page = __alloc_pages_node(hpage_node,
2244 								gfp, order);
2245 
2246 			goto out;
2247 		}
2248 	}
2249 
2250 	nmask = policy_nodemask(gfp, pol);
2251 	preferred_nid = policy_node(gfp, pol, node);
2252 	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2253 	mpol_cond_put(pol);
2254 out:
2255 	return page;
2256 }
2257 EXPORT_SYMBOL(alloc_pages_vma);
2258 
2259 /**
2260  * alloc_pages - Allocate pages.
2261  * @gfp: GFP flags.
2262  * @order: Power of two of number of pages to allocate.
2263  *
2264  * Allocate 1 << @order contiguous pages.  The physical address of the
2265  * first page is naturally aligned (eg an order-3 allocation will be aligned
2266  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2267  * process is honoured when in process context.
2268  *
2269  * Context: Can be called from any context, providing the appropriate GFP
2270  * flags are used.
2271  * Return: The page on success or NULL if allocation fails.
2272  */
2273 struct page *alloc_pages(gfp_t gfp, unsigned order)
2274 {
2275 	struct mempolicy *pol = &default_policy;
2276 	struct page *page;
2277 
2278 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2279 		pol = get_task_policy(current);
2280 
2281 	/*
2282 	 * No reference counting needed for current->mempolicy
2283 	 * nor system default_policy
2284 	 */
2285 	if (pol->mode == MPOL_INTERLEAVE)
2286 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2287 	else if (pol->mode == MPOL_PREFERRED_MANY)
2288 		page = alloc_pages_preferred_many(gfp, order,
2289 				numa_node_id(), pol);
2290 	else
2291 		page = __alloc_pages(gfp, order,
2292 				policy_node(gfp, pol, numa_node_id()),
2293 				policy_nodemask(gfp, pol));
2294 
2295 	return page;
2296 }
2297 EXPORT_SYMBOL(alloc_pages);
2298 
2299 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2300 {
2301 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2302 
2303 	if (IS_ERR(pol))
2304 		return PTR_ERR(pol);
2305 	dst->vm_policy = pol;
2306 	return 0;
2307 }
2308 
2309 /*
2310  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2311  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2312  * with the mems_allowed returned by cpuset_mems_allowed().  This
2313  * keeps mempolicies cpuset relative after its cpuset moves.  See
2314  * further kernel/cpuset.c update_nodemask().
2315  *
2316  * current's mempolicy may be rebinded by the other task(the task that changes
2317  * cpuset's mems), so we needn't do rebind work for current task.
2318  */
2319 
2320 /* Slow path of a mempolicy duplicate */
2321 struct mempolicy *__mpol_dup(struct mempolicy *old)
2322 {
2323 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2324 
2325 	if (!new)
2326 		return ERR_PTR(-ENOMEM);
2327 
2328 	/* task's mempolicy is protected by alloc_lock */
2329 	if (old == current->mempolicy) {
2330 		task_lock(current);
2331 		*new = *old;
2332 		task_unlock(current);
2333 	} else
2334 		*new = *old;
2335 
2336 	if (current_cpuset_is_being_rebound()) {
2337 		nodemask_t mems = cpuset_mems_allowed(current);
2338 		mpol_rebind_policy(new, &mems);
2339 	}
2340 	atomic_set(&new->refcnt, 1);
2341 	return new;
2342 }
2343 
2344 /* Slow path of a mempolicy comparison */
2345 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2346 {
2347 	if (!a || !b)
2348 		return false;
2349 	if (a->mode != b->mode)
2350 		return false;
2351 	if (a->flags != b->flags)
2352 		return false;
2353 	if (mpol_store_user_nodemask(a))
2354 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2355 			return false;
2356 
2357 	switch (a->mode) {
2358 	case MPOL_BIND:
2359 	case MPOL_INTERLEAVE:
2360 	case MPOL_PREFERRED:
2361 	case MPOL_PREFERRED_MANY:
2362 		return !!nodes_equal(a->nodes, b->nodes);
2363 	case MPOL_LOCAL:
2364 		return true;
2365 	default:
2366 		BUG();
2367 		return false;
2368 	}
2369 }
2370 
2371 /*
2372  * Shared memory backing store policy support.
2373  *
2374  * Remember policies even when nobody has shared memory mapped.
2375  * The policies are kept in Red-Black tree linked from the inode.
2376  * They are protected by the sp->lock rwlock, which should be held
2377  * for any accesses to the tree.
2378  */
2379 
2380 /*
2381  * lookup first element intersecting start-end.  Caller holds sp->lock for
2382  * reading or for writing
2383  */
2384 static struct sp_node *
2385 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2386 {
2387 	struct rb_node *n = sp->root.rb_node;
2388 
2389 	while (n) {
2390 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2391 
2392 		if (start >= p->end)
2393 			n = n->rb_right;
2394 		else if (end <= p->start)
2395 			n = n->rb_left;
2396 		else
2397 			break;
2398 	}
2399 	if (!n)
2400 		return NULL;
2401 	for (;;) {
2402 		struct sp_node *w = NULL;
2403 		struct rb_node *prev = rb_prev(n);
2404 		if (!prev)
2405 			break;
2406 		w = rb_entry(prev, struct sp_node, nd);
2407 		if (w->end <= start)
2408 			break;
2409 		n = prev;
2410 	}
2411 	return rb_entry(n, struct sp_node, nd);
2412 }
2413 
2414 /*
2415  * Insert a new shared policy into the list.  Caller holds sp->lock for
2416  * writing.
2417  */
2418 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2419 {
2420 	struct rb_node **p = &sp->root.rb_node;
2421 	struct rb_node *parent = NULL;
2422 	struct sp_node *nd;
2423 
2424 	while (*p) {
2425 		parent = *p;
2426 		nd = rb_entry(parent, struct sp_node, nd);
2427 		if (new->start < nd->start)
2428 			p = &(*p)->rb_left;
2429 		else if (new->end > nd->end)
2430 			p = &(*p)->rb_right;
2431 		else
2432 			BUG();
2433 	}
2434 	rb_link_node(&new->nd, parent, p);
2435 	rb_insert_color(&new->nd, &sp->root);
2436 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2437 		 new->policy ? new->policy->mode : 0);
2438 }
2439 
2440 /* Find shared policy intersecting idx */
2441 struct mempolicy *
2442 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2443 {
2444 	struct mempolicy *pol = NULL;
2445 	struct sp_node *sn;
2446 
2447 	if (!sp->root.rb_node)
2448 		return NULL;
2449 	read_lock(&sp->lock);
2450 	sn = sp_lookup(sp, idx, idx+1);
2451 	if (sn) {
2452 		mpol_get(sn->policy);
2453 		pol = sn->policy;
2454 	}
2455 	read_unlock(&sp->lock);
2456 	return pol;
2457 }
2458 
2459 static void sp_free(struct sp_node *n)
2460 {
2461 	mpol_put(n->policy);
2462 	kmem_cache_free(sn_cache, n);
2463 }
2464 
2465 /**
2466  * mpol_misplaced - check whether current page node is valid in policy
2467  *
2468  * @page: page to be checked
2469  * @vma: vm area where page mapped
2470  * @addr: virtual address where page mapped
2471  *
2472  * Lookup current policy node id for vma,addr and "compare to" page's
2473  * node id.  Policy determination "mimics" alloc_page_vma().
2474  * Called from fault path where we know the vma and faulting address.
2475  *
2476  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2477  * policy, or a suitable node ID to allocate a replacement page from.
2478  */
2479 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2480 {
2481 	struct mempolicy *pol;
2482 	struct zoneref *z;
2483 	int curnid = page_to_nid(page);
2484 	unsigned long pgoff;
2485 	int thiscpu = raw_smp_processor_id();
2486 	int thisnid = cpu_to_node(thiscpu);
2487 	int polnid = NUMA_NO_NODE;
2488 	int ret = NUMA_NO_NODE;
2489 
2490 	pol = get_vma_policy(vma, addr);
2491 	if (!(pol->flags & MPOL_F_MOF))
2492 		goto out;
2493 
2494 	switch (pol->mode) {
2495 	case MPOL_INTERLEAVE:
2496 		pgoff = vma->vm_pgoff;
2497 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2498 		polnid = offset_il_node(pol, pgoff);
2499 		break;
2500 
2501 	case MPOL_PREFERRED:
2502 		if (node_isset(curnid, pol->nodes))
2503 			goto out;
2504 		polnid = first_node(pol->nodes);
2505 		break;
2506 
2507 	case MPOL_LOCAL:
2508 		polnid = numa_node_id();
2509 		break;
2510 
2511 	case MPOL_BIND:
2512 		/* Optimize placement among multiple nodes via NUMA balancing */
2513 		if (pol->flags & MPOL_F_MORON) {
2514 			if (node_isset(thisnid, pol->nodes))
2515 				break;
2516 			goto out;
2517 		}
2518 		fallthrough;
2519 
2520 	case MPOL_PREFERRED_MANY:
2521 		/*
2522 		 * use current page if in policy nodemask,
2523 		 * else select nearest allowed node, if any.
2524 		 * If no allowed nodes, use current [!misplaced].
2525 		 */
2526 		if (node_isset(curnid, pol->nodes))
2527 			goto out;
2528 		z = first_zones_zonelist(
2529 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2530 				gfp_zone(GFP_HIGHUSER),
2531 				&pol->nodes);
2532 		polnid = zone_to_nid(z->zone);
2533 		break;
2534 
2535 	default:
2536 		BUG();
2537 	}
2538 
2539 	/* Migrate the page towards the node whose CPU is referencing it */
2540 	if (pol->flags & MPOL_F_MORON) {
2541 		polnid = thisnid;
2542 
2543 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2544 			goto out;
2545 	}
2546 
2547 	if (curnid != polnid)
2548 		ret = polnid;
2549 out:
2550 	mpol_cond_put(pol);
2551 
2552 	return ret;
2553 }
2554 
2555 /*
2556  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2557  * dropped after task->mempolicy is set to NULL so that any allocation done as
2558  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2559  * policy.
2560  */
2561 void mpol_put_task_policy(struct task_struct *task)
2562 {
2563 	struct mempolicy *pol;
2564 
2565 	task_lock(task);
2566 	pol = task->mempolicy;
2567 	task->mempolicy = NULL;
2568 	task_unlock(task);
2569 	mpol_put(pol);
2570 }
2571 
2572 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2573 {
2574 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2575 	rb_erase(&n->nd, &sp->root);
2576 	sp_free(n);
2577 }
2578 
2579 static void sp_node_init(struct sp_node *node, unsigned long start,
2580 			unsigned long end, struct mempolicy *pol)
2581 {
2582 	node->start = start;
2583 	node->end = end;
2584 	node->policy = pol;
2585 }
2586 
2587 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2588 				struct mempolicy *pol)
2589 {
2590 	struct sp_node *n;
2591 	struct mempolicy *newpol;
2592 
2593 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2594 	if (!n)
2595 		return NULL;
2596 
2597 	newpol = mpol_dup(pol);
2598 	if (IS_ERR(newpol)) {
2599 		kmem_cache_free(sn_cache, n);
2600 		return NULL;
2601 	}
2602 	newpol->flags |= MPOL_F_SHARED;
2603 	sp_node_init(n, start, end, newpol);
2604 
2605 	return n;
2606 }
2607 
2608 /* Replace a policy range. */
2609 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2610 				 unsigned long end, struct sp_node *new)
2611 {
2612 	struct sp_node *n;
2613 	struct sp_node *n_new = NULL;
2614 	struct mempolicy *mpol_new = NULL;
2615 	int ret = 0;
2616 
2617 restart:
2618 	write_lock(&sp->lock);
2619 	n = sp_lookup(sp, start, end);
2620 	/* Take care of old policies in the same range. */
2621 	while (n && n->start < end) {
2622 		struct rb_node *next = rb_next(&n->nd);
2623 		if (n->start >= start) {
2624 			if (n->end <= end)
2625 				sp_delete(sp, n);
2626 			else
2627 				n->start = end;
2628 		} else {
2629 			/* Old policy spanning whole new range. */
2630 			if (n->end > end) {
2631 				if (!n_new)
2632 					goto alloc_new;
2633 
2634 				*mpol_new = *n->policy;
2635 				atomic_set(&mpol_new->refcnt, 1);
2636 				sp_node_init(n_new, end, n->end, mpol_new);
2637 				n->end = start;
2638 				sp_insert(sp, n_new);
2639 				n_new = NULL;
2640 				mpol_new = NULL;
2641 				break;
2642 			} else
2643 				n->end = start;
2644 		}
2645 		if (!next)
2646 			break;
2647 		n = rb_entry(next, struct sp_node, nd);
2648 	}
2649 	if (new)
2650 		sp_insert(sp, new);
2651 	write_unlock(&sp->lock);
2652 	ret = 0;
2653 
2654 err_out:
2655 	if (mpol_new)
2656 		mpol_put(mpol_new);
2657 	if (n_new)
2658 		kmem_cache_free(sn_cache, n_new);
2659 
2660 	return ret;
2661 
2662 alloc_new:
2663 	write_unlock(&sp->lock);
2664 	ret = -ENOMEM;
2665 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2666 	if (!n_new)
2667 		goto err_out;
2668 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2669 	if (!mpol_new)
2670 		goto err_out;
2671 	goto restart;
2672 }
2673 
2674 /**
2675  * mpol_shared_policy_init - initialize shared policy for inode
2676  * @sp: pointer to inode shared policy
2677  * @mpol:  struct mempolicy to install
2678  *
2679  * Install non-NULL @mpol in inode's shared policy rb-tree.
2680  * On entry, the current task has a reference on a non-NULL @mpol.
2681  * This must be released on exit.
2682  * This is called at get_inode() calls and we can use GFP_KERNEL.
2683  */
2684 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2685 {
2686 	int ret;
2687 
2688 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2689 	rwlock_init(&sp->lock);
2690 
2691 	if (mpol) {
2692 		struct vm_area_struct pvma;
2693 		struct mempolicy *new;
2694 		NODEMASK_SCRATCH(scratch);
2695 
2696 		if (!scratch)
2697 			goto put_mpol;
2698 		/* contextualize the tmpfs mount point mempolicy */
2699 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2700 		if (IS_ERR(new))
2701 			goto free_scratch; /* no valid nodemask intersection */
2702 
2703 		task_lock(current);
2704 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2705 		task_unlock(current);
2706 		if (ret)
2707 			goto put_new;
2708 
2709 		/* Create pseudo-vma that contains just the policy */
2710 		vma_init(&pvma, NULL);
2711 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2712 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2713 
2714 put_new:
2715 		mpol_put(new);			/* drop initial ref */
2716 free_scratch:
2717 		NODEMASK_SCRATCH_FREE(scratch);
2718 put_mpol:
2719 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2720 	}
2721 }
2722 
2723 int mpol_set_shared_policy(struct shared_policy *info,
2724 			struct vm_area_struct *vma, struct mempolicy *npol)
2725 {
2726 	int err;
2727 	struct sp_node *new = NULL;
2728 	unsigned long sz = vma_pages(vma);
2729 
2730 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2731 		 vma->vm_pgoff,
2732 		 sz, npol ? npol->mode : -1,
2733 		 npol ? npol->flags : -1,
2734 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2735 
2736 	if (npol) {
2737 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2738 		if (!new)
2739 			return -ENOMEM;
2740 	}
2741 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2742 	if (err && new)
2743 		sp_free(new);
2744 	return err;
2745 }
2746 
2747 /* Free a backing policy store on inode delete. */
2748 void mpol_free_shared_policy(struct shared_policy *p)
2749 {
2750 	struct sp_node *n;
2751 	struct rb_node *next;
2752 
2753 	if (!p->root.rb_node)
2754 		return;
2755 	write_lock(&p->lock);
2756 	next = rb_first(&p->root);
2757 	while (next) {
2758 		n = rb_entry(next, struct sp_node, nd);
2759 		next = rb_next(&n->nd);
2760 		sp_delete(p, n);
2761 	}
2762 	write_unlock(&p->lock);
2763 }
2764 
2765 #ifdef CONFIG_NUMA_BALANCING
2766 static int __initdata numabalancing_override;
2767 
2768 static void __init check_numabalancing_enable(void)
2769 {
2770 	bool numabalancing_default = false;
2771 
2772 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2773 		numabalancing_default = true;
2774 
2775 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2776 	if (numabalancing_override)
2777 		set_numabalancing_state(numabalancing_override == 1);
2778 
2779 	if (num_online_nodes() > 1 && !numabalancing_override) {
2780 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2781 			numabalancing_default ? "Enabling" : "Disabling");
2782 		set_numabalancing_state(numabalancing_default);
2783 	}
2784 }
2785 
2786 static int __init setup_numabalancing(char *str)
2787 {
2788 	int ret = 0;
2789 	if (!str)
2790 		goto out;
2791 
2792 	if (!strcmp(str, "enable")) {
2793 		numabalancing_override = 1;
2794 		ret = 1;
2795 	} else if (!strcmp(str, "disable")) {
2796 		numabalancing_override = -1;
2797 		ret = 1;
2798 	}
2799 out:
2800 	if (!ret)
2801 		pr_warn("Unable to parse numa_balancing=\n");
2802 
2803 	return ret;
2804 }
2805 __setup("numa_balancing=", setup_numabalancing);
2806 #else
2807 static inline void __init check_numabalancing_enable(void)
2808 {
2809 }
2810 #endif /* CONFIG_NUMA_BALANCING */
2811 
2812 /* assumes fs == KERNEL_DS */
2813 void __init numa_policy_init(void)
2814 {
2815 	nodemask_t interleave_nodes;
2816 	unsigned long largest = 0;
2817 	int nid, prefer = 0;
2818 
2819 	policy_cache = kmem_cache_create("numa_policy",
2820 					 sizeof(struct mempolicy),
2821 					 0, SLAB_PANIC, NULL);
2822 
2823 	sn_cache = kmem_cache_create("shared_policy_node",
2824 				     sizeof(struct sp_node),
2825 				     0, SLAB_PANIC, NULL);
2826 
2827 	for_each_node(nid) {
2828 		preferred_node_policy[nid] = (struct mempolicy) {
2829 			.refcnt = ATOMIC_INIT(1),
2830 			.mode = MPOL_PREFERRED,
2831 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2832 			.nodes = nodemask_of_node(nid),
2833 		};
2834 	}
2835 
2836 	/*
2837 	 * Set interleaving policy for system init. Interleaving is only
2838 	 * enabled across suitably sized nodes (default is >= 16MB), or
2839 	 * fall back to the largest node if they're all smaller.
2840 	 */
2841 	nodes_clear(interleave_nodes);
2842 	for_each_node_state(nid, N_MEMORY) {
2843 		unsigned long total_pages = node_present_pages(nid);
2844 
2845 		/* Preserve the largest node */
2846 		if (largest < total_pages) {
2847 			largest = total_pages;
2848 			prefer = nid;
2849 		}
2850 
2851 		/* Interleave this node? */
2852 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2853 			node_set(nid, interleave_nodes);
2854 	}
2855 
2856 	/* All too small, use the largest */
2857 	if (unlikely(nodes_empty(interleave_nodes)))
2858 		node_set(prefer, interleave_nodes);
2859 
2860 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2861 		pr_err("%s: interleaving failed\n", __func__);
2862 
2863 	check_numabalancing_enable();
2864 }
2865 
2866 /* Reset policy of current process to default */
2867 void numa_default_policy(void)
2868 {
2869 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2870 }
2871 
2872 /*
2873  * Parse and format mempolicy from/to strings
2874  */
2875 
2876 static const char * const policy_modes[] =
2877 {
2878 	[MPOL_DEFAULT]    = "default",
2879 	[MPOL_PREFERRED]  = "prefer",
2880 	[MPOL_BIND]       = "bind",
2881 	[MPOL_INTERLEAVE] = "interleave",
2882 	[MPOL_LOCAL]      = "local",
2883 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2884 };
2885 
2886 
2887 #ifdef CONFIG_TMPFS
2888 /**
2889  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2890  * @str:  string containing mempolicy to parse
2891  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2892  *
2893  * Format of input:
2894  *	<mode>[=<flags>][:<nodelist>]
2895  *
2896  * On success, returns 0, else 1
2897  */
2898 int mpol_parse_str(char *str, struct mempolicy **mpol)
2899 {
2900 	struct mempolicy *new = NULL;
2901 	unsigned short mode_flags;
2902 	nodemask_t nodes;
2903 	char *nodelist = strchr(str, ':');
2904 	char *flags = strchr(str, '=');
2905 	int err = 1, mode;
2906 
2907 	if (flags)
2908 		*flags++ = '\0';	/* terminate mode string */
2909 
2910 	if (nodelist) {
2911 		/* NUL-terminate mode or flags string */
2912 		*nodelist++ = '\0';
2913 		if (nodelist_parse(nodelist, nodes))
2914 			goto out;
2915 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2916 			goto out;
2917 	} else
2918 		nodes_clear(nodes);
2919 
2920 	mode = match_string(policy_modes, MPOL_MAX, str);
2921 	if (mode < 0)
2922 		goto out;
2923 
2924 	switch (mode) {
2925 	case MPOL_PREFERRED:
2926 		/*
2927 		 * Insist on a nodelist of one node only, although later
2928 		 * we use first_node(nodes) to grab a single node, so here
2929 		 * nodelist (or nodes) cannot be empty.
2930 		 */
2931 		if (nodelist) {
2932 			char *rest = nodelist;
2933 			while (isdigit(*rest))
2934 				rest++;
2935 			if (*rest)
2936 				goto out;
2937 			if (nodes_empty(nodes))
2938 				goto out;
2939 		}
2940 		break;
2941 	case MPOL_INTERLEAVE:
2942 		/*
2943 		 * Default to online nodes with memory if no nodelist
2944 		 */
2945 		if (!nodelist)
2946 			nodes = node_states[N_MEMORY];
2947 		break;
2948 	case MPOL_LOCAL:
2949 		/*
2950 		 * Don't allow a nodelist;  mpol_new() checks flags
2951 		 */
2952 		if (nodelist)
2953 			goto out;
2954 		break;
2955 	case MPOL_DEFAULT:
2956 		/*
2957 		 * Insist on a empty nodelist
2958 		 */
2959 		if (!nodelist)
2960 			err = 0;
2961 		goto out;
2962 	case MPOL_PREFERRED_MANY:
2963 	case MPOL_BIND:
2964 		/*
2965 		 * Insist on a nodelist
2966 		 */
2967 		if (!nodelist)
2968 			goto out;
2969 	}
2970 
2971 	mode_flags = 0;
2972 	if (flags) {
2973 		/*
2974 		 * Currently, we only support two mutually exclusive
2975 		 * mode flags.
2976 		 */
2977 		if (!strcmp(flags, "static"))
2978 			mode_flags |= MPOL_F_STATIC_NODES;
2979 		else if (!strcmp(flags, "relative"))
2980 			mode_flags |= MPOL_F_RELATIVE_NODES;
2981 		else
2982 			goto out;
2983 	}
2984 
2985 	new = mpol_new(mode, mode_flags, &nodes);
2986 	if (IS_ERR(new))
2987 		goto out;
2988 
2989 	/*
2990 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2991 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2992 	 */
2993 	if (mode != MPOL_PREFERRED) {
2994 		new->nodes = nodes;
2995 	} else if (nodelist) {
2996 		nodes_clear(new->nodes);
2997 		node_set(first_node(nodes), new->nodes);
2998 	} else {
2999 		new->mode = MPOL_LOCAL;
3000 	}
3001 
3002 	/*
3003 	 * Save nodes for contextualization: this will be used to "clone"
3004 	 * the mempolicy in a specific context [cpuset] at a later time.
3005 	 */
3006 	new->w.user_nodemask = nodes;
3007 
3008 	err = 0;
3009 
3010 out:
3011 	/* Restore string for error message */
3012 	if (nodelist)
3013 		*--nodelist = ':';
3014 	if (flags)
3015 		*--flags = '=';
3016 	if (!err)
3017 		*mpol = new;
3018 	return err;
3019 }
3020 #endif /* CONFIG_TMPFS */
3021 
3022 /**
3023  * mpol_to_str - format a mempolicy structure for printing
3024  * @buffer:  to contain formatted mempolicy string
3025  * @maxlen:  length of @buffer
3026  * @pol:  pointer to mempolicy to be formatted
3027  *
3028  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3029  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3030  * longest flag, "relative", and to display at least a few node ids.
3031  */
3032 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3033 {
3034 	char *p = buffer;
3035 	nodemask_t nodes = NODE_MASK_NONE;
3036 	unsigned short mode = MPOL_DEFAULT;
3037 	unsigned short flags = 0;
3038 
3039 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3040 		mode = pol->mode;
3041 		flags = pol->flags;
3042 	}
3043 
3044 	switch (mode) {
3045 	case MPOL_DEFAULT:
3046 	case MPOL_LOCAL:
3047 		break;
3048 	case MPOL_PREFERRED:
3049 	case MPOL_PREFERRED_MANY:
3050 	case MPOL_BIND:
3051 	case MPOL_INTERLEAVE:
3052 		nodes = pol->nodes;
3053 		break;
3054 	default:
3055 		WARN_ON_ONCE(1);
3056 		snprintf(p, maxlen, "unknown");
3057 		return;
3058 	}
3059 
3060 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3061 
3062 	if (flags & MPOL_MODE_FLAGS) {
3063 		p += snprintf(p, buffer + maxlen - p, "=");
3064 
3065 		/*
3066 		 * Currently, the only defined flags are mutually exclusive
3067 		 */
3068 		if (flags & MPOL_F_STATIC_NODES)
3069 			p += snprintf(p, buffer + maxlen - p, "static");
3070 		else if (flags & MPOL_F_RELATIVE_NODES)
3071 			p += snprintf(p, buffer + maxlen - p, "relative");
3072 	}
3073 
3074 	if (!nodes_empty(nodes))
3075 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3076 			       nodemask_pr_args(&nodes));
3077 }
3078 
3079 bool numa_demotion_enabled = false;
3080 
3081 #ifdef CONFIG_SYSFS
3082 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3083 					  struct kobj_attribute *attr, char *buf)
3084 {
3085 	return sysfs_emit(buf, "%s\n",
3086 			  numa_demotion_enabled? "true" : "false");
3087 }
3088 
3089 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3090 					   struct kobj_attribute *attr,
3091 					   const char *buf, size_t count)
3092 {
3093 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3094 		numa_demotion_enabled = true;
3095 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3096 		numa_demotion_enabled = false;
3097 	else
3098 		return -EINVAL;
3099 
3100 	return count;
3101 }
3102 
3103 static struct kobj_attribute numa_demotion_enabled_attr =
3104 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3105 	       numa_demotion_enabled_store);
3106 
3107 static struct attribute *numa_attrs[] = {
3108 	&numa_demotion_enabled_attr.attr,
3109 	NULL,
3110 };
3111 
3112 static const struct attribute_group numa_attr_group = {
3113 	.attrs = numa_attrs,
3114 };
3115 
3116 static int __init numa_init_sysfs(void)
3117 {
3118 	int err;
3119 	struct kobject *numa_kobj;
3120 
3121 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
3122 	if (!numa_kobj) {
3123 		pr_err("failed to create numa kobject\n");
3124 		return -ENOMEM;
3125 	}
3126 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
3127 	if (err) {
3128 		pr_err("failed to register numa group\n");
3129 		goto delete_obj;
3130 	}
3131 	return 0;
3132 
3133 delete_obj:
3134 	kobject_put(numa_kobj);
3135 	return err;
3136 }
3137 subsys_initcall(numa_init_sysfs);
3138 #endif
3139