xref: /openbmc/linux/mm/mempolicy.c (revision e1f7c9ee)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 /* Check that the nodemask contains at least one populated zone */
166 static int is_valid_nodemask(const nodemask_t *nodemask)
167 {
168 	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169 }
170 
171 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 {
173 	return pol->flags & MPOL_MODE_FLAGS;
174 }
175 
176 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 				   const nodemask_t *rel)
178 {
179 	nodemask_t tmp;
180 	nodes_fold(tmp, *orig, nodes_weight(*rel));
181 	nodes_onto(*ret, tmp, *rel);
182 }
183 
184 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 	if (nodes_empty(*nodes))
187 		return -EINVAL;
188 	pol->v.nodes = *nodes;
189 	return 0;
190 }
191 
192 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 	if (!nodes)
195 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
196 	else if (nodes_empty(*nodes))
197 		return -EINVAL;			/*  no allowed nodes */
198 	else
199 		pol->v.preferred_node = first_node(*nodes);
200 	return 0;
201 }
202 
203 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 	if (!is_valid_nodemask(nodes))
206 		return -EINVAL;
207 	pol->v.nodes = *nodes;
208 	return 0;
209 }
210 
211 /*
212  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213  * any, for the new policy.  mpol_new() has already validated the nodes
214  * parameter with respect to the policy mode and flags.  But, we need to
215  * handle an empty nodemask with MPOL_PREFERRED here.
216  *
217  * Must be called holding task's alloc_lock to protect task's mems_allowed
218  * and mempolicy.  May also be called holding the mmap_semaphore for write.
219  */
220 static int mpol_set_nodemask(struct mempolicy *pol,
221 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 {
223 	int ret;
224 
225 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 	if (pol == NULL)
227 		return 0;
228 	/* Check N_MEMORY */
229 	nodes_and(nsc->mask1,
230 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
231 
232 	VM_BUG_ON(!nodes);
233 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 		nodes = NULL;	/* explicit local allocation */
235 	else {
236 		if (pol->flags & MPOL_F_RELATIVE_NODES)
237 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 		else
239 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
240 
241 		if (mpol_store_user_nodemask(pol))
242 			pol->w.user_nodemask = *nodes;
243 		else
244 			pol->w.cpuset_mems_allowed =
245 						cpuset_current_mems_allowed;
246 	}
247 
248 	if (nodes)
249 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 	else
251 		ret = mpol_ops[pol->mode].create(pol, NULL);
252 	return ret;
253 }
254 
255 /*
256  * This function just creates a new policy, does some check and simple
257  * initialization. You must invoke mpol_set_nodemask() to set nodes.
258  */
259 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 				  nodemask_t *nodes)
261 {
262 	struct mempolicy *policy;
263 
264 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266 
267 	if (mode == MPOL_DEFAULT) {
268 		if (nodes && !nodes_empty(*nodes))
269 			return ERR_PTR(-EINVAL);
270 		return NULL;
271 	}
272 	VM_BUG_ON(!nodes);
273 
274 	/*
275 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 	 * All other modes require a valid pointer to a non-empty nodemask.
278 	 */
279 	if (mode == MPOL_PREFERRED) {
280 		if (nodes_empty(*nodes)) {
281 			if (((flags & MPOL_F_STATIC_NODES) ||
282 			     (flags & MPOL_F_RELATIVE_NODES)))
283 				return ERR_PTR(-EINVAL);
284 		}
285 	} else if (mode == MPOL_LOCAL) {
286 		if (!nodes_empty(*nodes))
287 			return ERR_PTR(-EINVAL);
288 		mode = MPOL_PREFERRED;
289 	} else if (nodes_empty(*nodes))
290 		return ERR_PTR(-EINVAL);
291 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 	if (!policy)
293 		return ERR_PTR(-ENOMEM);
294 	atomic_set(&policy->refcnt, 1);
295 	policy->mode = mode;
296 	policy->flags = flags;
297 
298 	return policy;
299 }
300 
301 /* Slow path of a mpol destructor. */
302 void __mpol_put(struct mempolicy *p)
303 {
304 	if (!atomic_dec_and_test(&p->refcnt))
305 		return;
306 	kmem_cache_free(policy_cache, p);
307 }
308 
309 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 				enum mpol_rebind_step step)
311 {
312 }
313 
314 /*
315  * step:
316  * 	MPOL_REBIND_ONCE  - do rebind work at once
317  * 	MPOL_REBIND_STEP1 - set all the newly nodes
318  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
319  */
320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 				 enum mpol_rebind_step step)
322 {
323 	nodemask_t tmp;
324 
325 	if (pol->flags & MPOL_F_STATIC_NODES)
326 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 	else {
330 		/*
331 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 		 * result
333 		 */
334 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 			nodes_remap(tmp, pol->v.nodes,
336 					pol->w.cpuset_mems_allowed, *nodes);
337 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 		} else if (step == MPOL_REBIND_STEP2) {
339 			tmp = pol->w.cpuset_mems_allowed;
340 			pol->w.cpuset_mems_allowed = *nodes;
341 		} else
342 			BUG();
343 	}
344 
345 	if (nodes_empty(tmp))
346 		tmp = *nodes;
347 
348 	if (step == MPOL_REBIND_STEP1)
349 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 		pol->v.nodes = tmp;
352 	else
353 		BUG();
354 
355 	if (!node_isset(current->il_next, tmp)) {
356 		current->il_next = next_node(current->il_next, tmp);
357 		if (current->il_next >= MAX_NUMNODES)
358 			current->il_next = first_node(tmp);
359 		if (current->il_next >= MAX_NUMNODES)
360 			current->il_next = numa_node_id();
361 	}
362 }
363 
364 static void mpol_rebind_preferred(struct mempolicy *pol,
365 				  const nodemask_t *nodes,
366 				  enum mpol_rebind_step step)
367 {
368 	nodemask_t tmp;
369 
370 	if (pol->flags & MPOL_F_STATIC_NODES) {
371 		int node = first_node(pol->w.user_nodemask);
372 
373 		if (node_isset(node, *nodes)) {
374 			pol->v.preferred_node = node;
375 			pol->flags &= ~MPOL_F_LOCAL;
376 		} else
377 			pol->flags |= MPOL_F_LOCAL;
378 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 		pol->v.preferred_node = first_node(tmp);
381 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
382 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 						   pol->w.cpuset_mems_allowed,
384 						   *nodes);
385 		pol->w.cpuset_mems_allowed = *nodes;
386 	}
387 }
388 
389 /*
390  * mpol_rebind_policy - Migrate a policy to a different set of nodes
391  *
392  * If read-side task has no lock to protect task->mempolicy, write-side
393  * task will rebind the task->mempolicy by two step. The first step is
394  * setting all the newly nodes, and the second step is cleaning all the
395  * disallowed nodes. In this way, we can avoid finding no node to alloc
396  * page.
397  * If we have a lock to protect task->mempolicy in read-side, we do
398  * rebind directly.
399  *
400  * step:
401  * 	MPOL_REBIND_ONCE  - do rebind work at once
402  * 	MPOL_REBIND_STEP1 - set all the newly nodes
403  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
404  */
405 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 				enum mpol_rebind_step step)
407 {
408 	if (!pol)
409 		return;
410 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 		return;
413 
414 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 		return;
416 
417 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 		BUG();
419 
420 	if (step == MPOL_REBIND_STEP1)
421 		pol->flags |= MPOL_F_REBINDING;
422 	else if (step == MPOL_REBIND_STEP2)
423 		pol->flags &= ~MPOL_F_REBINDING;
424 	else if (step >= MPOL_REBIND_NSTEP)
425 		BUG();
426 
427 	mpol_ops[pol->mode].rebind(pol, newmask, step);
428 }
429 
430 /*
431  * Wrapper for mpol_rebind_policy() that just requires task
432  * pointer, and updates task mempolicy.
433  *
434  * Called with task's alloc_lock held.
435  */
436 
437 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 			enum mpol_rebind_step step)
439 {
440 	mpol_rebind_policy(tsk->mempolicy, new, step);
441 }
442 
443 /*
444  * Rebind each vma in mm to new nodemask.
445  *
446  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
447  */
448 
449 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 {
451 	struct vm_area_struct *vma;
452 
453 	down_write(&mm->mmap_sem);
454 	for (vma = mm->mmap; vma; vma = vma->vm_next)
455 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 	up_write(&mm->mmap_sem);
457 }
458 
459 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 	[MPOL_DEFAULT] = {
461 		.rebind = mpol_rebind_default,
462 	},
463 	[MPOL_INTERLEAVE] = {
464 		.create = mpol_new_interleave,
465 		.rebind = mpol_rebind_nodemask,
466 	},
467 	[MPOL_PREFERRED] = {
468 		.create = mpol_new_preferred,
469 		.rebind = mpol_rebind_preferred,
470 	},
471 	[MPOL_BIND] = {
472 		.create = mpol_new_bind,
473 		.rebind = mpol_rebind_nodemask,
474 	},
475 };
476 
477 static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 				unsigned long flags);
479 
480 /*
481  * Scan through pages checking if pages follow certain conditions,
482  * and move them to the pagelist if they do.
483  */
484 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 		unsigned long addr, unsigned long end,
486 		const nodemask_t *nodes, unsigned long flags,
487 		void *private)
488 {
489 	pte_t *orig_pte;
490 	pte_t *pte;
491 	spinlock_t *ptl;
492 
493 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 	do {
495 		struct page *page;
496 		int nid;
497 
498 		if (!pte_present(*pte))
499 			continue;
500 		page = vm_normal_page(vma, addr, *pte);
501 		if (!page)
502 			continue;
503 		/*
504 		 * vm_normal_page() filters out zero pages, but there might
505 		 * still be PageReserved pages to skip, perhaps in a VDSO.
506 		 */
507 		if (PageReserved(page))
508 			continue;
509 		nid = page_to_nid(page);
510 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 			continue;
512 
513 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 			migrate_page_add(page, private, flags);
515 		else
516 			break;
517 	} while (pte++, addr += PAGE_SIZE, addr != end);
518 	pte_unmap_unlock(orig_pte, ptl);
519 	return addr != end;
520 }
521 
522 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 				    void *private)
525 {
526 #ifdef CONFIG_HUGETLB_PAGE
527 	int nid;
528 	struct page *page;
529 	spinlock_t *ptl;
530 	pte_t entry;
531 
532 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 	entry = huge_ptep_get((pte_t *)pmd);
534 	if (!pte_present(entry))
535 		goto unlock;
536 	page = pte_page(entry);
537 	nid = page_to_nid(page);
538 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 		goto unlock;
540 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 	if (flags & (MPOL_MF_MOVE_ALL) ||
542 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 		isolate_huge_page(page, private);
544 unlock:
545 	spin_unlock(ptl);
546 #else
547 	BUG();
548 #endif
549 }
550 
551 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 		unsigned long addr, unsigned long end,
553 		const nodemask_t *nodes, unsigned long flags,
554 		void *private)
555 {
556 	pmd_t *pmd;
557 	unsigned long next;
558 
559 	pmd = pmd_offset(pud, addr);
560 	do {
561 		next = pmd_addr_end(addr, end);
562 		if (!pmd_present(*pmd))
563 			continue;
564 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 						flags, private);
567 			continue;
568 		}
569 		split_huge_page_pmd(vma, addr, pmd);
570 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 			continue;
572 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 				    flags, private))
574 			return -EIO;
575 	} while (pmd++, addr = next, addr != end);
576 	return 0;
577 }
578 
579 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 		unsigned long addr, unsigned long end,
581 		const nodemask_t *nodes, unsigned long flags,
582 		void *private)
583 {
584 	pud_t *pud;
585 	unsigned long next;
586 
587 	pud = pud_offset(pgd, addr);
588 	do {
589 		next = pud_addr_end(addr, end);
590 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 			continue;
592 		if (pud_none_or_clear_bad(pud))
593 			continue;
594 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 				    flags, private))
596 			return -EIO;
597 	} while (pud++, addr = next, addr != end);
598 	return 0;
599 }
600 
601 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 		unsigned long addr, unsigned long end,
603 		const nodemask_t *nodes, unsigned long flags,
604 		void *private)
605 {
606 	pgd_t *pgd;
607 	unsigned long next;
608 
609 	pgd = pgd_offset(vma->vm_mm, addr);
610 	do {
611 		next = pgd_addr_end(addr, end);
612 		if (pgd_none_or_clear_bad(pgd))
613 			continue;
614 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 				    flags, private))
616 			return -EIO;
617 	} while (pgd++, addr = next, addr != end);
618 	return 0;
619 }
620 
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623  * This is used to mark a range of virtual addresses to be inaccessible.
624  * These are later cleared by a NUMA hinting fault. Depending on these
625  * faults, pages may be migrated for better NUMA placement.
626  *
627  * This is assuming that NUMA faults are handled using PROT_NONE. If
628  * an architecture makes a different choice, it will need further
629  * changes to the core.
630  */
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 			unsigned long addr, unsigned long end)
633 {
634 	int nr_updated;
635 
636 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 	if (nr_updated)
638 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639 
640 	return nr_updated;
641 }
642 #else
643 static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 			unsigned long addr, unsigned long end)
645 {
646 	return 0;
647 }
648 #endif /* CONFIG_NUMA_BALANCING */
649 
650 /*
651  * Walk through page tables and collect pages to be migrated.
652  *
653  * If pages found in a given range are on a set of nodes (determined by
654  * @nodes and @flags,) it's isolated and queued to the pagelist which is
655  * passed via @private.)
656  */
657 static int
658 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 		const nodemask_t *nodes, unsigned long flags, void *private)
660 {
661 	int err = 0;
662 	struct vm_area_struct *vma, *prev;
663 
664 	vma = find_vma(mm, start);
665 	if (!vma)
666 		return -EFAULT;
667 	prev = NULL;
668 	for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 		unsigned long endvma = vma->vm_end;
670 
671 		if (endvma > end)
672 			endvma = end;
673 		if (vma->vm_start > start)
674 			start = vma->vm_start;
675 
676 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 			if (!vma->vm_next && vma->vm_end < end)
678 				return -EFAULT;
679 			if (prev && prev->vm_end < vma->vm_start)
680 				return -EFAULT;
681 		}
682 
683 		if (flags & MPOL_MF_LAZY) {
684 			/* Similar to task_numa_work, skip inaccessible VMAs */
685 			if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
686 				change_prot_numa(vma, start, endvma);
687 			goto next;
688 		}
689 
690 		if ((flags & MPOL_MF_STRICT) ||
691 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
692 		      vma_migratable(vma))) {
693 
694 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
695 						flags, private);
696 			if (err)
697 				break;
698 		}
699 next:
700 		prev = vma;
701 	}
702 	return err;
703 }
704 
705 /*
706  * Apply policy to a single VMA
707  * This must be called with the mmap_sem held for writing.
708  */
709 static int vma_replace_policy(struct vm_area_struct *vma,
710 						struct mempolicy *pol)
711 {
712 	int err;
713 	struct mempolicy *old;
714 	struct mempolicy *new;
715 
716 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
718 		 vma->vm_ops, vma->vm_file,
719 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
720 
721 	new = mpol_dup(pol);
722 	if (IS_ERR(new))
723 		return PTR_ERR(new);
724 
725 	if (vma->vm_ops && vma->vm_ops->set_policy) {
726 		err = vma->vm_ops->set_policy(vma, new);
727 		if (err)
728 			goto err_out;
729 	}
730 
731 	old = vma->vm_policy;
732 	vma->vm_policy = new; /* protected by mmap_sem */
733 	mpol_put(old);
734 
735 	return 0;
736  err_out:
737 	mpol_put(new);
738 	return err;
739 }
740 
741 /* Step 2: apply policy to a range and do splits. */
742 static int mbind_range(struct mm_struct *mm, unsigned long start,
743 		       unsigned long end, struct mempolicy *new_pol)
744 {
745 	struct vm_area_struct *next;
746 	struct vm_area_struct *prev;
747 	struct vm_area_struct *vma;
748 	int err = 0;
749 	pgoff_t pgoff;
750 	unsigned long vmstart;
751 	unsigned long vmend;
752 
753 	vma = find_vma(mm, start);
754 	if (!vma || vma->vm_start > start)
755 		return -EFAULT;
756 
757 	prev = vma->vm_prev;
758 	if (start > vma->vm_start)
759 		prev = vma;
760 
761 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
762 		next = vma->vm_next;
763 		vmstart = max(start, vma->vm_start);
764 		vmend   = min(end, vma->vm_end);
765 
766 		if (mpol_equal(vma_policy(vma), new_pol))
767 			continue;
768 
769 		pgoff = vma->vm_pgoff +
770 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
771 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
772 				  vma->anon_vma, vma->vm_file, pgoff,
773 				  new_pol);
774 		if (prev) {
775 			vma = prev;
776 			next = vma->vm_next;
777 			if (mpol_equal(vma_policy(vma), new_pol))
778 				continue;
779 			/* vma_merge() joined vma && vma->next, case 8 */
780 			goto replace;
781 		}
782 		if (vma->vm_start != vmstart) {
783 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
784 			if (err)
785 				goto out;
786 		}
787 		if (vma->vm_end != vmend) {
788 			err = split_vma(vma->vm_mm, vma, vmend, 0);
789 			if (err)
790 				goto out;
791 		}
792  replace:
793 		err = vma_replace_policy(vma, new_pol);
794 		if (err)
795 			goto out;
796 	}
797 
798  out:
799 	return err;
800 }
801 
802 /* Set the process memory policy */
803 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
804 			     nodemask_t *nodes)
805 {
806 	struct mempolicy *new, *old;
807 	NODEMASK_SCRATCH(scratch);
808 	int ret;
809 
810 	if (!scratch)
811 		return -ENOMEM;
812 
813 	new = mpol_new(mode, flags, nodes);
814 	if (IS_ERR(new)) {
815 		ret = PTR_ERR(new);
816 		goto out;
817 	}
818 
819 	task_lock(current);
820 	ret = mpol_set_nodemask(new, nodes, scratch);
821 	if (ret) {
822 		task_unlock(current);
823 		mpol_put(new);
824 		goto out;
825 	}
826 	old = current->mempolicy;
827 	current->mempolicy = new;
828 	if (new && new->mode == MPOL_INTERLEAVE &&
829 	    nodes_weight(new->v.nodes))
830 		current->il_next = first_node(new->v.nodes);
831 	task_unlock(current);
832 	mpol_put(old);
833 	ret = 0;
834 out:
835 	NODEMASK_SCRATCH_FREE(scratch);
836 	return ret;
837 }
838 
839 /*
840  * Return nodemask for policy for get_mempolicy() query
841  *
842  * Called with task's alloc_lock held
843  */
844 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
845 {
846 	nodes_clear(*nodes);
847 	if (p == &default_policy)
848 		return;
849 
850 	switch (p->mode) {
851 	case MPOL_BIND:
852 		/* Fall through */
853 	case MPOL_INTERLEAVE:
854 		*nodes = p->v.nodes;
855 		break;
856 	case MPOL_PREFERRED:
857 		if (!(p->flags & MPOL_F_LOCAL))
858 			node_set(p->v.preferred_node, *nodes);
859 		/* else return empty node mask for local allocation */
860 		break;
861 	default:
862 		BUG();
863 	}
864 }
865 
866 static int lookup_node(struct mm_struct *mm, unsigned long addr)
867 {
868 	struct page *p;
869 	int err;
870 
871 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
872 	if (err >= 0) {
873 		err = page_to_nid(p);
874 		put_page(p);
875 	}
876 	return err;
877 }
878 
879 /* Retrieve NUMA policy */
880 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
881 			     unsigned long addr, unsigned long flags)
882 {
883 	int err;
884 	struct mm_struct *mm = current->mm;
885 	struct vm_area_struct *vma = NULL;
886 	struct mempolicy *pol = current->mempolicy;
887 
888 	if (flags &
889 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
890 		return -EINVAL;
891 
892 	if (flags & MPOL_F_MEMS_ALLOWED) {
893 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
894 			return -EINVAL;
895 		*policy = 0;	/* just so it's initialized */
896 		task_lock(current);
897 		*nmask  = cpuset_current_mems_allowed;
898 		task_unlock(current);
899 		return 0;
900 	}
901 
902 	if (flags & MPOL_F_ADDR) {
903 		/*
904 		 * Do NOT fall back to task policy if the
905 		 * vma/shared policy at addr is NULL.  We
906 		 * want to return MPOL_DEFAULT in this case.
907 		 */
908 		down_read(&mm->mmap_sem);
909 		vma = find_vma_intersection(mm, addr, addr+1);
910 		if (!vma) {
911 			up_read(&mm->mmap_sem);
912 			return -EFAULT;
913 		}
914 		if (vma->vm_ops && vma->vm_ops->get_policy)
915 			pol = vma->vm_ops->get_policy(vma, addr);
916 		else
917 			pol = vma->vm_policy;
918 	} else if (addr)
919 		return -EINVAL;
920 
921 	if (!pol)
922 		pol = &default_policy;	/* indicates default behavior */
923 
924 	if (flags & MPOL_F_NODE) {
925 		if (flags & MPOL_F_ADDR) {
926 			err = lookup_node(mm, addr);
927 			if (err < 0)
928 				goto out;
929 			*policy = err;
930 		} else if (pol == current->mempolicy &&
931 				pol->mode == MPOL_INTERLEAVE) {
932 			*policy = current->il_next;
933 		} else {
934 			err = -EINVAL;
935 			goto out;
936 		}
937 	} else {
938 		*policy = pol == &default_policy ? MPOL_DEFAULT :
939 						pol->mode;
940 		/*
941 		 * Internal mempolicy flags must be masked off before exposing
942 		 * the policy to userspace.
943 		 */
944 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
945 	}
946 
947 	if (vma) {
948 		up_read(&current->mm->mmap_sem);
949 		vma = NULL;
950 	}
951 
952 	err = 0;
953 	if (nmask) {
954 		if (mpol_store_user_nodemask(pol)) {
955 			*nmask = pol->w.user_nodemask;
956 		} else {
957 			task_lock(current);
958 			get_policy_nodemask(pol, nmask);
959 			task_unlock(current);
960 		}
961 	}
962 
963  out:
964 	mpol_cond_put(pol);
965 	if (vma)
966 		up_read(&current->mm->mmap_sem);
967 	return err;
968 }
969 
970 #ifdef CONFIG_MIGRATION
971 /*
972  * page migration
973  */
974 static void migrate_page_add(struct page *page, struct list_head *pagelist,
975 				unsigned long flags)
976 {
977 	/*
978 	 * Avoid migrating a page that is shared with others.
979 	 */
980 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
981 		if (!isolate_lru_page(page)) {
982 			list_add_tail(&page->lru, pagelist);
983 			inc_zone_page_state(page, NR_ISOLATED_ANON +
984 					    page_is_file_cache(page));
985 		}
986 	}
987 }
988 
989 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
990 {
991 	if (PageHuge(page))
992 		return alloc_huge_page_node(page_hstate(compound_head(page)),
993 					node);
994 	else
995 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
996 }
997 
998 /*
999  * Migrate pages from one node to a target node.
1000  * Returns error or the number of pages not migrated.
1001  */
1002 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1003 			   int flags)
1004 {
1005 	nodemask_t nmask;
1006 	LIST_HEAD(pagelist);
1007 	int err = 0;
1008 
1009 	nodes_clear(nmask);
1010 	node_set(source, nmask);
1011 
1012 	/*
1013 	 * This does not "check" the range but isolates all pages that
1014 	 * need migration.  Between passing in the full user address
1015 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1016 	 */
1017 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1018 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1019 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1020 
1021 	if (!list_empty(&pagelist)) {
1022 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1023 					MIGRATE_SYNC, MR_SYSCALL);
1024 		if (err)
1025 			putback_movable_pages(&pagelist);
1026 	}
1027 
1028 	return err;
1029 }
1030 
1031 /*
1032  * Move pages between the two nodesets so as to preserve the physical
1033  * layout as much as possible.
1034  *
1035  * Returns the number of page that could not be moved.
1036  */
1037 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1038 		     const nodemask_t *to, int flags)
1039 {
1040 	int busy = 0;
1041 	int err;
1042 	nodemask_t tmp;
1043 
1044 	err = migrate_prep();
1045 	if (err)
1046 		return err;
1047 
1048 	down_read(&mm->mmap_sem);
1049 
1050 	err = migrate_vmas(mm, from, to, flags);
1051 	if (err)
1052 		goto out;
1053 
1054 	/*
1055 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1056 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1057 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1058 	 * The pair of nodemasks 'to' and 'from' define the map.
1059 	 *
1060 	 * If no pair of bits is found that way, fallback to picking some
1061 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1062 	 * 'source' and 'dest' bits are the same, this represents a node
1063 	 * that will be migrating to itself, so no pages need move.
1064 	 *
1065 	 * If no bits are left in 'tmp', or if all remaining bits left
1066 	 * in 'tmp' correspond to the same bit in 'to', return false
1067 	 * (nothing left to migrate).
1068 	 *
1069 	 * This lets us pick a pair of nodes to migrate between, such that
1070 	 * if possible the dest node is not already occupied by some other
1071 	 * source node, minimizing the risk of overloading the memory on a
1072 	 * node that would happen if we migrated incoming memory to a node
1073 	 * before migrating outgoing memory source that same node.
1074 	 *
1075 	 * A single scan of tmp is sufficient.  As we go, we remember the
1076 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1077 	 * that not only moved, but what's better, moved to an empty slot
1078 	 * (d is not set in tmp), then we break out then, with that pair.
1079 	 * Otherwise when we finish scanning from_tmp, we at least have the
1080 	 * most recent <s, d> pair that moved.  If we get all the way through
1081 	 * the scan of tmp without finding any node that moved, much less
1082 	 * moved to an empty node, then there is nothing left worth migrating.
1083 	 */
1084 
1085 	tmp = *from;
1086 	while (!nodes_empty(tmp)) {
1087 		int s,d;
1088 		int source = NUMA_NO_NODE;
1089 		int dest = 0;
1090 
1091 		for_each_node_mask(s, tmp) {
1092 
1093 			/*
1094 			 * do_migrate_pages() tries to maintain the relative
1095 			 * node relationship of the pages established between
1096 			 * threads and memory areas.
1097                          *
1098 			 * However if the number of source nodes is not equal to
1099 			 * the number of destination nodes we can not preserve
1100 			 * this node relative relationship.  In that case, skip
1101 			 * copying memory from a node that is in the destination
1102 			 * mask.
1103 			 *
1104 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1105 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1106 			 */
1107 
1108 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1109 						(node_isset(s, *to)))
1110 				continue;
1111 
1112 			d = node_remap(s, *from, *to);
1113 			if (s == d)
1114 				continue;
1115 
1116 			source = s;	/* Node moved. Memorize */
1117 			dest = d;
1118 
1119 			/* dest not in remaining from nodes? */
1120 			if (!node_isset(dest, tmp))
1121 				break;
1122 		}
1123 		if (source == NUMA_NO_NODE)
1124 			break;
1125 
1126 		node_clear(source, tmp);
1127 		err = migrate_to_node(mm, source, dest, flags);
1128 		if (err > 0)
1129 			busy += err;
1130 		if (err < 0)
1131 			break;
1132 	}
1133 out:
1134 	up_read(&mm->mmap_sem);
1135 	if (err < 0)
1136 		return err;
1137 	return busy;
1138 
1139 }
1140 
1141 /*
1142  * Allocate a new page for page migration based on vma policy.
1143  * Start by assuming the page is mapped by the same vma as contains @start.
1144  * Search forward from there, if not.  N.B., this assumes that the
1145  * list of pages handed to migrate_pages()--which is how we get here--
1146  * is in virtual address order.
1147  */
1148 static struct page *new_page(struct page *page, unsigned long start, int **x)
1149 {
1150 	struct vm_area_struct *vma;
1151 	unsigned long uninitialized_var(address);
1152 
1153 	vma = find_vma(current->mm, start);
1154 	while (vma) {
1155 		address = page_address_in_vma(page, vma);
1156 		if (address != -EFAULT)
1157 			break;
1158 		vma = vma->vm_next;
1159 	}
1160 
1161 	if (PageHuge(page)) {
1162 		BUG_ON(!vma);
1163 		return alloc_huge_page_noerr(vma, address, 1);
1164 	}
1165 	/*
1166 	 * if !vma, alloc_page_vma() will use task or system default policy
1167 	 */
1168 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1169 }
1170 #else
1171 
1172 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1173 				unsigned long flags)
1174 {
1175 }
1176 
1177 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1178 		     const nodemask_t *to, int flags)
1179 {
1180 	return -ENOSYS;
1181 }
1182 
1183 static struct page *new_page(struct page *page, unsigned long start, int **x)
1184 {
1185 	return NULL;
1186 }
1187 #endif
1188 
1189 static long do_mbind(unsigned long start, unsigned long len,
1190 		     unsigned short mode, unsigned short mode_flags,
1191 		     nodemask_t *nmask, unsigned long flags)
1192 {
1193 	struct mm_struct *mm = current->mm;
1194 	struct mempolicy *new;
1195 	unsigned long end;
1196 	int err;
1197 	LIST_HEAD(pagelist);
1198 
1199 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1200 		return -EINVAL;
1201 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1202 		return -EPERM;
1203 
1204 	if (start & ~PAGE_MASK)
1205 		return -EINVAL;
1206 
1207 	if (mode == MPOL_DEFAULT)
1208 		flags &= ~MPOL_MF_STRICT;
1209 
1210 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1211 	end = start + len;
1212 
1213 	if (end < start)
1214 		return -EINVAL;
1215 	if (end == start)
1216 		return 0;
1217 
1218 	new = mpol_new(mode, mode_flags, nmask);
1219 	if (IS_ERR(new))
1220 		return PTR_ERR(new);
1221 
1222 	if (flags & MPOL_MF_LAZY)
1223 		new->flags |= MPOL_F_MOF;
1224 
1225 	/*
1226 	 * If we are using the default policy then operation
1227 	 * on discontinuous address spaces is okay after all
1228 	 */
1229 	if (!new)
1230 		flags |= MPOL_MF_DISCONTIG_OK;
1231 
1232 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1233 		 start, start + len, mode, mode_flags,
1234 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1235 
1236 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1237 
1238 		err = migrate_prep();
1239 		if (err)
1240 			goto mpol_out;
1241 	}
1242 	{
1243 		NODEMASK_SCRATCH(scratch);
1244 		if (scratch) {
1245 			down_write(&mm->mmap_sem);
1246 			task_lock(current);
1247 			err = mpol_set_nodemask(new, nmask, scratch);
1248 			task_unlock(current);
1249 			if (err)
1250 				up_write(&mm->mmap_sem);
1251 		} else
1252 			err = -ENOMEM;
1253 		NODEMASK_SCRATCH_FREE(scratch);
1254 	}
1255 	if (err)
1256 		goto mpol_out;
1257 
1258 	err = queue_pages_range(mm, start, end, nmask,
1259 			  flags | MPOL_MF_INVERT, &pagelist);
1260 	if (!err)
1261 		err = mbind_range(mm, start, end, new);
1262 
1263 	if (!err) {
1264 		int nr_failed = 0;
1265 
1266 		if (!list_empty(&pagelist)) {
1267 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1268 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1269 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1270 			if (nr_failed)
1271 				putback_movable_pages(&pagelist);
1272 		}
1273 
1274 		if (nr_failed && (flags & MPOL_MF_STRICT))
1275 			err = -EIO;
1276 	} else
1277 		putback_movable_pages(&pagelist);
1278 
1279 	up_write(&mm->mmap_sem);
1280  mpol_out:
1281 	mpol_put(new);
1282 	return err;
1283 }
1284 
1285 /*
1286  * User space interface with variable sized bitmaps for nodelists.
1287  */
1288 
1289 /* Copy a node mask from user space. */
1290 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1291 		     unsigned long maxnode)
1292 {
1293 	unsigned long k;
1294 	unsigned long nlongs;
1295 	unsigned long endmask;
1296 
1297 	--maxnode;
1298 	nodes_clear(*nodes);
1299 	if (maxnode == 0 || !nmask)
1300 		return 0;
1301 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1302 		return -EINVAL;
1303 
1304 	nlongs = BITS_TO_LONGS(maxnode);
1305 	if ((maxnode % BITS_PER_LONG) == 0)
1306 		endmask = ~0UL;
1307 	else
1308 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1309 
1310 	/* When the user specified more nodes than supported just check
1311 	   if the non supported part is all zero. */
1312 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1313 		if (nlongs > PAGE_SIZE/sizeof(long))
1314 			return -EINVAL;
1315 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1316 			unsigned long t;
1317 			if (get_user(t, nmask + k))
1318 				return -EFAULT;
1319 			if (k == nlongs - 1) {
1320 				if (t & endmask)
1321 					return -EINVAL;
1322 			} else if (t)
1323 				return -EINVAL;
1324 		}
1325 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1326 		endmask = ~0UL;
1327 	}
1328 
1329 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1330 		return -EFAULT;
1331 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1332 	return 0;
1333 }
1334 
1335 /* Copy a kernel node mask to user space */
1336 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1337 			      nodemask_t *nodes)
1338 {
1339 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1340 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1341 
1342 	if (copy > nbytes) {
1343 		if (copy > PAGE_SIZE)
1344 			return -EINVAL;
1345 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1346 			return -EFAULT;
1347 		copy = nbytes;
1348 	}
1349 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1350 }
1351 
1352 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1353 		unsigned long, mode, const unsigned long __user *, nmask,
1354 		unsigned long, maxnode, unsigned, flags)
1355 {
1356 	nodemask_t nodes;
1357 	int err;
1358 	unsigned short mode_flags;
1359 
1360 	mode_flags = mode & MPOL_MODE_FLAGS;
1361 	mode &= ~MPOL_MODE_FLAGS;
1362 	if (mode >= MPOL_MAX)
1363 		return -EINVAL;
1364 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1365 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1366 		return -EINVAL;
1367 	err = get_nodes(&nodes, nmask, maxnode);
1368 	if (err)
1369 		return err;
1370 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1371 }
1372 
1373 /* Set the process memory policy */
1374 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1375 		unsigned long, maxnode)
1376 {
1377 	int err;
1378 	nodemask_t nodes;
1379 	unsigned short flags;
1380 
1381 	flags = mode & MPOL_MODE_FLAGS;
1382 	mode &= ~MPOL_MODE_FLAGS;
1383 	if ((unsigned int)mode >= MPOL_MAX)
1384 		return -EINVAL;
1385 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1386 		return -EINVAL;
1387 	err = get_nodes(&nodes, nmask, maxnode);
1388 	if (err)
1389 		return err;
1390 	return do_set_mempolicy(mode, flags, &nodes);
1391 }
1392 
1393 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1394 		const unsigned long __user *, old_nodes,
1395 		const unsigned long __user *, new_nodes)
1396 {
1397 	const struct cred *cred = current_cred(), *tcred;
1398 	struct mm_struct *mm = NULL;
1399 	struct task_struct *task;
1400 	nodemask_t task_nodes;
1401 	int err;
1402 	nodemask_t *old;
1403 	nodemask_t *new;
1404 	NODEMASK_SCRATCH(scratch);
1405 
1406 	if (!scratch)
1407 		return -ENOMEM;
1408 
1409 	old = &scratch->mask1;
1410 	new = &scratch->mask2;
1411 
1412 	err = get_nodes(old, old_nodes, maxnode);
1413 	if (err)
1414 		goto out;
1415 
1416 	err = get_nodes(new, new_nodes, maxnode);
1417 	if (err)
1418 		goto out;
1419 
1420 	/* Find the mm_struct */
1421 	rcu_read_lock();
1422 	task = pid ? find_task_by_vpid(pid) : current;
1423 	if (!task) {
1424 		rcu_read_unlock();
1425 		err = -ESRCH;
1426 		goto out;
1427 	}
1428 	get_task_struct(task);
1429 
1430 	err = -EINVAL;
1431 
1432 	/*
1433 	 * Check if this process has the right to modify the specified
1434 	 * process. The right exists if the process has administrative
1435 	 * capabilities, superuser privileges or the same
1436 	 * userid as the target process.
1437 	 */
1438 	tcred = __task_cred(task);
1439 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1440 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1441 	    !capable(CAP_SYS_NICE)) {
1442 		rcu_read_unlock();
1443 		err = -EPERM;
1444 		goto out_put;
1445 	}
1446 	rcu_read_unlock();
1447 
1448 	task_nodes = cpuset_mems_allowed(task);
1449 	/* Is the user allowed to access the target nodes? */
1450 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1451 		err = -EPERM;
1452 		goto out_put;
1453 	}
1454 
1455 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1456 		err = -EINVAL;
1457 		goto out_put;
1458 	}
1459 
1460 	err = security_task_movememory(task);
1461 	if (err)
1462 		goto out_put;
1463 
1464 	mm = get_task_mm(task);
1465 	put_task_struct(task);
1466 
1467 	if (!mm) {
1468 		err = -EINVAL;
1469 		goto out;
1470 	}
1471 
1472 	err = do_migrate_pages(mm, old, new,
1473 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1474 
1475 	mmput(mm);
1476 out:
1477 	NODEMASK_SCRATCH_FREE(scratch);
1478 
1479 	return err;
1480 
1481 out_put:
1482 	put_task_struct(task);
1483 	goto out;
1484 
1485 }
1486 
1487 
1488 /* Retrieve NUMA policy */
1489 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1490 		unsigned long __user *, nmask, unsigned long, maxnode,
1491 		unsigned long, addr, unsigned long, flags)
1492 {
1493 	int err;
1494 	int uninitialized_var(pval);
1495 	nodemask_t nodes;
1496 
1497 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1498 		return -EINVAL;
1499 
1500 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1501 
1502 	if (err)
1503 		return err;
1504 
1505 	if (policy && put_user(pval, policy))
1506 		return -EFAULT;
1507 
1508 	if (nmask)
1509 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1510 
1511 	return err;
1512 }
1513 
1514 #ifdef CONFIG_COMPAT
1515 
1516 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1517 		       compat_ulong_t __user *, nmask,
1518 		       compat_ulong_t, maxnode,
1519 		       compat_ulong_t, addr, compat_ulong_t, flags)
1520 {
1521 	long err;
1522 	unsigned long __user *nm = NULL;
1523 	unsigned long nr_bits, alloc_size;
1524 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1525 
1526 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1528 
1529 	if (nmask)
1530 		nm = compat_alloc_user_space(alloc_size);
1531 
1532 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1533 
1534 	if (!err && nmask) {
1535 		unsigned long copy_size;
1536 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1537 		err = copy_from_user(bm, nm, copy_size);
1538 		/* ensure entire bitmap is zeroed */
1539 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1540 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1541 	}
1542 
1543 	return err;
1544 }
1545 
1546 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1547 		       compat_ulong_t, maxnode)
1548 {
1549 	long err = 0;
1550 	unsigned long __user *nm = NULL;
1551 	unsigned long nr_bits, alloc_size;
1552 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1553 
1554 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1555 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1556 
1557 	if (nmask) {
1558 		err = compat_get_bitmap(bm, nmask, nr_bits);
1559 		nm = compat_alloc_user_space(alloc_size);
1560 		err |= copy_to_user(nm, bm, alloc_size);
1561 	}
1562 
1563 	if (err)
1564 		return -EFAULT;
1565 
1566 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1567 }
1568 
1569 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1570 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1571 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1572 {
1573 	long err = 0;
1574 	unsigned long __user *nm = NULL;
1575 	unsigned long nr_bits, alloc_size;
1576 	nodemask_t bm;
1577 
1578 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1579 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1580 
1581 	if (nmask) {
1582 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1583 		nm = compat_alloc_user_space(alloc_size);
1584 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1585 	}
1586 
1587 	if (err)
1588 		return -EFAULT;
1589 
1590 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1591 }
1592 
1593 #endif
1594 
1595 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1596 						unsigned long addr)
1597 {
1598 	struct mempolicy *pol = NULL;
1599 
1600 	if (vma) {
1601 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1602 			pol = vma->vm_ops->get_policy(vma, addr);
1603 		} else if (vma->vm_policy) {
1604 			pol = vma->vm_policy;
1605 
1606 			/*
1607 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1608 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1609 			 * count on these policies which will be dropped by
1610 			 * mpol_cond_put() later
1611 			 */
1612 			if (mpol_needs_cond_ref(pol))
1613 				mpol_get(pol);
1614 		}
1615 	}
1616 
1617 	return pol;
1618 }
1619 
1620 /*
1621  * get_vma_policy(@vma, @addr)
1622  * @vma: virtual memory area whose policy is sought
1623  * @addr: address in @vma for shared policy lookup
1624  *
1625  * Returns effective policy for a VMA at specified address.
1626  * Falls back to current->mempolicy or system default policy, as necessary.
1627  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1628  * count--added by the get_policy() vm_op, as appropriate--to protect against
1629  * freeing by another task.  It is the caller's responsibility to free the
1630  * extra reference for shared policies.
1631  */
1632 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1633 						unsigned long addr)
1634 {
1635 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1636 
1637 	if (!pol)
1638 		pol = get_task_policy(current);
1639 
1640 	return pol;
1641 }
1642 
1643 bool vma_policy_mof(struct vm_area_struct *vma)
1644 {
1645 	struct mempolicy *pol;
1646 
1647 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1648 		bool ret = false;
1649 
1650 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1651 		if (pol && (pol->flags & MPOL_F_MOF))
1652 			ret = true;
1653 		mpol_cond_put(pol);
1654 
1655 		return ret;
1656 	}
1657 
1658 	pol = vma->vm_policy;
1659 	if (!pol)
1660 		pol = get_task_policy(current);
1661 
1662 	return pol->flags & MPOL_F_MOF;
1663 }
1664 
1665 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1666 {
1667 	enum zone_type dynamic_policy_zone = policy_zone;
1668 
1669 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1670 
1671 	/*
1672 	 * if policy->v.nodes has movable memory only,
1673 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1674 	 *
1675 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1676 	 * so if the following test faile, it implies
1677 	 * policy->v.nodes has movable memory only.
1678 	 */
1679 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1680 		dynamic_policy_zone = ZONE_MOVABLE;
1681 
1682 	return zone >= dynamic_policy_zone;
1683 }
1684 
1685 /*
1686  * Return a nodemask representing a mempolicy for filtering nodes for
1687  * page allocation
1688  */
1689 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1690 {
1691 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1692 	if (unlikely(policy->mode == MPOL_BIND) &&
1693 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1694 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1695 		return &policy->v.nodes;
1696 
1697 	return NULL;
1698 }
1699 
1700 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1701 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1702 	int nd)
1703 {
1704 	switch (policy->mode) {
1705 	case MPOL_PREFERRED:
1706 		if (!(policy->flags & MPOL_F_LOCAL))
1707 			nd = policy->v.preferred_node;
1708 		break;
1709 	case MPOL_BIND:
1710 		/*
1711 		 * Normally, MPOL_BIND allocations are node-local within the
1712 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1713 		 * current node isn't part of the mask, we use the zonelist for
1714 		 * the first node in the mask instead.
1715 		 */
1716 		if (unlikely(gfp & __GFP_THISNODE) &&
1717 				unlikely(!node_isset(nd, policy->v.nodes)))
1718 			nd = first_node(policy->v.nodes);
1719 		break;
1720 	default:
1721 		BUG();
1722 	}
1723 	return node_zonelist(nd, gfp);
1724 }
1725 
1726 /* Do dynamic interleaving for a process */
1727 static unsigned interleave_nodes(struct mempolicy *policy)
1728 {
1729 	unsigned nid, next;
1730 	struct task_struct *me = current;
1731 
1732 	nid = me->il_next;
1733 	next = next_node(nid, policy->v.nodes);
1734 	if (next >= MAX_NUMNODES)
1735 		next = first_node(policy->v.nodes);
1736 	if (next < MAX_NUMNODES)
1737 		me->il_next = next;
1738 	return nid;
1739 }
1740 
1741 /*
1742  * Depending on the memory policy provide a node from which to allocate the
1743  * next slab entry.
1744  */
1745 unsigned int mempolicy_slab_node(void)
1746 {
1747 	struct mempolicy *policy;
1748 	int node = numa_mem_id();
1749 
1750 	if (in_interrupt())
1751 		return node;
1752 
1753 	policy = current->mempolicy;
1754 	if (!policy || policy->flags & MPOL_F_LOCAL)
1755 		return node;
1756 
1757 	switch (policy->mode) {
1758 	case MPOL_PREFERRED:
1759 		/*
1760 		 * handled MPOL_F_LOCAL above
1761 		 */
1762 		return policy->v.preferred_node;
1763 
1764 	case MPOL_INTERLEAVE:
1765 		return interleave_nodes(policy);
1766 
1767 	case MPOL_BIND: {
1768 		/*
1769 		 * Follow bind policy behavior and start allocation at the
1770 		 * first node.
1771 		 */
1772 		struct zonelist *zonelist;
1773 		struct zone *zone;
1774 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1775 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1776 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1777 							&policy->v.nodes,
1778 							&zone);
1779 		return zone ? zone->node : node;
1780 	}
1781 
1782 	default:
1783 		BUG();
1784 	}
1785 }
1786 
1787 /* Do static interleaving for a VMA with known offset. */
1788 static unsigned offset_il_node(struct mempolicy *pol,
1789 		struct vm_area_struct *vma, unsigned long off)
1790 {
1791 	unsigned nnodes = nodes_weight(pol->v.nodes);
1792 	unsigned target;
1793 	int c;
1794 	int nid = NUMA_NO_NODE;
1795 
1796 	if (!nnodes)
1797 		return numa_node_id();
1798 	target = (unsigned int)off % nnodes;
1799 	c = 0;
1800 	do {
1801 		nid = next_node(nid, pol->v.nodes);
1802 		c++;
1803 	} while (c <= target);
1804 	return nid;
1805 }
1806 
1807 /* Determine a node number for interleave */
1808 static inline unsigned interleave_nid(struct mempolicy *pol,
1809 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1810 {
1811 	if (vma) {
1812 		unsigned long off;
1813 
1814 		/*
1815 		 * for small pages, there is no difference between
1816 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1817 		 * for huge pages, since vm_pgoff is in units of small
1818 		 * pages, we need to shift off the always 0 bits to get
1819 		 * a useful offset.
1820 		 */
1821 		BUG_ON(shift < PAGE_SHIFT);
1822 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1823 		off += (addr - vma->vm_start) >> shift;
1824 		return offset_il_node(pol, vma, off);
1825 	} else
1826 		return interleave_nodes(pol);
1827 }
1828 
1829 /*
1830  * Return the bit number of a random bit set in the nodemask.
1831  * (returns NUMA_NO_NODE if nodemask is empty)
1832  */
1833 int node_random(const nodemask_t *maskp)
1834 {
1835 	int w, bit = NUMA_NO_NODE;
1836 
1837 	w = nodes_weight(*maskp);
1838 	if (w)
1839 		bit = bitmap_ord_to_pos(maskp->bits,
1840 			get_random_int() % w, MAX_NUMNODES);
1841 	return bit;
1842 }
1843 
1844 #ifdef CONFIG_HUGETLBFS
1845 /*
1846  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1847  * @vma: virtual memory area whose policy is sought
1848  * @addr: address in @vma for shared policy lookup and interleave policy
1849  * @gfp_flags: for requested zone
1850  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1851  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1852  *
1853  * Returns a zonelist suitable for a huge page allocation and a pointer
1854  * to the struct mempolicy for conditional unref after allocation.
1855  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1856  * @nodemask for filtering the zonelist.
1857  *
1858  * Must be protected by read_mems_allowed_begin()
1859  */
1860 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1861 				gfp_t gfp_flags, struct mempolicy **mpol,
1862 				nodemask_t **nodemask)
1863 {
1864 	struct zonelist *zl;
1865 
1866 	*mpol = get_vma_policy(vma, addr);
1867 	*nodemask = NULL;	/* assume !MPOL_BIND */
1868 
1869 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1870 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1871 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1872 	} else {
1873 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1874 		if ((*mpol)->mode == MPOL_BIND)
1875 			*nodemask = &(*mpol)->v.nodes;
1876 	}
1877 	return zl;
1878 }
1879 
1880 /*
1881  * init_nodemask_of_mempolicy
1882  *
1883  * If the current task's mempolicy is "default" [NULL], return 'false'
1884  * to indicate default policy.  Otherwise, extract the policy nodemask
1885  * for 'bind' or 'interleave' policy into the argument nodemask, or
1886  * initialize the argument nodemask to contain the single node for
1887  * 'preferred' or 'local' policy and return 'true' to indicate presence
1888  * of non-default mempolicy.
1889  *
1890  * We don't bother with reference counting the mempolicy [mpol_get/put]
1891  * because the current task is examining it's own mempolicy and a task's
1892  * mempolicy is only ever changed by the task itself.
1893  *
1894  * N.B., it is the caller's responsibility to free a returned nodemask.
1895  */
1896 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1897 {
1898 	struct mempolicy *mempolicy;
1899 	int nid;
1900 
1901 	if (!(mask && current->mempolicy))
1902 		return false;
1903 
1904 	task_lock(current);
1905 	mempolicy = current->mempolicy;
1906 	switch (mempolicy->mode) {
1907 	case MPOL_PREFERRED:
1908 		if (mempolicy->flags & MPOL_F_LOCAL)
1909 			nid = numa_node_id();
1910 		else
1911 			nid = mempolicy->v.preferred_node;
1912 		init_nodemask_of_node(mask, nid);
1913 		break;
1914 
1915 	case MPOL_BIND:
1916 		/* Fall through */
1917 	case MPOL_INTERLEAVE:
1918 		*mask =  mempolicy->v.nodes;
1919 		break;
1920 
1921 	default:
1922 		BUG();
1923 	}
1924 	task_unlock(current);
1925 
1926 	return true;
1927 }
1928 #endif
1929 
1930 /*
1931  * mempolicy_nodemask_intersects
1932  *
1933  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1934  * policy.  Otherwise, check for intersection between mask and the policy
1935  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1936  * policy, always return true since it may allocate elsewhere on fallback.
1937  *
1938  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1939  */
1940 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1941 					const nodemask_t *mask)
1942 {
1943 	struct mempolicy *mempolicy;
1944 	bool ret = true;
1945 
1946 	if (!mask)
1947 		return ret;
1948 	task_lock(tsk);
1949 	mempolicy = tsk->mempolicy;
1950 	if (!mempolicy)
1951 		goto out;
1952 
1953 	switch (mempolicy->mode) {
1954 	case MPOL_PREFERRED:
1955 		/*
1956 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1957 		 * allocate from, they may fallback to other nodes when oom.
1958 		 * Thus, it's possible for tsk to have allocated memory from
1959 		 * nodes in mask.
1960 		 */
1961 		break;
1962 	case MPOL_BIND:
1963 	case MPOL_INTERLEAVE:
1964 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1965 		break;
1966 	default:
1967 		BUG();
1968 	}
1969 out:
1970 	task_unlock(tsk);
1971 	return ret;
1972 }
1973 
1974 /* Allocate a page in interleaved policy.
1975    Own path because it needs to do special accounting. */
1976 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1977 					unsigned nid)
1978 {
1979 	struct zonelist *zl;
1980 	struct page *page;
1981 
1982 	zl = node_zonelist(nid, gfp);
1983 	page = __alloc_pages(gfp, order, zl);
1984 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1985 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1986 	return page;
1987 }
1988 
1989 /**
1990  * 	alloc_pages_vma	- Allocate a page for a VMA.
1991  *
1992  * 	@gfp:
1993  *      %GFP_USER    user allocation.
1994  *      %GFP_KERNEL  kernel allocations,
1995  *      %GFP_HIGHMEM highmem/user allocations,
1996  *      %GFP_FS      allocation should not call back into a file system.
1997  *      %GFP_ATOMIC  don't sleep.
1998  *
1999  *	@order:Order of the GFP allocation.
2000  * 	@vma:  Pointer to VMA or NULL if not available.
2001  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2002  *
2003  * 	This function allocates a page from the kernel page pool and applies
2004  *	a NUMA policy associated with the VMA or the current process.
2005  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2006  *	mm_struct of the VMA to prevent it from going away. Should be used for
2007  *	all allocations for pages that will be mapped into
2008  * 	user space. Returns NULL when no page can be allocated.
2009  *
2010  *	Should be called with the mm_sem of the vma hold.
2011  */
2012 struct page *
2013 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2014 		unsigned long addr, int node)
2015 {
2016 	struct mempolicy *pol;
2017 	struct page *page;
2018 	unsigned int cpuset_mems_cookie;
2019 
2020 retry_cpuset:
2021 	pol = get_vma_policy(vma, addr);
2022 	cpuset_mems_cookie = read_mems_allowed_begin();
2023 
2024 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2025 		unsigned nid;
2026 
2027 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2028 		mpol_cond_put(pol);
2029 		page = alloc_page_interleave(gfp, order, nid);
2030 		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2031 			goto retry_cpuset;
2032 
2033 		return page;
2034 	}
2035 	page = __alloc_pages_nodemask(gfp, order,
2036 				      policy_zonelist(gfp, pol, node),
2037 				      policy_nodemask(gfp, pol));
2038 	mpol_cond_put(pol);
2039 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2040 		goto retry_cpuset;
2041 	return page;
2042 }
2043 
2044 /**
2045  * 	alloc_pages_current - Allocate pages.
2046  *
2047  *	@gfp:
2048  *		%GFP_USER   user allocation,
2049  *      	%GFP_KERNEL kernel allocation,
2050  *      	%GFP_HIGHMEM highmem allocation,
2051  *      	%GFP_FS     don't call back into a file system.
2052  *      	%GFP_ATOMIC don't sleep.
2053  *	@order: Power of two of allocation size in pages. 0 is a single page.
2054  *
2055  *	Allocate a page from the kernel page pool.  When not in
2056  *	interrupt context and apply the current process NUMA policy.
2057  *	Returns NULL when no page can be allocated.
2058  *
2059  *	Don't call cpuset_update_task_memory_state() unless
2060  *	1) it's ok to take cpuset_sem (can WAIT), and
2061  *	2) allocating for current task (not interrupt).
2062  */
2063 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2064 {
2065 	struct mempolicy *pol = &default_policy;
2066 	struct page *page;
2067 	unsigned int cpuset_mems_cookie;
2068 
2069 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2070 		pol = get_task_policy(current);
2071 
2072 retry_cpuset:
2073 	cpuset_mems_cookie = read_mems_allowed_begin();
2074 
2075 	/*
2076 	 * No reference counting needed for current->mempolicy
2077 	 * nor system default_policy
2078 	 */
2079 	if (pol->mode == MPOL_INTERLEAVE)
2080 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2081 	else
2082 		page = __alloc_pages_nodemask(gfp, order,
2083 				policy_zonelist(gfp, pol, numa_node_id()),
2084 				policy_nodemask(gfp, pol));
2085 
2086 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2087 		goto retry_cpuset;
2088 
2089 	return page;
2090 }
2091 EXPORT_SYMBOL(alloc_pages_current);
2092 
2093 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2094 {
2095 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2096 
2097 	if (IS_ERR(pol))
2098 		return PTR_ERR(pol);
2099 	dst->vm_policy = pol;
2100 	return 0;
2101 }
2102 
2103 /*
2104  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2105  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2106  * with the mems_allowed returned by cpuset_mems_allowed().  This
2107  * keeps mempolicies cpuset relative after its cpuset moves.  See
2108  * further kernel/cpuset.c update_nodemask().
2109  *
2110  * current's mempolicy may be rebinded by the other task(the task that changes
2111  * cpuset's mems), so we needn't do rebind work for current task.
2112  */
2113 
2114 /* Slow path of a mempolicy duplicate */
2115 struct mempolicy *__mpol_dup(struct mempolicy *old)
2116 {
2117 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2118 
2119 	if (!new)
2120 		return ERR_PTR(-ENOMEM);
2121 
2122 	/* task's mempolicy is protected by alloc_lock */
2123 	if (old == current->mempolicy) {
2124 		task_lock(current);
2125 		*new = *old;
2126 		task_unlock(current);
2127 	} else
2128 		*new = *old;
2129 
2130 	if (current_cpuset_is_being_rebound()) {
2131 		nodemask_t mems = cpuset_mems_allowed(current);
2132 		if (new->flags & MPOL_F_REBINDING)
2133 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2134 		else
2135 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2136 	}
2137 	atomic_set(&new->refcnt, 1);
2138 	return new;
2139 }
2140 
2141 /* Slow path of a mempolicy comparison */
2142 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2143 {
2144 	if (!a || !b)
2145 		return false;
2146 	if (a->mode != b->mode)
2147 		return false;
2148 	if (a->flags != b->flags)
2149 		return false;
2150 	if (mpol_store_user_nodemask(a))
2151 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2152 			return false;
2153 
2154 	switch (a->mode) {
2155 	case MPOL_BIND:
2156 		/* Fall through */
2157 	case MPOL_INTERLEAVE:
2158 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2159 	case MPOL_PREFERRED:
2160 		return a->v.preferred_node == b->v.preferred_node;
2161 	default:
2162 		BUG();
2163 		return false;
2164 	}
2165 }
2166 
2167 /*
2168  * Shared memory backing store policy support.
2169  *
2170  * Remember policies even when nobody has shared memory mapped.
2171  * The policies are kept in Red-Black tree linked from the inode.
2172  * They are protected by the sp->lock spinlock, which should be held
2173  * for any accesses to the tree.
2174  */
2175 
2176 /* lookup first element intersecting start-end */
2177 /* Caller holds sp->lock */
2178 static struct sp_node *
2179 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2180 {
2181 	struct rb_node *n = sp->root.rb_node;
2182 
2183 	while (n) {
2184 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2185 
2186 		if (start >= p->end)
2187 			n = n->rb_right;
2188 		else if (end <= p->start)
2189 			n = n->rb_left;
2190 		else
2191 			break;
2192 	}
2193 	if (!n)
2194 		return NULL;
2195 	for (;;) {
2196 		struct sp_node *w = NULL;
2197 		struct rb_node *prev = rb_prev(n);
2198 		if (!prev)
2199 			break;
2200 		w = rb_entry(prev, struct sp_node, nd);
2201 		if (w->end <= start)
2202 			break;
2203 		n = prev;
2204 	}
2205 	return rb_entry(n, struct sp_node, nd);
2206 }
2207 
2208 /* Insert a new shared policy into the list. */
2209 /* Caller holds sp->lock */
2210 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2211 {
2212 	struct rb_node **p = &sp->root.rb_node;
2213 	struct rb_node *parent = NULL;
2214 	struct sp_node *nd;
2215 
2216 	while (*p) {
2217 		parent = *p;
2218 		nd = rb_entry(parent, struct sp_node, nd);
2219 		if (new->start < nd->start)
2220 			p = &(*p)->rb_left;
2221 		else if (new->end > nd->end)
2222 			p = &(*p)->rb_right;
2223 		else
2224 			BUG();
2225 	}
2226 	rb_link_node(&new->nd, parent, p);
2227 	rb_insert_color(&new->nd, &sp->root);
2228 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2229 		 new->policy ? new->policy->mode : 0);
2230 }
2231 
2232 /* Find shared policy intersecting idx */
2233 struct mempolicy *
2234 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2235 {
2236 	struct mempolicy *pol = NULL;
2237 	struct sp_node *sn;
2238 
2239 	if (!sp->root.rb_node)
2240 		return NULL;
2241 	spin_lock(&sp->lock);
2242 	sn = sp_lookup(sp, idx, idx+1);
2243 	if (sn) {
2244 		mpol_get(sn->policy);
2245 		pol = sn->policy;
2246 	}
2247 	spin_unlock(&sp->lock);
2248 	return pol;
2249 }
2250 
2251 static void sp_free(struct sp_node *n)
2252 {
2253 	mpol_put(n->policy);
2254 	kmem_cache_free(sn_cache, n);
2255 }
2256 
2257 /**
2258  * mpol_misplaced - check whether current page node is valid in policy
2259  *
2260  * @page: page to be checked
2261  * @vma: vm area where page mapped
2262  * @addr: virtual address where page mapped
2263  *
2264  * Lookup current policy node id for vma,addr and "compare to" page's
2265  * node id.
2266  *
2267  * Returns:
2268  *	-1	- not misplaced, page is in the right node
2269  *	node	- node id where the page should be
2270  *
2271  * Policy determination "mimics" alloc_page_vma().
2272  * Called from fault path where we know the vma and faulting address.
2273  */
2274 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2275 {
2276 	struct mempolicy *pol;
2277 	struct zone *zone;
2278 	int curnid = page_to_nid(page);
2279 	unsigned long pgoff;
2280 	int thiscpu = raw_smp_processor_id();
2281 	int thisnid = cpu_to_node(thiscpu);
2282 	int polnid = -1;
2283 	int ret = -1;
2284 
2285 	BUG_ON(!vma);
2286 
2287 	pol = get_vma_policy(vma, addr);
2288 	if (!(pol->flags & MPOL_F_MOF))
2289 		goto out;
2290 
2291 	switch (pol->mode) {
2292 	case MPOL_INTERLEAVE:
2293 		BUG_ON(addr >= vma->vm_end);
2294 		BUG_ON(addr < vma->vm_start);
2295 
2296 		pgoff = vma->vm_pgoff;
2297 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2298 		polnid = offset_il_node(pol, vma, pgoff);
2299 		break;
2300 
2301 	case MPOL_PREFERRED:
2302 		if (pol->flags & MPOL_F_LOCAL)
2303 			polnid = numa_node_id();
2304 		else
2305 			polnid = pol->v.preferred_node;
2306 		break;
2307 
2308 	case MPOL_BIND:
2309 		/*
2310 		 * allows binding to multiple nodes.
2311 		 * use current page if in policy nodemask,
2312 		 * else select nearest allowed node, if any.
2313 		 * If no allowed nodes, use current [!misplaced].
2314 		 */
2315 		if (node_isset(curnid, pol->v.nodes))
2316 			goto out;
2317 		(void)first_zones_zonelist(
2318 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2319 				gfp_zone(GFP_HIGHUSER),
2320 				&pol->v.nodes, &zone);
2321 		polnid = zone->node;
2322 		break;
2323 
2324 	default:
2325 		BUG();
2326 	}
2327 
2328 	/* Migrate the page towards the node whose CPU is referencing it */
2329 	if (pol->flags & MPOL_F_MORON) {
2330 		polnid = thisnid;
2331 
2332 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2333 			goto out;
2334 	}
2335 
2336 	if (curnid != polnid)
2337 		ret = polnid;
2338 out:
2339 	mpol_cond_put(pol);
2340 
2341 	return ret;
2342 }
2343 
2344 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2345 {
2346 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2347 	rb_erase(&n->nd, &sp->root);
2348 	sp_free(n);
2349 }
2350 
2351 static void sp_node_init(struct sp_node *node, unsigned long start,
2352 			unsigned long end, struct mempolicy *pol)
2353 {
2354 	node->start = start;
2355 	node->end = end;
2356 	node->policy = pol;
2357 }
2358 
2359 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2360 				struct mempolicy *pol)
2361 {
2362 	struct sp_node *n;
2363 	struct mempolicy *newpol;
2364 
2365 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2366 	if (!n)
2367 		return NULL;
2368 
2369 	newpol = mpol_dup(pol);
2370 	if (IS_ERR(newpol)) {
2371 		kmem_cache_free(sn_cache, n);
2372 		return NULL;
2373 	}
2374 	newpol->flags |= MPOL_F_SHARED;
2375 	sp_node_init(n, start, end, newpol);
2376 
2377 	return n;
2378 }
2379 
2380 /* Replace a policy range. */
2381 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2382 				 unsigned long end, struct sp_node *new)
2383 {
2384 	struct sp_node *n;
2385 	struct sp_node *n_new = NULL;
2386 	struct mempolicy *mpol_new = NULL;
2387 	int ret = 0;
2388 
2389 restart:
2390 	spin_lock(&sp->lock);
2391 	n = sp_lookup(sp, start, end);
2392 	/* Take care of old policies in the same range. */
2393 	while (n && n->start < end) {
2394 		struct rb_node *next = rb_next(&n->nd);
2395 		if (n->start >= start) {
2396 			if (n->end <= end)
2397 				sp_delete(sp, n);
2398 			else
2399 				n->start = end;
2400 		} else {
2401 			/* Old policy spanning whole new range. */
2402 			if (n->end > end) {
2403 				if (!n_new)
2404 					goto alloc_new;
2405 
2406 				*mpol_new = *n->policy;
2407 				atomic_set(&mpol_new->refcnt, 1);
2408 				sp_node_init(n_new, end, n->end, mpol_new);
2409 				n->end = start;
2410 				sp_insert(sp, n_new);
2411 				n_new = NULL;
2412 				mpol_new = NULL;
2413 				break;
2414 			} else
2415 				n->end = start;
2416 		}
2417 		if (!next)
2418 			break;
2419 		n = rb_entry(next, struct sp_node, nd);
2420 	}
2421 	if (new)
2422 		sp_insert(sp, new);
2423 	spin_unlock(&sp->lock);
2424 	ret = 0;
2425 
2426 err_out:
2427 	if (mpol_new)
2428 		mpol_put(mpol_new);
2429 	if (n_new)
2430 		kmem_cache_free(sn_cache, n_new);
2431 
2432 	return ret;
2433 
2434 alloc_new:
2435 	spin_unlock(&sp->lock);
2436 	ret = -ENOMEM;
2437 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2438 	if (!n_new)
2439 		goto err_out;
2440 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2441 	if (!mpol_new)
2442 		goto err_out;
2443 	goto restart;
2444 }
2445 
2446 /**
2447  * mpol_shared_policy_init - initialize shared policy for inode
2448  * @sp: pointer to inode shared policy
2449  * @mpol:  struct mempolicy to install
2450  *
2451  * Install non-NULL @mpol in inode's shared policy rb-tree.
2452  * On entry, the current task has a reference on a non-NULL @mpol.
2453  * This must be released on exit.
2454  * This is called at get_inode() calls and we can use GFP_KERNEL.
2455  */
2456 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2457 {
2458 	int ret;
2459 
2460 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2461 	spin_lock_init(&sp->lock);
2462 
2463 	if (mpol) {
2464 		struct vm_area_struct pvma;
2465 		struct mempolicy *new;
2466 		NODEMASK_SCRATCH(scratch);
2467 
2468 		if (!scratch)
2469 			goto put_mpol;
2470 		/* contextualize the tmpfs mount point mempolicy */
2471 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2472 		if (IS_ERR(new))
2473 			goto free_scratch; /* no valid nodemask intersection */
2474 
2475 		task_lock(current);
2476 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2477 		task_unlock(current);
2478 		if (ret)
2479 			goto put_new;
2480 
2481 		/* Create pseudo-vma that contains just the policy */
2482 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2483 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2484 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2485 
2486 put_new:
2487 		mpol_put(new);			/* drop initial ref */
2488 free_scratch:
2489 		NODEMASK_SCRATCH_FREE(scratch);
2490 put_mpol:
2491 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2492 	}
2493 }
2494 
2495 int mpol_set_shared_policy(struct shared_policy *info,
2496 			struct vm_area_struct *vma, struct mempolicy *npol)
2497 {
2498 	int err;
2499 	struct sp_node *new = NULL;
2500 	unsigned long sz = vma_pages(vma);
2501 
2502 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2503 		 vma->vm_pgoff,
2504 		 sz, npol ? npol->mode : -1,
2505 		 npol ? npol->flags : -1,
2506 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2507 
2508 	if (npol) {
2509 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2510 		if (!new)
2511 			return -ENOMEM;
2512 	}
2513 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2514 	if (err && new)
2515 		sp_free(new);
2516 	return err;
2517 }
2518 
2519 /* Free a backing policy store on inode delete. */
2520 void mpol_free_shared_policy(struct shared_policy *p)
2521 {
2522 	struct sp_node *n;
2523 	struct rb_node *next;
2524 
2525 	if (!p->root.rb_node)
2526 		return;
2527 	spin_lock(&p->lock);
2528 	next = rb_first(&p->root);
2529 	while (next) {
2530 		n = rb_entry(next, struct sp_node, nd);
2531 		next = rb_next(&n->nd);
2532 		sp_delete(p, n);
2533 	}
2534 	spin_unlock(&p->lock);
2535 }
2536 
2537 #ifdef CONFIG_NUMA_BALANCING
2538 static int __initdata numabalancing_override;
2539 
2540 static void __init check_numabalancing_enable(void)
2541 {
2542 	bool numabalancing_default = false;
2543 
2544 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2545 		numabalancing_default = true;
2546 
2547 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2548 	if (numabalancing_override)
2549 		set_numabalancing_state(numabalancing_override == 1);
2550 
2551 	if (nr_node_ids > 1 && !numabalancing_override) {
2552 		pr_info("%s automatic NUMA balancing. "
2553 			"Configure with numa_balancing= or the "
2554 			"kernel.numa_balancing sysctl",
2555 			numabalancing_default ? "Enabling" : "Disabling");
2556 		set_numabalancing_state(numabalancing_default);
2557 	}
2558 }
2559 
2560 static int __init setup_numabalancing(char *str)
2561 {
2562 	int ret = 0;
2563 	if (!str)
2564 		goto out;
2565 
2566 	if (!strcmp(str, "enable")) {
2567 		numabalancing_override = 1;
2568 		ret = 1;
2569 	} else if (!strcmp(str, "disable")) {
2570 		numabalancing_override = -1;
2571 		ret = 1;
2572 	}
2573 out:
2574 	if (!ret)
2575 		pr_warn("Unable to parse numa_balancing=\n");
2576 
2577 	return ret;
2578 }
2579 __setup("numa_balancing=", setup_numabalancing);
2580 #else
2581 static inline void __init check_numabalancing_enable(void)
2582 {
2583 }
2584 #endif /* CONFIG_NUMA_BALANCING */
2585 
2586 /* assumes fs == KERNEL_DS */
2587 void __init numa_policy_init(void)
2588 {
2589 	nodemask_t interleave_nodes;
2590 	unsigned long largest = 0;
2591 	int nid, prefer = 0;
2592 
2593 	policy_cache = kmem_cache_create("numa_policy",
2594 					 sizeof(struct mempolicy),
2595 					 0, SLAB_PANIC, NULL);
2596 
2597 	sn_cache = kmem_cache_create("shared_policy_node",
2598 				     sizeof(struct sp_node),
2599 				     0, SLAB_PANIC, NULL);
2600 
2601 	for_each_node(nid) {
2602 		preferred_node_policy[nid] = (struct mempolicy) {
2603 			.refcnt = ATOMIC_INIT(1),
2604 			.mode = MPOL_PREFERRED,
2605 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2606 			.v = { .preferred_node = nid, },
2607 		};
2608 	}
2609 
2610 	/*
2611 	 * Set interleaving policy for system init. Interleaving is only
2612 	 * enabled across suitably sized nodes (default is >= 16MB), or
2613 	 * fall back to the largest node if they're all smaller.
2614 	 */
2615 	nodes_clear(interleave_nodes);
2616 	for_each_node_state(nid, N_MEMORY) {
2617 		unsigned long total_pages = node_present_pages(nid);
2618 
2619 		/* Preserve the largest node */
2620 		if (largest < total_pages) {
2621 			largest = total_pages;
2622 			prefer = nid;
2623 		}
2624 
2625 		/* Interleave this node? */
2626 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2627 			node_set(nid, interleave_nodes);
2628 	}
2629 
2630 	/* All too small, use the largest */
2631 	if (unlikely(nodes_empty(interleave_nodes)))
2632 		node_set(prefer, interleave_nodes);
2633 
2634 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2635 		pr_err("%s: interleaving failed\n", __func__);
2636 
2637 	check_numabalancing_enable();
2638 }
2639 
2640 /* Reset policy of current process to default */
2641 void numa_default_policy(void)
2642 {
2643 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2644 }
2645 
2646 /*
2647  * Parse and format mempolicy from/to strings
2648  */
2649 
2650 /*
2651  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2652  */
2653 static const char * const policy_modes[] =
2654 {
2655 	[MPOL_DEFAULT]    = "default",
2656 	[MPOL_PREFERRED]  = "prefer",
2657 	[MPOL_BIND]       = "bind",
2658 	[MPOL_INTERLEAVE] = "interleave",
2659 	[MPOL_LOCAL]      = "local",
2660 };
2661 
2662 
2663 #ifdef CONFIG_TMPFS
2664 /**
2665  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2666  * @str:  string containing mempolicy to parse
2667  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2668  *
2669  * Format of input:
2670  *	<mode>[=<flags>][:<nodelist>]
2671  *
2672  * On success, returns 0, else 1
2673  */
2674 int mpol_parse_str(char *str, struct mempolicy **mpol)
2675 {
2676 	struct mempolicy *new = NULL;
2677 	unsigned short mode;
2678 	unsigned short mode_flags;
2679 	nodemask_t nodes;
2680 	char *nodelist = strchr(str, ':');
2681 	char *flags = strchr(str, '=');
2682 	int err = 1;
2683 
2684 	if (nodelist) {
2685 		/* NUL-terminate mode or flags string */
2686 		*nodelist++ = '\0';
2687 		if (nodelist_parse(nodelist, nodes))
2688 			goto out;
2689 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2690 			goto out;
2691 	} else
2692 		nodes_clear(nodes);
2693 
2694 	if (flags)
2695 		*flags++ = '\0';	/* terminate mode string */
2696 
2697 	for (mode = 0; mode < MPOL_MAX; mode++) {
2698 		if (!strcmp(str, policy_modes[mode])) {
2699 			break;
2700 		}
2701 	}
2702 	if (mode >= MPOL_MAX)
2703 		goto out;
2704 
2705 	switch (mode) {
2706 	case MPOL_PREFERRED:
2707 		/*
2708 		 * Insist on a nodelist of one node only
2709 		 */
2710 		if (nodelist) {
2711 			char *rest = nodelist;
2712 			while (isdigit(*rest))
2713 				rest++;
2714 			if (*rest)
2715 				goto out;
2716 		}
2717 		break;
2718 	case MPOL_INTERLEAVE:
2719 		/*
2720 		 * Default to online nodes with memory if no nodelist
2721 		 */
2722 		if (!nodelist)
2723 			nodes = node_states[N_MEMORY];
2724 		break;
2725 	case MPOL_LOCAL:
2726 		/*
2727 		 * Don't allow a nodelist;  mpol_new() checks flags
2728 		 */
2729 		if (nodelist)
2730 			goto out;
2731 		mode = MPOL_PREFERRED;
2732 		break;
2733 	case MPOL_DEFAULT:
2734 		/*
2735 		 * Insist on a empty nodelist
2736 		 */
2737 		if (!nodelist)
2738 			err = 0;
2739 		goto out;
2740 	case MPOL_BIND:
2741 		/*
2742 		 * Insist on a nodelist
2743 		 */
2744 		if (!nodelist)
2745 			goto out;
2746 	}
2747 
2748 	mode_flags = 0;
2749 	if (flags) {
2750 		/*
2751 		 * Currently, we only support two mutually exclusive
2752 		 * mode flags.
2753 		 */
2754 		if (!strcmp(flags, "static"))
2755 			mode_flags |= MPOL_F_STATIC_NODES;
2756 		else if (!strcmp(flags, "relative"))
2757 			mode_flags |= MPOL_F_RELATIVE_NODES;
2758 		else
2759 			goto out;
2760 	}
2761 
2762 	new = mpol_new(mode, mode_flags, &nodes);
2763 	if (IS_ERR(new))
2764 		goto out;
2765 
2766 	/*
2767 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2768 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2769 	 */
2770 	if (mode != MPOL_PREFERRED)
2771 		new->v.nodes = nodes;
2772 	else if (nodelist)
2773 		new->v.preferred_node = first_node(nodes);
2774 	else
2775 		new->flags |= MPOL_F_LOCAL;
2776 
2777 	/*
2778 	 * Save nodes for contextualization: this will be used to "clone"
2779 	 * the mempolicy in a specific context [cpuset] at a later time.
2780 	 */
2781 	new->w.user_nodemask = nodes;
2782 
2783 	err = 0;
2784 
2785 out:
2786 	/* Restore string for error message */
2787 	if (nodelist)
2788 		*--nodelist = ':';
2789 	if (flags)
2790 		*--flags = '=';
2791 	if (!err)
2792 		*mpol = new;
2793 	return err;
2794 }
2795 #endif /* CONFIG_TMPFS */
2796 
2797 /**
2798  * mpol_to_str - format a mempolicy structure for printing
2799  * @buffer:  to contain formatted mempolicy string
2800  * @maxlen:  length of @buffer
2801  * @pol:  pointer to mempolicy to be formatted
2802  *
2803  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2804  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2805  * longest flag, "relative", and to display at least a few node ids.
2806  */
2807 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2808 {
2809 	char *p = buffer;
2810 	nodemask_t nodes = NODE_MASK_NONE;
2811 	unsigned short mode = MPOL_DEFAULT;
2812 	unsigned short flags = 0;
2813 
2814 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2815 		mode = pol->mode;
2816 		flags = pol->flags;
2817 	}
2818 
2819 	switch (mode) {
2820 	case MPOL_DEFAULT:
2821 		break;
2822 	case MPOL_PREFERRED:
2823 		if (flags & MPOL_F_LOCAL)
2824 			mode = MPOL_LOCAL;
2825 		else
2826 			node_set(pol->v.preferred_node, nodes);
2827 		break;
2828 	case MPOL_BIND:
2829 	case MPOL_INTERLEAVE:
2830 		nodes = pol->v.nodes;
2831 		break;
2832 	default:
2833 		WARN_ON_ONCE(1);
2834 		snprintf(p, maxlen, "unknown");
2835 		return;
2836 	}
2837 
2838 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2839 
2840 	if (flags & MPOL_MODE_FLAGS) {
2841 		p += snprintf(p, buffer + maxlen - p, "=");
2842 
2843 		/*
2844 		 * Currently, the only defined flags are mutually exclusive
2845 		 */
2846 		if (flags & MPOL_F_STATIC_NODES)
2847 			p += snprintf(p, buffer + maxlen - p, "static");
2848 		else if (flags & MPOL_F_RELATIVE_NODES)
2849 			p += snprintf(p, buffer + maxlen - p, "relative");
2850 	}
2851 
2852 	if (!nodes_empty(nodes)) {
2853 		p += snprintf(p, buffer + maxlen - p, ":");
2854 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2855 	}
2856 }
2857