xref: /openbmc/linux/mm/mempolicy.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @nid: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_semaphore for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_sem. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	down_write(&mm->mmap_sem);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	up_write(&mm->mmap_sem);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(pte - 1, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_sem held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_sem */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	task_lock(current);
879 	ret = mpol_set_nodemask(new, nodes, scratch);
880 	if (ret) {
881 		task_unlock(current);
882 		mpol_put(new);
883 		goto out;
884 	}
885 	old = current->mempolicy;
886 	current->mempolicy = new;
887 	if (new && new->mode == MPOL_INTERLEAVE)
888 		current->il_prev = MAX_NUMNODES-1;
889 	task_unlock(current);
890 	mpol_put(old);
891 	ret = 0;
892 out:
893 	NODEMASK_SCRATCH_FREE(scratch);
894 	return ret;
895 }
896 
897 /*
898  * Return nodemask for policy for get_mempolicy() query
899  *
900  * Called with task's alloc_lock held
901  */
902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
903 {
904 	nodes_clear(*nodes);
905 	if (p == &default_policy)
906 		return;
907 
908 	switch (p->mode) {
909 	case MPOL_BIND:
910 	case MPOL_INTERLEAVE:
911 		*nodes = p->v.nodes;
912 		break;
913 	case MPOL_PREFERRED:
914 		if (!(p->flags & MPOL_F_LOCAL))
915 			node_set(p->v.preferred_node, *nodes);
916 		/* else return empty node mask for local allocation */
917 		break;
918 	default:
919 		BUG();
920 	}
921 }
922 
923 static int lookup_node(struct mm_struct *mm, unsigned long addr)
924 {
925 	struct page *p = NULL;
926 	int err;
927 
928 	int locked = 1;
929 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
930 	if (err == 0) {
931 		/* E.g. GUP interrupted by fatal signal */
932 		err = -EFAULT;
933 	} else if (err > 0) {
934 		err = page_to_nid(p);
935 		put_page(p);
936 	}
937 	if (locked)
938 		up_read(&mm->mmap_sem);
939 	return err;
940 }
941 
942 /* Retrieve NUMA policy */
943 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
944 			     unsigned long addr, unsigned long flags)
945 {
946 	int err;
947 	struct mm_struct *mm = current->mm;
948 	struct vm_area_struct *vma = NULL;
949 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
950 
951 	if (flags &
952 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
953 		return -EINVAL;
954 
955 	if (flags & MPOL_F_MEMS_ALLOWED) {
956 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
957 			return -EINVAL;
958 		*policy = 0;	/* just so it's initialized */
959 		task_lock(current);
960 		*nmask  = cpuset_current_mems_allowed;
961 		task_unlock(current);
962 		return 0;
963 	}
964 
965 	if (flags & MPOL_F_ADDR) {
966 		/*
967 		 * Do NOT fall back to task policy if the
968 		 * vma/shared policy at addr is NULL.  We
969 		 * want to return MPOL_DEFAULT in this case.
970 		 */
971 		down_read(&mm->mmap_sem);
972 		vma = find_vma_intersection(mm, addr, addr+1);
973 		if (!vma) {
974 			up_read(&mm->mmap_sem);
975 			return -EFAULT;
976 		}
977 		if (vma->vm_ops && vma->vm_ops->get_policy)
978 			pol = vma->vm_ops->get_policy(vma, addr);
979 		else
980 			pol = vma->vm_policy;
981 	} else if (addr)
982 		return -EINVAL;
983 
984 	if (!pol)
985 		pol = &default_policy;	/* indicates default behavior */
986 
987 	if (flags & MPOL_F_NODE) {
988 		if (flags & MPOL_F_ADDR) {
989 			/*
990 			 * Take a refcount on the mpol, lookup_node()
991 			 * wil drop the mmap_sem, so after calling
992 			 * lookup_node() only "pol" remains valid, "vma"
993 			 * is stale.
994 			 */
995 			pol_refcount = pol;
996 			vma = NULL;
997 			mpol_get(pol);
998 			err = lookup_node(mm, addr);
999 			if (err < 0)
1000 				goto out;
1001 			*policy = err;
1002 		} else if (pol == current->mempolicy &&
1003 				pol->mode == MPOL_INTERLEAVE) {
1004 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1005 		} else {
1006 			err = -EINVAL;
1007 			goto out;
1008 		}
1009 	} else {
1010 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1011 						pol->mode;
1012 		/*
1013 		 * Internal mempolicy flags must be masked off before exposing
1014 		 * the policy to userspace.
1015 		 */
1016 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1017 	}
1018 
1019 	err = 0;
1020 	if (nmask) {
1021 		if (mpol_store_user_nodemask(pol)) {
1022 			*nmask = pol->w.user_nodemask;
1023 		} else {
1024 			task_lock(current);
1025 			get_policy_nodemask(pol, nmask);
1026 			task_unlock(current);
1027 		}
1028 	}
1029 
1030  out:
1031 	mpol_cond_put(pol);
1032 	if (vma)
1033 		up_read(&mm->mmap_sem);
1034 	if (pol_refcount)
1035 		mpol_put(pol_refcount);
1036 	return err;
1037 }
1038 
1039 #ifdef CONFIG_MIGRATION
1040 /*
1041  * page migration, thp tail pages can be passed.
1042  */
1043 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1044 				unsigned long flags)
1045 {
1046 	struct page *head = compound_head(page);
1047 	/*
1048 	 * Avoid migrating a page that is shared with others.
1049 	 */
1050 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1051 		if (!isolate_lru_page(head)) {
1052 			list_add_tail(&head->lru, pagelist);
1053 			mod_node_page_state(page_pgdat(head),
1054 				NR_ISOLATED_ANON + page_is_file_lru(head),
1055 				hpage_nr_pages(head));
1056 		} else if (flags & MPOL_MF_STRICT) {
1057 			/*
1058 			 * Non-movable page may reach here.  And, there may be
1059 			 * temporary off LRU pages or non-LRU movable pages.
1060 			 * Treat them as unmovable pages since they can't be
1061 			 * isolated, so they can't be moved at the moment.  It
1062 			 * should return -EIO for this case too.
1063 			 */
1064 			return -EIO;
1065 		}
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 /* page allocation callback for NUMA node migration */
1072 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1073 {
1074 	if (PageHuge(page))
1075 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1076 					node);
1077 	else if (PageTransHuge(page)) {
1078 		struct page *thp;
1079 
1080 		thp = alloc_pages_node(node,
1081 			(GFP_TRANSHUGE | __GFP_THISNODE),
1082 			HPAGE_PMD_ORDER);
1083 		if (!thp)
1084 			return NULL;
1085 		prep_transhuge_page(thp);
1086 		return thp;
1087 	} else
1088 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1089 						    __GFP_THISNODE, 0);
1090 }
1091 
1092 /*
1093  * Migrate pages from one node to a target node.
1094  * Returns error or the number of pages not migrated.
1095  */
1096 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1097 			   int flags)
1098 {
1099 	nodemask_t nmask;
1100 	LIST_HEAD(pagelist);
1101 	int err = 0;
1102 
1103 	nodes_clear(nmask);
1104 	node_set(source, nmask);
1105 
1106 	/*
1107 	 * This does not "check" the range but isolates all pages that
1108 	 * need migration.  Between passing in the full user address
1109 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1110 	 */
1111 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1112 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1113 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1114 
1115 	if (!list_empty(&pagelist)) {
1116 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1117 					MIGRATE_SYNC, MR_SYSCALL);
1118 		if (err)
1119 			putback_movable_pages(&pagelist);
1120 	}
1121 
1122 	return err;
1123 }
1124 
1125 /*
1126  * Move pages between the two nodesets so as to preserve the physical
1127  * layout as much as possible.
1128  *
1129  * Returns the number of page that could not be moved.
1130  */
1131 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1132 		     const nodemask_t *to, int flags)
1133 {
1134 	int busy = 0;
1135 	int err;
1136 	nodemask_t tmp;
1137 
1138 	err = migrate_prep();
1139 	if (err)
1140 		return err;
1141 
1142 	down_read(&mm->mmap_sem);
1143 
1144 	/*
1145 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1146 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1147 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1148 	 * The pair of nodemasks 'to' and 'from' define the map.
1149 	 *
1150 	 * If no pair of bits is found that way, fallback to picking some
1151 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1152 	 * 'source' and 'dest' bits are the same, this represents a node
1153 	 * that will be migrating to itself, so no pages need move.
1154 	 *
1155 	 * If no bits are left in 'tmp', or if all remaining bits left
1156 	 * in 'tmp' correspond to the same bit in 'to', return false
1157 	 * (nothing left to migrate).
1158 	 *
1159 	 * This lets us pick a pair of nodes to migrate between, such that
1160 	 * if possible the dest node is not already occupied by some other
1161 	 * source node, minimizing the risk of overloading the memory on a
1162 	 * node that would happen if we migrated incoming memory to a node
1163 	 * before migrating outgoing memory source that same node.
1164 	 *
1165 	 * A single scan of tmp is sufficient.  As we go, we remember the
1166 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1167 	 * that not only moved, but what's better, moved to an empty slot
1168 	 * (d is not set in tmp), then we break out then, with that pair.
1169 	 * Otherwise when we finish scanning from_tmp, we at least have the
1170 	 * most recent <s, d> pair that moved.  If we get all the way through
1171 	 * the scan of tmp without finding any node that moved, much less
1172 	 * moved to an empty node, then there is nothing left worth migrating.
1173 	 */
1174 
1175 	tmp = *from;
1176 	while (!nodes_empty(tmp)) {
1177 		int s,d;
1178 		int source = NUMA_NO_NODE;
1179 		int dest = 0;
1180 
1181 		for_each_node_mask(s, tmp) {
1182 
1183 			/*
1184 			 * do_migrate_pages() tries to maintain the relative
1185 			 * node relationship of the pages established between
1186 			 * threads and memory areas.
1187                          *
1188 			 * However if the number of source nodes is not equal to
1189 			 * the number of destination nodes we can not preserve
1190 			 * this node relative relationship.  In that case, skip
1191 			 * copying memory from a node that is in the destination
1192 			 * mask.
1193 			 *
1194 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1195 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1196 			 */
1197 
1198 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1199 						(node_isset(s, *to)))
1200 				continue;
1201 
1202 			d = node_remap(s, *from, *to);
1203 			if (s == d)
1204 				continue;
1205 
1206 			source = s;	/* Node moved. Memorize */
1207 			dest = d;
1208 
1209 			/* dest not in remaining from nodes? */
1210 			if (!node_isset(dest, tmp))
1211 				break;
1212 		}
1213 		if (source == NUMA_NO_NODE)
1214 			break;
1215 
1216 		node_clear(source, tmp);
1217 		err = migrate_to_node(mm, source, dest, flags);
1218 		if (err > 0)
1219 			busy += err;
1220 		if (err < 0)
1221 			break;
1222 	}
1223 	up_read(&mm->mmap_sem);
1224 	if (err < 0)
1225 		return err;
1226 	return busy;
1227 
1228 }
1229 
1230 /*
1231  * Allocate a new page for page migration based on vma policy.
1232  * Start by assuming the page is mapped by the same vma as contains @start.
1233  * Search forward from there, if not.  N.B., this assumes that the
1234  * list of pages handed to migrate_pages()--which is how we get here--
1235  * is in virtual address order.
1236  */
1237 static struct page *new_page(struct page *page, unsigned long start)
1238 {
1239 	struct vm_area_struct *vma;
1240 	unsigned long uninitialized_var(address);
1241 
1242 	vma = find_vma(current->mm, start);
1243 	while (vma) {
1244 		address = page_address_in_vma(page, vma);
1245 		if (address != -EFAULT)
1246 			break;
1247 		vma = vma->vm_next;
1248 	}
1249 
1250 	if (PageHuge(page)) {
1251 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1252 				vma, address);
1253 	} else if (PageTransHuge(page)) {
1254 		struct page *thp;
1255 
1256 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1257 					 HPAGE_PMD_ORDER);
1258 		if (!thp)
1259 			return NULL;
1260 		prep_transhuge_page(thp);
1261 		return thp;
1262 	}
1263 	/*
1264 	 * if !vma, alloc_page_vma() will use task or system default policy
1265 	 */
1266 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1267 			vma, address);
1268 }
1269 #else
1270 
1271 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1272 				unsigned long flags)
1273 {
1274 	return -EIO;
1275 }
1276 
1277 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1278 		     const nodemask_t *to, int flags)
1279 {
1280 	return -ENOSYS;
1281 }
1282 
1283 static struct page *new_page(struct page *page, unsigned long start)
1284 {
1285 	return NULL;
1286 }
1287 #endif
1288 
1289 static long do_mbind(unsigned long start, unsigned long len,
1290 		     unsigned short mode, unsigned short mode_flags,
1291 		     nodemask_t *nmask, unsigned long flags)
1292 {
1293 	struct mm_struct *mm = current->mm;
1294 	struct mempolicy *new;
1295 	unsigned long end;
1296 	int err;
1297 	int ret;
1298 	LIST_HEAD(pagelist);
1299 
1300 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1301 		return -EINVAL;
1302 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1303 		return -EPERM;
1304 
1305 	if (start & ~PAGE_MASK)
1306 		return -EINVAL;
1307 
1308 	if (mode == MPOL_DEFAULT)
1309 		flags &= ~MPOL_MF_STRICT;
1310 
1311 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1312 	end = start + len;
1313 
1314 	if (end < start)
1315 		return -EINVAL;
1316 	if (end == start)
1317 		return 0;
1318 
1319 	new = mpol_new(mode, mode_flags, nmask);
1320 	if (IS_ERR(new))
1321 		return PTR_ERR(new);
1322 
1323 	if (flags & MPOL_MF_LAZY)
1324 		new->flags |= MPOL_F_MOF;
1325 
1326 	/*
1327 	 * If we are using the default policy then operation
1328 	 * on discontinuous address spaces is okay after all
1329 	 */
1330 	if (!new)
1331 		flags |= MPOL_MF_DISCONTIG_OK;
1332 
1333 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1334 		 start, start + len, mode, mode_flags,
1335 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1336 
1337 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1338 
1339 		err = migrate_prep();
1340 		if (err)
1341 			goto mpol_out;
1342 	}
1343 	{
1344 		NODEMASK_SCRATCH(scratch);
1345 		if (scratch) {
1346 			down_write(&mm->mmap_sem);
1347 			task_lock(current);
1348 			err = mpol_set_nodemask(new, nmask, scratch);
1349 			task_unlock(current);
1350 			if (err)
1351 				up_write(&mm->mmap_sem);
1352 		} else
1353 			err = -ENOMEM;
1354 		NODEMASK_SCRATCH_FREE(scratch);
1355 	}
1356 	if (err)
1357 		goto mpol_out;
1358 
1359 	ret = queue_pages_range(mm, start, end, nmask,
1360 			  flags | MPOL_MF_INVERT, &pagelist);
1361 
1362 	if (ret < 0) {
1363 		err = ret;
1364 		goto up_out;
1365 	}
1366 
1367 	err = mbind_range(mm, start, end, new);
1368 
1369 	if (!err) {
1370 		int nr_failed = 0;
1371 
1372 		if (!list_empty(&pagelist)) {
1373 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1374 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1375 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1376 			if (nr_failed)
1377 				putback_movable_pages(&pagelist);
1378 		}
1379 
1380 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1381 			err = -EIO;
1382 	} else {
1383 up_out:
1384 		if (!list_empty(&pagelist))
1385 			putback_movable_pages(&pagelist);
1386 	}
1387 
1388 	up_write(&mm->mmap_sem);
1389 mpol_out:
1390 	mpol_put(new);
1391 	return err;
1392 }
1393 
1394 /*
1395  * User space interface with variable sized bitmaps for nodelists.
1396  */
1397 
1398 /* Copy a node mask from user space. */
1399 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1400 		     unsigned long maxnode)
1401 {
1402 	unsigned long k;
1403 	unsigned long t;
1404 	unsigned long nlongs;
1405 	unsigned long endmask;
1406 
1407 	--maxnode;
1408 	nodes_clear(*nodes);
1409 	if (maxnode == 0 || !nmask)
1410 		return 0;
1411 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1412 		return -EINVAL;
1413 
1414 	nlongs = BITS_TO_LONGS(maxnode);
1415 	if ((maxnode % BITS_PER_LONG) == 0)
1416 		endmask = ~0UL;
1417 	else
1418 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1419 
1420 	/*
1421 	 * When the user specified more nodes than supported just check
1422 	 * if the non supported part is all zero.
1423 	 *
1424 	 * If maxnode have more longs than MAX_NUMNODES, check
1425 	 * the bits in that area first. And then go through to
1426 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1427 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1428 	 */
1429 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1430 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1431 			if (get_user(t, nmask + k))
1432 				return -EFAULT;
1433 			if (k == nlongs - 1) {
1434 				if (t & endmask)
1435 					return -EINVAL;
1436 			} else if (t)
1437 				return -EINVAL;
1438 		}
1439 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1440 		endmask = ~0UL;
1441 	}
1442 
1443 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1444 		unsigned long valid_mask = endmask;
1445 
1446 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1447 		if (get_user(t, nmask + nlongs - 1))
1448 			return -EFAULT;
1449 		if (t & valid_mask)
1450 			return -EINVAL;
1451 	}
1452 
1453 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1454 		return -EFAULT;
1455 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1456 	return 0;
1457 }
1458 
1459 /* Copy a kernel node mask to user space */
1460 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1461 			      nodemask_t *nodes)
1462 {
1463 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1464 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1465 
1466 	if (copy > nbytes) {
1467 		if (copy > PAGE_SIZE)
1468 			return -EINVAL;
1469 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1470 			return -EFAULT;
1471 		copy = nbytes;
1472 	}
1473 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1474 }
1475 
1476 static long kernel_mbind(unsigned long start, unsigned long len,
1477 			 unsigned long mode, const unsigned long __user *nmask,
1478 			 unsigned long maxnode, unsigned int flags)
1479 {
1480 	nodemask_t nodes;
1481 	int err;
1482 	unsigned short mode_flags;
1483 
1484 	start = untagged_addr(start);
1485 	mode_flags = mode & MPOL_MODE_FLAGS;
1486 	mode &= ~MPOL_MODE_FLAGS;
1487 	if (mode >= MPOL_MAX)
1488 		return -EINVAL;
1489 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1490 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1491 		return -EINVAL;
1492 	err = get_nodes(&nodes, nmask, maxnode);
1493 	if (err)
1494 		return err;
1495 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1496 }
1497 
1498 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1499 		unsigned long, mode, const unsigned long __user *, nmask,
1500 		unsigned long, maxnode, unsigned int, flags)
1501 {
1502 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1503 }
1504 
1505 /* Set the process memory policy */
1506 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1507 				 unsigned long maxnode)
1508 {
1509 	int err;
1510 	nodemask_t nodes;
1511 	unsigned short flags;
1512 
1513 	flags = mode & MPOL_MODE_FLAGS;
1514 	mode &= ~MPOL_MODE_FLAGS;
1515 	if ((unsigned int)mode >= MPOL_MAX)
1516 		return -EINVAL;
1517 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1518 		return -EINVAL;
1519 	err = get_nodes(&nodes, nmask, maxnode);
1520 	if (err)
1521 		return err;
1522 	return do_set_mempolicy(mode, flags, &nodes);
1523 }
1524 
1525 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1526 		unsigned long, maxnode)
1527 {
1528 	return kernel_set_mempolicy(mode, nmask, maxnode);
1529 }
1530 
1531 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1532 				const unsigned long __user *old_nodes,
1533 				const unsigned long __user *new_nodes)
1534 {
1535 	struct mm_struct *mm = NULL;
1536 	struct task_struct *task;
1537 	nodemask_t task_nodes;
1538 	int err;
1539 	nodemask_t *old;
1540 	nodemask_t *new;
1541 	NODEMASK_SCRATCH(scratch);
1542 
1543 	if (!scratch)
1544 		return -ENOMEM;
1545 
1546 	old = &scratch->mask1;
1547 	new = &scratch->mask2;
1548 
1549 	err = get_nodes(old, old_nodes, maxnode);
1550 	if (err)
1551 		goto out;
1552 
1553 	err = get_nodes(new, new_nodes, maxnode);
1554 	if (err)
1555 		goto out;
1556 
1557 	/* Find the mm_struct */
1558 	rcu_read_lock();
1559 	task = pid ? find_task_by_vpid(pid) : current;
1560 	if (!task) {
1561 		rcu_read_unlock();
1562 		err = -ESRCH;
1563 		goto out;
1564 	}
1565 	get_task_struct(task);
1566 
1567 	err = -EINVAL;
1568 
1569 	/*
1570 	 * Check if this process has the right to modify the specified process.
1571 	 * Use the regular "ptrace_may_access()" checks.
1572 	 */
1573 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1574 		rcu_read_unlock();
1575 		err = -EPERM;
1576 		goto out_put;
1577 	}
1578 	rcu_read_unlock();
1579 
1580 	task_nodes = cpuset_mems_allowed(task);
1581 	/* Is the user allowed to access the target nodes? */
1582 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1583 		err = -EPERM;
1584 		goto out_put;
1585 	}
1586 
1587 	task_nodes = cpuset_mems_allowed(current);
1588 	nodes_and(*new, *new, task_nodes);
1589 	if (nodes_empty(*new))
1590 		goto out_put;
1591 
1592 	err = security_task_movememory(task);
1593 	if (err)
1594 		goto out_put;
1595 
1596 	mm = get_task_mm(task);
1597 	put_task_struct(task);
1598 
1599 	if (!mm) {
1600 		err = -EINVAL;
1601 		goto out;
1602 	}
1603 
1604 	err = do_migrate_pages(mm, old, new,
1605 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1606 
1607 	mmput(mm);
1608 out:
1609 	NODEMASK_SCRATCH_FREE(scratch);
1610 
1611 	return err;
1612 
1613 out_put:
1614 	put_task_struct(task);
1615 	goto out;
1616 
1617 }
1618 
1619 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1620 		const unsigned long __user *, old_nodes,
1621 		const unsigned long __user *, new_nodes)
1622 {
1623 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1624 }
1625 
1626 
1627 /* Retrieve NUMA policy */
1628 static int kernel_get_mempolicy(int __user *policy,
1629 				unsigned long __user *nmask,
1630 				unsigned long maxnode,
1631 				unsigned long addr,
1632 				unsigned long flags)
1633 {
1634 	int err;
1635 	int uninitialized_var(pval);
1636 	nodemask_t nodes;
1637 
1638 	addr = untagged_addr(addr);
1639 
1640 	if (nmask != NULL && maxnode < nr_node_ids)
1641 		return -EINVAL;
1642 
1643 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1644 
1645 	if (err)
1646 		return err;
1647 
1648 	if (policy && put_user(pval, policy))
1649 		return -EFAULT;
1650 
1651 	if (nmask)
1652 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1653 
1654 	return err;
1655 }
1656 
1657 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1658 		unsigned long __user *, nmask, unsigned long, maxnode,
1659 		unsigned long, addr, unsigned long, flags)
1660 {
1661 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1662 }
1663 
1664 #ifdef CONFIG_COMPAT
1665 
1666 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1667 		       compat_ulong_t __user *, nmask,
1668 		       compat_ulong_t, maxnode,
1669 		       compat_ulong_t, addr, compat_ulong_t, flags)
1670 {
1671 	long err;
1672 	unsigned long __user *nm = NULL;
1673 	unsigned long nr_bits, alloc_size;
1674 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1675 
1676 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1677 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678 
1679 	if (nmask)
1680 		nm = compat_alloc_user_space(alloc_size);
1681 
1682 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1683 
1684 	if (!err && nmask) {
1685 		unsigned long copy_size;
1686 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1687 		err = copy_from_user(bm, nm, copy_size);
1688 		/* ensure entire bitmap is zeroed */
1689 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1690 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1691 	}
1692 
1693 	return err;
1694 }
1695 
1696 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1697 		       compat_ulong_t, maxnode)
1698 {
1699 	unsigned long __user *nm = NULL;
1700 	unsigned long nr_bits, alloc_size;
1701 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1702 
1703 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1704 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1705 
1706 	if (nmask) {
1707 		if (compat_get_bitmap(bm, nmask, nr_bits))
1708 			return -EFAULT;
1709 		nm = compat_alloc_user_space(alloc_size);
1710 		if (copy_to_user(nm, bm, alloc_size))
1711 			return -EFAULT;
1712 	}
1713 
1714 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1715 }
1716 
1717 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1718 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1719 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1720 {
1721 	unsigned long __user *nm = NULL;
1722 	unsigned long nr_bits, alloc_size;
1723 	nodemask_t bm;
1724 
1725 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1726 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1727 
1728 	if (nmask) {
1729 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1730 			return -EFAULT;
1731 		nm = compat_alloc_user_space(alloc_size);
1732 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1733 			return -EFAULT;
1734 	}
1735 
1736 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1737 }
1738 
1739 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1740 		       compat_ulong_t, maxnode,
1741 		       const compat_ulong_t __user *, old_nodes,
1742 		       const compat_ulong_t __user *, new_nodes)
1743 {
1744 	unsigned long __user *old = NULL;
1745 	unsigned long __user *new = NULL;
1746 	nodemask_t tmp_mask;
1747 	unsigned long nr_bits;
1748 	unsigned long size;
1749 
1750 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1751 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1752 	if (old_nodes) {
1753 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1754 			return -EFAULT;
1755 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1756 		if (new_nodes)
1757 			new = old + size / sizeof(unsigned long);
1758 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1759 			return -EFAULT;
1760 	}
1761 	if (new_nodes) {
1762 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1763 			return -EFAULT;
1764 		if (new == NULL)
1765 			new = compat_alloc_user_space(size);
1766 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1767 			return -EFAULT;
1768 	}
1769 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1770 }
1771 
1772 #endif /* CONFIG_COMPAT */
1773 
1774 bool vma_migratable(struct vm_area_struct *vma)
1775 {
1776 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1777 		return false;
1778 
1779 	/*
1780 	 * DAX device mappings require predictable access latency, so avoid
1781 	 * incurring periodic faults.
1782 	 */
1783 	if (vma_is_dax(vma))
1784 		return false;
1785 
1786 	if (is_vm_hugetlb_page(vma) &&
1787 		!hugepage_migration_supported(hstate_vma(vma)))
1788 		return false;
1789 
1790 	/*
1791 	 * Migration allocates pages in the highest zone. If we cannot
1792 	 * do so then migration (at least from node to node) is not
1793 	 * possible.
1794 	 */
1795 	if (vma->vm_file &&
1796 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1797 			< policy_zone)
1798 		return false;
1799 	return true;
1800 }
1801 
1802 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1803 						unsigned long addr)
1804 {
1805 	struct mempolicy *pol = NULL;
1806 
1807 	if (vma) {
1808 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1809 			pol = vma->vm_ops->get_policy(vma, addr);
1810 		} else if (vma->vm_policy) {
1811 			pol = vma->vm_policy;
1812 
1813 			/*
1814 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1815 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1816 			 * count on these policies which will be dropped by
1817 			 * mpol_cond_put() later
1818 			 */
1819 			if (mpol_needs_cond_ref(pol))
1820 				mpol_get(pol);
1821 		}
1822 	}
1823 
1824 	return pol;
1825 }
1826 
1827 /*
1828  * get_vma_policy(@vma, @addr)
1829  * @vma: virtual memory area whose policy is sought
1830  * @addr: address in @vma for shared policy lookup
1831  *
1832  * Returns effective policy for a VMA at specified address.
1833  * Falls back to current->mempolicy or system default policy, as necessary.
1834  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1835  * count--added by the get_policy() vm_op, as appropriate--to protect against
1836  * freeing by another task.  It is the caller's responsibility to free the
1837  * extra reference for shared policies.
1838  */
1839 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1840 						unsigned long addr)
1841 {
1842 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1843 
1844 	if (!pol)
1845 		pol = get_task_policy(current);
1846 
1847 	return pol;
1848 }
1849 
1850 bool vma_policy_mof(struct vm_area_struct *vma)
1851 {
1852 	struct mempolicy *pol;
1853 
1854 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1855 		bool ret = false;
1856 
1857 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1858 		if (pol && (pol->flags & MPOL_F_MOF))
1859 			ret = true;
1860 		mpol_cond_put(pol);
1861 
1862 		return ret;
1863 	}
1864 
1865 	pol = vma->vm_policy;
1866 	if (!pol)
1867 		pol = get_task_policy(current);
1868 
1869 	return pol->flags & MPOL_F_MOF;
1870 }
1871 
1872 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1873 {
1874 	enum zone_type dynamic_policy_zone = policy_zone;
1875 
1876 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1877 
1878 	/*
1879 	 * if policy->v.nodes has movable memory only,
1880 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1881 	 *
1882 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1883 	 * so if the following test faile, it implies
1884 	 * policy->v.nodes has movable memory only.
1885 	 */
1886 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1887 		dynamic_policy_zone = ZONE_MOVABLE;
1888 
1889 	return zone >= dynamic_policy_zone;
1890 }
1891 
1892 /*
1893  * Return a nodemask representing a mempolicy for filtering nodes for
1894  * page allocation
1895  */
1896 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1897 {
1898 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1899 	if (unlikely(policy->mode == MPOL_BIND) &&
1900 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1901 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1902 		return &policy->v.nodes;
1903 
1904 	return NULL;
1905 }
1906 
1907 /* Return the node id preferred by the given mempolicy, or the given id */
1908 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1909 								int nd)
1910 {
1911 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1912 		nd = policy->v.preferred_node;
1913 	else {
1914 		/*
1915 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1916 		 * because we might easily break the expectation to stay on the
1917 		 * requested node and not break the policy.
1918 		 */
1919 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1920 	}
1921 
1922 	return nd;
1923 }
1924 
1925 /* Do dynamic interleaving for a process */
1926 static unsigned interleave_nodes(struct mempolicy *policy)
1927 {
1928 	unsigned next;
1929 	struct task_struct *me = current;
1930 
1931 	next = next_node_in(me->il_prev, policy->v.nodes);
1932 	if (next < MAX_NUMNODES)
1933 		me->il_prev = next;
1934 	return next;
1935 }
1936 
1937 /*
1938  * Depending on the memory policy provide a node from which to allocate the
1939  * next slab entry.
1940  */
1941 unsigned int mempolicy_slab_node(void)
1942 {
1943 	struct mempolicy *policy;
1944 	int node = numa_mem_id();
1945 
1946 	if (in_interrupt())
1947 		return node;
1948 
1949 	policy = current->mempolicy;
1950 	if (!policy || policy->flags & MPOL_F_LOCAL)
1951 		return node;
1952 
1953 	switch (policy->mode) {
1954 	case MPOL_PREFERRED:
1955 		/*
1956 		 * handled MPOL_F_LOCAL above
1957 		 */
1958 		return policy->v.preferred_node;
1959 
1960 	case MPOL_INTERLEAVE:
1961 		return interleave_nodes(policy);
1962 
1963 	case MPOL_BIND: {
1964 		struct zoneref *z;
1965 
1966 		/*
1967 		 * Follow bind policy behavior and start allocation at the
1968 		 * first node.
1969 		 */
1970 		struct zonelist *zonelist;
1971 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1972 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1973 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1974 							&policy->v.nodes);
1975 		return z->zone ? zone_to_nid(z->zone) : node;
1976 	}
1977 
1978 	default:
1979 		BUG();
1980 	}
1981 }
1982 
1983 /*
1984  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1985  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1986  * number of present nodes.
1987  */
1988 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1989 {
1990 	unsigned nnodes = nodes_weight(pol->v.nodes);
1991 	unsigned target;
1992 	int i;
1993 	int nid;
1994 
1995 	if (!nnodes)
1996 		return numa_node_id();
1997 	target = (unsigned int)n % nnodes;
1998 	nid = first_node(pol->v.nodes);
1999 	for (i = 0; i < target; i++)
2000 		nid = next_node(nid, pol->v.nodes);
2001 	return nid;
2002 }
2003 
2004 /* Determine a node number for interleave */
2005 static inline unsigned interleave_nid(struct mempolicy *pol,
2006 		 struct vm_area_struct *vma, unsigned long addr, int shift)
2007 {
2008 	if (vma) {
2009 		unsigned long off;
2010 
2011 		/*
2012 		 * for small pages, there is no difference between
2013 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2014 		 * for huge pages, since vm_pgoff is in units of small
2015 		 * pages, we need to shift off the always 0 bits to get
2016 		 * a useful offset.
2017 		 */
2018 		BUG_ON(shift < PAGE_SHIFT);
2019 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2020 		off += (addr - vma->vm_start) >> shift;
2021 		return offset_il_node(pol, off);
2022 	} else
2023 		return interleave_nodes(pol);
2024 }
2025 
2026 #ifdef CONFIG_HUGETLBFS
2027 /*
2028  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2029  * @vma: virtual memory area whose policy is sought
2030  * @addr: address in @vma for shared policy lookup and interleave policy
2031  * @gfp_flags: for requested zone
2032  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2033  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2034  *
2035  * Returns a nid suitable for a huge page allocation and a pointer
2036  * to the struct mempolicy for conditional unref after allocation.
2037  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2038  * @nodemask for filtering the zonelist.
2039  *
2040  * Must be protected by read_mems_allowed_begin()
2041  */
2042 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2043 				struct mempolicy **mpol, nodemask_t **nodemask)
2044 {
2045 	int nid;
2046 
2047 	*mpol = get_vma_policy(vma, addr);
2048 	*nodemask = NULL;	/* assume !MPOL_BIND */
2049 
2050 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2051 		nid = interleave_nid(*mpol, vma, addr,
2052 					huge_page_shift(hstate_vma(vma)));
2053 	} else {
2054 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2055 		if ((*mpol)->mode == MPOL_BIND)
2056 			*nodemask = &(*mpol)->v.nodes;
2057 	}
2058 	return nid;
2059 }
2060 
2061 /*
2062  * init_nodemask_of_mempolicy
2063  *
2064  * If the current task's mempolicy is "default" [NULL], return 'false'
2065  * to indicate default policy.  Otherwise, extract the policy nodemask
2066  * for 'bind' or 'interleave' policy into the argument nodemask, or
2067  * initialize the argument nodemask to contain the single node for
2068  * 'preferred' or 'local' policy and return 'true' to indicate presence
2069  * of non-default mempolicy.
2070  *
2071  * We don't bother with reference counting the mempolicy [mpol_get/put]
2072  * because the current task is examining it's own mempolicy and a task's
2073  * mempolicy is only ever changed by the task itself.
2074  *
2075  * N.B., it is the caller's responsibility to free a returned nodemask.
2076  */
2077 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2078 {
2079 	struct mempolicy *mempolicy;
2080 	int nid;
2081 
2082 	if (!(mask && current->mempolicy))
2083 		return false;
2084 
2085 	task_lock(current);
2086 	mempolicy = current->mempolicy;
2087 	switch (mempolicy->mode) {
2088 	case MPOL_PREFERRED:
2089 		if (mempolicy->flags & MPOL_F_LOCAL)
2090 			nid = numa_node_id();
2091 		else
2092 			nid = mempolicy->v.preferred_node;
2093 		init_nodemask_of_node(mask, nid);
2094 		break;
2095 
2096 	case MPOL_BIND:
2097 	case MPOL_INTERLEAVE:
2098 		*mask =  mempolicy->v.nodes;
2099 		break;
2100 
2101 	default:
2102 		BUG();
2103 	}
2104 	task_unlock(current);
2105 
2106 	return true;
2107 }
2108 #endif
2109 
2110 /*
2111  * mempolicy_nodemask_intersects
2112  *
2113  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2114  * policy.  Otherwise, check for intersection between mask and the policy
2115  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2116  * policy, always return true since it may allocate elsewhere on fallback.
2117  *
2118  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2119  */
2120 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2121 					const nodemask_t *mask)
2122 {
2123 	struct mempolicy *mempolicy;
2124 	bool ret = true;
2125 
2126 	if (!mask)
2127 		return ret;
2128 	task_lock(tsk);
2129 	mempolicy = tsk->mempolicy;
2130 	if (!mempolicy)
2131 		goto out;
2132 
2133 	switch (mempolicy->mode) {
2134 	case MPOL_PREFERRED:
2135 		/*
2136 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2137 		 * allocate from, they may fallback to other nodes when oom.
2138 		 * Thus, it's possible for tsk to have allocated memory from
2139 		 * nodes in mask.
2140 		 */
2141 		break;
2142 	case MPOL_BIND:
2143 	case MPOL_INTERLEAVE:
2144 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2145 		break;
2146 	default:
2147 		BUG();
2148 	}
2149 out:
2150 	task_unlock(tsk);
2151 	return ret;
2152 }
2153 
2154 /* Allocate a page in interleaved policy.
2155    Own path because it needs to do special accounting. */
2156 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2157 					unsigned nid)
2158 {
2159 	struct page *page;
2160 
2161 	page = __alloc_pages(gfp, order, nid);
2162 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2163 	if (!static_branch_likely(&vm_numa_stat_key))
2164 		return page;
2165 	if (page && page_to_nid(page) == nid) {
2166 		preempt_disable();
2167 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2168 		preempt_enable();
2169 	}
2170 	return page;
2171 }
2172 
2173 /**
2174  * 	alloc_pages_vma	- Allocate a page for a VMA.
2175  *
2176  * 	@gfp:
2177  *      %GFP_USER    user allocation.
2178  *      %GFP_KERNEL  kernel allocations,
2179  *      %GFP_HIGHMEM highmem/user allocations,
2180  *      %GFP_FS      allocation should not call back into a file system.
2181  *      %GFP_ATOMIC  don't sleep.
2182  *
2183  *	@order:Order of the GFP allocation.
2184  * 	@vma:  Pointer to VMA or NULL if not available.
2185  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2186  *	@node: Which node to prefer for allocation (modulo policy).
2187  *	@hugepage: for hugepages try only the preferred node if possible
2188  *
2189  * 	This function allocates a page from the kernel page pool and applies
2190  *	a NUMA policy associated with the VMA or the current process.
2191  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2192  *	mm_struct of the VMA to prevent it from going away. Should be used for
2193  *	all allocations for pages that will be mapped into user space. Returns
2194  *	NULL when no page can be allocated.
2195  */
2196 struct page *
2197 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2198 		unsigned long addr, int node, bool hugepage)
2199 {
2200 	struct mempolicy *pol;
2201 	struct page *page;
2202 	int preferred_nid;
2203 	nodemask_t *nmask;
2204 
2205 	pol = get_vma_policy(vma, addr);
2206 
2207 	if (pol->mode == MPOL_INTERLEAVE) {
2208 		unsigned nid;
2209 
2210 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2211 		mpol_cond_put(pol);
2212 		page = alloc_page_interleave(gfp, order, nid);
2213 		goto out;
2214 	}
2215 
2216 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2217 		int hpage_node = node;
2218 
2219 		/*
2220 		 * For hugepage allocation and non-interleave policy which
2221 		 * allows the current node (or other explicitly preferred
2222 		 * node) we only try to allocate from the current/preferred
2223 		 * node and don't fall back to other nodes, as the cost of
2224 		 * remote accesses would likely offset THP benefits.
2225 		 *
2226 		 * If the policy is interleave, or does not allow the current
2227 		 * node in its nodemask, we allocate the standard way.
2228 		 */
2229 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2230 			hpage_node = pol->v.preferred_node;
2231 
2232 		nmask = policy_nodemask(gfp, pol);
2233 		if (!nmask || node_isset(hpage_node, *nmask)) {
2234 			mpol_cond_put(pol);
2235 			/*
2236 			 * First, try to allocate THP only on local node, but
2237 			 * don't reclaim unnecessarily, just compact.
2238 			 */
2239 			page = __alloc_pages_node(hpage_node,
2240 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2241 
2242 			/*
2243 			 * If hugepage allocations are configured to always
2244 			 * synchronous compact or the vma has been madvised
2245 			 * to prefer hugepage backing, retry allowing remote
2246 			 * memory with both reclaim and compact as well.
2247 			 */
2248 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2249 				page = __alloc_pages_node(hpage_node,
2250 								gfp, order);
2251 
2252 			goto out;
2253 		}
2254 	}
2255 
2256 	nmask = policy_nodemask(gfp, pol);
2257 	preferred_nid = policy_node(gfp, pol, node);
2258 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2259 	mpol_cond_put(pol);
2260 out:
2261 	return page;
2262 }
2263 EXPORT_SYMBOL(alloc_pages_vma);
2264 
2265 /**
2266  * 	alloc_pages_current - Allocate pages.
2267  *
2268  *	@gfp:
2269  *		%GFP_USER   user allocation,
2270  *      	%GFP_KERNEL kernel allocation,
2271  *      	%GFP_HIGHMEM highmem allocation,
2272  *      	%GFP_FS     don't call back into a file system.
2273  *      	%GFP_ATOMIC don't sleep.
2274  *	@order: Power of two of allocation size in pages. 0 is a single page.
2275  *
2276  *	Allocate a page from the kernel page pool.  When not in
2277  *	interrupt context and apply the current process NUMA policy.
2278  *	Returns NULL when no page can be allocated.
2279  */
2280 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2281 {
2282 	struct mempolicy *pol = &default_policy;
2283 	struct page *page;
2284 
2285 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2286 		pol = get_task_policy(current);
2287 
2288 	/*
2289 	 * No reference counting needed for current->mempolicy
2290 	 * nor system default_policy
2291 	 */
2292 	if (pol->mode == MPOL_INTERLEAVE)
2293 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2294 	else
2295 		page = __alloc_pages_nodemask(gfp, order,
2296 				policy_node(gfp, pol, numa_node_id()),
2297 				policy_nodemask(gfp, pol));
2298 
2299 	return page;
2300 }
2301 EXPORT_SYMBOL(alloc_pages_current);
2302 
2303 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2304 {
2305 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2306 
2307 	if (IS_ERR(pol))
2308 		return PTR_ERR(pol);
2309 	dst->vm_policy = pol;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2315  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2316  * with the mems_allowed returned by cpuset_mems_allowed().  This
2317  * keeps mempolicies cpuset relative after its cpuset moves.  See
2318  * further kernel/cpuset.c update_nodemask().
2319  *
2320  * current's mempolicy may be rebinded by the other task(the task that changes
2321  * cpuset's mems), so we needn't do rebind work for current task.
2322  */
2323 
2324 /* Slow path of a mempolicy duplicate */
2325 struct mempolicy *__mpol_dup(struct mempolicy *old)
2326 {
2327 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2328 
2329 	if (!new)
2330 		return ERR_PTR(-ENOMEM);
2331 
2332 	/* task's mempolicy is protected by alloc_lock */
2333 	if (old == current->mempolicy) {
2334 		task_lock(current);
2335 		*new = *old;
2336 		task_unlock(current);
2337 	} else
2338 		*new = *old;
2339 
2340 	if (current_cpuset_is_being_rebound()) {
2341 		nodemask_t mems = cpuset_mems_allowed(current);
2342 		mpol_rebind_policy(new, &mems);
2343 	}
2344 	atomic_set(&new->refcnt, 1);
2345 	return new;
2346 }
2347 
2348 /* Slow path of a mempolicy comparison */
2349 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2350 {
2351 	if (!a || !b)
2352 		return false;
2353 	if (a->mode != b->mode)
2354 		return false;
2355 	if (a->flags != b->flags)
2356 		return false;
2357 	if (mpol_store_user_nodemask(a))
2358 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2359 			return false;
2360 
2361 	switch (a->mode) {
2362 	case MPOL_BIND:
2363 	case MPOL_INTERLEAVE:
2364 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2365 	case MPOL_PREFERRED:
2366 		/* a's ->flags is the same as b's */
2367 		if (a->flags & MPOL_F_LOCAL)
2368 			return true;
2369 		return a->v.preferred_node == b->v.preferred_node;
2370 	default:
2371 		BUG();
2372 		return false;
2373 	}
2374 }
2375 
2376 /*
2377  * Shared memory backing store policy support.
2378  *
2379  * Remember policies even when nobody has shared memory mapped.
2380  * The policies are kept in Red-Black tree linked from the inode.
2381  * They are protected by the sp->lock rwlock, which should be held
2382  * for any accesses to the tree.
2383  */
2384 
2385 /*
2386  * lookup first element intersecting start-end.  Caller holds sp->lock for
2387  * reading or for writing
2388  */
2389 static struct sp_node *
2390 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2391 {
2392 	struct rb_node *n = sp->root.rb_node;
2393 
2394 	while (n) {
2395 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2396 
2397 		if (start >= p->end)
2398 			n = n->rb_right;
2399 		else if (end <= p->start)
2400 			n = n->rb_left;
2401 		else
2402 			break;
2403 	}
2404 	if (!n)
2405 		return NULL;
2406 	for (;;) {
2407 		struct sp_node *w = NULL;
2408 		struct rb_node *prev = rb_prev(n);
2409 		if (!prev)
2410 			break;
2411 		w = rb_entry(prev, struct sp_node, nd);
2412 		if (w->end <= start)
2413 			break;
2414 		n = prev;
2415 	}
2416 	return rb_entry(n, struct sp_node, nd);
2417 }
2418 
2419 /*
2420  * Insert a new shared policy into the list.  Caller holds sp->lock for
2421  * writing.
2422  */
2423 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2424 {
2425 	struct rb_node **p = &sp->root.rb_node;
2426 	struct rb_node *parent = NULL;
2427 	struct sp_node *nd;
2428 
2429 	while (*p) {
2430 		parent = *p;
2431 		nd = rb_entry(parent, struct sp_node, nd);
2432 		if (new->start < nd->start)
2433 			p = &(*p)->rb_left;
2434 		else if (new->end > nd->end)
2435 			p = &(*p)->rb_right;
2436 		else
2437 			BUG();
2438 	}
2439 	rb_link_node(&new->nd, parent, p);
2440 	rb_insert_color(&new->nd, &sp->root);
2441 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2442 		 new->policy ? new->policy->mode : 0);
2443 }
2444 
2445 /* Find shared policy intersecting idx */
2446 struct mempolicy *
2447 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2448 {
2449 	struct mempolicy *pol = NULL;
2450 	struct sp_node *sn;
2451 
2452 	if (!sp->root.rb_node)
2453 		return NULL;
2454 	read_lock(&sp->lock);
2455 	sn = sp_lookup(sp, idx, idx+1);
2456 	if (sn) {
2457 		mpol_get(sn->policy);
2458 		pol = sn->policy;
2459 	}
2460 	read_unlock(&sp->lock);
2461 	return pol;
2462 }
2463 
2464 static void sp_free(struct sp_node *n)
2465 {
2466 	mpol_put(n->policy);
2467 	kmem_cache_free(sn_cache, n);
2468 }
2469 
2470 /**
2471  * mpol_misplaced - check whether current page node is valid in policy
2472  *
2473  * @page: page to be checked
2474  * @vma: vm area where page mapped
2475  * @addr: virtual address where page mapped
2476  *
2477  * Lookup current policy node id for vma,addr and "compare to" page's
2478  * node id.
2479  *
2480  * Returns:
2481  *	-1	- not misplaced, page is in the right node
2482  *	node	- node id where the page should be
2483  *
2484  * Policy determination "mimics" alloc_page_vma().
2485  * Called from fault path where we know the vma and faulting address.
2486  */
2487 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2488 {
2489 	struct mempolicy *pol;
2490 	struct zoneref *z;
2491 	int curnid = page_to_nid(page);
2492 	unsigned long pgoff;
2493 	int thiscpu = raw_smp_processor_id();
2494 	int thisnid = cpu_to_node(thiscpu);
2495 	int polnid = NUMA_NO_NODE;
2496 	int ret = -1;
2497 
2498 	pol = get_vma_policy(vma, addr);
2499 	if (!(pol->flags & MPOL_F_MOF))
2500 		goto out;
2501 
2502 	switch (pol->mode) {
2503 	case MPOL_INTERLEAVE:
2504 		pgoff = vma->vm_pgoff;
2505 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2506 		polnid = offset_il_node(pol, pgoff);
2507 		break;
2508 
2509 	case MPOL_PREFERRED:
2510 		if (pol->flags & MPOL_F_LOCAL)
2511 			polnid = numa_node_id();
2512 		else
2513 			polnid = pol->v.preferred_node;
2514 		break;
2515 
2516 	case MPOL_BIND:
2517 
2518 		/*
2519 		 * allows binding to multiple nodes.
2520 		 * use current page if in policy nodemask,
2521 		 * else select nearest allowed node, if any.
2522 		 * If no allowed nodes, use current [!misplaced].
2523 		 */
2524 		if (node_isset(curnid, pol->v.nodes))
2525 			goto out;
2526 		z = first_zones_zonelist(
2527 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2528 				gfp_zone(GFP_HIGHUSER),
2529 				&pol->v.nodes);
2530 		polnid = zone_to_nid(z->zone);
2531 		break;
2532 
2533 	default:
2534 		BUG();
2535 	}
2536 
2537 	/* Migrate the page towards the node whose CPU is referencing it */
2538 	if (pol->flags & MPOL_F_MORON) {
2539 		polnid = thisnid;
2540 
2541 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2542 			goto out;
2543 	}
2544 
2545 	if (curnid != polnid)
2546 		ret = polnid;
2547 out:
2548 	mpol_cond_put(pol);
2549 
2550 	return ret;
2551 }
2552 
2553 /*
2554  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2555  * dropped after task->mempolicy is set to NULL so that any allocation done as
2556  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2557  * policy.
2558  */
2559 void mpol_put_task_policy(struct task_struct *task)
2560 {
2561 	struct mempolicy *pol;
2562 
2563 	task_lock(task);
2564 	pol = task->mempolicy;
2565 	task->mempolicy = NULL;
2566 	task_unlock(task);
2567 	mpol_put(pol);
2568 }
2569 
2570 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2571 {
2572 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2573 	rb_erase(&n->nd, &sp->root);
2574 	sp_free(n);
2575 }
2576 
2577 static void sp_node_init(struct sp_node *node, unsigned long start,
2578 			unsigned long end, struct mempolicy *pol)
2579 {
2580 	node->start = start;
2581 	node->end = end;
2582 	node->policy = pol;
2583 }
2584 
2585 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2586 				struct mempolicy *pol)
2587 {
2588 	struct sp_node *n;
2589 	struct mempolicy *newpol;
2590 
2591 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2592 	if (!n)
2593 		return NULL;
2594 
2595 	newpol = mpol_dup(pol);
2596 	if (IS_ERR(newpol)) {
2597 		kmem_cache_free(sn_cache, n);
2598 		return NULL;
2599 	}
2600 	newpol->flags |= MPOL_F_SHARED;
2601 	sp_node_init(n, start, end, newpol);
2602 
2603 	return n;
2604 }
2605 
2606 /* Replace a policy range. */
2607 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2608 				 unsigned long end, struct sp_node *new)
2609 {
2610 	struct sp_node *n;
2611 	struct sp_node *n_new = NULL;
2612 	struct mempolicy *mpol_new = NULL;
2613 	int ret = 0;
2614 
2615 restart:
2616 	write_lock(&sp->lock);
2617 	n = sp_lookup(sp, start, end);
2618 	/* Take care of old policies in the same range. */
2619 	while (n && n->start < end) {
2620 		struct rb_node *next = rb_next(&n->nd);
2621 		if (n->start >= start) {
2622 			if (n->end <= end)
2623 				sp_delete(sp, n);
2624 			else
2625 				n->start = end;
2626 		} else {
2627 			/* Old policy spanning whole new range. */
2628 			if (n->end > end) {
2629 				if (!n_new)
2630 					goto alloc_new;
2631 
2632 				*mpol_new = *n->policy;
2633 				atomic_set(&mpol_new->refcnt, 1);
2634 				sp_node_init(n_new, end, n->end, mpol_new);
2635 				n->end = start;
2636 				sp_insert(sp, n_new);
2637 				n_new = NULL;
2638 				mpol_new = NULL;
2639 				break;
2640 			} else
2641 				n->end = start;
2642 		}
2643 		if (!next)
2644 			break;
2645 		n = rb_entry(next, struct sp_node, nd);
2646 	}
2647 	if (new)
2648 		sp_insert(sp, new);
2649 	write_unlock(&sp->lock);
2650 	ret = 0;
2651 
2652 err_out:
2653 	if (mpol_new)
2654 		mpol_put(mpol_new);
2655 	if (n_new)
2656 		kmem_cache_free(sn_cache, n_new);
2657 
2658 	return ret;
2659 
2660 alloc_new:
2661 	write_unlock(&sp->lock);
2662 	ret = -ENOMEM;
2663 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2664 	if (!n_new)
2665 		goto err_out;
2666 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2667 	if (!mpol_new)
2668 		goto err_out;
2669 	goto restart;
2670 }
2671 
2672 /**
2673  * mpol_shared_policy_init - initialize shared policy for inode
2674  * @sp: pointer to inode shared policy
2675  * @mpol:  struct mempolicy to install
2676  *
2677  * Install non-NULL @mpol in inode's shared policy rb-tree.
2678  * On entry, the current task has a reference on a non-NULL @mpol.
2679  * This must be released on exit.
2680  * This is called at get_inode() calls and we can use GFP_KERNEL.
2681  */
2682 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2683 {
2684 	int ret;
2685 
2686 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2687 	rwlock_init(&sp->lock);
2688 
2689 	if (mpol) {
2690 		struct vm_area_struct pvma;
2691 		struct mempolicy *new;
2692 		NODEMASK_SCRATCH(scratch);
2693 
2694 		if (!scratch)
2695 			goto put_mpol;
2696 		/* contextualize the tmpfs mount point mempolicy */
2697 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2698 		if (IS_ERR(new))
2699 			goto free_scratch; /* no valid nodemask intersection */
2700 
2701 		task_lock(current);
2702 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2703 		task_unlock(current);
2704 		if (ret)
2705 			goto put_new;
2706 
2707 		/* Create pseudo-vma that contains just the policy */
2708 		vma_init(&pvma, NULL);
2709 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2710 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2711 
2712 put_new:
2713 		mpol_put(new);			/* drop initial ref */
2714 free_scratch:
2715 		NODEMASK_SCRATCH_FREE(scratch);
2716 put_mpol:
2717 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2718 	}
2719 }
2720 
2721 int mpol_set_shared_policy(struct shared_policy *info,
2722 			struct vm_area_struct *vma, struct mempolicy *npol)
2723 {
2724 	int err;
2725 	struct sp_node *new = NULL;
2726 	unsigned long sz = vma_pages(vma);
2727 
2728 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2729 		 vma->vm_pgoff,
2730 		 sz, npol ? npol->mode : -1,
2731 		 npol ? npol->flags : -1,
2732 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2733 
2734 	if (npol) {
2735 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2736 		if (!new)
2737 			return -ENOMEM;
2738 	}
2739 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2740 	if (err && new)
2741 		sp_free(new);
2742 	return err;
2743 }
2744 
2745 /* Free a backing policy store on inode delete. */
2746 void mpol_free_shared_policy(struct shared_policy *p)
2747 {
2748 	struct sp_node *n;
2749 	struct rb_node *next;
2750 
2751 	if (!p->root.rb_node)
2752 		return;
2753 	write_lock(&p->lock);
2754 	next = rb_first(&p->root);
2755 	while (next) {
2756 		n = rb_entry(next, struct sp_node, nd);
2757 		next = rb_next(&n->nd);
2758 		sp_delete(p, n);
2759 	}
2760 	write_unlock(&p->lock);
2761 }
2762 
2763 #ifdef CONFIG_NUMA_BALANCING
2764 static int __initdata numabalancing_override;
2765 
2766 static void __init check_numabalancing_enable(void)
2767 {
2768 	bool numabalancing_default = false;
2769 
2770 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2771 		numabalancing_default = true;
2772 
2773 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2774 	if (numabalancing_override)
2775 		set_numabalancing_state(numabalancing_override == 1);
2776 
2777 	if (num_online_nodes() > 1 && !numabalancing_override) {
2778 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2779 			numabalancing_default ? "Enabling" : "Disabling");
2780 		set_numabalancing_state(numabalancing_default);
2781 	}
2782 }
2783 
2784 static int __init setup_numabalancing(char *str)
2785 {
2786 	int ret = 0;
2787 	if (!str)
2788 		goto out;
2789 
2790 	if (!strcmp(str, "enable")) {
2791 		numabalancing_override = 1;
2792 		ret = 1;
2793 	} else if (!strcmp(str, "disable")) {
2794 		numabalancing_override = -1;
2795 		ret = 1;
2796 	}
2797 out:
2798 	if (!ret)
2799 		pr_warn("Unable to parse numa_balancing=\n");
2800 
2801 	return ret;
2802 }
2803 __setup("numa_balancing=", setup_numabalancing);
2804 #else
2805 static inline void __init check_numabalancing_enable(void)
2806 {
2807 }
2808 #endif /* CONFIG_NUMA_BALANCING */
2809 
2810 /* assumes fs == KERNEL_DS */
2811 void __init numa_policy_init(void)
2812 {
2813 	nodemask_t interleave_nodes;
2814 	unsigned long largest = 0;
2815 	int nid, prefer = 0;
2816 
2817 	policy_cache = kmem_cache_create("numa_policy",
2818 					 sizeof(struct mempolicy),
2819 					 0, SLAB_PANIC, NULL);
2820 
2821 	sn_cache = kmem_cache_create("shared_policy_node",
2822 				     sizeof(struct sp_node),
2823 				     0, SLAB_PANIC, NULL);
2824 
2825 	for_each_node(nid) {
2826 		preferred_node_policy[nid] = (struct mempolicy) {
2827 			.refcnt = ATOMIC_INIT(1),
2828 			.mode = MPOL_PREFERRED,
2829 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2830 			.v = { .preferred_node = nid, },
2831 		};
2832 	}
2833 
2834 	/*
2835 	 * Set interleaving policy for system init. Interleaving is only
2836 	 * enabled across suitably sized nodes (default is >= 16MB), or
2837 	 * fall back to the largest node if they're all smaller.
2838 	 */
2839 	nodes_clear(interleave_nodes);
2840 	for_each_node_state(nid, N_MEMORY) {
2841 		unsigned long total_pages = node_present_pages(nid);
2842 
2843 		/* Preserve the largest node */
2844 		if (largest < total_pages) {
2845 			largest = total_pages;
2846 			prefer = nid;
2847 		}
2848 
2849 		/* Interleave this node? */
2850 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2851 			node_set(nid, interleave_nodes);
2852 	}
2853 
2854 	/* All too small, use the largest */
2855 	if (unlikely(nodes_empty(interleave_nodes)))
2856 		node_set(prefer, interleave_nodes);
2857 
2858 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2859 		pr_err("%s: interleaving failed\n", __func__);
2860 
2861 	check_numabalancing_enable();
2862 }
2863 
2864 /* Reset policy of current process to default */
2865 void numa_default_policy(void)
2866 {
2867 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2868 }
2869 
2870 /*
2871  * Parse and format mempolicy from/to strings
2872  */
2873 
2874 /*
2875  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2876  */
2877 static const char * const policy_modes[] =
2878 {
2879 	[MPOL_DEFAULT]    = "default",
2880 	[MPOL_PREFERRED]  = "prefer",
2881 	[MPOL_BIND]       = "bind",
2882 	[MPOL_INTERLEAVE] = "interleave",
2883 	[MPOL_LOCAL]      = "local",
2884 };
2885 
2886 
2887 #ifdef CONFIG_TMPFS
2888 /**
2889  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2890  * @str:  string containing mempolicy to parse
2891  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2892  *
2893  * Format of input:
2894  *	<mode>[=<flags>][:<nodelist>]
2895  *
2896  * On success, returns 0, else 1
2897  */
2898 int mpol_parse_str(char *str, struct mempolicy **mpol)
2899 {
2900 	struct mempolicy *new = NULL;
2901 	unsigned short mode_flags;
2902 	nodemask_t nodes;
2903 	char *nodelist = strchr(str, ':');
2904 	char *flags = strchr(str, '=');
2905 	int err = 1, mode;
2906 
2907 	if (flags)
2908 		*flags++ = '\0';	/* terminate mode string */
2909 
2910 	if (nodelist) {
2911 		/* NUL-terminate mode or flags string */
2912 		*nodelist++ = '\0';
2913 		if (nodelist_parse(nodelist, nodes))
2914 			goto out;
2915 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2916 			goto out;
2917 	} else
2918 		nodes_clear(nodes);
2919 
2920 	mode = match_string(policy_modes, MPOL_MAX, str);
2921 	if (mode < 0)
2922 		goto out;
2923 
2924 	switch (mode) {
2925 	case MPOL_PREFERRED:
2926 		/*
2927 		 * Insist on a nodelist of one node only, although later
2928 		 * we use first_node(nodes) to grab a single node, so here
2929 		 * nodelist (or nodes) cannot be empty.
2930 		 */
2931 		if (nodelist) {
2932 			char *rest = nodelist;
2933 			while (isdigit(*rest))
2934 				rest++;
2935 			if (*rest)
2936 				goto out;
2937 			if (nodes_empty(nodes))
2938 				goto out;
2939 		}
2940 		break;
2941 	case MPOL_INTERLEAVE:
2942 		/*
2943 		 * Default to online nodes with memory if no nodelist
2944 		 */
2945 		if (!nodelist)
2946 			nodes = node_states[N_MEMORY];
2947 		break;
2948 	case MPOL_LOCAL:
2949 		/*
2950 		 * Don't allow a nodelist;  mpol_new() checks flags
2951 		 */
2952 		if (nodelist)
2953 			goto out;
2954 		mode = MPOL_PREFERRED;
2955 		break;
2956 	case MPOL_DEFAULT:
2957 		/*
2958 		 * Insist on a empty nodelist
2959 		 */
2960 		if (!nodelist)
2961 			err = 0;
2962 		goto out;
2963 	case MPOL_BIND:
2964 		/*
2965 		 * Insist on a nodelist
2966 		 */
2967 		if (!nodelist)
2968 			goto out;
2969 	}
2970 
2971 	mode_flags = 0;
2972 	if (flags) {
2973 		/*
2974 		 * Currently, we only support two mutually exclusive
2975 		 * mode flags.
2976 		 */
2977 		if (!strcmp(flags, "static"))
2978 			mode_flags |= MPOL_F_STATIC_NODES;
2979 		else if (!strcmp(flags, "relative"))
2980 			mode_flags |= MPOL_F_RELATIVE_NODES;
2981 		else
2982 			goto out;
2983 	}
2984 
2985 	new = mpol_new(mode, mode_flags, &nodes);
2986 	if (IS_ERR(new))
2987 		goto out;
2988 
2989 	/*
2990 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2991 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2992 	 */
2993 	if (mode != MPOL_PREFERRED)
2994 		new->v.nodes = nodes;
2995 	else if (nodelist)
2996 		new->v.preferred_node = first_node(nodes);
2997 	else
2998 		new->flags |= MPOL_F_LOCAL;
2999 
3000 	/*
3001 	 * Save nodes for contextualization: this will be used to "clone"
3002 	 * the mempolicy in a specific context [cpuset] at a later time.
3003 	 */
3004 	new->w.user_nodemask = nodes;
3005 
3006 	err = 0;
3007 
3008 out:
3009 	/* Restore string for error message */
3010 	if (nodelist)
3011 		*--nodelist = ':';
3012 	if (flags)
3013 		*--flags = '=';
3014 	if (!err)
3015 		*mpol = new;
3016 	return err;
3017 }
3018 #endif /* CONFIG_TMPFS */
3019 
3020 /**
3021  * mpol_to_str - format a mempolicy structure for printing
3022  * @buffer:  to contain formatted mempolicy string
3023  * @maxlen:  length of @buffer
3024  * @pol:  pointer to mempolicy to be formatted
3025  *
3026  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3027  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3028  * longest flag, "relative", and to display at least a few node ids.
3029  */
3030 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3031 {
3032 	char *p = buffer;
3033 	nodemask_t nodes = NODE_MASK_NONE;
3034 	unsigned short mode = MPOL_DEFAULT;
3035 	unsigned short flags = 0;
3036 
3037 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3038 		mode = pol->mode;
3039 		flags = pol->flags;
3040 	}
3041 
3042 	switch (mode) {
3043 	case MPOL_DEFAULT:
3044 		break;
3045 	case MPOL_PREFERRED:
3046 		if (flags & MPOL_F_LOCAL)
3047 			mode = MPOL_LOCAL;
3048 		else
3049 			node_set(pol->v.preferred_node, nodes);
3050 		break;
3051 	case MPOL_BIND:
3052 	case MPOL_INTERLEAVE:
3053 		nodes = pol->v.nodes;
3054 		break;
3055 	default:
3056 		WARN_ON_ONCE(1);
3057 		snprintf(p, maxlen, "unknown");
3058 		return;
3059 	}
3060 
3061 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3062 
3063 	if (flags & MPOL_MODE_FLAGS) {
3064 		p += snprintf(p, buffer + maxlen - p, "=");
3065 
3066 		/*
3067 		 * Currently, the only defined flags are mutually exclusive
3068 		 */
3069 		if (flags & MPOL_F_STATIC_NODES)
3070 			p += snprintf(p, buffer + maxlen - p, "static");
3071 		else if (flags & MPOL_F_RELATIVE_NODES)
3072 			p += snprintf(p, buffer + maxlen - p, "relative");
3073 	}
3074 
3075 	if (!nodes_empty(nodes))
3076 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3077 			       nodemask_pr_args(&nodes));
3078 }
3079