1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/swap.h> 89 #include <linux/seq_file.h> 90 #include <linux/proc_fs.h> 91 #include <linux/migrate.h> 92 #include <linux/ksm.h> 93 #include <linux/rmap.h> 94 #include <linux/security.h> 95 #include <linux/syscalls.h> 96 #include <linux/ctype.h> 97 #include <linux/mm_inline.h> 98 #include <linux/mmu_notifier.h> 99 #include <linux/printk.h> 100 101 #include <asm/tlbflush.h> 102 #include <linux/uaccess.h> 103 104 #include "internal.h" 105 106 /* Internal flags */ 107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 109 110 static struct kmem_cache *policy_cache; 111 static struct kmem_cache *sn_cache; 112 113 /* Highest zone. An specific allocation for a zone below that is not 114 policied. */ 115 enum zone_type policy_zone = 0; 116 117 /* 118 * run-time system-wide default policy => local allocation 119 */ 120 static struct mempolicy default_policy = { 121 .refcnt = ATOMIC_INIT(1), /* never free it */ 122 .mode = MPOL_PREFERRED, 123 .flags = MPOL_F_LOCAL, 124 }; 125 126 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 127 128 struct mempolicy *get_task_policy(struct task_struct *p) 129 { 130 struct mempolicy *pol = p->mempolicy; 131 int node; 132 133 if (pol) 134 return pol; 135 136 node = numa_node_id(); 137 if (node != NUMA_NO_NODE) { 138 pol = &preferred_node_policy[node]; 139 /* preferred_node_policy is not initialised early in boot */ 140 if (pol->mode) 141 return pol; 142 } 143 144 return &default_policy; 145 } 146 147 static const struct mempolicy_operations { 148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 149 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 150 } mpol_ops[MPOL_MAX]; 151 152 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 153 { 154 return pol->flags & MPOL_MODE_FLAGS; 155 } 156 157 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 158 const nodemask_t *rel) 159 { 160 nodemask_t tmp; 161 nodes_fold(tmp, *orig, nodes_weight(*rel)); 162 nodes_onto(*ret, tmp, *rel); 163 } 164 165 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 166 { 167 if (nodes_empty(*nodes)) 168 return -EINVAL; 169 pol->v.nodes = *nodes; 170 return 0; 171 } 172 173 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 174 { 175 if (!nodes) 176 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 177 else if (nodes_empty(*nodes)) 178 return -EINVAL; /* no allowed nodes */ 179 else 180 pol->v.preferred_node = first_node(*nodes); 181 return 0; 182 } 183 184 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 185 { 186 if (nodes_empty(*nodes)) 187 return -EINVAL; 188 pol->v.nodes = *nodes; 189 return 0; 190 } 191 192 /* 193 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 194 * any, for the new policy. mpol_new() has already validated the nodes 195 * parameter with respect to the policy mode and flags. But, we need to 196 * handle an empty nodemask with MPOL_PREFERRED here. 197 * 198 * Must be called holding task's alloc_lock to protect task's mems_allowed 199 * and mempolicy. May also be called holding the mmap_semaphore for write. 200 */ 201 static int mpol_set_nodemask(struct mempolicy *pol, 202 const nodemask_t *nodes, struct nodemask_scratch *nsc) 203 { 204 int ret; 205 206 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 207 if (pol == NULL) 208 return 0; 209 /* Check N_MEMORY */ 210 nodes_and(nsc->mask1, 211 cpuset_current_mems_allowed, node_states[N_MEMORY]); 212 213 VM_BUG_ON(!nodes); 214 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 215 nodes = NULL; /* explicit local allocation */ 216 else { 217 if (pol->flags & MPOL_F_RELATIVE_NODES) 218 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 219 else 220 nodes_and(nsc->mask2, *nodes, nsc->mask1); 221 222 if (mpol_store_user_nodemask(pol)) 223 pol->w.user_nodemask = *nodes; 224 else 225 pol->w.cpuset_mems_allowed = 226 cpuset_current_mems_allowed; 227 } 228 229 if (nodes) 230 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 231 else 232 ret = mpol_ops[pol->mode].create(pol, NULL); 233 return ret; 234 } 235 236 /* 237 * This function just creates a new policy, does some check and simple 238 * initialization. You must invoke mpol_set_nodemask() to set nodes. 239 */ 240 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 241 nodemask_t *nodes) 242 { 243 struct mempolicy *policy; 244 245 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 246 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 247 248 if (mode == MPOL_DEFAULT) { 249 if (nodes && !nodes_empty(*nodes)) 250 return ERR_PTR(-EINVAL); 251 return NULL; 252 } 253 VM_BUG_ON(!nodes); 254 255 /* 256 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 257 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 258 * All other modes require a valid pointer to a non-empty nodemask. 259 */ 260 if (mode == MPOL_PREFERRED) { 261 if (nodes_empty(*nodes)) { 262 if (((flags & MPOL_F_STATIC_NODES) || 263 (flags & MPOL_F_RELATIVE_NODES))) 264 return ERR_PTR(-EINVAL); 265 } 266 } else if (mode == MPOL_LOCAL) { 267 if (!nodes_empty(*nodes) || 268 (flags & MPOL_F_STATIC_NODES) || 269 (flags & MPOL_F_RELATIVE_NODES)) 270 return ERR_PTR(-EINVAL); 271 mode = MPOL_PREFERRED; 272 } else if (nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 275 if (!policy) 276 return ERR_PTR(-ENOMEM); 277 atomic_set(&policy->refcnt, 1); 278 policy->mode = mode; 279 policy->flags = flags; 280 281 return policy; 282 } 283 284 /* Slow path of a mpol destructor. */ 285 void __mpol_put(struct mempolicy *p) 286 { 287 if (!atomic_dec_and_test(&p->refcnt)) 288 return; 289 kmem_cache_free(policy_cache, p); 290 } 291 292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 293 { 294 } 295 296 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 297 { 298 nodemask_t tmp; 299 300 if (pol->flags & MPOL_F_STATIC_NODES) 301 nodes_and(tmp, pol->w.user_nodemask, *nodes); 302 else if (pol->flags & MPOL_F_RELATIVE_NODES) 303 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 304 else { 305 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 306 *nodes); 307 pol->w.cpuset_mems_allowed = tmp; 308 } 309 310 if (nodes_empty(tmp)) 311 tmp = *nodes; 312 313 pol->v.nodes = tmp; 314 } 315 316 static void mpol_rebind_preferred(struct mempolicy *pol, 317 const nodemask_t *nodes) 318 { 319 nodemask_t tmp; 320 321 if (pol->flags & MPOL_F_STATIC_NODES) { 322 int node = first_node(pol->w.user_nodemask); 323 324 if (node_isset(node, *nodes)) { 325 pol->v.preferred_node = node; 326 pol->flags &= ~MPOL_F_LOCAL; 327 } else 328 pol->flags |= MPOL_F_LOCAL; 329 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 331 pol->v.preferred_node = first_node(tmp); 332 } else if (!(pol->flags & MPOL_F_LOCAL)) { 333 pol->v.preferred_node = node_remap(pol->v.preferred_node, 334 pol->w.cpuset_mems_allowed, 335 *nodes); 336 pol->w.cpuset_mems_allowed = *nodes; 337 } 338 } 339 340 /* 341 * mpol_rebind_policy - Migrate a policy to a different set of nodes 342 * 343 * Per-vma policies are protected by mmap_sem. Allocations using per-task 344 * policies are protected by task->mems_allowed_seq to prevent a premature 345 * OOM/allocation failure due to parallel nodemask modification. 346 */ 347 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 348 { 349 if (!pol) 350 return; 351 if (!mpol_store_user_nodemask(pol) && 352 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 353 return; 354 355 mpol_ops[pol->mode].rebind(pol, newmask); 356 } 357 358 /* 359 * Wrapper for mpol_rebind_policy() that just requires task 360 * pointer, and updates task mempolicy. 361 * 362 * Called with task's alloc_lock held. 363 */ 364 365 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 366 { 367 mpol_rebind_policy(tsk->mempolicy, new); 368 } 369 370 /* 371 * Rebind each vma in mm to new nodemask. 372 * 373 * Call holding a reference to mm. Takes mm->mmap_sem during call. 374 */ 375 376 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 377 { 378 struct vm_area_struct *vma; 379 380 down_write(&mm->mmap_sem); 381 for (vma = mm->mmap; vma; vma = vma->vm_next) 382 mpol_rebind_policy(vma->vm_policy, new); 383 up_write(&mm->mmap_sem); 384 } 385 386 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 387 [MPOL_DEFAULT] = { 388 .rebind = mpol_rebind_default, 389 }, 390 [MPOL_INTERLEAVE] = { 391 .create = mpol_new_interleave, 392 .rebind = mpol_rebind_nodemask, 393 }, 394 [MPOL_PREFERRED] = { 395 .create = mpol_new_preferred, 396 .rebind = mpol_rebind_preferred, 397 }, 398 [MPOL_BIND] = { 399 .create = mpol_new_bind, 400 .rebind = mpol_rebind_nodemask, 401 }, 402 }; 403 404 static void migrate_page_add(struct page *page, struct list_head *pagelist, 405 unsigned long flags); 406 407 struct queue_pages { 408 struct list_head *pagelist; 409 unsigned long flags; 410 nodemask_t *nmask; 411 struct vm_area_struct *prev; 412 }; 413 414 /* 415 * Scan through pages checking if pages follow certain conditions, 416 * and move them to the pagelist if they do. 417 */ 418 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 419 unsigned long end, struct mm_walk *walk) 420 { 421 struct vm_area_struct *vma = walk->vma; 422 struct page *page; 423 struct queue_pages *qp = walk->private; 424 unsigned long flags = qp->flags; 425 int nid, ret; 426 pte_t *pte; 427 spinlock_t *ptl; 428 429 if (pmd_trans_huge(*pmd)) { 430 ptl = pmd_lock(walk->mm, pmd); 431 if (pmd_trans_huge(*pmd)) { 432 page = pmd_page(*pmd); 433 if (is_huge_zero_page(page)) { 434 spin_unlock(ptl); 435 __split_huge_pmd(vma, pmd, addr, false, NULL); 436 } else { 437 get_page(page); 438 spin_unlock(ptl); 439 lock_page(page); 440 ret = split_huge_page(page); 441 unlock_page(page); 442 put_page(page); 443 if (ret) 444 return 0; 445 } 446 } else { 447 spin_unlock(ptl); 448 } 449 } 450 451 if (pmd_trans_unstable(pmd)) 452 return 0; 453 retry: 454 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 455 for (; addr != end; pte++, addr += PAGE_SIZE) { 456 if (!pte_present(*pte)) 457 continue; 458 page = vm_normal_page(vma, addr, *pte); 459 if (!page) 460 continue; 461 /* 462 * vm_normal_page() filters out zero pages, but there might 463 * still be PageReserved pages to skip, perhaps in a VDSO. 464 */ 465 if (PageReserved(page)) 466 continue; 467 nid = page_to_nid(page); 468 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 469 continue; 470 if (PageTransCompound(page)) { 471 get_page(page); 472 pte_unmap_unlock(pte, ptl); 473 lock_page(page); 474 ret = split_huge_page(page); 475 unlock_page(page); 476 put_page(page); 477 /* Failed to split -- skip. */ 478 if (ret) { 479 pte = pte_offset_map_lock(walk->mm, pmd, 480 addr, &ptl); 481 continue; 482 } 483 goto retry; 484 } 485 486 migrate_page_add(page, qp->pagelist, flags); 487 } 488 pte_unmap_unlock(pte - 1, ptl); 489 cond_resched(); 490 return 0; 491 } 492 493 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 494 unsigned long addr, unsigned long end, 495 struct mm_walk *walk) 496 { 497 #ifdef CONFIG_HUGETLB_PAGE 498 struct queue_pages *qp = walk->private; 499 unsigned long flags = qp->flags; 500 int nid; 501 struct page *page; 502 spinlock_t *ptl; 503 pte_t entry; 504 505 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 506 entry = huge_ptep_get(pte); 507 if (!pte_present(entry)) 508 goto unlock; 509 page = pte_page(entry); 510 nid = page_to_nid(page); 511 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 512 goto unlock; 513 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 514 if (flags & (MPOL_MF_MOVE_ALL) || 515 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 516 isolate_huge_page(page, qp->pagelist); 517 unlock: 518 spin_unlock(ptl); 519 #else 520 BUG(); 521 #endif 522 return 0; 523 } 524 525 #ifdef CONFIG_NUMA_BALANCING 526 /* 527 * This is used to mark a range of virtual addresses to be inaccessible. 528 * These are later cleared by a NUMA hinting fault. Depending on these 529 * faults, pages may be migrated for better NUMA placement. 530 * 531 * This is assuming that NUMA faults are handled using PROT_NONE. If 532 * an architecture makes a different choice, it will need further 533 * changes to the core. 534 */ 535 unsigned long change_prot_numa(struct vm_area_struct *vma, 536 unsigned long addr, unsigned long end) 537 { 538 int nr_updated; 539 540 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 541 if (nr_updated) 542 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 543 544 return nr_updated; 545 } 546 #else 547 static unsigned long change_prot_numa(struct vm_area_struct *vma, 548 unsigned long addr, unsigned long end) 549 { 550 return 0; 551 } 552 #endif /* CONFIG_NUMA_BALANCING */ 553 554 static int queue_pages_test_walk(unsigned long start, unsigned long end, 555 struct mm_walk *walk) 556 { 557 struct vm_area_struct *vma = walk->vma; 558 struct queue_pages *qp = walk->private; 559 unsigned long endvma = vma->vm_end; 560 unsigned long flags = qp->flags; 561 562 if (!vma_migratable(vma)) 563 return 1; 564 565 if (endvma > end) 566 endvma = end; 567 if (vma->vm_start > start) 568 start = vma->vm_start; 569 570 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 571 if (!vma->vm_next && vma->vm_end < end) 572 return -EFAULT; 573 if (qp->prev && qp->prev->vm_end < vma->vm_start) 574 return -EFAULT; 575 } 576 577 qp->prev = vma; 578 579 if (flags & MPOL_MF_LAZY) { 580 /* Similar to task_numa_work, skip inaccessible VMAs */ 581 if (!is_vm_hugetlb_page(vma) && 582 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 583 !(vma->vm_flags & VM_MIXEDMAP)) 584 change_prot_numa(vma, start, endvma); 585 return 1; 586 } 587 588 /* queue pages from current vma */ 589 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 590 return 0; 591 return 1; 592 } 593 594 /* 595 * Walk through page tables and collect pages to be migrated. 596 * 597 * If pages found in a given range are on a set of nodes (determined by 598 * @nodes and @flags,) it's isolated and queued to the pagelist which is 599 * passed via @private.) 600 */ 601 static int 602 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 603 nodemask_t *nodes, unsigned long flags, 604 struct list_head *pagelist) 605 { 606 struct queue_pages qp = { 607 .pagelist = pagelist, 608 .flags = flags, 609 .nmask = nodes, 610 .prev = NULL, 611 }; 612 struct mm_walk queue_pages_walk = { 613 .hugetlb_entry = queue_pages_hugetlb, 614 .pmd_entry = queue_pages_pte_range, 615 .test_walk = queue_pages_test_walk, 616 .mm = mm, 617 .private = &qp, 618 }; 619 620 return walk_page_range(start, end, &queue_pages_walk); 621 } 622 623 /* 624 * Apply policy to a single VMA 625 * This must be called with the mmap_sem held for writing. 626 */ 627 static int vma_replace_policy(struct vm_area_struct *vma, 628 struct mempolicy *pol) 629 { 630 int err; 631 struct mempolicy *old; 632 struct mempolicy *new; 633 634 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 635 vma->vm_start, vma->vm_end, vma->vm_pgoff, 636 vma->vm_ops, vma->vm_file, 637 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 638 639 new = mpol_dup(pol); 640 if (IS_ERR(new)) 641 return PTR_ERR(new); 642 643 if (vma->vm_ops && vma->vm_ops->set_policy) { 644 err = vma->vm_ops->set_policy(vma, new); 645 if (err) 646 goto err_out; 647 } 648 649 old = vma->vm_policy; 650 vma->vm_policy = new; /* protected by mmap_sem */ 651 mpol_put(old); 652 653 return 0; 654 err_out: 655 mpol_put(new); 656 return err; 657 } 658 659 /* Step 2: apply policy to a range and do splits. */ 660 static int mbind_range(struct mm_struct *mm, unsigned long start, 661 unsigned long end, struct mempolicy *new_pol) 662 { 663 struct vm_area_struct *next; 664 struct vm_area_struct *prev; 665 struct vm_area_struct *vma; 666 int err = 0; 667 pgoff_t pgoff; 668 unsigned long vmstart; 669 unsigned long vmend; 670 671 vma = find_vma(mm, start); 672 if (!vma || vma->vm_start > start) 673 return -EFAULT; 674 675 prev = vma->vm_prev; 676 if (start > vma->vm_start) 677 prev = vma; 678 679 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 680 next = vma->vm_next; 681 vmstart = max(start, vma->vm_start); 682 vmend = min(end, vma->vm_end); 683 684 if (mpol_equal(vma_policy(vma), new_pol)) 685 continue; 686 687 pgoff = vma->vm_pgoff + 688 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 689 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 690 vma->anon_vma, vma->vm_file, pgoff, 691 new_pol, vma->vm_userfaultfd_ctx); 692 if (prev) { 693 vma = prev; 694 next = vma->vm_next; 695 if (mpol_equal(vma_policy(vma), new_pol)) 696 continue; 697 /* vma_merge() joined vma && vma->next, case 8 */ 698 goto replace; 699 } 700 if (vma->vm_start != vmstart) { 701 err = split_vma(vma->vm_mm, vma, vmstart, 1); 702 if (err) 703 goto out; 704 } 705 if (vma->vm_end != vmend) { 706 err = split_vma(vma->vm_mm, vma, vmend, 0); 707 if (err) 708 goto out; 709 } 710 replace: 711 err = vma_replace_policy(vma, new_pol); 712 if (err) 713 goto out; 714 } 715 716 out: 717 return err; 718 } 719 720 /* Set the process memory policy */ 721 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 722 nodemask_t *nodes) 723 { 724 struct mempolicy *new, *old; 725 NODEMASK_SCRATCH(scratch); 726 int ret; 727 728 if (!scratch) 729 return -ENOMEM; 730 731 new = mpol_new(mode, flags, nodes); 732 if (IS_ERR(new)) { 733 ret = PTR_ERR(new); 734 goto out; 735 } 736 737 task_lock(current); 738 ret = mpol_set_nodemask(new, nodes, scratch); 739 if (ret) { 740 task_unlock(current); 741 mpol_put(new); 742 goto out; 743 } 744 old = current->mempolicy; 745 current->mempolicy = new; 746 if (new && new->mode == MPOL_INTERLEAVE) 747 current->il_prev = MAX_NUMNODES-1; 748 task_unlock(current); 749 mpol_put(old); 750 ret = 0; 751 out: 752 NODEMASK_SCRATCH_FREE(scratch); 753 return ret; 754 } 755 756 /* 757 * Return nodemask for policy for get_mempolicy() query 758 * 759 * Called with task's alloc_lock held 760 */ 761 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 762 { 763 nodes_clear(*nodes); 764 if (p == &default_policy) 765 return; 766 767 switch (p->mode) { 768 case MPOL_BIND: 769 /* Fall through */ 770 case MPOL_INTERLEAVE: 771 *nodes = p->v.nodes; 772 break; 773 case MPOL_PREFERRED: 774 if (!(p->flags & MPOL_F_LOCAL)) 775 node_set(p->v.preferred_node, *nodes); 776 /* else return empty node mask for local allocation */ 777 break; 778 default: 779 BUG(); 780 } 781 } 782 783 static int lookup_node(unsigned long addr) 784 { 785 struct page *p; 786 int err; 787 788 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 789 if (err >= 0) { 790 err = page_to_nid(p); 791 put_page(p); 792 } 793 return err; 794 } 795 796 /* Retrieve NUMA policy */ 797 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 798 unsigned long addr, unsigned long flags) 799 { 800 int err; 801 struct mm_struct *mm = current->mm; 802 struct vm_area_struct *vma = NULL; 803 struct mempolicy *pol = current->mempolicy; 804 805 if (flags & 806 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 807 return -EINVAL; 808 809 if (flags & MPOL_F_MEMS_ALLOWED) { 810 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 811 return -EINVAL; 812 *policy = 0; /* just so it's initialized */ 813 task_lock(current); 814 *nmask = cpuset_current_mems_allowed; 815 task_unlock(current); 816 return 0; 817 } 818 819 if (flags & MPOL_F_ADDR) { 820 /* 821 * Do NOT fall back to task policy if the 822 * vma/shared policy at addr is NULL. We 823 * want to return MPOL_DEFAULT in this case. 824 */ 825 down_read(&mm->mmap_sem); 826 vma = find_vma_intersection(mm, addr, addr+1); 827 if (!vma) { 828 up_read(&mm->mmap_sem); 829 return -EFAULT; 830 } 831 if (vma->vm_ops && vma->vm_ops->get_policy) 832 pol = vma->vm_ops->get_policy(vma, addr); 833 else 834 pol = vma->vm_policy; 835 } else if (addr) 836 return -EINVAL; 837 838 if (!pol) 839 pol = &default_policy; /* indicates default behavior */ 840 841 if (flags & MPOL_F_NODE) { 842 if (flags & MPOL_F_ADDR) { 843 err = lookup_node(addr); 844 if (err < 0) 845 goto out; 846 *policy = err; 847 } else if (pol == current->mempolicy && 848 pol->mode == MPOL_INTERLEAVE) { 849 *policy = next_node_in(current->il_prev, pol->v.nodes); 850 } else { 851 err = -EINVAL; 852 goto out; 853 } 854 } else { 855 *policy = pol == &default_policy ? MPOL_DEFAULT : 856 pol->mode; 857 /* 858 * Internal mempolicy flags must be masked off before exposing 859 * the policy to userspace. 860 */ 861 *policy |= (pol->flags & MPOL_MODE_FLAGS); 862 } 863 864 err = 0; 865 if (nmask) { 866 if (mpol_store_user_nodemask(pol)) { 867 *nmask = pol->w.user_nodemask; 868 } else { 869 task_lock(current); 870 get_policy_nodemask(pol, nmask); 871 task_unlock(current); 872 } 873 } 874 875 out: 876 mpol_cond_put(pol); 877 if (vma) 878 up_read(¤t->mm->mmap_sem); 879 return err; 880 } 881 882 #ifdef CONFIG_MIGRATION 883 /* 884 * page migration 885 */ 886 static void migrate_page_add(struct page *page, struct list_head *pagelist, 887 unsigned long flags) 888 { 889 /* 890 * Avoid migrating a page that is shared with others. 891 */ 892 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 893 if (!isolate_lru_page(page)) { 894 list_add_tail(&page->lru, pagelist); 895 inc_node_page_state(page, NR_ISOLATED_ANON + 896 page_is_file_cache(page)); 897 } 898 } 899 } 900 901 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 902 { 903 if (PageHuge(page)) 904 return alloc_huge_page_node(page_hstate(compound_head(page)), 905 node); 906 else 907 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 908 __GFP_THISNODE, 0); 909 } 910 911 /* 912 * Migrate pages from one node to a target node. 913 * Returns error or the number of pages not migrated. 914 */ 915 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 916 int flags) 917 { 918 nodemask_t nmask; 919 LIST_HEAD(pagelist); 920 int err = 0; 921 922 nodes_clear(nmask); 923 node_set(source, nmask); 924 925 /* 926 * This does not "check" the range but isolates all pages that 927 * need migration. Between passing in the full user address 928 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 929 */ 930 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 931 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 932 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 933 934 if (!list_empty(&pagelist)) { 935 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 936 MIGRATE_SYNC, MR_SYSCALL); 937 if (err) 938 putback_movable_pages(&pagelist); 939 } 940 941 return err; 942 } 943 944 /* 945 * Move pages between the two nodesets so as to preserve the physical 946 * layout as much as possible. 947 * 948 * Returns the number of page that could not be moved. 949 */ 950 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 951 const nodemask_t *to, int flags) 952 { 953 int busy = 0; 954 int err; 955 nodemask_t tmp; 956 957 err = migrate_prep(); 958 if (err) 959 return err; 960 961 down_read(&mm->mmap_sem); 962 963 /* 964 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 965 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 966 * bit in 'tmp', and return that <source, dest> pair for migration. 967 * The pair of nodemasks 'to' and 'from' define the map. 968 * 969 * If no pair of bits is found that way, fallback to picking some 970 * pair of 'source' and 'dest' bits that are not the same. If the 971 * 'source' and 'dest' bits are the same, this represents a node 972 * that will be migrating to itself, so no pages need move. 973 * 974 * If no bits are left in 'tmp', or if all remaining bits left 975 * in 'tmp' correspond to the same bit in 'to', return false 976 * (nothing left to migrate). 977 * 978 * This lets us pick a pair of nodes to migrate between, such that 979 * if possible the dest node is not already occupied by some other 980 * source node, minimizing the risk of overloading the memory on a 981 * node that would happen if we migrated incoming memory to a node 982 * before migrating outgoing memory source that same node. 983 * 984 * A single scan of tmp is sufficient. As we go, we remember the 985 * most recent <s, d> pair that moved (s != d). If we find a pair 986 * that not only moved, but what's better, moved to an empty slot 987 * (d is not set in tmp), then we break out then, with that pair. 988 * Otherwise when we finish scanning from_tmp, we at least have the 989 * most recent <s, d> pair that moved. If we get all the way through 990 * the scan of tmp without finding any node that moved, much less 991 * moved to an empty node, then there is nothing left worth migrating. 992 */ 993 994 tmp = *from; 995 while (!nodes_empty(tmp)) { 996 int s,d; 997 int source = NUMA_NO_NODE; 998 int dest = 0; 999 1000 for_each_node_mask(s, tmp) { 1001 1002 /* 1003 * do_migrate_pages() tries to maintain the relative 1004 * node relationship of the pages established between 1005 * threads and memory areas. 1006 * 1007 * However if the number of source nodes is not equal to 1008 * the number of destination nodes we can not preserve 1009 * this node relative relationship. In that case, skip 1010 * copying memory from a node that is in the destination 1011 * mask. 1012 * 1013 * Example: [2,3,4] -> [3,4,5] moves everything. 1014 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1015 */ 1016 1017 if ((nodes_weight(*from) != nodes_weight(*to)) && 1018 (node_isset(s, *to))) 1019 continue; 1020 1021 d = node_remap(s, *from, *to); 1022 if (s == d) 1023 continue; 1024 1025 source = s; /* Node moved. Memorize */ 1026 dest = d; 1027 1028 /* dest not in remaining from nodes? */ 1029 if (!node_isset(dest, tmp)) 1030 break; 1031 } 1032 if (source == NUMA_NO_NODE) 1033 break; 1034 1035 node_clear(source, tmp); 1036 err = migrate_to_node(mm, source, dest, flags); 1037 if (err > 0) 1038 busy += err; 1039 if (err < 0) 1040 break; 1041 } 1042 up_read(&mm->mmap_sem); 1043 if (err < 0) 1044 return err; 1045 return busy; 1046 1047 } 1048 1049 /* 1050 * Allocate a new page for page migration based on vma policy. 1051 * Start by assuming the page is mapped by the same vma as contains @start. 1052 * Search forward from there, if not. N.B., this assumes that the 1053 * list of pages handed to migrate_pages()--which is how we get here-- 1054 * is in virtual address order. 1055 */ 1056 static struct page *new_page(struct page *page, unsigned long start, int **x) 1057 { 1058 struct vm_area_struct *vma; 1059 unsigned long uninitialized_var(address); 1060 1061 vma = find_vma(current->mm, start); 1062 while (vma) { 1063 address = page_address_in_vma(page, vma); 1064 if (address != -EFAULT) 1065 break; 1066 vma = vma->vm_next; 1067 } 1068 1069 if (PageHuge(page)) { 1070 BUG_ON(!vma); 1071 return alloc_huge_page_noerr(vma, address, 1); 1072 } 1073 /* 1074 * if !vma, alloc_page_vma() will use task or system default policy 1075 */ 1076 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1077 vma, address); 1078 } 1079 #else 1080 1081 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1082 unsigned long flags) 1083 { 1084 } 1085 1086 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1087 const nodemask_t *to, int flags) 1088 { 1089 return -ENOSYS; 1090 } 1091 1092 static struct page *new_page(struct page *page, unsigned long start, int **x) 1093 { 1094 return NULL; 1095 } 1096 #endif 1097 1098 static long do_mbind(unsigned long start, unsigned long len, 1099 unsigned short mode, unsigned short mode_flags, 1100 nodemask_t *nmask, unsigned long flags) 1101 { 1102 struct mm_struct *mm = current->mm; 1103 struct mempolicy *new; 1104 unsigned long end; 1105 int err; 1106 LIST_HEAD(pagelist); 1107 1108 if (flags & ~(unsigned long)MPOL_MF_VALID) 1109 return -EINVAL; 1110 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1111 return -EPERM; 1112 1113 if (start & ~PAGE_MASK) 1114 return -EINVAL; 1115 1116 if (mode == MPOL_DEFAULT) 1117 flags &= ~MPOL_MF_STRICT; 1118 1119 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1120 end = start + len; 1121 1122 if (end < start) 1123 return -EINVAL; 1124 if (end == start) 1125 return 0; 1126 1127 new = mpol_new(mode, mode_flags, nmask); 1128 if (IS_ERR(new)) 1129 return PTR_ERR(new); 1130 1131 if (flags & MPOL_MF_LAZY) 1132 new->flags |= MPOL_F_MOF; 1133 1134 /* 1135 * If we are using the default policy then operation 1136 * on discontinuous address spaces is okay after all 1137 */ 1138 if (!new) 1139 flags |= MPOL_MF_DISCONTIG_OK; 1140 1141 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1142 start, start + len, mode, mode_flags, 1143 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1144 1145 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1146 1147 err = migrate_prep(); 1148 if (err) 1149 goto mpol_out; 1150 } 1151 { 1152 NODEMASK_SCRATCH(scratch); 1153 if (scratch) { 1154 down_write(&mm->mmap_sem); 1155 task_lock(current); 1156 err = mpol_set_nodemask(new, nmask, scratch); 1157 task_unlock(current); 1158 if (err) 1159 up_write(&mm->mmap_sem); 1160 } else 1161 err = -ENOMEM; 1162 NODEMASK_SCRATCH_FREE(scratch); 1163 } 1164 if (err) 1165 goto mpol_out; 1166 1167 err = queue_pages_range(mm, start, end, nmask, 1168 flags | MPOL_MF_INVERT, &pagelist); 1169 if (!err) 1170 err = mbind_range(mm, start, end, new); 1171 1172 if (!err) { 1173 int nr_failed = 0; 1174 1175 if (!list_empty(&pagelist)) { 1176 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1177 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1178 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1179 if (nr_failed) 1180 putback_movable_pages(&pagelist); 1181 } 1182 1183 if (nr_failed && (flags & MPOL_MF_STRICT)) 1184 err = -EIO; 1185 } else 1186 putback_movable_pages(&pagelist); 1187 1188 up_write(&mm->mmap_sem); 1189 mpol_out: 1190 mpol_put(new); 1191 return err; 1192 } 1193 1194 /* 1195 * User space interface with variable sized bitmaps for nodelists. 1196 */ 1197 1198 /* Copy a node mask from user space. */ 1199 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1200 unsigned long maxnode) 1201 { 1202 unsigned long k; 1203 unsigned long nlongs; 1204 unsigned long endmask; 1205 1206 --maxnode; 1207 nodes_clear(*nodes); 1208 if (maxnode == 0 || !nmask) 1209 return 0; 1210 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1211 return -EINVAL; 1212 1213 nlongs = BITS_TO_LONGS(maxnode); 1214 if ((maxnode % BITS_PER_LONG) == 0) 1215 endmask = ~0UL; 1216 else 1217 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1218 1219 /* When the user specified more nodes than supported just check 1220 if the non supported part is all zero. */ 1221 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1222 if (nlongs > PAGE_SIZE/sizeof(long)) 1223 return -EINVAL; 1224 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1225 unsigned long t; 1226 if (get_user(t, nmask + k)) 1227 return -EFAULT; 1228 if (k == nlongs - 1) { 1229 if (t & endmask) 1230 return -EINVAL; 1231 } else if (t) 1232 return -EINVAL; 1233 } 1234 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1235 endmask = ~0UL; 1236 } 1237 1238 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1239 return -EFAULT; 1240 nodes_addr(*nodes)[nlongs-1] &= endmask; 1241 return 0; 1242 } 1243 1244 /* Copy a kernel node mask to user space */ 1245 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1246 nodemask_t *nodes) 1247 { 1248 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1249 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1250 1251 if (copy > nbytes) { 1252 if (copy > PAGE_SIZE) 1253 return -EINVAL; 1254 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1255 return -EFAULT; 1256 copy = nbytes; 1257 } 1258 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1259 } 1260 1261 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1262 unsigned long, mode, const unsigned long __user *, nmask, 1263 unsigned long, maxnode, unsigned, flags) 1264 { 1265 nodemask_t nodes; 1266 int err; 1267 unsigned short mode_flags; 1268 1269 mode_flags = mode & MPOL_MODE_FLAGS; 1270 mode &= ~MPOL_MODE_FLAGS; 1271 if (mode >= MPOL_MAX) 1272 return -EINVAL; 1273 if ((mode_flags & MPOL_F_STATIC_NODES) && 1274 (mode_flags & MPOL_F_RELATIVE_NODES)) 1275 return -EINVAL; 1276 err = get_nodes(&nodes, nmask, maxnode); 1277 if (err) 1278 return err; 1279 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1280 } 1281 1282 /* Set the process memory policy */ 1283 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1284 unsigned long, maxnode) 1285 { 1286 int err; 1287 nodemask_t nodes; 1288 unsigned short flags; 1289 1290 flags = mode & MPOL_MODE_FLAGS; 1291 mode &= ~MPOL_MODE_FLAGS; 1292 if ((unsigned int)mode >= MPOL_MAX) 1293 return -EINVAL; 1294 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1295 return -EINVAL; 1296 err = get_nodes(&nodes, nmask, maxnode); 1297 if (err) 1298 return err; 1299 return do_set_mempolicy(mode, flags, &nodes); 1300 } 1301 1302 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1303 const unsigned long __user *, old_nodes, 1304 const unsigned long __user *, new_nodes) 1305 { 1306 const struct cred *cred = current_cred(), *tcred; 1307 struct mm_struct *mm = NULL; 1308 struct task_struct *task; 1309 nodemask_t task_nodes; 1310 int err; 1311 nodemask_t *old; 1312 nodemask_t *new; 1313 NODEMASK_SCRATCH(scratch); 1314 1315 if (!scratch) 1316 return -ENOMEM; 1317 1318 old = &scratch->mask1; 1319 new = &scratch->mask2; 1320 1321 err = get_nodes(old, old_nodes, maxnode); 1322 if (err) 1323 goto out; 1324 1325 err = get_nodes(new, new_nodes, maxnode); 1326 if (err) 1327 goto out; 1328 1329 /* Find the mm_struct */ 1330 rcu_read_lock(); 1331 task = pid ? find_task_by_vpid(pid) : current; 1332 if (!task) { 1333 rcu_read_unlock(); 1334 err = -ESRCH; 1335 goto out; 1336 } 1337 get_task_struct(task); 1338 1339 err = -EINVAL; 1340 1341 /* 1342 * Check if this process has the right to modify the specified 1343 * process. The right exists if the process has administrative 1344 * capabilities, superuser privileges or the same 1345 * userid as the target process. 1346 */ 1347 tcred = __task_cred(task); 1348 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1349 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1350 !capable(CAP_SYS_NICE)) { 1351 rcu_read_unlock(); 1352 err = -EPERM; 1353 goto out_put; 1354 } 1355 rcu_read_unlock(); 1356 1357 task_nodes = cpuset_mems_allowed(task); 1358 /* Is the user allowed to access the target nodes? */ 1359 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1360 err = -EPERM; 1361 goto out_put; 1362 } 1363 1364 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1365 err = -EINVAL; 1366 goto out_put; 1367 } 1368 1369 err = security_task_movememory(task); 1370 if (err) 1371 goto out_put; 1372 1373 mm = get_task_mm(task); 1374 put_task_struct(task); 1375 1376 if (!mm) { 1377 err = -EINVAL; 1378 goto out; 1379 } 1380 1381 err = do_migrate_pages(mm, old, new, 1382 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1383 1384 mmput(mm); 1385 out: 1386 NODEMASK_SCRATCH_FREE(scratch); 1387 1388 return err; 1389 1390 out_put: 1391 put_task_struct(task); 1392 goto out; 1393 1394 } 1395 1396 1397 /* Retrieve NUMA policy */ 1398 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1399 unsigned long __user *, nmask, unsigned long, maxnode, 1400 unsigned long, addr, unsigned long, flags) 1401 { 1402 int err; 1403 int uninitialized_var(pval); 1404 nodemask_t nodes; 1405 1406 if (nmask != NULL && maxnode < MAX_NUMNODES) 1407 return -EINVAL; 1408 1409 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1410 1411 if (err) 1412 return err; 1413 1414 if (policy && put_user(pval, policy)) 1415 return -EFAULT; 1416 1417 if (nmask) 1418 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1419 1420 return err; 1421 } 1422 1423 #ifdef CONFIG_COMPAT 1424 1425 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1426 compat_ulong_t __user *, nmask, 1427 compat_ulong_t, maxnode, 1428 compat_ulong_t, addr, compat_ulong_t, flags) 1429 { 1430 long err; 1431 unsigned long __user *nm = NULL; 1432 unsigned long nr_bits, alloc_size; 1433 DECLARE_BITMAP(bm, MAX_NUMNODES); 1434 1435 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1436 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1437 1438 if (nmask) 1439 nm = compat_alloc_user_space(alloc_size); 1440 1441 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1442 1443 if (!err && nmask) { 1444 unsigned long copy_size; 1445 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1446 err = copy_from_user(bm, nm, copy_size); 1447 /* ensure entire bitmap is zeroed */ 1448 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1449 err |= compat_put_bitmap(nmask, bm, nr_bits); 1450 } 1451 1452 return err; 1453 } 1454 1455 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1456 compat_ulong_t, maxnode) 1457 { 1458 unsigned long __user *nm = NULL; 1459 unsigned long nr_bits, alloc_size; 1460 DECLARE_BITMAP(bm, MAX_NUMNODES); 1461 1462 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1463 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1464 1465 if (nmask) { 1466 if (compat_get_bitmap(bm, nmask, nr_bits)) 1467 return -EFAULT; 1468 nm = compat_alloc_user_space(alloc_size); 1469 if (copy_to_user(nm, bm, alloc_size)) 1470 return -EFAULT; 1471 } 1472 1473 return sys_set_mempolicy(mode, nm, nr_bits+1); 1474 } 1475 1476 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1477 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1478 compat_ulong_t, maxnode, compat_ulong_t, flags) 1479 { 1480 unsigned long __user *nm = NULL; 1481 unsigned long nr_bits, alloc_size; 1482 nodemask_t bm; 1483 1484 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1485 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1486 1487 if (nmask) { 1488 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1489 return -EFAULT; 1490 nm = compat_alloc_user_space(alloc_size); 1491 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1492 return -EFAULT; 1493 } 1494 1495 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1496 } 1497 1498 #endif 1499 1500 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1501 unsigned long addr) 1502 { 1503 struct mempolicy *pol = NULL; 1504 1505 if (vma) { 1506 if (vma->vm_ops && vma->vm_ops->get_policy) { 1507 pol = vma->vm_ops->get_policy(vma, addr); 1508 } else if (vma->vm_policy) { 1509 pol = vma->vm_policy; 1510 1511 /* 1512 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1513 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1514 * count on these policies which will be dropped by 1515 * mpol_cond_put() later 1516 */ 1517 if (mpol_needs_cond_ref(pol)) 1518 mpol_get(pol); 1519 } 1520 } 1521 1522 return pol; 1523 } 1524 1525 /* 1526 * get_vma_policy(@vma, @addr) 1527 * @vma: virtual memory area whose policy is sought 1528 * @addr: address in @vma for shared policy lookup 1529 * 1530 * Returns effective policy for a VMA at specified address. 1531 * Falls back to current->mempolicy or system default policy, as necessary. 1532 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1533 * count--added by the get_policy() vm_op, as appropriate--to protect against 1534 * freeing by another task. It is the caller's responsibility to free the 1535 * extra reference for shared policies. 1536 */ 1537 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1538 unsigned long addr) 1539 { 1540 struct mempolicy *pol = __get_vma_policy(vma, addr); 1541 1542 if (!pol) 1543 pol = get_task_policy(current); 1544 1545 return pol; 1546 } 1547 1548 bool vma_policy_mof(struct vm_area_struct *vma) 1549 { 1550 struct mempolicy *pol; 1551 1552 if (vma->vm_ops && vma->vm_ops->get_policy) { 1553 bool ret = false; 1554 1555 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1556 if (pol && (pol->flags & MPOL_F_MOF)) 1557 ret = true; 1558 mpol_cond_put(pol); 1559 1560 return ret; 1561 } 1562 1563 pol = vma->vm_policy; 1564 if (!pol) 1565 pol = get_task_policy(current); 1566 1567 return pol->flags & MPOL_F_MOF; 1568 } 1569 1570 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1571 { 1572 enum zone_type dynamic_policy_zone = policy_zone; 1573 1574 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1575 1576 /* 1577 * if policy->v.nodes has movable memory only, 1578 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1579 * 1580 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1581 * so if the following test faile, it implies 1582 * policy->v.nodes has movable memory only. 1583 */ 1584 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1585 dynamic_policy_zone = ZONE_MOVABLE; 1586 1587 return zone >= dynamic_policy_zone; 1588 } 1589 1590 /* 1591 * Return a nodemask representing a mempolicy for filtering nodes for 1592 * page allocation 1593 */ 1594 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1595 { 1596 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1597 if (unlikely(policy->mode == MPOL_BIND) && 1598 apply_policy_zone(policy, gfp_zone(gfp)) && 1599 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1600 return &policy->v.nodes; 1601 1602 return NULL; 1603 } 1604 1605 /* Return the node id preferred by the given mempolicy, or the given id */ 1606 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1607 int nd) 1608 { 1609 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1610 nd = policy->v.preferred_node; 1611 else { 1612 /* 1613 * __GFP_THISNODE shouldn't even be used with the bind policy 1614 * because we might easily break the expectation to stay on the 1615 * requested node and not break the policy. 1616 */ 1617 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1618 } 1619 1620 return nd; 1621 } 1622 1623 /* Do dynamic interleaving for a process */ 1624 static unsigned interleave_nodes(struct mempolicy *policy) 1625 { 1626 unsigned next; 1627 struct task_struct *me = current; 1628 1629 next = next_node_in(me->il_prev, policy->v.nodes); 1630 if (next < MAX_NUMNODES) 1631 me->il_prev = next; 1632 return next; 1633 } 1634 1635 /* 1636 * Depending on the memory policy provide a node from which to allocate the 1637 * next slab entry. 1638 */ 1639 unsigned int mempolicy_slab_node(void) 1640 { 1641 struct mempolicy *policy; 1642 int node = numa_mem_id(); 1643 1644 if (in_interrupt()) 1645 return node; 1646 1647 policy = current->mempolicy; 1648 if (!policy || policy->flags & MPOL_F_LOCAL) 1649 return node; 1650 1651 switch (policy->mode) { 1652 case MPOL_PREFERRED: 1653 /* 1654 * handled MPOL_F_LOCAL above 1655 */ 1656 return policy->v.preferred_node; 1657 1658 case MPOL_INTERLEAVE: 1659 return interleave_nodes(policy); 1660 1661 case MPOL_BIND: { 1662 struct zoneref *z; 1663 1664 /* 1665 * Follow bind policy behavior and start allocation at the 1666 * first node. 1667 */ 1668 struct zonelist *zonelist; 1669 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1670 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1671 z = first_zones_zonelist(zonelist, highest_zoneidx, 1672 &policy->v.nodes); 1673 return z->zone ? z->zone->node : node; 1674 } 1675 1676 default: 1677 BUG(); 1678 } 1679 } 1680 1681 /* 1682 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1683 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1684 * number of present nodes. 1685 */ 1686 static unsigned offset_il_node(struct mempolicy *pol, 1687 struct vm_area_struct *vma, unsigned long n) 1688 { 1689 unsigned nnodes = nodes_weight(pol->v.nodes); 1690 unsigned target; 1691 int i; 1692 int nid; 1693 1694 if (!nnodes) 1695 return numa_node_id(); 1696 target = (unsigned int)n % nnodes; 1697 nid = first_node(pol->v.nodes); 1698 for (i = 0; i < target; i++) 1699 nid = next_node(nid, pol->v.nodes); 1700 return nid; 1701 } 1702 1703 /* Determine a node number for interleave */ 1704 static inline unsigned interleave_nid(struct mempolicy *pol, 1705 struct vm_area_struct *vma, unsigned long addr, int shift) 1706 { 1707 if (vma) { 1708 unsigned long off; 1709 1710 /* 1711 * for small pages, there is no difference between 1712 * shift and PAGE_SHIFT, so the bit-shift is safe. 1713 * for huge pages, since vm_pgoff is in units of small 1714 * pages, we need to shift off the always 0 bits to get 1715 * a useful offset. 1716 */ 1717 BUG_ON(shift < PAGE_SHIFT); 1718 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1719 off += (addr - vma->vm_start) >> shift; 1720 return offset_il_node(pol, vma, off); 1721 } else 1722 return interleave_nodes(pol); 1723 } 1724 1725 #ifdef CONFIG_HUGETLBFS 1726 /* 1727 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1728 * @vma: virtual memory area whose policy is sought 1729 * @addr: address in @vma for shared policy lookup and interleave policy 1730 * @gfp_flags: for requested zone 1731 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1732 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1733 * 1734 * Returns a nid suitable for a huge page allocation and a pointer 1735 * to the struct mempolicy for conditional unref after allocation. 1736 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1737 * @nodemask for filtering the zonelist. 1738 * 1739 * Must be protected by read_mems_allowed_begin() 1740 */ 1741 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1742 struct mempolicy **mpol, nodemask_t **nodemask) 1743 { 1744 int nid; 1745 1746 *mpol = get_vma_policy(vma, addr); 1747 *nodemask = NULL; /* assume !MPOL_BIND */ 1748 1749 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1750 nid = interleave_nid(*mpol, vma, addr, 1751 huge_page_shift(hstate_vma(vma))); 1752 } else { 1753 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1754 if ((*mpol)->mode == MPOL_BIND) 1755 *nodemask = &(*mpol)->v.nodes; 1756 } 1757 return nid; 1758 } 1759 1760 /* 1761 * init_nodemask_of_mempolicy 1762 * 1763 * If the current task's mempolicy is "default" [NULL], return 'false' 1764 * to indicate default policy. Otherwise, extract the policy nodemask 1765 * for 'bind' or 'interleave' policy into the argument nodemask, or 1766 * initialize the argument nodemask to contain the single node for 1767 * 'preferred' or 'local' policy and return 'true' to indicate presence 1768 * of non-default mempolicy. 1769 * 1770 * We don't bother with reference counting the mempolicy [mpol_get/put] 1771 * because the current task is examining it's own mempolicy and a task's 1772 * mempolicy is only ever changed by the task itself. 1773 * 1774 * N.B., it is the caller's responsibility to free a returned nodemask. 1775 */ 1776 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1777 { 1778 struct mempolicy *mempolicy; 1779 int nid; 1780 1781 if (!(mask && current->mempolicy)) 1782 return false; 1783 1784 task_lock(current); 1785 mempolicy = current->mempolicy; 1786 switch (mempolicy->mode) { 1787 case MPOL_PREFERRED: 1788 if (mempolicy->flags & MPOL_F_LOCAL) 1789 nid = numa_node_id(); 1790 else 1791 nid = mempolicy->v.preferred_node; 1792 init_nodemask_of_node(mask, nid); 1793 break; 1794 1795 case MPOL_BIND: 1796 /* Fall through */ 1797 case MPOL_INTERLEAVE: 1798 *mask = mempolicy->v.nodes; 1799 break; 1800 1801 default: 1802 BUG(); 1803 } 1804 task_unlock(current); 1805 1806 return true; 1807 } 1808 #endif 1809 1810 /* 1811 * mempolicy_nodemask_intersects 1812 * 1813 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1814 * policy. Otherwise, check for intersection between mask and the policy 1815 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1816 * policy, always return true since it may allocate elsewhere on fallback. 1817 * 1818 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1819 */ 1820 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1821 const nodemask_t *mask) 1822 { 1823 struct mempolicy *mempolicy; 1824 bool ret = true; 1825 1826 if (!mask) 1827 return ret; 1828 task_lock(tsk); 1829 mempolicy = tsk->mempolicy; 1830 if (!mempolicy) 1831 goto out; 1832 1833 switch (mempolicy->mode) { 1834 case MPOL_PREFERRED: 1835 /* 1836 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1837 * allocate from, they may fallback to other nodes when oom. 1838 * Thus, it's possible for tsk to have allocated memory from 1839 * nodes in mask. 1840 */ 1841 break; 1842 case MPOL_BIND: 1843 case MPOL_INTERLEAVE: 1844 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1845 break; 1846 default: 1847 BUG(); 1848 } 1849 out: 1850 task_unlock(tsk); 1851 return ret; 1852 } 1853 1854 /* Allocate a page in interleaved policy. 1855 Own path because it needs to do special accounting. */ 1856 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1857 unsigned nid) 1858 { 1859 struct page *page; 1860 1861 page = __alloc_pages(gfp, order, nid); 1862 if (page && page_to_nid(page) == nid) 1863 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1864 return page; 1865 } 1866 1867 /** 1868 * alloc_pages_vma - Allocate a page for a VMA. 1869 * 1870 * @gfp: 1871 * %GFP_USER user allocation. 1872 * %GFP_KERNEL kernel allocations, 1873 * %GFP_HIGHMEM highmem/user allocations, 1874 * %GFP_FS allocation should not call back into a file system. 1875 * %GFP_ATOMIC don't sleep. 1876 * 1877 * @order:Order of the GFP allocation. 1878 * @vma: Pointer to VMA or NULL if not available. 1879 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1880 * @node: Which node to prefer for allocation (modulo policy). 1881 * @hugepage: for hugepages try only the preferred node if possible 1882 * 1883 * This function allocates a page from the kernel page pool and applies 1884 * a NUMA policy associated with the VMA or the current process. 1885 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1886 * mm_struct of the VMA to prevent it from going away. Should be used for 1887 * all allocations for pages that will be mapped into user space. Returns 1888 * NULL when no page can be allocated. 1889 */ 1890 struct page * 1891 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1892 unsigned long addr, int node, bool hugepage) 1893 { 1894 struct mempolicy *pol; 1895 struct page *page; 1896 int preferred_nid; 1897 nodemask_t *nmask; 1898 1899 pol = get_vma_policy(vma, addr); 1900 1901 if (pol->mode == MPOL_INTERLEAVE) { 1902 unsigned nid; 1903 1904 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1905 mpol_cond_put(pol); 1906 page = alloc_page_interleave(gfp, order, nid); 1907 goto out; 1908 } 1909 1910 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1911 int hpage_node = node; 1912 1913 /* 1914 * For hugepage allocation and non-interleave policy which 1915 * allows the current node (or other explicitly preferred 1916 * node) we only try to allocate from the current/preferred 1917 * node and don't fall back to other nodes, as the cost of 1918 * remote accesses would likely offset THP benefits. 1919 * 1920 * If the policy is interleave, or does not allow the current 1921 * node in its nodemask, we allocate the standard way. 1922 */ 1923 if (pol->mode == MPOL_PREFERRED && 1924 !(pol->flags & MPOL_F_LOCAL)) 1925 hpage_node = pol->v.preferred_node; 1926 1927 nmask = policy_nodemask(gfp, pol); 1928 if (!nmask || node_isset(hpage_node, *nmask)) { 1929 mpol_cond_put(pol); 1930 page = __alloc_pages_node(hpage_node, 1931 gfp | __GFP_THISNODE, order); 1932 goto out; 1933 } 1934 } 1935 1936 nmask = policy_nodemask(gfp, pol); 1937 preferred_nid = policy_node(gfp, pol, node); 1938 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 1939 mpol_cond_put(pol); 1940 out: 1941 return page; 1942 } 1943 1944 /** 1945 * alloc_pages_current - Allocate pages. 1946 * 1947 * @gfp: 1948 * %GFP_USER user allocation, 1949 * %GFP_KERNEL kernel allocation, 1950 * %GFP_HIGHMEM highmem allocation, 1951 * %GFP_FS don't call back into a file system. 1952 * %GFP_ATOMIC don't sleep. 1953 * @order: Power of two of allocation size in pages. 0 is a single page. 1954 * 1955 * Allocate a page from the kernel page pool. When not in 1956 * interrupt context and apply the current process NUMA policy. 1957 * Returns NULL when no page can be allocated. 1958 */ 1959 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1960 { 1961 struct mempolicy *pol = &default_policy; 1962 struct page *page; 1963 1964 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 1965 pol = get_task_policy(current); 1966 1967 /* 1968 * No reference counting needed for current->mempolicy 1969 * nor system default_policy 1970 */ 1971 if (pol->mode == MPOL_INTERLEAVE) 1972 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1973 else 1974 page = __alloc_pages_nodemask(gfp, order, 1975 policy_node(gfp, pol, numa_node_id()), 1976 policy_nodemask(gfp, pol)); 1977 1978 return page; 1979 } 1980 EXPORT_SYMBOL(alloc_pages_current); 1981 1982 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 1983 { 1984 struct mempolicy *pol = mpol_dup(vma_policy(src)); 1985 1986 if (IS_ERR(pol)) 1987 return PTR_ERR(pol); 1988 dst->vm_policy = pol; 1989 return 0; 1990 } 1991 1992 /* 1993 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 1994 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1995 * with the mems_allowed returned by cpuset_mems_allowed(). This 1996 * keeps mempolicies cpuset relative after its cpuset moves. See 1997 * further kernel/cpuset.c update_nodemask(). 1998 * 1999 * current's mempolicy may be rebinded by the other task(the task that changes 2000 * cpuset's mems), so we needn't do rebind work for current task. 2001 */ 2002 2003 /* Slow path of a mempolicy duplicate */ 2004 struct mempolicy *__mpol_dup(struct mempolicy *old) 2005 { 2006 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2007 2008 if (!new) 2009 return ERR_PTR(-ENOMEM); 2010 2011 /* task's mempolicy is protected by alloc_lock */ 2012 if (old == current->mempolicy) { 2013 task_lock(current); 2014 *new = *old; 2015 task_unlock(current); 2016 } else 2017 *new = *old; 2018 2019 if (current_cpuset_is_being_rebound()) { 2020 nodemask_t mems = cpuset_mems_allowed(current); 2021 mpol_rebind_policy(new, &mems); 2022 } 2023 atomic_set(&new->refcnt, 1); 2024 return new; 2025 } 2026 2027 /* Slow path of a mempolicy comparison */ 2028 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2029 { 2030 if (!a || !b) 2031 return false; 2032 if (a->mode != b->mode) 2033 return false; 2034 if (a->flags != b->flags) 2035 return false; 2036 if (mpol_store_user_nodemask(a)) 2037 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2038 return false; 2039 2040 switch (a->mode) { 2041 case MPOL_BIND: 2042 /* Fall through */ 2043 case MPOL_INTERLEAVE: 2044 return !!nodes_equal(a->v.nodes, b->v.nodes); 2045 case MPOL_PREFERRED: 2046 return a->v.preferred_node == b->v.preferred_node; 2047 default: 2048 BUG(); 2049 return false; 2050 } 2051 } 2052 2053 /* 2054 * Shared memory backing store policy support. 2055 * 2056 * Remember policies even when nobody has shared memory mapped. 2057 * The policies are kept in Red-Black tree linked from the inode. 2058 * They are protected by the sp->lock rwlock, which should be held 2059 * for any accesses to the tree. 2060 */ 2061 2062 /* 2063 * lookup first element intersecting start-end. Caller holds sp->lock for 2064 * reading or for writing 2065 */ 2066 static struct sp_node * 2067 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2068 { 2069 struct rb_node *n = sp->root.rb_node; 2070 2071 while (n) { 2072 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2073 2074 if (start >= p->end) 2075 n = n->rb_right; 2076 else if (end <= p->start) 2077 n = n->rb_left; 2078 else 2079 break; 2080 } 2081 if (!n) 2082 return NULL; 2083 for (;;) { 2084 struct sp_node *w = NULL; 2085 struct rb_node *prev = rb_prev(n); 2086 if (!prev) 2087 break; 2088 w = rb_entry(prev, struct sp_node, nd); 2089 if (w->end <= start) 2090 break; 2091 n = prev; 2092 } 2093 return rb_entry(n, struct sp_node, nd); 2094 } 2095 2096 /* 2097 * Insert a new shared policy into the list. Caller holds sp->lock for 2098 * writing. 2099 */ 2100 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2101 { 2102 struct rb_node **p = &sp->root.rb_node; 2103 struct rb_node *parent = NULL; 2104 struct sp_node *nd; 2105 2106 while (*p) { 2107 parent = *p; 2108 nd = rb_entry(parent, struct sp_node, nd); 2109 if (new->start < nd->start) 2110 p = &(*p)->rb_left; 2111 else if (new->end > nd->end) 2112 p = &(*p)->rb_right; 2113 else 2114 BUG(); 2115 } 2116 rb_link_node(&new->nd, parent, p); 2117 rb_insert_color(&new->nd, &sp->root); 2118 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2119 new->policy ? new->policy->mode : 0); 2120 } 2121 2122 /* Find shared policy intersecting idx */ 2123 struct mempolicy * 2124 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2125 { 2126 struct mempolicy *pol = NULL; 2127 struct sp_node *sn; 2128 2129 if (!sp->root.rb_node) 2130 return NULL; 2131 read_lock(&sp->lock); 2132 sn = sp_lookup(sp, idx, idx+1); 2133 if (sn) { 2134 mpol_get(sn->policy); 2135 pol = sn->policy; 2136 } 2137 read_unlock(&sp->lock); 2138 return pol; 2139 } 2140 2141 static void sp_free(struct sp_node *n) 2142 { 2143 mpol_put(n->policy); 2144 kmem_cache_free(sn_cache, n); 2145 } 2146 2147 /** 2148 * mpol_misplaced - check whether current page node is valid in policy 2149 * 2150 * @page: page to be checked 2151 * @vma: vm area where page mapped 2152 * @addr: virtual address where page mapped 2153 * 2154 * Lookup current policy node id for vma,addr and "compare to" page's 2155 * node id. 2156 * 2157 * Returns: 2158 * -1 - not misplaced, page is in the right node 2159 * node - node id where the page should be 2160 * 2161 * Policy determination "mimics" alloc_page_vma(). 2162 * Called from fault path where we know the vma and faulting address. 2163 */ 2164 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2165 { 2166 struct mempolicy *pol; 2167 struct zoneref *z; 2168 int curnid = page_to_nid(page); 2169 unsigned long pgoff; 2170 int thiscpu = raw_smp_processor_id(); 2171 int thisnid = cpu_to_node(thiscpu); 2172 int polnid = -1; 2173 int ret = -1; 2174 2175 BUG_ON(!vma); 2176 2177 pol = get_vma_policy(vma, addr); 2178 if (!(pol->flags & MPOL_F_MOF)) 2179 goto out; 2180 2181 switch (pol->mode) { 2182 case MPOL_INTERLEAVE: 2183 BUG_ON(addr >= vma->vm_end); 2184 BUG_ON(addr < vma->vm_start); 2185 2186 pgoff = vma->vm_pgoff; 2187 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2188 polnid = offset_il_node(pol, vma, pgoff); 2189 break; 2190 2191 case MPOL_PREFERRED: 2192 if (pol->flags & MPOL_F_LOCAL) 2193 polnid = numa_node_id(); 2194 else 2195 polnid = pol->v.preferred_node; 2196 break; 2197 2198 case MPOL_BIND: 2199 2200 /* 2201 * allows binding to multiple nodes. 2202 * use current page if in policy nodemask, 2203 * else select nearest allowed node, if any. 2204 * If no allowed nodes, use current [!misplaced]. 2205 */ 2206 if (node_isset(curnid, pol->v.nodes)) 2207 goto out; 2208 z = first_zones_zonelist( 2209 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2210 gfp_zone(GFP_HIGHUSER), 2211 &pol->v.nodes); 2212 polnid = z->zone->node; 2213 break; 2214 2215 default: 2216 BUG(); 2217 } 2218 2219 /* Migrate the page towards the node whose CPU is referencing it */ 2220 if (pol->flags & MPOL_F_MORON) { 2221 polnid = thisnid; 2222 2223 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2224 goto out; 2225 } 2226 2227 if (curnid != polnid) 2228 ret = polnid; 2229 out: 2230 mpol_cond_put(pol); 2231 2232 return ret; 2233 } 2234 2235 /* 2236 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2237 * dropped after task->mempolicy is set to NULL so that any allocation done as 2238 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2239 * policy. 2240 */ 2241 void mpol_put_task_policy(struct task_struct *task) 2242 { 2243 struct mempolicy *pol; 2244 2245 task_lock(task); 2246 pol = task->mempolicy; 2247 task->mempolicy = NULL; 2248 task_unlock(task); 2249 mpol_put(pol); 2250 } 2251 2252 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2253 { 2254 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2255 rb_erase(&n->nd, &sp->root); 2256 sp_free(n); 2257 } 2258 2259 static void sp_node_init(struct sp_node *node, unsigned long start, 2260 unsigned long end, struct mempolicy *pol) 2261 { 2262 node->start = start; 2263 node->end = end; 2264 node->policy = pol; 2265 } 2266 2267 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2268 struct mempolicy *pol) 2269 { 2270 struct sp_node *n; 2271 struct mempolicy *newpol; 2272 2273 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2274 if (!n) 2275 return NULL; 2276 2277 newpol = mpol_dup(pol); 2278 if (IS_ERR(newpol)) { 2279 kmem_cache_free(sn_cache, n); 2280 return NULL; 2281 } 2282 newpol->flags |= MPOL_F_SHARED; 2283 sp_node_init(n, start, end, newpol); 2284 2285 return n; 2286 } 2287 2288 /* Replace a policy range. */ 2289 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2290 unsigned long end, struct sp_node *new) 2291 { 2292 struct sp_node *n; 2293 struct sp_node *n_new = NULL; 2294 struct mempolicy *mpol_new = NULL; 2295 int ret = 0; 2296 2297 restart: 2298 write_lock(&sp->lock); 2299 n = sp_lookup(sp, start, end); 2300 /* Take care of old policies in the same range. */ 2301 while (n && n->start < end) { 2302 struct rb_node *next = rb_next(&n->nd); 2303 if (n->start >= start) { 2304 if (n->end <= end) 2305 sp_delete(sp, n); 2306 else 2307 n->start = end; 2308 } else { 2309 /* Old policy spanning whole new range. */ 2310 if (n->end > end) { 2311 if (!n_new) 2312 goto alloc_new; 2313 2314 *mpol_new = *n->policy; 2315 atomic_set(&mpol_new->refcnt, 1); 2316 sp_node_init(n_new, end, n->end, mpol_new); 2317 n->end = start; 2318 sp_insert(sp, n_new); 2319 n_new = NULL; 2320 mpol_new = NULL; 2321 break; 2322 } else 2323 n->end = start; 2324 } 2325 if (!next) 2326 break; 2327 n = rb_entry(next, struct sp_node, nd); 2328 } 2329 if (new) 2330 sp_insert(sp, new); 2331 write_unlock(&sp->lock); 2332 ret = 0; 2333 2334 err_out: 2335 if (mpol_new) 2336 mpol_put(mpol_new); 2337 if (n_new) 2338 kmem_cache_free(sn_cache, n_new); 2339 2340 return ret; 2341 2342 alloc_new: 2343 write_unlock(&sp->lock); 2344 ret = -ENOMEM; 2345 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2346 if (!n_new) 2347 goto err_out; 2348 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2349 if (!mpol_new) 2350 goto err_out; 2351 goto restart; 2352 } 2353 2354 /** 2355 * mpol_shared_policy_init - initialize shared policy for inode 2356 * @sp: pointer to inode shared policy 2357 * @mpol: struct mempolicy to install 2358 * 2359 * Install non-NULL @mpol in inode's shared policy rb-tree. 2360 * On entry, the current task has a reference on a non-NULL @mpol. 2361 * This must be released on exit. 2362 * This is called at get_inode() calls and we can use GFP_KERNEL. 2363 */ 2364 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2365 { 2366 int ret; 2367 2368 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2369 rwlock_init(&sp->lock); 2370 2371 if (mpol) { 2372 struct vm_area_struct pvma; 2373 struct mempolicy *new; 2374 NODEMASK_SCRATCH(scratch); 2375 2376 if (!scratch) 2377 goto put_mpol; 2378 /* contextualize the tmpfs mount point mempolicy */ 2379 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2380 if (IS_ERR(new)) 2381 goto free_scratch; /* no valid nodemask intersection */ 2382 2383 task_lock(current); 2384 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2385 task_unlock(current); 2386 if (ret) 2387 goto put_new; 2388 2389 /* Create pseudo-vma that contains just the policy */ 2390 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2391 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2392 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2393 2394 put_new: 2395 mpol_put(new); /* drop initial ref */ 2396 free_scratch: 2397 NODEMASK_SCRATCH_FREE(scratch); 2398 put_mpol: 2399 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2400 } 2401 } 2402 2403 int mpol_set_shared_policy(struct shared_policy *info, 2404 struct vm_area_struct *vma, struct mempolicy *npol) 2405 { 2406 int err; 2407 struct sp_node *new = NULL; 2408 unsigned long sz = vma_pages(vma); 2409 2410 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2411 vma->vm_pgoff, 2412 sz, npol ? npol->mode : -1, 2413 npol ? npol->flags : -1, 2414 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2415 2416 if (npol) { 2417 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2418 if (!new) 2419 return -ENOMEM; 2420 } 2421 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2422 if (err && new) 2423 sp_free(new); 2424 return err; 2425 } 2426 2427 /* Free a backing policy store on inode delete. */ 2428 void mpol_free_shared_policy(struct shared_policy *p) 2429 { 2430 struct sp_node *n; 2431 struct rb_node *next; 2432 2433 if (!p->root.rb_node) 2434 return; 2435 write_lock(&p->lock); 2436 next = rb_first(&p->root); 2437 while (next) { 2438 n = rb_entry(next, struct sp_node, nd); 2439 next = rb_next(&n->nd); 2440 sp_delete(p, n); 2441 } 2442 write_unlock(&p->lock); 2443 } 2444 2445 #ifdef CONFIG_NUMA_BALANCING 2446 static int __initdata numabalancing_override; 2447 2448 static void __init check_numabalancing_enable(void) 2449 { 2450 bool numabalancing_default = false; 2451 2452 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2453 numabalancing_default = true; 2454 2455 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2456 if (numabalancing_override) 2457 set_numabalancing_state(numabalancing_override == 1); 2458 2459 if (num_online_nodes() > 1 && !numabalancing_override) { 2460 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2461 numabalancing_default ? "Enabling" : "Disabling"); 2462 set_numabalancing_state(numabalancing_default); 2463 } 2464 } 2465 2466 static int __init setup_numabalancing(char *str) 2467 { 2468 int ret = 0; 2469 if (!str) 2470 goto out; 2471 2472 if (!strcmp(str, "enable")) { 2473 numabalancing_override = 1; 2474 ret = 1; 2475 } else if (!strcmp(str, "disable")) { 2476 numabalancing_override = -1; 2477 ret = 1; 2478 } 2479 out: 2480 if (!ret) 2481 pr_warn("Unable to parse numa_balancing=\n"); 2482 2483 return ret; 2484 } 2485 __setup("numa_balancing=", setup_numabalancing); 2486 #else 2487 static inline void __init check_numabalancing_enable(void) 2488 { 2489 } 2490 #endif /* CONFIG_NUMA_BALANCING */ 2491 2492 /* assumes fs == KERNEL_DS */ 2493 void __init numa_policy_init(void) 2494 { 2495 nodemask_t interleave_nodes; 2496 unsigned long largest = 0; 2497 int nid, prefer = 0; 2498 2499 policy_cache = kmem_cache_create("numa_policy", 2500 sizeof(struct mempolicy), 2501 0, SLAB_PANIC, NULL); 2502 2503 sn_cache = kmem_cache_create("shared_policy_node", 2504 sizeof(struct sp_node), 2505 0, SLAB_PANIC, NULL); 2506 2507 for_each_node(nid) { 2508 preferred_node_policy[nid] = (struct mempolicy) { 2509 .refcnt = ATOMIC_INIT(1), 2510 .mode = MPOL_PREFERRED, 2511 .flags = MPOL_F_MOF | MPOL_F_MORON, 2512 .v = { .preferred_node = nid, }, 2513 }; 2514 } 2515 2516 /* 2517 * Set interleaving policy for system init. Interleaving is only 2518 * enabled across suitably sized nodes (default is >= 16MB), or 2519 * fall back to the largest node if they're all smaller. 2520 */ 2521 nodes_clear(interleave_nodes); 2522 for_each_node_state(nid, N_MEMORY) { 2523 unsigned long total_pages = node_present_pages(nid); 2524 2525 /* Preserve the largest node */ 2526 if (largest < total_pages) { 2527 largest = total_pages; 2528 prefer = nid; 2529 } 2530 2531 /* Interleave this node? */ 2532 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2533 node_set(nid, interleave_nodes); 2534 } 2535 2536 /* All too small, use the largest */ 2537 if (unlikely(nodes_empty(interleave_nodes))) 2538 node_set(prefer, interleave_nodes); 2539 2540 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2541 pr_err("%s: interleaving failed\n", __func__); 2542 2543 check_numabalancing_enable(); 2544 } 2545 2546 /* Reset policy of current process to default */ 2547 void numa_default_policy(void) 2548 { 2549 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2550 } 2551 2552 /* 2553 * Parse and format mempolicy from/to strings 2554 */ 2555 2556 /* 2557 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2558 */ 2559 static const char * const policy_modes[] = 2560 { 2561 [MPOL_DEFAULT] = "default", 2562 [MPOL_PREFERRED] = "prefer", 2563 [MPOL_BIND] = "bind", 2564 [MPOL_INTERLEAVE] = "interleave", 2565 [MPOL_LOCAL] = "local", 2566 }; 2567 2568 2569 #ifdef CONFIG_TMPFS 2570 /** 2571 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2572 * @str: string containing mempolicy to parse 2573 * @mpol: pointer to struct mempolicy pointer, returned on success. 2574 * 2575 * Format of input: 2576 * <mode>[=<flags>][:<nodelist>] 2577 * 2578 * On success, returns 0, else 1 2579 */ 2580 int mpol_parse_str(char *str, struct mempolicy **mpol) 2581 { 2582 struct mempolicy *new = NULL; 2583 unsigned short mode; 2584 unsigned short mode_flags; 2585 nodemask_t nodes; 2586 char *nodelist = strchr(str, ':'); 2587 char *flags = strchr(str, '='); 2588 int err = 1; 2589 2590 if (nodelist) { 2591 /* NUL-terminate mode or flags string */ 2592 *nodelist++ = '\0'; 2593 if (nodelist_parse(nodelist, nodes)) 2594 goto out; 2595 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2596 goto out; 2597 } else 2598 nodes_clear(nodes); 2599 2600 if (flags) 2601 *flags++ = '\0'; /* terminate mode string */ 2602 2603 for (mode = 0; mode < MPOL_MAX; mode++) { 2604 if (!strcmp(str, policy_modes[mode])) { 2605 break; 2606 } 2607 } 2608 if (mode >= MPOL_MAX) 2609 goto out; 2610 2611 switch (mode) { 2612 case MPOL_PREFERRED: 2613 /* 2614 * Insist on a nodelist of one node only 2615 */ 2616 if (nodelist) { 2617 char *rest = nodelist; 2618 while (isdigit(*rest)) 2619 rest++; 2620 if (*rest) 2621 goto out; 2622 } 2623 break; 2624 case MPOL_INTERLEAVE: 2625 /* 2626 * Default to online nodes with memory if no nodelist 2627 */ 2628 if (!nodelist) 2629 nodes = node_states[N_MEMORY]; 2630 break; 2631 case MPOL_LOCAL: 2632 /* 2633 * Don't allow a nodelist; mpol_new() checks flags 2634 */ 2635 if (nodelist) 2636 goto out; 2637 mode = MPOL_PREFERRED; 2638 break; 2639 case MPOL_DEFAULT: 2640 /* 2641 * Insist on a empty nodelist 2642 */ 2643 if (!nodelist) 2644 err = 0; 2645 goto out; 2646 case MPOL_BIND: 2647 /* 2648 * Insist on a nodelist 2649 */ 2650 if (!nodelist) 2651 goto out; 2652 } 2653 2654 mode_flags = 0; 2655 if (flags) { 2656 /* 2657 * Currently, we only support two mutually exclusive 2658 * mode flags. 2659 */ 2660 if (!strcmp(flags, "static")) 2661 mode_flags |= MPOL_F_STATIC_NODES; 2662 else if (!strcmp(flags, "relative")) 2663 mode_flags |= MPOL_F_RELATIVE_NODES; 2664 else 2665 goto out; 2666 } 2667 2668 new = mpol_new(mode, mode_flags, &nodes); 2669 if (IS_ERR(new)) 2670 goto out; 2671 2672 /* 2673 * Save nodes for mpol_to_str() to show the tmpfs mount options 2674 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2675 */ 2676 if (mode != MPOL_PREFERRED) 2677 new->v.nodes = nodes; 2678 else if (nodelist) 2679 new->v.preferred_node = first_node(nodes); 2680 else 2681 new->flags |= MPOL_F_LOCAL; 2682 2683 /* 2684 * Save nodes for contextualization: this will be used to "clone" 2685 * the mempolicy in a specific context [cpuset] at a later time. 2686 */ 2687 new->w.user_nodemask = nodes; 2688 2689 err = 0; 2690 2691 out: 2692 /* Restore string for error message */ 2693 if (nodelist) 2694 *--nodelist = ':'; 2695 if (flags) 2696 *--flags = '='; 2697 if (!err) 2698 *mpol = new; 2699 return err; 2700 } 2701 #endif /* CONFIG_TMPFS */ 2702 2703 /** 2704 * mpol_to_str - format a mempolicy structure for printing 2705 * @buffer: to contain formatted mempolicy string 2706 * @maxlen: length of @buffer 2707 * @pol: pointer to mempolicy to be formatted 2708 * 2709 * Convert @pol into a string. If @buffer is too short, truncate the string. 2710 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2711 * longest flag, "relative", and to display at least a few node ids. 2712 */ 2713 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2714 { 2715 char *p = buffer; 2716 nodemask_t nodes = NODE_MASK_NONE; 2717 unsigned short mode = MPOL_DEFAULT; 2718 unsigned short flags = 0; 2719 2720 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2721 mode = pol->mode; 2722 flags = pol->flags; 2723 } 2724 2725 switch (mode) { 2726 case MPOL_DEFAULT: 2727 break; 2728 case MPOL_PREFERRED: 2729 if (flags & MPOL_F_LOCAL) 2730 mode = MPOL_LOCAL; 2731 else 2732 node_set(pol->v.preferred_node, nodes); 2733 break; 2734 case MPOL_BIND: 2735 case MPOL_INTERLEAVE: 2736 nodes = pol->v.nodes; 2737 break; 2738 default: 2739 WARN_ON_ONCE(1); 2740 snprintf(p, maxlen, "unknown"); 2741 return; 2742 } 2743 2744 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2745 2746 if (flags & MPOL_MODE_FLAGS) { 2747 p += snprintf(p, buffer + maxlen - p, "="); 2748 2749 /* 2750 * Currently, the only defined flags are mutually exclusive 2751 */ 2752 if (flags & MPOL_F_STATIC_NODES) 2753 p += snprintf(p, buffer + maxlen - p, "static"); 2754 else if (flags & MPOL_F_RELATIVE_NODES) 2755 p += snprintf(p, buffer + maxlen - p, "relative"); 2756 } 2757 2758 if (!nodes_empty(nodes)) 2759 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2760 nodemask_pr_args(&nodes)); 2761 } 2762