1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 #include <linux/random.h> 101 102 #include "internal.h" 103 104 /* Internal flags */ 105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 107 108 static struct kmem_cache *policy_cache; 109 static struct kmem_cache *sn_cache; 110 111 /* Highest zone. An specific allocation for a zone below that is not 112 policied. */ 113 enum zone_type policy_zone = 0; 114 115 /* 116 * run-time system-wide default policy => local allocation 117 */ 118 static struct mempolicy default_policy = { 119 .refcnt = ATOMIC_INIT(1), /* never free it */ 120 .mode = MPOL_PREFERRED, 121 .flags = MPOL_F_LOCAL, 122 }; 123 124 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 125 126 static struct mempolicy *get_task_policy(struct task_struct *p) 127 { 128 struct mempolicy *pol = p->mempolicy; 129 130 if (!pol) { 131 int node = numa_node_id(); 132 133 if (node != NUMA_NO_NODE) { 134 pol = &preferred_node_policy[node]; 135 /* 136 * preferred_node_policy is not initialised early in 137 * boot 138 */ 139 if (!pol->mode) 140 pol = NULL; 141 } 142 } 143 144 return pol; 145 } 146 147 static const struct mempolicy_operations { 148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 149 /* 150 * If read-side task has no lock to protect task->mempolicy, write-side 151 * task will rebind the task->mempolicy by two step. The first step is 152 * setting all the newly nodes, and the second step is cleaning all the 153 * disallowed nodes. In this way, we can avoid finding no node to alloc 154 * page. 155 * If we have a lock to protect task->mempolicy in read-side, we do 156 * rebind directly. 157 * 158 * step: 159 * MPOL_REBIND_ONCE - do rebind work at once 160 * MPOL_REBIND_STEP1 - set all the newly nodes 161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 162 */ 163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 164 enum mpol_rebind_step step); 165 } mpol_ops[MPOL_MAX]; 166 167 /* Check that the nodemask contains at least one populated zone */ 168 static int is_valid_nodemask(const nodemask_t *nodemask) 169 { 170 return nodes_intersects(*nodemask, node_states[N_MEMORY]); 171 } 172 173 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 174 { 175 return pol->flags & MPOL_MODE_FLAGS; 176 } 177 178 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 179 const nodemask_t *rel) 180 { 181 nodemask_t tmp; 182 nodes_fold(tmp, *orig, nodes_weight(*rel)); 183 nodes_onto(*ret, tmp, *rel); 184 } 185 186 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 195 { 196 if (!nodes) 197 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 198 else if (nodes_empty(*nodes)) 199 return -EINVAL; /* no allowed nodes */ 200 else 201 pol->v.preferred_node = first_node(*nodes); 202 return 0; 203 } 204 205 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 206 { 207 if (!is_valid_nodemask(nodes)) 208 return -EINVAL; 209 pol->v.nodes = *nodes; 210 return 0; 211 } 212 213 /* 214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 215 * any, for the new policy. mpol_new() has already validated the nodes 216 * parameter with respect to the policy mode and flags. But, we need to 217 * handle an empty nodemask with MPOL_PREFERRED here. 218 * 219 * Must be called holding task's alloc_lock to protect task's mems_allowed 220 * and mempolicy. May also be called holding the mmap_semaphore for write. 221 */ 222 static int mpol_set_nodemask(struct mempolicy *pol, 223 const nodemask_t *nodes, struct nodemask_scratch *nsc) 224 { 225 int ret; 226 227 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 228 if (pol == NULL) 229 return 0; 230 /* Check N_MEMORY */ 231 nodes_and(nsc->mask1, 232 cpuset_current_mems_allowed, node_states[N_MEMORY]); 233 234 VM_BUG_ON(!nodes); 235 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 236 nodes = NULL; /* explicit local allocation */ 237 else { 238 if (pol->flags & MPOL_F_RELATIVE_NODES) 239 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 240 else 241 nodes_and(nsc->mask2, *nodes, nsc->mask1); 242 243 if (mpol_store_user_nodemask(pol)) 244 pol->w.user_nodemask = *nodes; 245 else 246 pol->w.cpuset_mems_allowed = 247 cpuset_current_mems_allowed; 248 } 249 250 if (nodes) 251 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 252 else 253 ret = mpol_ops[pol->mode].create(pol, NULL); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 } 287 } else if (mode == MPOL_LOCAL) { 288 if (!nodes_empty(*nodes)) 289 return ERR_PTR(-EINVAL); 290 mode = MPOL_PREFERRED; 291 } else if (nodes_empty(*nodes)) 292 return ERR_PTR(-EINVAL); 293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 294 if (!policy) 295 return ERR_PTR(-ENOMEM); 296 atomic_set(&policy->refcnt, 1); 297 policy->mode = mode; 298 policy->flags = flags; 299 300 return policy; 301 } 302 303 /* Slow path of a mpol destructor. */ 304 void __mpol_put(struct mempolicy *p) 305 { 306 if (!atomic_dec_and_test(&p->refcnt)) 307 return; 308 kmem_cache_free(policy_cache, p); 309 } 310 311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 312 enum mpol_rebind_step step) 313 { 314 } 315 316 /* 317 * step: 318 * MPOL_REBIND_ONCE - do rebind work at once 319 * MPOL_REBIND_STEP1 - set all the newly nodes 320 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 321 */ 322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 323 enum mpol_rebind_step step) 324 { 325 nodemask_t tmp; 326 327 if (pol->flags & MPOL_F_STATIC_NODES) 328 nodes_and(tmp, pol->w.user_nodemask, *nodes); 329 else if (pol->flags & MPOL_F_RELATIVE_NODES) 330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 331 else { 332 /* 333 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 334 * result 335 */ 336 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 337 nodes_remap(tmp, pol->v.nodes, 338 pol->w.cpuset_mems_allowed, *nodes); 339 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 340 } else if (step == MPOL_REBIND_STEP2) { 341 tmp = pol->w.cpuset_mems_allowed; 342 pol->w.cpuset_mems_allowed = *nodes; 343 } else 344 BUG(); 345 } 346 347 if (nodes_empty(tmp)) 348 tmp = *nodes; 349 350 if (step == MPOL_REBIND_STEP1) 351 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 352 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 353 pol->v.nodes = tmp; 354 else 355 BUG(); 356 357 if (!node_isset(current->il_next, tmp)) { 358 current->il_next = next_node(current->il_next, tmp); 359 if (current->il_next >= MAX_NUMNODES) 360 current->il_next = first_node(tmp); 361 if (current->il_next >= MAX_NUMNODES) 362 current->il_next = numa_node_id(); 363 } 364 } 365 366 static void mpol_rebind_preferred(struct mempolicy *pol, 367 const nodemask_t *nodes, 368 enum mpol_rebind_step step) 369 { 370 nodemask_t tmp; 371 372 if (pol->flags & MPOL_F_STATIC_NODES) { 373 int node = first_node(pol->w.user_nodemask); 374 375 if (node_isset(node, *nodes)) { 376 pol->v.preferred_node = node; 377 pol->flags &= ~MPOL_F_LOCAL; 378 } else 379 pol->flags |= MPOL_F_LOCAL; 380 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 381 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 382 pol->v.preferred_node = first_node(tmp); 383 } else if (!(pol->flags & MPOL_F_LOCAL)) { 384 pol->v.preferred_node = node_remap(pol->v.preferred_node, 385 pol->w.cpuset_mems_allowed, 386 *nodes); 387 pol->w.cpuset_mems_allowed = *nodes; 388 } 389 } 390 391 /* 392 * mpol_rebind_policy - Migrate a policy to a different set of nodes 393 * 394 * If read-side task has no lock to protect task->mempolicy, write-side 395 * task will rebind the task->mempolicy by two step. The first step is 396 * setting all the newly nodes, and the second step is cleaning all the 397 * disallowed nodes. In this way, we can avoid finding no node to alloc 398 * page. 399 * If we have a lock to protect task->mempolicy in read-side, we do 400 * rebind directly. 401 * 402 * step: 403 * MPOL_REBIND_ONCE - do rebind work at once 404 * MPOL_REBIND_STEP1 - set all the newly nodes 405 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 406 */ 407 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 408 enum mpol_rebind_step step) 409 { 410 if (!pol) 411 return; 412 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 413 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 414 return; 415 416 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 417 return; 418 419 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 420 BUG(); 421 422 if (step == MPOL_REBIND_STEP1) 423 pol->flags |= MPOL_F_REBINDING; 424 else if (step == MPOL_REBIND_STEP2) 425 pol->flags &= ~MPOL_F_REBINDING; 426 else if (step >= MPOL_REBIND_NSTEP) 427 BUG(); 428 429 mpol_ops[pol->mode].rebind(pol, newmask, step); 430 } 431 432 /* 433 * Wrapper for mpol_rebind_policy() that just requires task 434 * pointer, and updates task mempolicy. 435 * 436 * Called with task's alloc_lock held. 437 */ 438 439 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 440 enum mpol_rebind_step step) 441 { 442 mpol_rebind_policy(tsk->mempolicy, new, step); 443 } 444 445 /* 446 * Rebind each vma in mm to new nodemask. 447 * 448 * Call holding a reference to mm. Takes mm->mmap_sem during call. 449 */ 450 451 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 452 { 453 struct vm_area_struct *vma; 454 455 down_write(&mm->mmap_sem); 456 for (vma = mm->mmap; vma; vma = vma->vm_next) 457 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 458 up_write(&mm->mmap_sem); 459 } 460 461 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 462 [MPOL_DEFAULT] = { 463 .rebind = mpol_rebind_default, 464 }, 465 [MPOL_INTERLEAVE] = { 466 .create = mpol_new_interleave, 467 .rebind = mpol_rebind_nodemask, 468 }, 469 [MPOL_PREFERRED] = { 470 .create = mpol_new_preferred, 471 .rebind = mpol_rebind_preferred, 472 }, 473 [MPOL_BIND] = { 474 .create = mpol_new_bind, 475 .rebind = mpol_rebind_nodemask, 476 }, 477 }; 478 479 static void migrate_page_add(struct page *page, struct list_head *pagelist, 480 unsigned long flags); 481 482 /* 483 * Scan through pages checking if pages follow certain conditions, 484 * and move them to the pagelist if they do. 485 */ 486 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 487 unsigned long addr, unsigned long end, 488 const nodemask_t *nodes, unsigned long flags, 489 void *private) 490 { 491 pte_t *orig_pte; 492 pte_t *pte; 493 spinlock_t *ptl; 494 495 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 496 do { 497 struct page *page; 498 int nid; 499 500 if (!pte_present(*pte)) 501 continue; 502 page = vm_normal_page(vma, addr, *pte); 503 if (!page) 504 continue; 505 /* 506 * vm_normal_page() filters out zero pages, but there might 507 * still be PageReserved pages to skip, perhaps in a VDSO. 508 */ 509 if (PageReserved(page)) 510 continue; 511 nid = page_to_nid(page); 512 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 513 continue; 514 515 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 516 migrate_page_add(page, private, flags); 517 else 518 break; 519 } while (pte++, addr += PAGE_SIZE, addr != end); 520 pte_unmap_unlock(orig_pte, ptl); 521 return addr != end; 522 } 523 524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma, 525 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags, 526 void *private) 527 { 528 #ifdef CONFIG_HUGETLB_PAGE 529 int nid; 530 struct page *page; 531 spinlock_t *ptl; 532 pte_t entry; 533 534 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd); 535 entry = huge_ptep_get((pte_t *)pmd); 536 if (!pte_present(entry)) 537 goto unlock; 538 page = pte_page(entry); 539 nid = page_to_nid(page); 540 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 541 goto unlock; 542 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 543 if (flags & (MPOL_MF_MOVE_ALL) || 544 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 545 isolate_huge_page(page, private); 546 unlock: 547 spin_unlock(ptl); 548 #else 549 BUG(); 550 #endif 551 } 552 553 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud, 554 unsigned long addr, unsigned long end, 555 const nodemask_t *nodes, unsigned long flags, 556 void *private) 557 { 558 pmd_t *pmd; 559 unsigned long next; 560 561 pmd = pmd_offset(pud, addr); 562 do { 563 next = pmd_addr_end(addr, end); 564 if (!pmd_present(*pmd)) 565 continue; 566 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) { 567 queue_pages_hugetlb_pmd_range(vma, pmd, nodes, 568 flags, private); 569 continue; 570 } 571 split_huge_page_pmd(vma, addr, pmd); 572 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 573 continue; 574 if (queue_pages_pte_range(vma, pmd, addr, next, nodes, 575 flags, private)) 576 return -EIO; 577 } while (pmd++, addr = next, addr != end); 578 return 0; 579 } 580 581 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 582 unsigned long addr, unsigned long end, 583 const nodemask_t *nodes, unsigned long flags, 584 void *private) 585 { 586 pud_t *pud; 587 unsigned long next; 588 589 pud = pud_offset(pgd, addr); 590 do { 591 next = pud_addr_end(addr, end); 592 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) 593 continue; 594 if (pud_none_or_clear_bad(pud)) 595 continue; 596 if (queue_pages_pmd_range(vma, pud, addr, next, nodes, 597 flags, private)) 598 return -EIO; 599 } while (pud++, addr = next, addr != end); 600 return 0; 601 } 602 603 static inline int queue_pages_pgd_range(struct vm_area_struct *vma, 604 unsigned long addr, unsigned long end, 605 const nodemask_t *nodes, unsigned long flags, 606 void *private) 607 { 608 pgd_t *pgd; 609 unsigned long next; 610 611 pgd = pgd_offset(vma->vm_mm, addr); 612 do { 613 next = pgd_addr_end(addr, end); 614 if (pgd_none_or_clear_bad(pgd)) 615 continue; 616 if (queue_pages_pud_range(vma, pgd, addr, next, nodes, 617 flags, private)) 618 return -EIO; 619 } while (pgd++, addr = next, addr != end); 620 return 0; 621 } 622 623 #ifdef CONFIG_NUMA_BALANCING 624 /* 625 * This is used to mark a range of virtual addresses to be inaccessible. 626 * These are later cleared by a NUMA hinting fault. Depending on these 627 * faults, pages may be migrated for better NUMA placement. 628 * 629 * This is assuming that NUMA faults are handled using PROT_NONE. If 630 * an architecture makes a different choice, it will need further 631 * changes to the core. 632 */ 633 unsigned long change_prot_numa(struct vm_area_struct *vma, 634 unsigned long addr, unsigned long end) 635 { 636 int nr_updated; 637 638 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1); 639 if (nr_updated) 640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 641 642 return nr_updated; 643 } 644 #else 645 static unsigned long change_prot_numa(struct vm_area_struct *vma, 646 unsigned long addr, unsigned long end) 647 { 648 return 0; 649 } 650 #endif /* CONFIG_NUMA_BALANCING */ 651 652 /* 653 * Walk through page tables and collect pages to be migrated. 654 * 655 * If pages found in a given range are on a set of nodes (determined by 656 * @nodes and @flags,) it's isolated and queued to the pagelist which is 657 * passed via @private.) 658 */ 659 static int 660 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 661 const nodemask_t *nodes, unsigned long flags, void *private) 662 { 663 int err = 0; 664 struct vm_area_struct *vma, *prev; 665 666 vma = find_vma(mm, start); 667 if (!vma) 668 return -EFAULT; 669 prev = NULL; 670 for (; vma && vma->vm_start < end; vma = vma->vm_next) { 671 unsigned long endvma = vma->vm_end; 672 673 if (endvma > end) 674 endvma = end; 675 if (vma->vm_start > start) 676 start = vma->vm_start; 677 678 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 679 if (!vma->vm_next && vma->vm_end < end) 680 return -EFAULT; 681 if (prev && prev->vm_end < vma->vm_start) 682 return -EFAULT; 683 } 684 685 if (flags & MPOL_MF_LAZY) { 686 change_prot_numa(vma, start, endvma); 687 goto next; 688 } 689 690 if ((flags & MPOL_MF_STRICT) || 691 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 692 vma_migratable(vma))) { 693 694 err = queue_pages_pgd_range(vma, start, endvma, nodes, 695 flags, private); 696 if (err) 697 break; 698 } 699 next: 700 prev = vma; 701 } 702 return err; 703 } 704 705 /* 706 * Apply policy to a single VMA 707 * This must be called with the mmap_sem held for writing. 708 */ 709 static int vma_replace_policy(struct vm_area_struct *vma, 710 struct mempolicy *pol) 711 { 712 int err; 713 struct mempolicy *old; 714 struct mempolicy *new; 715 716 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 717 vma->vm_start, vma->vm_end, vma->vm_pgoff, 718 vma->vm_ops, vma->vm_file, 719 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 720 721 new = mpol_dup(pol); 722 if (IS_ERR(new)) 723 return PTR_ERR(new); 724 725 if (vma->vm_ops && vma->vm_ops->set_policy) { 726 err = vma->vm_ops->set_policy(vma, new); 727 if (err) 728 goto err_out; 729 } 730 731 old = vma->vm_policy; 732 vma->vm_policy = new; /* protected by mmap_sem */ 733 mpol_put(old); 734 735 return 0; 736 err_out: 737 mpol_put(new); 738 return err; 739 } 740 741 /* Step 2: apply policy to a range and do splits. */ 742 static int mbind_range(struct mm_struct *mm, unsigned long start, 743 unsigned long end, struct mempolicy *new_pol) 744 { 745 struct vm_area_struct *next; 746 struct vm_area_struct *prev; 747 struct vm_area_struct *vma; 748 int err = 0; 749 pgoff_t pgoff; 750 unsigned long vmstart; 751 unsigned long vmend; 752 753 vma = find_vma(mm, start); 754 if (!vma || vma->vm_start > start) 755 return -EFAULT; 756 757 prev = vma->vm_prev; 758 if (start > vma->vm_start) 759 prev = vma; 760 761 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 762 next = vma->vm_next; 763 vmstart = max(start, vma->vm_start); 764 vmend = min(end, vma->vm_end); 765 766 if (mpol_equal(vma_policy(vma), new_pol)) 767 continue; 768 769 pgoff = vma->vm_pgoff + 770 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 771 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 772 vma->anon_vma, vma->vm_file, pgoff, 773 new_pol); 774 if (prev) { 775 vma = prev; 776 next = vma->vm_next; 777 if (mpol_equal(vma_policy(vma), new_pol)) 778 continue; 779 /* vma_merge() joined vma && vma->next, case 8 */ 780 goto replace; 781 } 782 if (vma->vm_start != vmstart) { 783 err = split_vma(vma->vm_mm, vma, vmstart, 1); 784 if (err) 785 goto out; 786 } 787 if (vma->vm_end != vmend) { 788 err = split_vma(vma->vm_mm, vma, vmend, 0); 789 if (err) 790 goto out; 791 } 792 replace: 793 err = vma_replace_policy(vma, new_pol); 794 if (err) 795 goto out; 796 } 797 798 out: 799 return err; 800 } 801 802 /* Set the process memory policy */ 803 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 804 nodemask_t *nodes) 805 { 806 struct mempolicy *new, *old; 807 struct mm_struct *mm = current->mm; 808 NODEMASK_SCRATCH(scratch); 809 int ret; 810 811 if (!scratch) 812 return -ENOMEM; 813 814 new = mpol_new(mode, flags, nodes); 815 if (IS_ERR(new)) { 816 ret = PTR_ERR(new); 817 goto out; 818 } 819 /* 820 * prevent changing our mempolicy while show_numa_maps() 821 * is using it. 822 * Note: do_set_mempolicy() can be called at init time 823 * with no 'mm'. 824 */ 825 if (mm) 826 down_write(&mm->mmap_sem); 827 task_lock(current); 828 ret = mpol_set_nodemask(new, nodes, scratch); 829 if (ret) { 830 task_unlock(current); 831 if (mm) 832 up_write(&mm->mmap_sem); 833 mpol_put(new); 834 goto out; 835 } 836 old = current->mempolicy; 837 current->mempolicy = new; 838 if (new && new->mode == MPOL_INTERLEAVE && 839 nodes_weight(new->v.nodes)) 840 current->il_next = first_node(new->v.nodes); 841 task_unlock(current); 842 if (mm) 843 up_write(&mm->mmap_sem); 844 845 mpol_put(old); 846 ret = 0; 847 out: 848 NODEMASK_SCRATCH_FREE(scratch); 849 return ret; 850 } 851 852 /* 853 * Return nodemask for policy for get_mempolicy() query 854 * 855 * Called with task's alloc_lock held 856 */ 857 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 858 { 859 nodes_clear(*nodes); 860 if (p == &default_policy) 861 return; 862 863 switch (p->mode) { 864 case MPOL_BIND: 865 /* Fall through */ 866 case MPOL_INTERLEAVE: 867 *nodes = p->v.nodes; 868 break; 869 case MPOL_PREFERRED: 870 if (!(p->flags & MPOL_F_LOCAL)) 871 node_set(p->v.preferred_node, *nodes); 872 /* else return empty node mask for local allocation */ 873 break; 874 default: 875 BUG(); 876 } 877 } 878 879 static int lookup_node(struct mm_struct *mm, unsigned long addr) 880 { 881 struct page *p; 882 int err; 883 884 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 885 if (err >= 0) { 886 err = page_to_nid(p); 887 put_page(p); 888 } 889 return err; 890 } 891 892 /* Retrieve NUMA policy */ 893 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 894 unsigned long addr, unsigned long flags) 895 { 896 int err; 897 struct mm_struct *mm = current->mm; 898 struct vm_area_struct *vma = NULL; 899 struct mempolicy *pol = current->mempolicy; 900 901 if (flags & 902 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 903 return -EINVAL; 904 905 if (flags & MPOL_F_MEMS_ALLOWED) { 906 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 907 return -EINVAL; 908 *policy = 0; /* just so it's initialized */ 909 task_lock(current); 910 *nmask = cpuset_current_mems_allowed; 911 task_unlock(current); 912 return 0; 913 } 914 915 if (flags & MPOL_F_ADDR) { 916 /* 917 * Do NOT fall back to task policy if the 918 * vma/shared policy at addr is NULL. We 919 * want to return MPOL_DEFAULT in this case. 920 */ 921 down_read(&mm->mmap_sem); 922 vma = find_vma_intersection(mm, addr, addr+1); 923 if (!vma) { 924 up_read(&mm->mmap_sem); 925 return -EFAULT; 926 } 927 if (vma->vm_ops && vma->vm_ops->get_policy) 928 pol = vma->vm_ops->get_policy(vma, addr); 929 else 930 pol = vma->vm_policy; 931 } else if (addr) 932 return -EINVAL; 933 934 if (!pol) 935 pol = &default_policy; /* indicates default behavior */ 936 937 if (flags & MPOL_F_NODE) { 938 if (flags & MPOL_F_ADDR) { 939 err = lookup_node(mm, addr); 940 if (err < 0) 941 goto out; 942 *policy = err; 943 } else if (pol == current->mempolicy && 944 pol->mode == MPOL_INTERLEAVE) { 945 *policy = current->il_next; 946 } else { 947 err = -EINVAL; 948 goto out; 949 } 950 } else { 951 *policy = pol == &default_policy ? MPOL_DEFAULT : 952 pol->mode; 953 /* 954 * Internal mempolicy flags must be masked off before exposing 955 * the policy to userspace. 956 */ 957 *policy |= (pol->flags & MPOL_MODE_FLAGS); 958 } 959 960 if (vma) { 961 up_read(¤t->mm->mmap_sem); 962 vma = NULL; 963 } 964 965 err = 0; 966 if (nmask) { 967 if (mpol_store_user_nodemask(pol)) { 968 *nmask = pol->w.user_nodemask; 969 } else { 970 task_lock(current); 971 get_policy_nodemask(pol, nmask); 972 task_unlock(current); 973 } 974 } 975 976 out: 977 mpol_cond_put(pol); 978 if (vma) 979 up_read(¤t->mm->mmap_sem); 980 return err; 981 } 982 983 #ifdef CONFIG_MIGRATION 984 /* 985 * page migration 986 */ 987 static void migrate_page_add(struct page *page, struct list_head *pagelist, 988 unsigned long flags) 989 { 990 /* 991 * Avoid migrating a page that is shared with others. 992 */ 993 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 994 if (!isolate_lru_page(page)) { 995 list_add_tail(&page->lru, pagelist); 996 inc_zone_page_state(page, NR_ISOLATED_ANON + 997 page_is_file_cache(page)); 998 } 999 } 1000 } 1001 1002 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 1003 { 1004 if (PageHuge(page)) 1005 return alloc_huge_page_node(page_hstate(compound_head(page)), 1006 node); 1007 else 1008 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 1009 } 1010 1011 /* 1012 * Migrate pages from one node to a target node. 1013 * Returns error or the number of pages not migrated. 1014 */ 1015 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1016 int flags) 1017 { 1018 nodemask_t nmask; 1019 LIST_HEAD(pagelist); 1020 int err = 0; 1021 1022 nodes_clear(nmask); 1023 node_set(source, nmask); 1024 1025 /* 1026 * This does not "check" the range but isolates all pages that 1027 * need migration. Between passing in the full user address 1028 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1029 */ 1030 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1031 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1032 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1033 1034 if (!list_empty(&pagelist)) { 1035 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1036 MIGRATE_SYNC, MR_SYSCALL); 1037 if (err) 1038 putback_movable_pages(&pagelist); 1039 } 1040 1041 return err; 1042 } 1043 1044 /* 1045 * Move pages between the two nodesets so as to preserve the physical 1046 * layout as much as possible. 1047 * 1048 * Returns the number of page that could not be moved. 1049 */ 1050 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1051 const nodemask_t *to, int flags) 1052 { 1053 int busy = 0; 1054 int err; 1055 nodemask_t tmp; 1056 1057 err = migrate_prep(); 1058 if (err) 1059 return err; 1060 1061 down_read(&mm->mmap_sem); 1062 1063 err = migrate_vmas(mm, from, to, flags); 1064 if (err) 1065 goto out; 1066 1067 /* 1068 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1069 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1070 * bit in 'tmp', and return that <source, dest> pair for migration. 1071 * The pair of nodemasks 'to' and 'from' define the map. 1072 * 1073 * If no pair of bits is found that way, fallback to picking some 1074 * pair of 'source' and 'dest' bits that are not the same. If the 1075 * 'source' and 'dest' bits are the same, this represents a node 1076 * that will be migrating to itself, so no pages need move. 1077 * 1078 * If no bits are left in 'tmp', or if all remaining bits left 1079 * in 'tmp' correspond to the same bit in 'to', return false 1080 * (nothing left to migrate). 1081 * 1082 * This lets us pick a pair of nodes to migrate between, such that 1083 * if possible the dest node is not already occupied by some other 1084 * source node, minimizing the risk of overloading the memory on a 1085 * node that would happen if we migrated incoming memory to a node 1086 * before migrating outgoing memory source that same node. 1087 * 1088 * A single scan of tmp is sufficient. As we go, we remember the 1089 * most recent <s, d> pair that moved (s != d). If we find a pair 1090 * that not only moved, but what's better, moved to an empty slot 1091 * (d is not set in tmp), then we break out then, with that pair. 1092 * Otherwise when we finish scanning from_tmp, we at least have the 1093 * most recent <s, d> pair that moved. If we get all the way through 1094 * the scan of tmp without finding any node that moved, much less 1095 * moved to an empty node, then there is nothing left worth migrating. 1096 */ 1097 1098 tmp = *from; 1099 while (!nodes_empty(tmp)) { 1100 int s,d; 1101 int source = NUMA_NO_NODE; 1102 int dest = 0; 1103 1104 for_each_node_mask(s, tmp) { 1105 1106 /* 1107 * do_migrate_pages() tries to maintain the relative 1108 * node relationship of the pages established between 1109 * threads and memory areas. 1110 * 1111 * However if the number of source nodes is not equal to 1112 * the number of destination nodes we can not preserve 1113 * this node relative relationship. In that case, skip 1114 * copying memory from a node that is in the destination 1115 * mask. 1116 * 1117 * Example: [2,3,4] -> [3,4,5] moves everything. 1118 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1119 */ 1120 1121 if ((nodes_weight(*from) != nodes_weight(*to)) && 1122 (node_isset(s, *to))) 1123 continue; 1124 1125 d = node_remap(s, *from, *to); 1126 if (s == d) 1127 continue; 1128 1129 source = s; /* Node moved. Memorize */ 1130 dest = d; 1131 1132 /* dest not in remaining from nodes? */ 1133 if (!node_isset(dest, tmp)) 1134 break; 1135 } 1136 if (source == NUMA_NO_NODE) 1137 break; 1138 1139 node_clear(source, tmp); 1140 err = migrate_to_node(mm, source, dest, flags); 1141 if (err > 0) 1142 busy += err; 1143 if (err < 0) 1144 break; 1145 } 1146 out: 1147 up_read(&mm->mmap_sem); 1148 if (err < 0) 1149 return err; 1150 return busy; 1151 1152 } 1153 1154 /* 1155 * Allocate a new page for page migration based on vma policy. 1156 * Start by assuming the page is mapped by the same vma as contains @start. 1157 * Search forward from there, if not. N.B., this assumes that the 1158 * list of pages handed to migrate_pages()--which is how we get here-- 1159 * is in virtual address order. 1160 */ 1161 static struct page *new_page(struct page *page, unsigned long start, int **x) 1162 { 1163 struct vm_area_struct *vma; 1164 unsigned long uninitialized_var(address); 1165 1166 vma = find_vma(current->mm, start); 1167 while (vma) { 1168 address = page_address_in_vma(page, vma); 1169 if (address != -EFAULT) 1170 break; 1171 vma = vma->vm_next; 1172 } 1173 1174 if (PageHuge(page)) { 1175 BUG_ON(!vma); 1176 return alloc_huge_page_noerr(vma, address, 1); 1177 } 1178 /* 1179 * if !vma, alloc_page_vma() will use task or system default policy 1180 */ 1181 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1182 } 1183 #else 1184 1185 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1186 unsigned long flags) 1187 { 1188 } 1189 1190 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1191 const nodemask_t *to, int flags) 1192 { 1193 return -ENOSYS; 1194 } 1195 1196 static struct page *new_page(struct page *page, unsigned long start, int **x) 1197 { 1198 return NULL; 1199 } 1200 #endif 1201 1202 static long do_mbind(unsigned long start, unsigned long len, 1203 unsigned short mode, unsigned short mode_flags, 1204 nodemask_t *nmask, unsigned long flags) 1205 { 1206 struct mm_struct *mm = current->mm; 1207 struct mempolicy *new; 1208 unsigned long end; 1209 int err; 1210 LIST_HEAD(pagelist); 1211 1212 if (flags & ~(unsigned long)MPOL_MF_VALID) 1213 return -EINVAL; 1214 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1215 return -EPERM; 1216 1217 if (start & ~PAGE_MASK) 1218 return -EINVAL; 1219 1220 if (mode == MPOL_DEFAULT) 1221 flags &= ~MPOL_MF_STRICT; 1222 1223 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1224 end = start + len; 1225 1226 if (end < start) 1227 return -EINVAL; 1228 if (end == start) 1229 return 0; 1230 1231 new = mpol_new(mode, mode_flags, nmask); 1232 if (IS_ERR(new)) 1233 return PTR_ERR(new); 1234 1235 if (flags & MPOL_MF_LAZY) 1236 new->flags |= MPOL_F_MOF; 1237 1238 /* 1239 * If we are using the default policy then operation 1240 * on discontinuous address spaces is okay after all 1241 */ 1242 if (!new) 1243 flags |= MPOL_MF_DISCONTIG_OK; 1244 1245 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1246 start, start + len, mode, mode_flags, 1247 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1248 1249 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1250 1251 err = migrate_prep(); 1252 if (err) 1253 goto mpol_out; 1254 } 1255 { 1256 NODEMASK_SCRATCH(scratch); 1257 if (scratch) { 1258 down_write(&mm->mmap_sem); 1259 task_lock(current); 1260 err = mpol_set_nodemask(new, nmask, scratch); 1261 task_unlock(current); 1262 if (err) 1263 up_write(&mm->mmap_sem); 1264 } else 1265 err = -ENOMEM; 1266 NODEMASK_SCRATCH_FREE(scratch); 1267 } 1268 if (err) 1269 goto mpol_out; 1270 1271 err = queue_pages_range(mm, start, end, nmask, 1272 flags | MPOL_MF_INVERT, &pagelist); 1273 if (!err) 1274 err = mbind_range(mm, start, end, new); 1275 1276 if (!err) { 1277 int nr_failed = 0; 1278 1279 if (!list_empty(&pagelist)) { 1280 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1281 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1282 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1283 if (nr_failed) 1284 putback_movable_pages(&pagelist); 1285 } 1286 1287 if (nr_failed && (flags & MPOL_MF_STRICT)) 1288 err = -EIO; 1289 } else 1290 putback_movable_pages(&pagelist); 1291 1292 up_write(&mm->mmap_sem); 1293 mpol_out: 1294 mpol_put(new); 1295 return err; 1296 } 1297 1298 /* 1299 * User space interface with variable sized bitmaps for nodelists. 1300 */ 1301 1302 /* Copy a node mask from user space. */ 1303 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1304 unsigned long maxnode) 1305 { 1306 unsigned long k; 1307 unsigned long nlongs; 1308 unsigned long endmask; 1309 1310 --maxnode; 1311 nodes_clear(*nodes); 1312 if (maxnode == 0 || !nmask) 1313 return 0; 1314 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1315 return -EINVAL; 1316 1317 nlongs = BITS_TO_LONGS(maxnode); 1318 if ((maxnode % BITS_PER_LONG) == 0) 1319 endmask = ~0UL; 1320 else 1321 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1322 1323 /* When the user specified more nodes than supported just check 1324 if the non supported part is all zero. */ 1325 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1326 if (nlongs > PAGE_SIZE/sizeof(long)) 1327 return -EINVAL; 1328 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1329 unsigned long t; 1330 if (get_user(t, nmask + k)) 1331 return -EFAULT; 1332 if (k == nlongs - 1) { 1333 if (t & endmask) 1334 return -EINVAL; 1335 } else if (t) 1336 return -EINVAL; 1337 } 1338 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1339 endmask = ~0UL; 1340 } 1341 1342 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1343 return -EFAULT; 1344 nodes_addr(*nodes)[nlongs-1] &= endmask; 1345 return 0; 1346 } 1347 1348 /* Copy a kernel node mask to user space */ 1349 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1350 nodemask_t *nodes) 1351 { 1352 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1353 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1354 1355 if (copy > nbytes) { 1356 if (copy > PAGE_SIZE) 1357 return -EINVAL; 1358 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1359 return -EFAULT; 1360 copy = nbytes; 1361 } 1362 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1363 } 1364 1365 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1366 unsigned long, mode, const unsigned long __user *, nmask, 1367 unsigned long, maxnode, unsigned, flags) 1368 { 1369 nodemask_t nodes; 1370 int err; 1371 unsigned short mode_flags; 1372 1373 mode_flags = mode & MPOL_MODE_FLAGS; 1374 mode &= ~MPOL_MODE_FLAGS; 1375 if (mode >= MPOL_MAX) 1376 return -EINVAL; 1377 if ((mode_flags & MPOL_F_STATIC_NODES) && 1378 (mode_flags & MPOL_F_RELATIVE_NODES)) 1379 return -EINVAL; 1380 err = get_nodes(&nodes, nmask, maxnode); 1381 if (err) 1382 return err; 1383 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1384 } 1385 1386 /* Set the process memory policy */ 1387 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1388 unsigned long, maxnode) 1389 { 1390 int err; 1391 nodemask_t nodes; 1392 unsigned short flags; 1393 1394 flags = mode & MPOL_MODE_FLAGS; 1395 mode &= ~MPOL_MODE_FLAGS; 1396 if ((unsigned int)mode >= MPOL_MAX) 1397 return -EINVAL; 1398 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1399 return -EINVAL; 1400 err = get_nodes(&nodes, nmask, maxnode); 1401 if (err) 1402 return err; 1403 return do_set_mempolicy(mode, flags, &nodes); 1404 } 1405 1406 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1407 const unsigned long __user *, old_nodes, 1408 const unsigned long __user *, new_nodes) 1409 { 1410 const struct cred *cred = current_cred(), *tcred; 1411 struct mm_struct *mm = NULL; 1412 struct task_struct *task; 1413 nodemask_t task_nodes; 1414 int err; 1415 nodemask_t *old; 1416 nodemask_t *new; 1417 NODEMASK_SCRATCH(scratch); 1418 1419 if (!scratch) 1420 return -ENOMEM; 1421 1422 old = &scratch->mask1; 1423 new = &scratch->mask2; 1424 1425 err = get_nodes(old, old_nodes, maxnode); 1426 if (err) 1427 goto out; 1428 1429 err = get_nodes(new, new_nodes, maxnode); 1430 if (err) 1431 goto out; 1432 1433 /* Find the mm_struct */ 1434 rcu_read_lock(); 1435 task = pid ? find_task_by_vpid(pid) : current; 1436 if (!task) { 1437 rcu_read_unlock(); 1438 err = -ESRCH; 1439 goto out; 1440 } 1441 get_task_struct(task); 1442 1443 err = -EINVAL; 1444 1445 /* 1446 * Check if this process has the right to modify the specified 1447 * process. The right exists if the process has administrative 1448 * capabilities, superuser privileges or the same 1449 * userid as the target process. 1450 */ 1451 tcred = __task_cred(task); 1452 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1453 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1454 !capable(CAP_SYS_NICE)) { 1455 rcu_read_unlock(); 1456 err = -EPERM; 1457 goto out_put; 1458 } 1459 rcu_read_unlock(); 1460 1461 task_nodes = cpuset_mems_allowed(task); 1462 /* Is the user allowed to access the target nodes? */ 1463 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1464 err = -EPERM; 1465 goto out_put; 1466 } 1467 1468 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1469 err = -EINVAL; 1470 goto out_put; 1471 } 1472 1473 err = security_task_movememory(task); 1474 if (err) 1475 goto out_put; 1476 1477 mm = get_task_mm(task); 1478 put_task_struct(task); 1479 1480 if (!mm) { 1481 err = -EINVAL; 1482 goto out; 1483 } 1484 1485 err = do_migrate_pages(mm, old, new, 1486 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1487 1488 mmput(mm); 1489 out: 1490 NODEMASK_SCRATCH_FREE(scratch); 1491 1492 return err; 1493 1494 out_put: 1495 put_task_struct(task); 1496 goto out; 1497 1498 } 1499 1500 1501 /* Retrieve NUMA policy */ 1502 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1503 unsigned long __user *, nmask, unsigned long, maxnode, 1504 unsigned long, addr, unsigned long, flags) 1505 { 1506 int err; 1507 int uninitialized_var(pval); 1508 nodemask_t nodes; 1509 1510 if (nmask != NULL && maxnode < MAX_NUMNODES) 1511 return -EINVAL; 1512 1513 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1514 1515 if (err) 1516 return err; 1517 1518 if (policy && put_user(pval, policy)) 1519 return -EFAULT; 1520 1521 if (nmask) 1522 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1523 1524 return err; 1525 } 1526 1527 #ifdef CONFIG_COMPAT 1528 1529 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1530 compat_ulong_t __user *, nmask, 1531 compat_ulong_t, maxnode, 1532 compat_ulong_t, addr, compat_ulong_t, flags) 1533 { 1534 long err; 1535 unsigned long __user *nm = NULL; 1536 unsigned long nr_bits, alloc_size; 1537 DECLARE_BITMAP(bm, MAX_NUMNODES); 1538 1539 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1540 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1541 1542 if (nmask) 1543 nm = compat_alloc_user_space(alloc_size); 1544 1545 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1546 1547 if (!err && nmask) { 1548 unsigned long copy_size; 1549 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1550 err = copy_from_user(bm, nm, copy_size); 1551 /* ensure entire bitmap is zeroed */ 1552 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1553 err |= compat_put_bitmap(nmask, bm, nr_bits); 1554 } 1555 1556 return err; 1557 } 1558 1559 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1560 compat_ulong_t, maxnode) 1561 { 1562 long err = 0; 1563 unsigned long __user *nm = NULL; 1564 unsigned long nr_bits, alloc_size; 1565 DECLARE_BITMAP(bm, MAX_NUMNODES); 1566 1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1569 1570 if (nmask) { 1571 err = compat_get_bitmap(bm, nmask, nr_bits); 1572 nm = compat_alloc_user_space(alloc_size); 1573 err |= copy_to_user(nm, bm, alloc_size); 1574 } 1575 1576 if (err) 1577 return -EFAULT; 1578 1579 return sys_set_mempolicy(mode, nm, nr_bits+1); 1580 } 1581 1582 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1583 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1584 compat_ulong_t, maxnode, compat_ulong_t, flags) 1585 { 1586 long err = 0; 1587 unsigned long __user *nm = NULL; 1588 unsigned long nr_bits, alloc_size; 1589 nodemask_t bm; 1590 1591 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1592 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1593 1594 if (nmask) { 1595 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1596 nm = compat_alloc_user_space(alloc_size); 1597 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1598 } 1599 1600 if (err) 1601 return -EFAULT; 1602 1603 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1604 } 1605 1606 #endif 1607 1608 /* 1609 * get_vma_policy(@task, @vma, @addr) 1610 * @task: task for fallback if vma policy == default 1611 * @vma: virtual memory area whose policy is sought 1612 * @addr: address in @vma for shared policy lookup 1613 * 1614 * Returns effective policy for a VMA at specified address. 1615 * Falls back to @task or system default policy, as necessary. 1616 * Current or other task's task mempolicy and non-shared vma policies must be 1617 * protected by task_lock(task) by the caller. 1618 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1619 * count--added by the get_policy() vm_op, as appropriate--to protect against 1620 * freeing by another task. It is the caller's responsibility to free the 1621 * extra reference for shared policies. 1622 */ 1623 struct mempolicy *get_vma_policy(struct task_struct *task, 1624 struct vm_area_struct *vma, unsigned long addr) 1625 { 1626 struct mempolicy *pol = get_task_policy(task); 1627 1628 if (vma) { 1629 if (vma->vm_ops && vma->vm_ops->get_policy) { 1630 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1631 addr); 1632 if (vpol) 1633 pol = vpol; 1634 } else if (vma->vm_policy) { 1635 pol = vma->vm_policy; 1636 1637 /* 1638 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1639 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1640 * count on these policies which will be dropped by 1641 * mpol_cond_put() later 1642 */ 1643 if (mpol_needs_cond_ref(pol)) 1644 mpol_get(pol); 1645 } 1646 } 1647 if (!pol) 1648 pol = &default_policy; 1649 return pol; 1650 } 1651 1652 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma) 1653 { 1654 struct mempolicy *pol = get_task_policy(task); 1655 if (vma) { 1656 if (vma->vm_ops && vma->vm_ops->get_policy) { 1657 bool ret = false; 1658 1659 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1660 if (pol && (pol->flags & MPOL_F_MOF)) 1661 ret = true; 1662 mpol_cond_put(pol); 1663 1664 return ret; 1665 } else if (vma->vm_policy) { 1666 pol = vma->vm_policy; 1667 } 1668 } 1669 1670 if (!pol) 1671 return default_policy.flags & MPOL_F_MOF; 1672 1673 return pol->flags & MPOL_F_MOF; 1674 } 1675 1676 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1677 { 1678 enum zone_type dynamic_policy_zone = policy_zone; 1679 1680 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1681 1682 /* 1683 * if policy->v.nodes has movable memory only, 1684 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1685 * 1686 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1687 * so if the following test faile, it implies 1688 * policy->v.nodes has movable memory only. 1689 */ 1690 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1691 dynamic_policy_zone = ZONE_MOVABLE; 1692 1693 return zone >= dynamic_policy_zone; 1694 } 1695 1696 /* 1697 * Return a nodemask representing a mempolicy for filtering nodes for 1698 * page allocation 1699 */ 1700 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1701 { 1702 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1703 if (unlikely(policy->mode == MPOL_BIND) && 1704 apply_policy_zone(policy, gfp_zone(gfp)) && 1705 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1706 return &policy->v.nodes; 1707 1708 return NULL; 1709 } 1710 1711 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1712 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1713 int nd) 1714 { 1715 switch (policy->mode) { 1716 case MPOL_PREFERRED: 1717 if (!(policy->flags & MPOL_F_LOCAL)) 1718 nd = policy->v.preferred_node; 1719 break; 1720 case MPOL_BIND: 1721 /* 1722 * Normally, MPOL_BIND allocations are node-local within the 1723 * allowed nodemask. However, if __GFP_THISNODE is set and the 1724 * current node isn't part of the mask, we use the zonelist for 1725 * the first node in the mask instead. 1726 */ 1727 if (unlikely(gfp & __GFP_THISNODE) && 1728 unlikely(!node_isset(nd, policy->v.nodes))) 1729 nd = first_node(policy->v.nodes); 1730 break; 1731 default: 1732 BUG(); 1733 } 1734 return node_zonelist(nd, gfp); 1735 } 1736 1737 /* Do dynamic interleaving for a process */ 1738 static unsigned interleave_nodes(struct mempolicy *policy) 1739 { 1740 unsigned nid, next; 1741 struct task_struct *me = current; 1742 1743 nid = me->il_next; 1744 next = next_node(nid, policy->v.nodes); 1745 if (next >= MAX_NUMNODES) 1746 next = first_node(policy->v.nodes); 1747 if (next < MAX_NUMNODES) 1748 me->il_next = next; 1749 return nid; 1750 } 1751 1752 /* 1753 * Depending on the memory policy provide a node from which to allocate the 1754 * next slab entry. 1755 */ 1756 unsigned int mempolicy_slab_node(void) 1757 { 1758 struct mempolicy *policy; 1759 int node = numa_mem_id(); 1760 1761 if (in_interrupt()) 1762 return node; 1763 1764 policy = current->mempolicy; 1765 if (!policy || policy->flags & MPOL_F_LOCAL) 1766 return node; 1767 1768 switch (policy->mode) { 1769 case MPOL_PREFERRED: 1770 /* 1771 * handled MPOL_F_LOCAL above 1772 */ 1773 return policy->v.preferred_node; 1774 1775 case MPOL_INTERLEAVE: 1776 return interleave_nodes(policy); 1777 1778 case MPOL_BIND: { 1779 /* 1780 * Follow bind policy behavior and start allocation at the 1781 * first node. 1782 */ 1783 struct zonelist *zonelist; 1784 struct zone *zone; 1785 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1786 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1787 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1788 &policy->v.nodes, 1789 &zone); 1790 return zone ? zone->node : node; 1791 } 1792 1793 default: 1794 BUG(); 1795 } 1796 } 1797 1798 /* Do static interleaving for a VMA with known offset. */ 1799 static unsigned offset_il_node(struct mempolicy *pol, 1800 struct vm_area_struct *vma, unsigned long off) 1801 { 1802 unsigned nnodes = nodes_weight(pol->v.nodes); 1803 unsigned target; 1804 int c; 1805 int nid = NUMA_NO_NODE; 1806 1807 if (!nnodes) 1808 return numa_node_id(); 1809 target = (unsigned int)off % nnodes; 1810 c = 0; 1811 do { 1812 nid = next_node(nid, pol->v.nodes); 1813 c++; 1814 } while (c <= target); 1815 return nid; 1816 } 1817 1818 /* Determine a node number for interleave */ 1819 static inline unsigned interleave_nid(struct mempolicy *pol, 1820 struct vm_area_struct *vma, unsigned long addr, int shift) 1821 { 1822 if (vma) { 1823 unsigned long off; 1824 1825 /* 1826 * for small pages, there is no difference between 1827 * shift and PAGE_SHIFT, so the bit-shift is safe. 1828 * for huge pages, since vm_pgoff is in units of small 1829 * pages, we need to shift off the always 0 bits to get 1830 * a useful offset. 1831 */ 1832 BUG_ON(shift < PAGE_SHIFT); 1833 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1834 off += (addr - vma->vm_start) >> shift; 1835 return offset_il_node(pol, vma, off); 1836 } else 1837 return interleave_nodes(pol); 1838 } 1839 1840 /* 1841 * Return the bit number of a random bit set in the nodemask. 1842 * (returns NUMA_NO_NODE if nodemask is empty) 1843 */ 1844 int node_random(const nodemask_t *maskp) 1845 { 1846 int w, bit = NUMA_NO_NODE; 1847 1848 w = nodes_weight(*maskp); 1849 if (w) 1850 bit = bitmap_ord_to_pos(maskp->bits, 1851 get_random_int() % w, MAX_NUMNODES); 1852 return bit; 1853 } 1854 1855 #ifdef CONFIG_HUGETLBFS 1856 /* 1857 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1858 * @vma: virtual memory area whose policy is sought 1859 * @addr: address in @vma for shared policy lookup and interleave policy 1860 * @gfp_flags: for requested zone 1861 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1862 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1863 * 1864 * Returns a zonelist suitable for a huge page allocation and a pointer 1865 * to the struct mempolicy for conditional unref after allocation. 1866 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1867 * @nodemask for filtering the zonelist. 1868 * 1869 * Must be protected by read_mems_allowed_begin() 1870 */ 1871 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1872 gfp_t gfp_flags, struct mempolicy **mpol, 1873 nodemask_t **nodemask) 1874 { 1875 struct zonelist *zl; 1876 1877 *mpol = get_vma_policy(current, vma, addr); 1878 *nodemask = NULL; /* assume !MPOL_BIND */ 1879 1880 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1881 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1882 huge_page_shift(hstate_vma(vma))), gfp_flags); 1883 } else { 1884 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1885 if ((*mpol)->mode == MPOL_BIND) 1886 *nodemask = &(*mpol)->v.nodes; 1887 } 1888 return zl; 1889 } 1890 1891 /* 1892 * init_nodemask_of_mempolicy 1893 * 1894 * If the current task's mempolicy is "default" [NULL], return 'false' 1895 * to indicate default policy. Otherwise, extract the policy nodemask 1896 * for 'bind' or 'interleave' policy into the argument nodemask, or 1897 * initialize the argument nodemask to contain the single node for 1898 * 'preferred' or 'local' policy and return 'true' to indicate presence 1899 * of non-default mempolicy. 1900 * 1901 * We don't bother with reference counting the mempolicy [mpol_get/put] 1902 * because the current task is examining it's own mempolicy and a task's 1903 * mempolicy is only ever changed by the task itself. 1904 * 1905 * N.B., it is the caller's responsibility to free a returned nodemask. 1906 */ 1907 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1908 { 1909 struct mempolicy *mempolicy; 1910 int nid; 1911 1912 if (!(mask && current->mempolicy)) 1913 return false; 1914 1915 task_lock(current); 1916 mempolicy = current->mempolicy; 1917 switch (mempolicy->mode) { 1918 case MPOL_PREFERRED: 1919 if (mempolicy->flags & MPOL_F_LOCAL) 1920 nid = numa_node_id(); 1921 else 1922 nid = mempolicy->v.preferred_node; 1923 init_nodemask_of_node(mask, nid); 1924 break; 1925 1926 case MPOL_BIND: 1927 /* Fall through */ 1928 case MPOL_INTERLEAVE: 1929 *mask = mempolicy->v.nodes; 1930 break; 1931 1932 default: 1933 BUG(); 1934 } 1935 task_unlock(current); 1936 1937 return true; 1938 } 1939 #endif 1940 1941 /* 1942 * mempolicy_nodemask_intersects 1943 * 1944 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1945 * policy. Otherwise, check for intersection between mask and the policy 1946 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1947 * policy, always return true since it may allocate elsewhere on fallback. 1948 * 1949 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1950 */ 1951 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1952 const nodemask_t *mask) 1953 { 1954 struct mempolicy *mempolicy; 1955 bool ret = true; 1956 1957 if (!mask) 1958 return ret; 1959 task_lock(tsk); 1960 mempolicy = tsk->mempolicy; 1961 if (!mempolicy) 1962 goto out; 1963 1964 switch (mempolicy->mode) { 1965 case MPOL_PREFERRED: 1966 /* 1967 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1968 * allocate from, they may fallback to other nodes when oom. 1969 * Thus, it's possible for tsk to have allocated memory from 1970 * nodes in mask. 1971 */ 1972 break; 1973 case MPOL_BIND: 1974 case MPOL_INTERLEAVE: 1975 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1976 break; 1977 default: 1978 BUG(); 1979 } 1980 out: 1981 task_unlock(tsk); 1982 return ret; 1983 } 1984 1985 /* Allocate a page in interleaved policy. 1986 Own path because it needs to do special accounting. */ 1987 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1988 unsigned nid) 1989 { 1990 struct zonelist *zl; 1991 struct page *page; 1992 1993 zl = node_zonelist(nid, gfp); 1994 page = __alloc_pages(gfp, order, zl); 1995 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1996 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1997 return page; 1998 } 1999 2000 /** 2001 * alloc_pages_vma - Allocate a page for a VMA. 2002 * 2003 * @gfp: 2004 * %GFP_USER user allocation. 2005 * %GFP_KERNEL kernel allocations, 2006 * %GFP_HIGHMEM highmem/user allocations, 2007 * %GFP_FS allocation should not call back into a file system. 2008 * %GFP_ATOMIC don't sleep. 2009 * 2010 * @order:Order of the GFP allocation. 2011 * @vma: Pointer to VMA or NULL if not available. 2012 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2013 * 2014 * This function allocates a page from the kernel page pool and applies 2015 * a NUMA policy associated with the VMA or the current process. 2016 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2017 * mm_struct of the VMA to prevent it from going away. Should be used for 2018 * all allocations for pages that will be mapped into 2019 * user space. Returns NULL when no page can be allocated. 2020 * 2021 * Should be called with the mm_sem of the vma hold. 2022 */ 2023 struct page * 2024 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2025 unsigned long addr, int node) 2026 { 2027 struct mempolicy *pol; 2028 struct page *page; 2029 unsigned int cpuset_mems_cookie; 2030 2031 retry_cpuset: 2032 pol = get_vma_policy(current, vma, addr); 2033 cpuset_mems_cookie = read_mems_allowed_begin(); 2034 2035 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 2036 unsigned nid; 2037 2038 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2039 mpol_cond_put(pol); 2040 page = alloc_page_interleave(gfp, order, nid); 2041 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2042 goto retry_cpuset; 2043 2044 return page; 2045 } 2046 page = __alloc_pages_nodemask(gfp, order, 2047 policy_zonelist(gfp, pol, node), 2048 policy_nodemask(gfp, pol)); 2049 if (unlikely(mpol_needs_cond_ref(pol))) 2050 __mpol_put(pol); 2051 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2052 goto retry_cpuset; 2053 return page; 2054 } 2055 2056 /** 2057 * alloc_pages_current - Allocate pages. 2058 * 2059 * @gfp: 2060 * %GFP_USER user allocation, 2061 * %GFP_KERNEL kernel allocation, 2062 * %GFP_HIGHMEM highmem allocation, 2063 * %GFP_FS don't call back into a file system. 2064 * %GFP_ATOMIC don't sleep. 2065 * @order: Power of two of allocation size in pages. 0 is a single page. 2066 * 2067 * Allocate a page from the kernel page pool. When not in 2068 * interrupt context and apply the current process NUMA policy. 2069 * Returns NULL when no page can be allocated. 2070 * 2071 * Don't call cpuset_update_task_memory_state() unless 2072 * 1) it's ok to take cpuset_sem (can WAIT), and 2073 * 2) allocating for current task (not interrupt). 2074 */ 2075 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2076 { 2077 struct mempolicy *pol = get_task_policy(current); 2078 struct page *page; 2079 unsigned int cpuset_mems_cookie; 2080 2081 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 2082 pol = &default_policy; 2083 2084 retry_cpuset: 2085 cpuset_mems_cookie = read_mems_allowed_begin(); 2086 2087 /* 2088 * No reference counting needed for current->mempolicy 2089 * nor system default_policy 2090 */ 2091 if (pol->mode == MPOL_INTERLEAVE) 2092 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2093 else 2094 page = __alloc_pages_nodemask(gfp, order, 2095 policy_zonelist(gfp, pol, numa_node_id()), 2096 policy_nodemask(gfp, pol)); 2097 2098 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2099 goto retry_cpuset; 2100 2101 return page; 2102 } 2103 EXPORT_SYMBOL(alloc_pages_current); 2104 2105 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2106 { 2107 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2108 2109 if (IS_ERR(pol)) 2110 return PTR_ERR(pol); 2111 dst->vm_policy = pol; 2112 return 0; 2113 } 2114 2115 /* 2116 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2117 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2118 * with the mems_allowed returned by cpuset_mems_allowed(). This 2119 * keeps mempolicies cpuset relative after its cpuset moves. See 2120 * further kernel/cpuset.c update_nodemask(). 2121 * 2122 * current's mempolicy may be rebinded by the other task(the task that changes 2123 * cpuset's mems), so we needn't do rebind work for current task. 2124 */ 2125 2126 /* Slow path of a mempolicy duplicate */ 2127 struct mempolicy *__mpol_dup(struct mempolicy *old) 2128 { 2129 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2130 2131 if (!new) 2132 return ERR_PTR(-ENOMEM); 2133 2134 /* task's mempolicy is protected by alloc_lock */ 2135 if (old == current->mempolicy) { 2136 task_lock(current); 2137 *new = *old; 2138 task_unlock(current); 2139 } else 2140 *new = *old; 2141 2142 rcu_read_lock(); 2143 if (current_cpuset_is_being_rebound()) { 2144 nodemask_t mems = cpuset_mems_allowed(current); 2145 if (new->flags & MPOL_F_REBINDING) 2146 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2147 else 2148 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2149 } 2150 rcu_read_unlock(); 2151 atomic_set(&new->refcnt, 1); 2152 return new; 2153 } 2154 2155 /* Slow path of a mempolicy comparison */ 2156 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2157 { 2158 if (!a || !b) 2159 return false; 2160 if (a->mode != b->mode) 2161 return false; 2162 if (a->flags != b->flags) 2163 return false; 2164 if (mpol_store_user_nodemask(a)) 2165 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2166 return false; 2167 2168 switch (a->mode) { 2169 case MPOL_BIND: 2170 /* Fall through */ 2171 case MPOL_INTERLEAVE: 2172 return !!nodes_equal(a->v.nodes, b->v.nodes); 2173 case MPOL_PREFERRED: 2174 return a->v.preferred_node == b->v.preferred_node; 2175 default: 2176 BUG(); 2177 return false; 2178 } 2179 } 2180 2181 /* 2182 * Shared memory backing store policy support. 2183 * 2184 * Remember policies even when nobody has shared memory mapped. 2185 * The policies are kept in Red-Black tree linked from the inode. 2186 * They are protected by the sp->lock spinlock, which should be held 2187 * for any accesses to the tree. 2188 */ 2189 2190 /* lookup first element intersecting start-end */ 2191 /* Caller holds sp->lock */ 2192 static struct sp_node * 2193 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2194 { 2195 struct rb_node *n = sp->root.rb_node; 2196 2197 while (n) { 2198 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2199 2200 if (start >= p->end) 2201 n = n->rb_right; 2202 else if (end <= p->start) 2203 n = n->rb_left; 2204 else 2205 break; 2206 } 2207 if (!n) 2208 return NULL; 2209 for (;;) { 2210 struct sp_node *w = NULL; 2211 struct rb_node *prev = rb_prev(n); 2212 if (!prev) 2213 break; 2214 w = rb_entry(prev, struct sp_node, nd); 2215 if (w->end <= start) 2216 break; 2217 n = prev; 2218 } 2219 return rb_entry(n, struct sp_node, nd); 2220 } 2221 2222 /* Insert a new shared policy into the list. */ 2223 /* Caller holds sp->lock */ 2224 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2225 { 2226 struct rb_node **p = &sp->root.rb_node; 2227 struct rb_node *parent = NULL; 2228 struct sp_node *nd; 2229 2230 while (*p) { 2231 parent = *p; 2232 nd = rb_entry(parent, struct sp_node, nd); 2233 if (new->start < nd->start) 2234 p = &(*p)->rb_left; 2235 else if (new->end > nd->end) 2236 p = &(*p)->rb_right; 2237 else 2238 BUG(); 2239 } 2240 rb_link_node(&new->nd, parent, p); 2241 rb_insert_color(&new->nd, &sp->root); 2242 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2243 new->policy ? new->policy->mode : 0); 2244 } 2245 2246 /* Find shared policy intersecting idx */ 2247 struct mempolicy * 2248 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2249 { 2250 struct mempolicy *pol = NULL; 2251 struct sp_node *sn; 2252 2253 if (!sp->root.rb_node) 2254 return NULL; 2255 spin_lock(&sp->lock); 2256 sn = sp_lookup(sp, idx, idx+1); 2257 if (sn) { 2258 mpol_get(sn->policy); 2259 pol = sn->policy; 2260 } 2261 spin_unlock(&sp->lock); 2262 return pol; 2263 } 2264 2265 static void sp_free(struct sp_node *n) 2266 { 2267 mpol_put(n->policy); 2268 kmem_cache_free(sn_cache, n); 2269 } 2270 2271 /** 2272 * mpol_misplaced - check whether current page node is valid in policy 2273 * 2274 * @page: page to be checked 2275 * @vma: vm area where page mapped 2276 * @addr: virtual address where page mapped 2277 * 2278 * Lookup current policy node id for vma,addr and "compare to" page's 2279 * node id. 2280 * 2281 * Returns: 2282 * -1 - not misplaced, page is in the right node 2283 * node - node id where the page should be 2284 * 2285 * Policy determination "mimics" alloc_page_vma(). 2286 * Called from fault path where we know the vma and faulting address. 2287 */ 2288 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2289 { 2290 struct mempolicy *pol; 2291 struct zone *zone; 2292 int curnid = page_to_nid(page); 2293 unsigned long pgoff; 2294 int thiscpu = raw_smp_processor_id(); 2295 int thisnid = cpu_to_node(thiscpu); 2296 int polnid = -1; 2297 int ret = -1; 2298 2299 BUG_ON(!vma); 2300 2301 pol = get_vma_policy(current, vma, addr); 2302 if (!(pol->flags & MPOL_F_MOF)) 2303 goto out; 2304 2305 switch (pol->mode) { 2306 case MPOL_INTERLEAVE: 2307 BUG_ON(addr >= vma->vm_end); 2308 BUG_ON(addr < vma->vm_start); 2309 2310 pgoff = vma->vm_pgoff; 2311 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2312 polnid = offset_il_node(pol, vma, pgoff); 2313 break; 2314 2315 case MPOL_PREFERRED: 2316 if (pol->flags & MPOL_F_LOCAL) 2317 polnid = numa_node_id(); 2318 else 2319 polnid = pol->v.preferred_node; 2320 break; 2321 2322 case MPOL_BIND: 2323 /* 2324 * allows binding to multiple nodes. 2325 * use current page if in policy nodemask, 2326 * else select nearest allowed node, if any. 2327 * If no allowed nodes, use current [!misplaced]. 2328 */ 2329 if (node_isset(curnid, pol->v.nodes)) 2330 goto out; 2331 (void)first_zones_zonelist( 2332 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2333 gfp_zone(GFP_HIGHUSER), 2334 &pol->v.nodes, &zone); 2335 polnid = zone->node; 2336 break; 2337 2338 default: 2339 BUG(); 2340 } 2341 2342 /* Migrate the page towards the node whose CPU is referencing it */ 2343 if (pol->flags & MPOL_F_MORON) { 2344 polnid = thisnid; 2345 2346 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2347 goto out; 2348 } 2349 2350 if (curnid != polnid) 2351 ret = polnid; 2352 out: 2353 mpol_cond_put(pol); 2354 2355 return ret; 2356 } 2357 2358 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2359 { 2360 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2361 rb_erase(&n->nd, &sp->root); 2362 sp_free(n); 2363 } 2364 2365 static void sp_node_init(struct sp_node *node, unsigned long start, 2366 unsigned long end, struct mempolicy *pol) 2367 { 2368 node->start = start; 2369 node->end = end; 2370 node->policy = pol; 2371 } 2372 2373 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2374 struct mempolicy *pol) 2375 { 2376 struct sp_node *n; 2377 struct mempolicy *newpol; 2378 2379 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2380 if (!n) 2381 return NULL; 2382 2383 newpol = mpol_dup(pol); 2384 if (IS_ERR(newpol)) { 2385 kmem_cache_free(sn_cache, n); 2386 return NULL; 2387 } 2388 newpol->flags |= MPOL_F_SHARED; 2389 sp_node_init(n, start, end, newpol); 2390 2391 return n; 2392 } 2393 2394 /* Replace a policy range. */ 2395 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2396 unsigned long end, struct sp_node *new) 2397 { 2398 struct sp_node *n; 2399 struct sp_node *n_new = NULL; 2400 struct mempolicy *mpol_new = NULL; 2401 int ret = 0; 2402 2403 restart: 2404 spin_lock(&sp->lock); 2405 n = sp_lookup(sp, start, end); 2406 /* Take care of old policies in the same range. */ 2407 while (n && n->start < end) { 2408 struct rb_node *next = rb_next(&n->nd); 2409 if (n->start >= start) { 2410 if (n->end <= end) 2411 sp_delete(sp, n); 2412 else 2413 n->start = end; 2414 } else { 2415 /* Old policy spanning whole new range. */ 2416 if (n->end > end) { 2417 if (!n_new) 2418 goto alloc_new; 2419 2420 *mpol_new = *n->policy; 2421 atomic_set(&mpol_new->refcnt, 1); 2422 sp_node_init(n_new, end, n->end, mpol_new); 2423 n->end = start; 2424 sp_insert(sp, n_new); 2425 n_new = NULL; 2426 mpol_new = NULL; 2427 break; 2428 } else 2429 n->end = start; 2430 } 2431 if (!next) 2432 break; 2433 n = rb_entry(next, struct sp_node, nd); 2434 } 2435 if (new) 2436 sp_insert(sp, new); 2437 spin_unlock(&sp->lock); 2438 ret = 0; 2439 2440 err_out: 2441 if (mpol_new) 2442 mpol_put(mpol_new); 2443 if (n_new) 2444 kmem_cache_free(sn_cache, n_new); 2445 2446 return ret; 2447 2448 alloc_new: 2449 spin_unlock(&sp->lock); 2450 ret = -ENOMEM; 2451 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2452 if (!n_new) 2453 goto err_out; 2454 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2455 if (!mpol_new) 2456 goto err_out; 2457 goto restart; 2458 } 2459 2460 /** 2461 * mpol_shared_policy_init - initialize shared policy for inode 2462 * @sp: pointer to inode shared policy 2463 * @mpol: struct mempolicy to install 2464 * 2465 * Install non-NULL @mpol in inode's shared policy rb-tree. 2466 * On entry, the current task has a reference on a non-NULL @mpol. 2467 * This must be released on exit. 2468 * This is called at get_inode() calls and we can use GFP_KERNEL. 2469 */ 2470 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2471 { 2472 int ret; 2473 2474 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2475 spin_lock_init(&sp->lock); 2476 2477 if (mpol) { 2478 struct vm_area_struct pvma; 2479 struct mempolicy *new; 2480 NODEMASK_SCRATCH(scratch); 2481 2482 if (!scratch) 2483 goto put_mpol; 2484 /* contextualize the tmpfs mount point mempolicy */ 2485 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2486 if (IS_ERR(new)) 2487 goto free_scratch; /* no valid nodemask intersection */ 2488 2489 task_lock(current); 2490 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2491 task_unlock(current); 2492 if (ret) 2493 goto put_new; 2494 2495 /* Create pseudo-vma that contains just the policy */ 2496 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2497 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2498 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2499 2500 put_new: 2501 mpol_put(new); /* drop initial ref */ 2502 free_scratch: 2503 NODEMASK_SCRATCH_FREE(scratch); 2504 put_mpol: 2505 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2506 } 2507 } 2508 2509 int mpol_set_shared_policy(struct shared_policy *info, 2510 struct vm_area_struct *vma, struct mempolicy *npol) 2511 { 2512 int err; 2513 struct sp_node *new = NULL; 2514 unsigned long sz = vma_pages(vma); 2515 2516 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2517 vma->vm_pgoff, 2518 sz, npol ? npol->mode : -1, 2519 npol ? npol->flags : -1, 2520 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2521 2522 if (npol) { 2523 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2524 if (!new) 2525 return -ENOMEM; 2526 } 2527 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2528 if (err && new) 2529 sp_free(new); 2530 return err; 2531 } 2532 2533 /* Free a backing policy store on inode delete. */ 2534 void mpol_free_shared_policy(struct shared_policy *p) 2535 { 2536 struct sp_node *n; 2537 struct rb_node *next; 2538 2539 if (!p->root.rb_node) 2540 return; 2541 spin_lock(&p->lock); 2542 next = rb_first(&p->root); 2543 while (next) { 2544 n = rb_entry(next, struct sp_node, nd); 2545 next = rb_next(&n->nd); 2546 sp_delete(p, n); 2547 } 2548 spin_unlock(&p->lock); 2549 } 2550 2551 #ifdef CONFIG_NUMA_BALANCING 2552 static int __initdata numabalancing_override; 2553 2554 static void __init check_numabalancing_enable(void) 2555 { 2556 bool numabalancing_default = false; 2557 2558 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2559 numabalancing_default = true; 2560 2561 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2562 if (numabalancing_override) 2563 set_numabalancing_state(numabalancing_override == 1); 2564 2565 if (nr_node_ids > 1 && !numabalancing_override) { 2566 pr_info("%s automatic NUMA balancing. " 2567 "Configure with numa_balancing= or the " 2568 "kernel.numa_balancing sysctl", 2569 numabalancing_default ? "Enabling" : "Disabling"); 2570 set_numabalancing_state(numabalancing_default); 2571 } 2572 } 2573 2574 static int __init setup_numabalancing(char *str) 2575 { 2576 int ret = 0; 2577 if (!str) 2578 goto out; 2579 2580 if (!strcmp(str, "enable")) { 2581 numabalancing_override = 1; 2582 ret = 1; 2583 } else if (!strcmp(str, "disable")) { 2584 numabalancing_override = -1; 2585 ret = 1; 2586 } 2587 out: 2588 if (!ret) 2589 pr_warn("Unable to parse numa_balancing=\n"); 2590 2591 return ret; 2592 } 2593 __setup("numa_balancing=", setup_numabalancing); 2594 #else 2595 static inline void __init check_numabalancing_enable(void) 2596 { 2597 } 2598 #endif /* CONFIG_NUMA_BALANCING */ 2599 2600 /* assumes fs == KERNEL_DS */ 2601 void __init numa_policy_init(void) 2602 { 2603 nodemask_t interleave_nodes; 2604 unsigned long largest = 0; 2605 int nid, prefer = 0; 2606 2607 policy_cache = kmem_cache_create("numa_policy", 2608 sizeof(struct mempolicy), 2609 0, SLAB_PANIC, NULL); 2610 2611 sn_cache = kmem_cache_create("shared_policy_node", 2612 sizeof(struct sp_node), 2613 0, SLAB_PANIC, NULL); 2614 2615 for_each_node(nid) { 2616 preferred_node_policy[nid] = (struct mempolicy) { 2617 .refcnt = ATOMIC_INIT(1), 2618 .mode = MPOL_PREFERRED, 2619 .flags = MPOL_F_MOF | MPOL_F_MORON, 2620 .v = { .preferred_node = nid, }, 2621 }; 2622 } 2623 2624 /* 2625 * Set interleaving policy for system init. Interleaving is only 2626 * enabled across suitably sized nodes (default is >= 16MB), or 2627 * fall back to the largest node if they're all smaller. 2628 */ 2629 nodes_clear(interleave_nodes); 2630 for_each_node_state(nid, N_MEMORY) { 2631 unsigned long total_pages = node_present_pages(nid); 2632 2633 /* Preserve the largest node */ 2634 if (largest < total_pages) { 2635 largest = total_pages; 2636 prefer = nid; 2637 } 2638 2639 /* Interleave this node? */ 2640 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2641 node_set(nid, interleave_nodes); 2642 } 2643 2644 /* All too small, use the largest */ 2645 if (unlikely(nodes_empty(interleave_nodes))) 2646 node_set(prefer, interleave_nodes); 2647 2648 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2649 pr_err("%s: interleaving failed\n", __func__); 2650 2651 check_numabalancing_enable(); 2652 } 2653 2654 /* Reset policy of current process to default */ 2655 void numa_default_policy(void) 2656 { 2657 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2658 } 2659 2660 /* 2661 * Parse and format mempolicy from/to strings 2662 */ 2663 2664 /* 2665 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2666 */ 2667 static const char * const policy_modes[] = 2668 { 2669 [MPOL_DEFAULT] = "default", 2670 [MPOL_PREFERRED] = "prefer", 2671 [MPOL_BIND] = "bind", 2672 [MPOL_INTERLEAVE] = "interleave", 2673 [MPOL_LOCAL] = "local", 2674 }; 2675 2676 2677 #ifdef CONFIG_TMPFS 2678 /** 2679 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2680 * @str: string containing mempolicy to parse 2681 * @mpol: pointer to struct mempolicy pointer, returned on success. 2682 * 2683 * Format of input: 2684 * <mode>[=<flags>][:<nodelist>] 2685 * 2686 * On success, returns 0, else 1 2687 */ 2688 int mpol_parse_str(char *str, struct mempolicy **mpol) 2689 { 2690 struct mempolicy *new = NULL; 2691 unsigned short mode; 2692 unsigned short mode_flags; 2693 nodemask_t nodes; 2694 char *nodelist = strchr(str, ':'); 2695 char *flags = strchr(str, '='); 2696 int err = 1; 2697 2698 if (nodelist) { 2699 /* NUL-terminate mode or flags string */ 2700 *nodelist++ = '\0'; 2701 if (nodelist_parse(nodelist, nodes)) 2702 goto out; 2703 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2704 goto out; 2705 } else 2706 nodes_clear(nodes); 2707 2708 if (flags) 2709 *flags++ = '\0'; /* terminate mode string */ 2710 2711 for (mode = 0; mode < MPOL_MAX; mode++) { 2712 if (!strcmp(str, policy_modes[mode])) { 2713 break; 2714 } 2715 } 2716 if (mode >= MPOL_MAX) 2717 goto out; 2718 2719 switch (mode) { 2720 case MPOL_PREFERRED: 2721 /* 2722 * Insist on a nodelist of one node only 2723 */ 2724 if (nodelist) { 2725 char *rest = nodelist; 2726 while (isdigit(*rest)) 2727 rest++; 2728 if (*rest) 2729 goto out; 2730 } 2731 break; 2732 case MPOL_INTERLEAVE: 2733 /* 2734 * Default to online nodes with memory if no nodelist 2735 */ 2736 if (!nodelist) 2737 nodes = node_states[N_MEMORY]; 2738 break; 2739 case MPOL_LOCAL: 2740 /* 2741 * Don't allow a nodelist; mpol_new() checks flags 2742 */ 2743 if (nodelist) 2744 goto out; 2745 mode = MPOL_PREFERRED; 2746 break; 2747 case MPOL_DEFAULT: 2748 /* 2749 * Insist on a empty nodelist 2750 */ 2751 if (!nodelist) 2752 err = 0; 2753 goto out; 2754 case MPOL_BIND: 2755 /* 2756 * Insist on a nodelist 2757 */ 2758 if (!nodelist) 2759 goto out; 2760 } 2761 2762 mode_flags = 0; 2763 if (flags) { 2764 /* 2765 * Currently, we only support two mutually exclusive 2766 * mode flags. 2767 */ 2768 if (!strcmp(flags, "static")) 2769 mode_flags |= MPOL_F_STATIC_NODES; 2770 else if (!strcmp(flags, "relative")) 2771 mode_flags |= MPOL_F_RELATIVE_NODES; 2772 else 2773 goto out; 2774 } 2775 2776 new = mpol_new(mode, mode_flags, &nodes); 2777 if (IS_ERR(new)) 2778 goto out; 2779 2780 /* 2781 * Save nodes for mpol_to_str() to show the tmpfs mount options 2782 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2783 */ 2784 if (mode != MPOL_PREFERRED) 2785 new->v.nodes = nodes; 2786 else if (nodelist) 2787 new->v.preferred_node = first_node(nodes); 2788 else 2789 new->flags |= MPOL_F_LOCAL; 2790 2791 /* 2792 * Save nodes for contextualization: this will be used to "clone" 2793 * the mempolicy in a specific context [cpuset] at a later time. 2794 */ 2795 new->w.user_nodemask = nodes; 2796 2797 err = 0; 2798 2799 out: 2800 /* Restore string for error message */ 2801 if (nodelist) 2802 *--nodelist = ':'; 2803 if (flags) 2804 *--flags = '='; 2805 if (!err) 2806 *mpol = new; 2807 return err; 2808 } 2809 #endif /* CONFIG_TMPFS */ 2810 2811 /** 2812 * mpol_to_str - format a mempolicy structure for printing 2813 * @buffer: to contain formatted mempolicy string 2814 * @maxlen: length of @buffer 2815 * @pol: pointer to mempolicy to be formatted 2816 * 2817 * Convert @pol into a string. If @buffer is too short, truncate the string. 2818 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2819 * longest flag, "relative", and to display at least a few node ids. 2820 */ 2821 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2822 { 2823 char *p = buffer; 2824 nodemask_t nodes = NODE_MASK_NONE; 2825 unsigned short mode = MPOL_DEFAULT; 2826 unsigned short flags = 0; 2827 2828 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2829 mode = pol->mode; 2830 flags = pol->flags; 2831 } 2832 2833 switch (mode) { 2834 case MPOL_DEFAULT: 2835 break; 2836 case MPOL_PREFERRED: 2837 if (flags & MPOL_F_LOCAL) 2838 mode = MPOL_LOCAL; 2839 else 2840 node_set(pol->v.preferred_node, nodes); 2841 break; 2842 case MPOL_BIND: 2843 case MPOL_INTERLEAVE: 2844 nodes = pol->v.nodes; 2845 break; 2846 default: 2847 WARN_ON_ONCE(1); 2848 snprintf(p, maxlen, "unknown"); 2849 return; 2850 } 2851 2852 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2853 2854 if (flags & MPOL_MODE_FLAGS) { 2855 p += snprintf(p, buffer + maxlen - p, "="); 2856 2857 /* 2858 * Currently, the only defined flags are mutually exclusive 2859 */ 2860 if (flags & MPOL_F_STATIC_NODES) 2861 p += snprintf(p, buffer + maxlen - p, "static"); 2862 else if (flags & MPOL_F_RELATIVE_NODES) 2863 p += snprintf(p, buffer + maxlen - p, "relative"); 2864 } 2865 2866 if (!nodes_empty(nodes)) { 2867 p += snprintf(p, buffer + maxlen - p, ":"); 2868 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2869 } 2870 } 2871