xref: /openbmc/linux/mm/mempolicy.c (revision c819e2cf)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 	return pol->flags & MPOL_MODE_FLAGS;
168 }
169 
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 				   const nodemask_t *rel)
172 {
173 	nodemask_t tmp;
174 	nodes_fold(tmp, *orig, nodes_weight(*rel));
175 	nodes_onto(*ret, tmp, *rel);
176 }
177 
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 	if (nodes_empty(*nodes))
181 		return -EINVAL;
182 	pol->v.nodes = *nodes;
183 	return 0;
184 }
185 
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (!nodes)
189 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
190 	else if (nodes_empty(*nodes))
191 		return -EINVAL;			/*  no allowed nodes */
192 	else
193 		pol->v.preferred_node = first_node(*nodes);
194 	return 0;
195 }
196 
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->v.nodes = *nodes;
202 	return 0;
203 }
204 
205 /*
206  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207  * any, for the new policy.  mpol_new() has already validated the nodes
208  * parameter with respect to the policy mode and flags.  But, we need to
209  * handle an empty nodemask with MPOL_PREFERRED here.
210  *
211  * Must be called holding task's alloc_lock to protect task's mems_allowed
212  * and mempolicy.  May also be called holding the mmap_semaphore for write.
213  */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 	int ret;
218 
219 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 	if (pol == NULL)
221 		return 0;
222 	/* Check N_MEMORY */
223 	nodes_and(nsc->mask1,
224 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 
226 	VM_BUG_ON(!nodes);
227 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 		nodes = NULL;	/* explicit local allocation */
229 	else {
230 		if (pol->flags & MPOL_F_RELATIVE_NODES)
231 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 		else
233 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 
235 		if (mpol_store_user_nodemask(pol))
236 			pol->w.user_nodemask = *nodes;
237 		else
238 			pol->w.cpuset_mems_allowed =
239 						cpuset_current_mems_allowed;
240 	}
241 
242 	if (nodes)
243 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 	else
245 		ret = mpol_ops[pol->mode].create(pol, NULL);
246 	return ret;
247 }
248 
249 /*
250  * This function just creates a new policy, does some check and simple
251  * initialization. You must invoke mpol_set_nodemask() to set nodes.
252  */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 				  nodemask_t *nodes)
255 {
256 	struct mempolicy *policy;
257 
258 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 
261 	if (mode == MPOL_DEFAULT) {
262 		if (nodes && !nodes_empty(*nodes))
263 			return ERR_PTR(-EINVAL);
264 		return NULL;
265 	}
266 	VM_BUG_ON(!nodes);
267 
268 	/*
269 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 	 * All other modes require a valid pointer to a non-empty nodemask.
272 	 */
273 	if (mode == MPOL_PREFERRED) {
274 		if (nodes_empty(*nodes)) {
275 			if (((flags & MPOL_F_STATIC_NODES) ||
276 			     (flags & MPOL_F_RELATIVE_NODES)))
277 				return ERR_PTR(-EINVAL);
278 		}
279 	} else if (mode == MPOL_LOCAL) {
280 		if (!nodes_empty(*nodes))
281 			return ERR_PTR(-EINVAL);
282 		mode = MPOL_PREFERRED;
283 	} else if (nodes_empty(*nodes))
284 		return ERR_PTR(-EINVAL);
285 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 	if (!policy)
287 		return ERR_PTR(-ENOMEM);
288 	atomic_set(&policy->refcnt, 1);
289 	policy->mode = mode;
290 	policy->flags = flags;
291 
292 	return policy;
293 }
294 
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 	if (!atomic_dec_and_test(&p->refcnt))
299 		return;
300 	kmem_cache_free(policy_cache, p);
301 }
302 
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 				enum mpol_rebind_step step)
305 {
306 }
307 
308 /*
309  * step:
310  * 	MPOL_REBIND_ONCE  - do rebind work at once
311  * 	MPOL_REBIND_STEP1 - set all the newly nodes
312  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
313  */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 				 enum mpol_rebind_step step)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		/*
325 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 		 * result
327 		 */
328 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 			nodes_remap(tmp, pol->v.nodes,
330 					pol->w.cpuset_mems_allowed, *nodes);
331 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 		} else if (step == MPOL_REBIND_STEP2) {
333 			tmp = pol->w.cpuset_mems_allowed;
334 			pol->w.cpuset_mems_allowed = *nodes;
335 		} else
336 			BUG();
337 	}
338 
339 	if (nodes_empty(tmp))
340 		tmp = *nodes;
341 
342 	if (step == MPOL_REBIND_STEP1)
343 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 		pol->v.nodes = tmp;
346 	else
347 		BUG();
348 
349 	if (!node_isset(current->il_next, tmp)) {
350 		current->il_next = next_node(current->il_next, tmp);
351 		if (current->il_next >= MAX_NUMNODES)
352 			current->il_next = first_node(tmp);
353 		if (current->il_next >= MAX_NUMNODES)
354 			current->il_next = numa_node_id();
355 	}
356 }
357 
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 				  const nodemask_t *nodes,
360 				  enum mpol_rebind_step step)
361 {
362 	nodemask_t tmp;
363 
364 	if (pol->flags & MPOL_F_STATIC_NODES) {
365 		int node = first_node(pol->w.user_nodemask);
366 
367 		if (node_isset(node, *nodes)) {
368 			pol->v.preferred_node = node;
369 			pol->flags &= ~MPOL_F_LOCAL;
370 		} else
371 			pol->flags |= MPOL_F_LOCAL;
372 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 		pol->v.preferred_node = first_node(tmp);
375 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
376 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 						   pol->w.cpuset_mems_allowed,
378 						   *nodes);
379 		pol->w.cpuset_mems_allowed = *nodes;
380 	}
381 }
382 
383 /*
384  * mpol_rebind_policy - Migrate a policy to a different set of nodes
385  *
386  * If read-side task has no lock to protect task->mempolicy, write-side
387  * task will rebind the task->mempolicy by two step. The first step is
388  * setting all the newly nodes, and the second step is cleaning all the
389  * disallowed nodes. In this way, we can avoid finding no node to alloc
390  * page.
391  * If we have a lock to protect task->mempolicy in read-side, we do
392  * rebind directly.
393  *
394  * step:
395  * 	MPOL_REBIND_ONCE  - do rebind work at once
396  * 	MPOL_REBIND_STEP1 - set all the newly nodes
397  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
398  */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 				enum mpol_rebind_step step)
401 {
402 	if (!pol)
403 		return;
404 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 		return;
407 
408 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 		return;
410 
411 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 		BUG();
413 
414 	if (step == MPOL_REBIND_STEP1)
415 		pol->flags |= MPOL_F_REBINDING;
416 	else if (step == MPOL_REBIND_STEP2)
417 		pol->flags &= ~MPOL_F_REBINDING;
418 	else if (step >= MPOL_REBIND_NSTEP)
419 		BUG();
420 
421 	mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423 
424 /*
425  * Wrapper for mpol_rebind_policy() that just requires task
426  * pointer, and updates task mempolicy.
427  *
428  * Called with task's alloc_lock held.
429  */
430 
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 			enum mpol_rebind_step step)
433 {
434 	mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436 
437 /*
438  * Rebind each vma in mm to new nodemask.
439  *
440  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
441  */
442 
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 	struct vm_area_struct *vma;
446 
447 	down_write(&mm->mmap_sem);
448 	for (vma = mm->mmap; vma; vma = vma->vm_next)
449 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 	up_write(&mm->mmap_sem);
451 }
452 
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 	[MPOL_DEFAULT] = {
455 		.rebind = mpol_rebind_default,
456 	},
457 	[MPOL_INTERLEAVE] = {
458 		.create = mpol_new_interleave,
459 		.rebind = mpol_rebind_nodemask,
460 	},
461 	[MPOL_PREFERRED] = {
462 		.create = mpol_new_preferred,
463 		.rebind = mpol_rebind_preferred,
464 	},
465 	[MPOL_BIND] = {
466 		.create = mpol_new_bind,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 };
470 
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 				unsigned long flags);
473 
474 /*
475  * Scan through pages checking if pages follow certain conditions,
476  * and move them to the pagelist if they do.
477  */
478 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
479 		unsigned long addr, unsigned long end,
480 		const nodemask_t *nodes, unsigned long flags,
481 		void *private)
482 {
483 	pte_t *orig_pte;
484 	pte_t *pte;
485 	spinlock_t *ptl;
486 
487 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
488 	do {
489 		struct page *page;
490 		int nid;
491 
492 		if (!pte_present(*pte))
493 			continue;
494 		page = vm_normal_page(vma, addr, *pte);
495 		if (!page)
496 			continue;
497 		/*
498 		 * vm_normal_page() filters out zero pages, but there might
499 		 * still be PageReserved pages to skip, perhaps in a VDSO.
500 		 */
501 		if (PageReserved(page))
502 			continue;
503 		nid = page_to_nid(page);
504 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
505 			continue;
506 
507 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
508 			migrate_page_add(page, private, flags);
509 		else
510 			break;
511 	} while (pte++, addr += PAGE_SIZE, addr != end);
512 	pte_unmap_unlock(orig_pte, ptl);
513 	return addr != end;
514 }
515 
516 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
517 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
518 				    void *private)
519 {
520 #ifdef CONFIG_HUGETLB_PAGE
521 	int nid;
522 	struct page *page;
523 	spinlock_t *ptl;
524 	pte_t entry;
525 
526 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
527 	entry = huge_ptep_get((pte_t *)pmd);
528 	if (!pte_present(entry))
529 		goto unlock;
530 	page = pte_page(entry);
531 	nid = page_to_nid(page);
532 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
533 		goto unlock;
534 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
535 	if (flags & (MPOL_MF_MOVE_ALL) ||
536 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
537 		isolate_huge_page(page, private);
538 unlock:
539 	spin_unlock(ptl);
540 #else
541 	BUG();
542 #endif
543 }
544 
545 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
546 		unsigned long addr, unsigned long end,
547 		const nodemask_t *nodes, unsigned long flags,
548 		void *private)
549 {
550 	pmd_t *pmd;
551 	unsigned long next;
552 
553 	pmd = pmd_offset(pud, addr);
554 	do {
555 		next = pmd_addr_end(addr, end);
556 		if (!pmd_present(*pmd))
557 			continue;
558 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
559 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
560 						flags, private);
561 			continue;
562 		}
563 		split_huge_page_pmd(vma, addr, pmd);
564 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
565 			continue;
566 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
567 				    flags, private))
568 			return -EIO;
569 	} while (pmd++, addr = next, addr != end);
570 	return 0;
571 }
572 
573 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
574 		unsigned long addr, unsigned long end,
575 		const nodemask_t *nodes, unsigned long flags,
576 		void *private)
577 {
578 	pud_t *pud;
579 	unsigned long next;
580 
581 	pud = pud_offset(pgd, addr);
582 	do {
583 		next = pud_addr_end(addr, end);
584 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
585 			continue;
586 		if (pud_none_or_clear_bad(pud))
587 			continue;
588 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
589 				    flags, private))
590 			return -EIO;
591 	} while (pud++, addr = next, addr != end);
592 	return 0;
593 }
594 
595 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
596 		unsigned long addr, unsigned long end,
597 		const nodemask_t *nodes, unsigned long flags,
598 		void *private)
599 {
600 	pgd_t *pgd;
601 	unsigned long next;
602 
603 	pgd = pgd_offset(vma->vm_mm, addr);
604 	do {
605 		next = pgd_addr_end(addr, end);
606 		if (pgd_none_or_clear_bad(pgd))
607 			continue;
608 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
609 				    flags, private))
610 			return -EIO;
611 	} while (pgd++, addr = next, addr != end);
612 	return 0;
613 }
614 
615 #ifdef CONFIG_NUMA_BALANCING
616 /*
617  * This is used to mark a range of virtual addresses to be inaccessible.
618  * These are later cleared by a NUMA hinting fault. Depending on these
619  * faults, pages may be migrated for better NUMA placement.
620  *
621  * This is assuming that NUMA faults are handled using PROT_NONE. If
622  * an architecture makes a different choice, it will need further
623  * changes to the core.
624  */
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 			unsigned long addr, unsigned long end)
627 {
628 	int nr_updated;
629 
630 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
631 	if (nr_updated)
632 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
633 
634 	return nr_updated;
635 }
636 #else
637 static unsigned long change_prot_numa(struct vm_area_struct *vma,
638 			unsigned long addr, unsigned long end)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_NUMA_BALANCING */
643 
644 /*
645  * Walk through page tables and collect pages to be migrated.
646  *
647  * If pages found in a given range are on a set of nodes (determined by
648  * @nodes and @flags,) it's isolated and queued to the pagelist which is
649  * passed via @private.)
650  */
651 static int
652 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
653 		const nodemask_t *nodes, unsigned long flags, void *private)
654 {
655 	int err = 0;
656 	struct vm_area_struct *vma, *prev;
657 
658 	vma = find_vma(mm, start);
659 	if (!vma)
660 		return -EFAULT;
661 	prev = NULL;
662 	for (; vma && vma->vm_start < end; vma = vma->vm_next) {
663 		unsigned long endvma = vma->vm_end;
664 
665 		if (endvma > end)
666 			endvma = end;
667 		if (vma->vm_start > start)
668 			start = vma->vm_start;
669 
670 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
671 			if (!vma->vm_next && vma->vm_end < end)
672 				return -EFAULT;
673 			if (prev && prev->vm_end < vma->vm_start)
674 				return -EFAULT;
675 		}
676 
677 		if (flags & MPOL_MF_LAZY) {
678 			/* Similar to task_numa_work, skip inaccessible VMAs */
679 			if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
680 				change_prot_numa(vma, start, endvma);
681 			goto next;
682 		}
683 
684 		if ((flags & MPOL_MF_STRICT) ||
685 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
686 		      vma_migratable(vma))) {
687 
688 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
689 						flags, private);
690 			if (err)
691 				break;
692 		}
693 next:
694 		prev = vma;
695 	}
696 	return err;
697 }
698 
699 /*
700  * Apply policy to a single VMA
701  * This must be called with the mmap_sem held for writing.
702  */
703 static int vma_replace_policy(struct vm_area_struct *vma,
704 						struct mempolicy *pol)
705 {
706 	int err;
707 	struct mempolicy *old;
708 	struct mempolicy *new;
709 
710 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
711 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
712 		 vma->vm_ops, vma->vm_file,
713 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
714 
715 	new = mpol_dup(pol);
716 	if (IS_ERR(new))
717 		return PTR_ERR(new);
718 
719 	if (vma->vm_ops && vma->vm_ops->set_policy) {
720 		err = vma->vm_ops->set_policy(vma, new);
721 		if (err)
722 			goto err_out;
723 	}
724 
725 	old = vma->vm_policy;
726 	vma->vm_policy = new; /* protected by mmap_sem */
727 	mpol_put(old);
728 
729 	return 0;
730  err_out:
731 	mpol_put(new);
732 	return err;
733 }
734 
735 /* Step 2: apply policy to a range and do splits. */
736 static int mbind_range(struct mm_struct *mm, unsigned long start,
737 		       unsigned long end, struct mempolicy *new_pol)
738 {
739 	struct vm_area_struct *next;
740 	struct vm_area_struct *prev;
741 	struct vm_area_struct *vma;
742 	int err = 0;
743 	pgoff_t pgoff;
744 	unsigned long vmstart;
745 	unsigned long vmend;
746 
747 	vma = find_vma(mm, start);
748 	if (!vma || vma->vm_start > start)
749 		return -EFAULT;
750 
751 	prev = vma->vm_prev;
752 	if (start > vma->vm_start)
753 		prev = vma;
754 
755 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
756 		next = vma->vm_next;
757 		vmstart = max(start, vma->vm_start);
758 		vmend   = min(end, vma->vm_end);
759 
760 		if (mpol_equal(vma_policy(vma), new_pol))
761 			continue;
762 
763 		pgoff = vma->vm_pgoff +
764 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
765 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
766 				  vma->anon_vma, vma->vm_file, pgoff,
767 				  new_pol);
768 		if (prev) {
769 			vma = prev;
770 			next = vma->vm_next;
771 			if (mpol_equal(vma_policy(vma), new_pol))
772 				continue;
773 			/* vma_merge() joined vma && vma->next, case 8 */
774 			goto replace;
775 		}
776 		if (vma->vm_start != vmstart) {
777 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
778 			if (err)
779 				goto out;
780 		}
781 		if (vma->vm_end != vmend) {
782 			err = split_vma(vma->vm_mm, vma, vmend, 0);
783 			if (err)
784 				goto out;
785 		}
786  replace:
787 		err = vma_replace_policy(vma, new_pol);
788 		if (err)
789 			goto out;
790 	}
791 
792  out:
793 	return err;
794 }
795 
796 /* Set the process memory policy */
797 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
798 			     nodemask_t *nodes)
799 {
800 	struct mempolicy *new, *old;
801 	NODEMASK_SCRATCH(scratch);
802 	int ret;
803 
804 	if (!scratch)
805 		return -ENOMEM;
806 
807 	new = mpol_new(mode, flags, nodes);
808 	if (IS_ERR(new)) {
809 		ret = PTR_ERR(new);
810 		goto out;
811 	}
812 
813 	task_lock(current);
814 	ret = mpol_set_nodemask(new, nodes, scratch);
815 	if (ret) {
816 		task_unlock(current);
817 		mpol_put(new);
818 		goto out;
819 	}
820 	old = current->mempolicy;
821 	current->mempolicy = new;
822 	if (new && new->mode == MPOL_INTERLEAVE &&
823 	    nodes_weight(new->v.nodes))
824 		current->il_next = first_node(new->v.nodes);
825 	task_unlock(current);
826 	mpol_put(old);
827 	ret = 0;
828 out:
829 	NODEMASK_SCRATCH_FREE(scratch);
830 	return ret;
831 }
832 
833 /*
834  * Return nodemask for policy for get_mempolicy() query
835  *
836  * Called with task's alloc_lock held
837  */
838 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
839 {
840 	nodes_clear(*nodes);
841 	if (p == &default_policy)
842 		return;
843 
844 	switch (p->mode) {
845 	case MPOL_BIND:
846 		/* Fall through */
847 	case MPOL_INTERLEAVE:
848 		*nodes = p->v.nodes;
849 		break;
850 	case MPOL_PREFERRED:
851 		if (!(p->flags & MPOL_F_LOCAL))
852 			node_set(p->v.preferred_node, *nodes);
853 		/* else return empty node mask for local allocation */
854 		break;
855 	default:
856 		BUG();
857 	}
858 }
859 
860 static int lookup_node(struct mm_struct *mm, unsigned long addr)
861 {
862 	struct page *p;
863 	int err;
864 
865 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
866 	if (err >= 0) {
867 		err = page_to_nid(p);
868 		put_page(p);
869 	}
870 	return err;
871 }
872 
873 /* Retrieve NUMA policy */
874 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
875 			     unsigned long addr, unsigned long flags)
876 {
877 	int err;
878 	struct mm_struct *mm = current->mm;
879 	struct vm_area_struct *vma = NULL;
880 	struct mempolicy *pol = current->mempolicy;
881 
882 	if (flags &
883 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
884 		return -EINVAL;
885 
886 	if (flags & MPOL_F_MEMS_ALLOWED) {
887 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
888 			return -EINVAL;
889 		*policy = 0;	/* just so it's initialized */
890 		task_lock(current);
891 		*nmask  = cpuset_current_mems_allowed;
892 		task_unlock(current);
893 		return 0;
894 	}
895 
896 	if (flags & MPOL_F_ADDR) {
897 		/*
898 		 * Do NOT fall back to task policy if the
899 		 * vma/shared policy at addr is NULL.  We
900 		 * want to return MPOL_DEFAULT in this case.
901 		 */
902 		down_read(&mm->mmap_sem);
903 		vma = find_vma_intersection(mm, addr, addr+1);
904 		if (!vma) {
905 			up_read(&mm->mmap_sem);
906 			return -EFAULT;
907 		}
908 		if (vma->vm_ops && vma->vm_ops->get_policy)
909 			pol = vma->vm_ops->get_policy(vma, addr);
910 		else
911 			pol = vma->vm_policy;
912 	} else if (addr)
913 		return -EINVAL;
914 
915 	if (!pol)
916 		pol = &default_policy;	/* indicates default behavior */
917 
918 	if (flags & MPOL_F_NODE) {
919 		if (flags & MPOL_F_ADDR) {
920 			err = lookup_node(mm, addr);
921 			if (err < 0)
922 				goto out;
923 			*policy = err;
924 		} else if (pol == current->mempolicy &&
925 				pol->mode == MPOL_INTERLEAVE) {
926 			*policy = current->il_next;
927 		} else {
928 			err = -EINVAL;
929 			goto out;
930 		}
931 	} else {
932 		*policy = pol == &default_policy ? MPOL_DEFAULT :
933 						pol->mode;
934 		/*
935 		 * Internal mempolicy flags must be masked off before exposing
936 		 * the policy to userspace.
937 		 */
938 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
939 	}
940 
941 	if (vma) {
942 		up_read(&current->mm->mmap_sem);
943 		vma = NULL;
944 	}
945 
946 	err = 0;
947 	if (nmask) {
948 		if (mpol_store_user_nodemask(pol)) {
949 			*nmask = pol->w.user_nodemask;
950 		} else {
951 			task_lock(current);
952 			get_policy_nodemask(pol, nmask);
953 			task_unlock(current);
954 		}
955 	}
956 
957  out:
958 	mpol_cond_put(pol);
959 	if (vma)
960 		up_read(&current->mm->mmap_sem);
961 	return err;
962 }
963 
964 #ifdef CONFIG_MIGRATION
965 /*
966  * page migration
967  */
968 static void migrate_page_add(struct page *page, struct list_head *pagelist,
969 				unsigned long flags)
970 {
971 	/*
972 	 * Avoid migrating a page that is shared with others.
973 	 */
974 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
975 		if (!isolate_lru_page(page)) {
976 			list_add_tail(&page->lru, pagelist);
977 			inc_zone_page_state(page, NR_ISOLATED_ANON +
978 					    page_is_file_cache(page));
979 		}
980 	}
981 }
982 
983 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
984 {
985 	if (PageHuge(page))
986 		return alloc_huge_page_node(page_hstate(compound_head(page)),
987 					node);
988 	else
989 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
990 }
991 
992 /*
993  * Migrate pages from one node to a target node.
994  * Returns error or the number of pages not migrated.
995  */
996 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
997 			   int flags)
998 {
999 	nodemask_t nmask;
1000 	LIST_HEAD(pagelist);
1001 	int err = 0;
1002 
1003 	nodes_clear(nmask);
1004 	node_set(source, nmask);
1005 
1006 	/*
1007 	 * This does not "check" the range but isolates all pages that
1008 	 * need migration.  Between passing in the full user address
1009 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1010 	 */
1011 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1012 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1013 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1014 
1015 	if (!list_empty(&pagelist)) {
1016 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1017 					MIGRATE_SYNC, MR_SYSCALL);
1018 		if (err)
1019 			putback_movable_pages(&pagelist);
1020 	}
1021 
1022 	return err;
1023 }
1024 
1025 /*
1026  * Move pages between the two nodesets so as to preserve the physical
1027  * layout as much as possible.
1028  *
1029  * Returns the number of page that could not be moved.
1030  */
1031 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1032 		     const nodemask_t *to, int flags)
1033 {
1034 	int busy = 0;
1035 	int err;
1036 	nodemask_t tmp;
1037 
1038 	err = migrate_prep();
1039 	if (err)
1040 		return err;
1041 
1042 	down_read(&mm->mmap_sem);
1043 
1044 	/*
1045 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1046 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1047 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1048 	 * The pair of nodemasks 'to' and 'from' define the map.
1049 	 *
1050 	 * If no pair of bits is found that way, fallback to picking some
1051 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1052 	 * 'source' and 'dest' bits are the same, this represents a node
1053 	 * that will be migrating to itself, so no pages need move.
1054 	 *
1055 	 * If no bits are left in 'tmp', or if all remaining bits left
1056 	 * in 'tmp' correspond to the same bit in 'to', return false
1057 	 * (nothing left to migrate).
1058 	 *
1059 	 * This lets us pick a pair of nodes to migrate between, such that
1060 	 * if possible the dest node is not already occupied by some other
1061 	 * source node, minimizing the risk of overloading the memory on a
1062 	 * node that would happen if we migrated incoming memory to a node
1063 	 * before migrating outgoing memory source that same node.
1064 	 *
1065 	 * A single scan of tmp is sufficient.  As we go, we remember the
1066 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1067 	 * that not only moved, but what's better, moved to an empty slot
1068 	 * (d is not set in tmp), then we break out then, with that pair.
1069 	 * Otherwise when we finish scanning from_tmp, we at least have the
1070 	 * most recent <s, d> pair that moved.  If we get all the way through
1071 	 * the scan of tmp without finding any node that moved, much less
1072 	 * moved to an empty node, then there is nothing left worth migrating.
1073 	 */
1074 
1075 	tmp = *from;
1076 	while (!nodes_empty(tmp)) {
1077 		int s,d;
1078 		int source = NUMA_NO_NODE;
1079 		int dest = 0;
1080 
1081 		for_each_node_mask(s, tmp) {
1082 
1083 			/*
1084 			 * do_migrate_pages() tries to maintain the relative
1085 			 * node relationship of the pages established between
1086 			 * threads and memory areas.
1087                          *
1088 			 * However if the number of source nodes is not equal to
1089 			 * the number of destination nodes we can not preserve
1090 			 * this node relative relationship.  In that case, skip
1091 			 * copying memory from a node that is in the destination
1092 			 * mask.
1093 			 *
1094 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1095 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1096 			 */
1097 
1098 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1099 						(node_isset(s, *to)))
1100 				continue;
1101 
1102 			d = node_remap(s, *from, *to);
1103 			if (s == d)
1104 				continue;
1105 
1106 			source = s;	/* Node moved. Memorize */
1107 			dest = d;
1108 
1109 			/* dest not in remaining from nodes? */
1110 			if (!node_isset(dest, tmp))
1111 				break;
1112 		}
1113 		if (source == NUMA_NO_NODE)
1114 			break;
1115 
1116 		node_clear(source, tmp);
1117 		err = migrate_to_node(mm, source, dest, flags);
1118 		if (err > 0)
1119 			busy += err;
1120 		if (err < 0)
1121 			break;
1122 	}
1123 	up_read(&mm->mmap_sem);
1124 	if (err < 0)
1125 		return err;
1126 	return busy;
1127 
1128 }
1129 
1130 /*
1131  * Allocate a new page for page migration based on vma policy.
1132  * Start by assuming the page is mapped by the same vma as contains @start.
1133  * Search forward from there, if not.  N.B., this assumes that the
1134  * list of pages handed to migrate_pages()--which is how we get here--
1135  * is in virtual address order.
1136  */
1137 static struct page *new_page(struct page *page, unsigned long start, int **x)
1138 {
1139 	struct vm_area_struct *vma;
1140 	unsigned long uninitialized_var(address);
1141 
1142 	vma = find_vma(current->mm, start);
1143 	while (vma) {
1144 		address = page_address_in_vma(page, vma);
1145 		if (address != -EFAULT)
1146 			break;
1147 		vma = vma->vm_next;
1148 	}
1149 
1150 	if (PageHuge(page)) {
1151 		BUG_ON(!vma);
1152 		return alloc_huge_page_noerr(vma, address, 1);
1153 	}
1154 	/*
1155 	 * if !vma, alloc_page_vma() will use task or system default policy
1156 	 */
1157 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1158 }
1159 #else
1160 
1161 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1162 				unsigned long flags)
1163 {
1164 }
1165 
1166 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1167 		     const nodemask_t *to, int flags)
1168 {
1169 	return -ENOSYS;
1170 }
1171 
1172 static struct page *new_page(struct page *page, unsigned long start, int **x)
1173 {
1174 	return NULL;
1175 }
1176 #endif
1177 
1178 static long do_mbind(unsigned long start, unsigned long len,
1179 		     unsigned short mode, unsigned short mode_flags,
1180 		     nodemask_t *nmask, unsigned long flags)
1181 {
1182 	struct mm_struct *mm = current->mm;
1183 	struct mempolicy *new;
1184 	unsigned long end;
1185 	int err;
1186 	LIST_HEAD(pagelist);
1187 
1188 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1189 		return -EINVAL;
1190 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1191 		return -EPERM;
1192 
1193 	if (start & ~PAGE_MASK)
1194 		return -EINVAL;
1195 
1196 	if (mode == MPOL_DEFAULT)
1197 		flags &= ~MPOL_MF_STRICT;
1198 
1199 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1200 	end = start + len;
1201 
1202 	if (end < start)
1203 		return -EINVAL;
1204 	if (end == start)
1205 		return 0;
1206 
1207 	new = mpol_new(mode, mode_flags, nmask);
1208 	if (IS_ERR(new))
1209 		return PTR_ERR(new);
1210 
1211 	if (flags & MPOL_MF_LAZY)
1212 		new->flags |= MPOL_F_MOF;
1213 
1214 	/*
1215 	 * If we are using the default policy then operation
1216 	 * on discontinuous address spaces is okay after all
1217 	 */
1218 	if (!new)
1219 		flags |= MPOL_MF_DISCONTIG_OK;
1220 
1221 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1222 		 start, start + len, mode, mode_flags,
1223 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1224 
1225 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1226 
1227 		err = migrate_prep();
1228 		if (err)
1229 			goto mpol_out;
1230 	}
1231 	{
1232 		NODEMASK_SCRATCH(scratch);
1233 		if (scratch) {
1234 			down_write(&mm->mmap_sem);
1235 			task_lock(current);
1236 			err = mpol_set_nodemask(new, nmask, scratch);
1237 			task_unlock(current);
1238 			if (err)
1239 				up_write(&mm->mmap_sem);
1240 		} else
1241 			err = -ENOMEM;
1242 		NODEMASK_SCRATCH_FREE(scratch);
1243 	}
1244 	if (err)
1245 		goto mpol_out;
1246 
1247 	err = queue_pages_range(mm, start, end, nmask,
1248 			  flags | MPOL_MF_INVERT, &pagelist);
1249 	if (!err)
1250 		err = mbind_range(mm, start, end, new);
1251 
1252 	if (!err) {
1253 		int nr_failed = 0;
1254 
1255 		if (!list_empty(&pagelist)) {
1256 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1257 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1258 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1259 			if (nr_failed)
1260 				putback_movable_pages(&pagelist);
1261 		}
1262 
1263 		if (nr_failed && (flags & MPOL_MF_STRICT))
1264 			err = -EIO;
1265 	} else
1266 		putback_movable_pages(&pagelist);
1267 
1268 	up_write(&mm->mmap_sem);
1269  mpol_out:
1270 	mpol_put(new);
1271 	return err;
1272 }
1273 
1274 /*
1275  * User space interface with variable sized bitmaps for nodelists.
1276  */
1277 
1278 /* Copy a node mask from user space. */
1279 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1280 		     unsigned long maxnode)
1281 {
1282 	unsigned long k;
1283 	unsigned long nlongs;
1284 	unsigned long endmask;
1285 
1286 	--maxnode;
1287 	nodes_clear(*nodes);
1288 	if (maxnode == 0 || !nmask)
1289 		return 0;
1290 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1291 		return -EINVAL;
1292 
1293 	nlongs = BITS_TO_LONGS(maxnode);
1294 	if ((maxnode % BITS_PER_LONG) == 0)
1295 		endmask = ~0UL;
1296 	else
1297 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1298 
1299 	/* When the user specified more nodes than supported just check
1300 	   if the non supported part is all zero. */
1301 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1302 		if (nlongs > PAGE_SIZE/sizeof(long))
1303 			return -EINVAL;
1304 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1305 			unsigned long t;
1306 			if (get_user(t, nmask + k))
1307 				return -EFAULT;
1308 			if (k == nlongs - 1) {
1309 				if (t & endmask)
1310 					return -EINVAL;
1311 			} else if (t)
1312 				return -EINVAL;
1313 		}
1314 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1315 		endmask = ~0UL;
1316 	}
1317 
1318 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1319 		return -EFAULT;
1320 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1321 	return 0;
1322 }
1323 
1324 /* Copy a kernel node mask to user space */
1325 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1326 			      nodemask_t *nodes)
1327 {
1328 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1329 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1330 
1331 	if (copy > nbytes) {
1332 		if (copy > PAGE_SIZE)
1333 			return -EINVAL;
1334 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1335 			return -EFAULT;
1336 		copy = nbytes;
1337 	}
1338 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1339 }
1340 
1341 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1342 		unsigned long, mode, const unsigned long __user *, nmask,
1343 		unsigned long, maxnode, unsigned, flags)
1344 {
1345 	nodemask_t nodes;
1346 	int err;
1347 	unsigned short mode_flags;
1348 
1349 	mode_flags = mode & MPOL_MODE_FLAGS;
1350 	mode &= ~MPOL_MODE_FLAGS;
1351 	if (mode >= MPOL_MAX)
1352 		return -EINVAL;
1353 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1354 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1355 		return -EINVAL;
1356 	err = get_nodes(&nodes, nmask, maxnode);
1357 	if (err)
1358 		return err;
1359 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1360 }
1361 
1362 /* Set the process memory policy */
1363 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364 		unsigned long, maxnode)
1365 {
1366 	int err;
1367 	nodemask_t nodes;
1368 	unsigned short flags;
1369 
1370 	flags = mode & MPOL_MODE_FLAGS;
1371 	mode &= ~MPOL_MODE_FLAGS;
1372 	if ((unsigned int)mode >= MPOL_MAX)
1373 		return -EINVAL;
1374 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1375 		return -EINVAL;
1376 	err = get_nodes(&nodes, nmask, maxnode);
1377 	if (err)
1378 		return err;
1379 	return do_set_mempolicy(mode, flags, &nodes);
1380 }
1381 
1382 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1383 		const unsigned long __user *, old_nodes,
1384 		const unsigned long __user *, new_nodes)
1385 {
1386 	const struct cred *cred = current_cred(), *tcred;
1387 	struct mm_struct *mm = NULL;
1388 	struct task_struct *task;
1389 	nodemask_t task_nodes;
1390 	int err;
1391 	nodemask_t *old;
1392 	nodemask_t *new;
1393 	NODEMASK_SCRATCH(scratch);
1394 
1395 	if (!scratch)
1396 		return -ENOMEM;
1397 
1398 	old = &scratch->mask1;
1399 	new = &scratch->mask2;
1400 
1401 	err = get_nodes(old, old_nodes, maxnode);
1402 	if (err)
1403 		goto out;
1404 
1405 	err = get_nodes(new, new_nodes, maxnode);
1406 	if (err)
1407 		goto out;
1408 
1409 	/* Find the mm_struct */
1410 	rcu_read_lock();
1411 	task = pid ? find_task_by_vpid(pid) : current;
1412 	if (!task) {
1413 		rcu_read_unlock();
1414 		err = -ESRCH;
1415 		goto out;
1416 	}
1417 	get_task_struct(task);
1418 
1419 	err = -EINVAL;
1420 
1421 	/*
1422 	 * Check if this process has the right to modify the specified
1423 	 * process. The right exists if the process has administrative
1424 	 * capabilities, superuser privileges or the same
1425 	 * userid as the target process.
1426 	 */
1427 	tcred = __task_cred(task);
1428 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1429 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1430 	    !capable(CAP_SYS_NICE)) {
1431 		rcu_read_unlock();
1432 		err = -EPERM;
1433 		goto out_put;
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	task_nodes = cpuset_mems_allowed(task);
1438 	/* Is the user allowed to access the target nodes? */
1439 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1440 		err = -EPERM;
1441 		goto out_put;
1442 	}
1443 
1444 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1445 		err = -EINVAL;
1446 		goto out_put;
1447 	}
1448 
1449 	err = security_task_movememory(task);
1450 	if (err)
1451 		goto out_put;
1452 
1453 	mm = get_task_mm(task);
1454 	put_task_struct(task);
1455 
1456 	if (!mm) {
1457 		err = -EINVAL;
1458 		goto out;
1459 	}
1460 
1461 	err = do_migrate_pages(mm, old, new,
1462 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1463 
1464 	mmput(mm);
1465 out:
1466 	NODEMASK_SCRATCH_FREE(scratch);
1467 
1468 	return err;
1469 
1470 out_put:
1471 	put_task_struct(task);
1472 	goto out;
1473 
1474 }
1475 
1476 
1477 /* Retrieve NUMA policy */
1478 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1479 		unsigned long __user *, nmask, unsigned long, maxnode,
1480 		unsigned long, addr, unsigned long, flags)
1481 {
1482 	int err;
1483 	int uninitialized_var(pval);
1484 	nodemask_t nodes;
1485 
1486 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1487 		return -EINVAL;
1488 
1489 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1490 
1491 	if (err)
1492 		return err;
1493 
1494 	if (policy && put_user(pval, policy))
1495 		return -EFAULT;
1496 
1497 	if (nmask)
1498 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1499 
1500 	return err;
1501 }
1502 
1503 #ifdef CONFIG_COMPAT
1504 
1505 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1506 		       compat_ulong_t __user *, nmask,
1507 		       compat_ulong_t, maxnode,
1508 		       compat_ulong_t, addr, compat_ulong_t, flags)
1509 {
1510 	long err;
1511 	unsigned long __user *nm = NULL;
1512 	unsigned long nr_bits, alloc_size;
1513 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1514 
1515 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1516 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1517 
1518 	if (nmask)
1519 		nm = compat_alloc_user_space(alloc_size);
1520 
1521 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1522 
1523 	if (!err && nmask) {
1524 		unsigned long copy_size;
1525 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1526 		err = copy_from_user(bm, nm, copy_size);
1527 		/* ensure entire bitmap is zeroed */
1528 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1529 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1530 	}
1531 
1532 	return err;
1533 }
1534 
1535 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1536 		       compat_ulong_t, maxnode)
1537 {
1538 	long err = 0;
1539 	unsigned long __user *nm = NULL;
1540 	unsigned long nr_bits, alloc_size;
1541 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542 
1543 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545 
1546 	if (nmask) {
1547 		err = compat_get_bitmap(bm, nmask, nr_bits);
1548 		nm = compat_alloc_user_space(alloc_size);
1549 		err |= copy_to_user(nm, bm, alloc_size);
1550 	}
1551 
1552 	if (err)
1553 		return -EFAULT;
1554 
1555 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1556 }
1557 
1558 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1559 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1560 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1561 {
1562 	long err = 0;
1563 	unsigned long __user *nm = NULL;
1564 	unsigned long nr_bits, alloc_size;
1565 	nodemask_t bm;
1566 
1567 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1568 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1569 
1570 	if (nmask) {
1571 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1572 		nm = compat_alloc_user_space(alloc_size);
1573 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1574 	}
1575 
1576 	if (err)
1577 		return -EFAULT;
1578 
1579 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1580 }
1581 
1582 #endif
1583 
1584 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1585 						unsigned long addr)
1586 {
1587 	struct mempolicy *pol = NULL;
1588 
1589 	if (vma) {
1590 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1591 			pol = vma->vm_ops->get_policy(vma, addr);
1592 		} else if (vma->vm_policy) {
1593 			pol = vma->vm_policy;
1594 
1595 			/*
1596 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1597 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1598 			 * count on these policies which will be dropped by
1599 			 * mpol_cond_put() later
1600 			 */
1601 			if (mpol_needs_cond_ref(pol))
1602 				mpol_get(pol);
1603 		}
1604 	}
1605 
1606 	return pol;
1607 }
1608 
1609 /*
1610  * get_vma_policy(@vma, @addr)
1611  * @vma: virtual memory area whose policy is sought
1612  * @addr: address in @vma for shared policy lookup
1613  *
1614  * Returns effective policy for a VMA at specified address.
1615  * Falls back to current->mempolicy or system default policy, as necessary.
1616  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1617  * count--added by the get_policy() vm_op, as appropriate--to protect against
1618  * freeing by another task.  It is the caller's responsibility to free the
1619  * extra reference for shared policies.
1620  */
1621 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1622 						unsigned long addr)
1623 {
1624 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1625 
1626 	if (!pol)
1627 		pol = get_task_policy(current);
1628 
1629 	return pol;
1630 }
1631 
1632 bool vma_policy_mof(struct vm_area_struct *vma)
1633 {
1634 	struct mempolicy *pol;
1635 
1636 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1637 		bool ret = false;
1638 
1639 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1640 		if (pol && (pol->flags & MPOL_F_MOF))
1641 			ret = true;
1642 		mpol_cond_put(pol);
1643 
1644 		return ret;
1645 	}
1646 
1647 	pol = vma->vm_policy;
1648 	if (!pol)
1649 		pol = get_task_policy(current);
1650 
1651 	return pol->flags & MPOL_F_MOF;
1652 }
1653 
1654 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1655 {
1656 	enum zone_type dynamic_policy_zone = policy_zone;
1657 
1658 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1659 
1660 	/*
1661 	 * if policy->v.nodes has movable memory only,
1662 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1663 	 *
1664 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1665 	 * so if the following test faile, it implies
1666 	 * policy->v.nodes has movable memory only.
1667 	 */
1668 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1669 		dynamic_policy_zone = ZONE_MOVABLE;
1670 
1671 	return zone >= dynamic_policy_zone;
1672 }
1673 
1674 /*
1675  * Return a nodemask representing a mempolicy for filtering nodes for
1676  * page allocation
1677  */
1678 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1679 {
1680 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1681 	if (unlikely(policy->mode == MPOL_BIND) &&
1682 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1683 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1684 		return &policy->v.nodes;
1685 
1686 	return NULL;
1687 }
1688 
1689 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1690 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1691 	int nd)
1692 {
1693 	switch (policy->mode) {
1694 	case MPOL_PREFERRED:
1695 		if (!(policy->flags & MPOL_F_LOCAL))
1696 			nd = policy->v.preferred_node;
1697 		break;
1698 	case MPOL_BIND:
1699 		/*
1700 		 * Normally, MPOL_BIND allocations are node-local within the
1701 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1702 		 * current node isn't part of the mask, we use the zonelist for
1703 		 * the first node in the mask instead.
1704 		 */
1705 		if (unlikely(gfp & __GFP_THISNODE) &&
1706 				unlikely(!node_isset(nd, policy->v.nodes)))
1707 			nd = first_node(policy->v.nodes);
1708 		break;
1709 	default:
1710 		BUG();
1711 	}
1712 	return node_zonelist(nd, gfp);
1713 }
1714 
1715 /* Do dynamic interleaving for a process */
1716 static unsigned interleave_nodes(struct mempolicy *policy)
1717 {
1718 	unsigned nid, next;
1719 	struct task_struct *me = current;
1720 
1721 	nid = me->il_next;
1722 	next = next_node(nid, policy->v.nodes);
1723 	if (next >= MAX_NUMNODES)
1724 		next = first_node(policy->v.nodes);
1725 	if (next < MAX_NUMNODES)
1726 		me->il_next = next;
1727 	return nid;
1728 }
1729 
1730 /*
1731  * Depending on the memory policy provide a node from which to allocate the
1732  * next slab entry.
1733  */
1734 unsigned int mempolicy_slab_node(void)
1735 {
1736 	struct mempolicy *policy;
1737 	int node = numa_mem_id();
1738 
1739 	if (in_interrupt())
1740 		return node;
1741 
1742 	policy = current->mempolicy;
1743 	if (!policy || policy->flags & MPOL_F_LOCAL)
1744 		return node;
1745 
1746 	switch (policy->mode) {
1747 	case MPOL_PREFERRED:
1748 		/*
1749 		 * handled MPOL_F_LOCAL above
1750 		 */
1751 		return policy->v.preferred_node;
1752 
1753 	case MPOL_INTERLEAVE:
1754 		return interleave_nodes(policy);
1755 
1756 	case MPOL_BIND: {
1757 		/*
1758 		 * Follow bind policy behavior and start allocation at the
1759 		 * first node.
1760 		 */
1761 		struct zonelist *zonelist;
1762 		struct zone *zone;
1763 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1764 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1765 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1766 							&policy->v.nodes,
1767 							&zone);
1768 		return zone ? zone->node : node;
1769 	}
1770 
1771 	default:
1772 		BUG();
1773 	}
1774 }
1775 
1776 /* Do static interleaving for a VMA with known offset. */
1777 static unsigned offset_il_node(struct mempolicy *pol,
1778 		struct vm_area_struct *vma, unsigned long off)
1779 {
1780 	unsigned nnodes = nodes_weight(pol->v.nodes);
1781 	unsigned target;
1782 	int c;
1783 	int nid = NUMA_NO_NODE;
1784 
1785 	if (!nnodes)
1786 		return numa_node_id();
1787 	target = (unsigned int)off % nnodes;
1788 	c = 0;
1789 	do {
1790 		nid = next_node(nid, pol->v.nodes);
1791 		c++;
1792 	} while (c <= target);
1793 	return nid;
1794 }
1795 
1796 /* Determine a node number for interleave */
1797 static inline unsigned interleave_nid(struct mempolicy *pol,
1798 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1799 {
1800 	if (vma) {
1801 		unsigned long off;
1802 
1803 		/*
1804 		 * for small pages, there is no difference between
1805 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1806 		 * for huge pages, since vm_pgoff is in units of small
1807 		 * pages, we need to shift off the always 0 bits to get
1808 		 * a useful offset.
1809 		 */
1810 		BUG_ON(shift < PAGE_SHIFT);
1811 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1812 		off += (addr - vma->vm_start) >> shift;
1813 		return offset_il_node(pol, vma, off);
1814 	} else
1815 		return interleave_nodes(pol);
1816 }
1817 
1818 /*
1819  * Return the bit number of a random bit set in the nodemask.
1820  * (returns NUMA_NO_NODE if nodemask is empty)
1821  */
1822 int node_random(const nodemask_t *maskp)
1823 {
1824 	int w, bit = NUMA_NO_NODE;
1825 
1826 	w = nodes_weight(*maskp);
1827 	if (w)
1828 		bit = bitmap_ord_to_pos(maskp->bits,
1829 			get_random_int() % w, MAX_NUMNODES);
1830 	return bit;
1831 }
1832 
1833 #ifdef CONFIG_HUGETLBFS
1834 /*
1835  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1836  * @vma: virtual memory area whose policy is sought
1837  * @addr: address in @vma for shared policy lookup and interleave policy
1838  * @gfp_flags: for requested zone
1839  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1840  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1841  *
1842  * Returns a zonelist suitable for a huge page allocation and a pointer
1843  * to the struct mempolicy for conditional unref after allocation.
1844  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1845  * @nodemask for filtering the zonelist.
1846  *
1847  * Must be protected by read_mems_allowed_begin()
1848  */
1849 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1850 				gfp_t gfp_flags, struct mempolicy **mpol,
1851 				nodemask_t **nodemask)
1852 {
1853 	struct zonelist *zl;
1854 
1855 	*mpol = get_vma_policy(vma, addr);
1856 	*nodemask = NULL;	/* assume !MPOL_BIND */
1857 
1858 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1859 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1860 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1861 	} else {
1862 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1863 		if ((*mpol)->mode == MPOL_BIND)
1864 			*nodemask = &(*mpol)->v.nodes;
1865 	}
1866 	return zl;
1867 }
1868 
1869 /*
1870  * init_nodemask_of_mempolicy
1871  *
1872  * If the current task's mempolicy is "default" [NULL], return 'false'
1873  * to indicate default policy.  Otherwise, extract the policy nodemask
1874  * for 'bind' or 'interleave' policy into the argument nodemask, or
1875  * initialize the argument nodemask to contain the single node for
1876  * 'preferred' or 'local' policy and return 'true' to indicate presence
1877  * of non-default mempolicy.
1878  *
1879  * We don't bother with reference counting the mempolicy [mpol_get/put]
1880  * because the current task is examining it's own mempolicy and a task's
1881  * mempolicy is only ever changed by the task itself.
1882  *
1883  * N.B., it is the caller's responsibility to free a returned nodemask.
1884  */
1885 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1886 {
1887 	struct mempolicy *mempolicy;
1888 	int nid;
1889 
1890 	if (!(mask && current->mempolicy))
1891 		return false;
1892 
1893 	task_lock(current);
1894 	mempolicy = current->mempolicy;
1895 	switch (mempolicy->mode) {
1896 	case MPOL_PREFERRED:
1897 		if (mempolicy->flags & MPOL_F_LOCAL)
1898 			nid = numa_node_id();
1899 		else
1900 			nid = mempolicy->v.preferred_node;
1901 		init_nodemask_of_node(mask, nid);
1902 		break;
1903 
1904 	case MPOL_BIND:
1905 		/* Fall through */
1906 	case MPOL_INTERLEAVE:
1907 		*mask =  mempolicy->v.nodes;
1908 		break;
1909 
1910 	default:
1911 		BUG();
1912 	}
1913 	task_unlock(current);
1914 
1915 	return true;
1916 }
1917 #endif
1918 
1919 /*
1920  * mempolicy_nodemask_intersects
1921  *
1922  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1923  * policy.  Otherwise, check for intersection between mask and the policy
1924  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1925  * policy, always return true since it may allocate elsewhere on fallback.
1926  *
1927  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1928  */
1929 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1930 					const nodemask_t *mask)
1931 {
1932 	struct mempolicy *mempolicy;
1933 	bool ret = true;
1934 
1935 	if (!mask)
1936 		return ret;
1937 	task_lock(tsk);
1938 	mempolicy = tsk->mempolicy;
1939 	if (!mempolicy)
1940 		goto out;
1941 
1942 	switch (mempolicy->mode) {
1943 	case MPOL_PREFERRED:
1944 		/*
1945 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1946 		 * allocate from, they may fallback to other nodes when oom.
1947 		 * Thus, it's possible for tsk to have allocated memory from
1948 		 * nodes in mask.
1949 		 */
1950 		break;
1951 	case MPOL_BIND:
1952 	case MPOL_INTERLEAVE:
1953 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1954 		break;
1955 	default:
1956 		BUG();
1957 	}
1958 out:
1959 	task_unlock(tsk);
1960 	return ret;
1961 }
1962 
1963 /* Allocate a page in interleaved policy.
1964    Own path because it needs to do special accounting. */
1965 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1966 					unsigned nid)
1967 {
1968 	struct zonelist *zl;
1969 	struct page *page;
1970 
1971 	zl = node_zonelist(nid, gfp);
1972 	page = __alloc_pages(gfp, order, zl);
1973 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1974 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1975 	return page;
1976 }
1977 
1978 /**
1979  * 	alloc_pages_vma	- Allocate a page for a VMA.
1980  *
1981  * 	@gfp:
1982  *      %GFP_USER    user allocation.
1983  *      %GFP_KERNEL  kernel allocations,
1984  *      %GFP_HIGHMEM highmem/user allocations,
1985  *      %GFP_FS      allocation should not call back into a file system.
1986  *      %GFP_ATOMIC  don't sleep.
1987  *
1988  *	@order:Order of the GFP allocation.
1989  * 	@vma:  Pointer to VMA or NULL if not available.
1990  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1991  *
1992  * 	This function allocates a page from the kernel page pool and applies
1993  *	a NUMA policy associated with the VMA or the current process.
1994  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1995  *	mm_struct of the VMA to prevent it from going away. Should be used for
1996  *	all allocations for pages that will be mapped into
1997  * 	user space. Returns NULL when no page can be allocated.
1998  *
1999  *	Should be called with the mm_sem of the vma hold.
2000  */
2001 struct page *
2002 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2003 		unsigned long addr, int node)
2004 {
2005 	struct mempolicy *pol;
2006 	struct page *page;
2007 	unsigned int cpuset_mems_cookie;
2008 
2009 retry_cpuset:
2010 	pol = get_vma_policy(vma, addr);
2011 	cpuset_mems_cookie = read_mems_allowed_begin();
2012 
2013 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2014 		unsigned nid;
2015 
2016 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2017 		mpol_cond_put(pol);
2018 		page = alloc_page_interleave(gfp, order, nid);
2019 		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2020 			goto retry_cpuset;
2021 
2022 		return page;
2023 	}
2024 	page = __alloc_pages_nodemask(gfp, order,
2025 				      policy_zonelist(gfp, pol, node),
2026 				      policy_nodemask(gfp, pol));
2027 	mpol_cond_put(pol);
2028 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2029 		goto retry_cpuset;
2030 	return page;
2031 }
2032 
2033 /**
2034  * 	alloc_pages_current - Allocate pages.
2035  *
2036  *	@gfp:
2037  *		%GFP_USER   user allocation,
2038  *      	%GFP_KERNEL kernel allocation,
2039  *      	%GFP_HIGHMEM highmem allocation,
2040  *      	%GFP_FS     don't call back into a file system.
2041  *      	%GFP_ATOMIC don't sleep.
2042  *	@order: Power of two of allocation size in pages. 0 is a single page.
2043  *
2044  *	Allocate a page from the kernel page pool.  When not in
2045  *	interrupt context and apply the current process NUMA policy.
2046  *	Returns NULL when no page can be allocated.
2047  *
2048  *	Don't call cpuset_update_task_memory_state() unless
2049  *	1) it's ok to take cpuset_sem (can WAIT), and
2050  *	2) allocating for current task (not interrupt).
2051  */
2052 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2053 {
2054 	struct mempolicy *pol = &default_policy;
2055 	struct page *page;
2056 	unsigned int cpuset_mems_cookie;
2057 
2058 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2059 		pol = get_task_policy(current);
2060 
2061 retry_cpuset:
2062 	cpuset_mems_cookie = read_mems_allowed_begin();
2063 
2064 	/*
2065 	 * No reference counting needed for current->mempolicy
2066 	 * nor system default_policy
2067 	 */
2068 	if (pol->mode == MPOL_INTERLEAVE)
2069 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2070 	else
2071 		page = __alloc_pages_nodemask(gfp, order,
2072 				policy_zonelist(gfp, pol, numa_node_id()),
2073 				policy_nodemask(gfp, pol));
2074 
2075 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2076 		goto retry_cpuset;
2077 
2078 	return page;
2079 }
2080 EXPORT_SYMBOL(alloc_pages_current);
2081 
2082 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2083 {
2084 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2085 
2086 	if (IS_ERR(pol))
2087 		return PTR_ERR(pol);
2088 	dst->vm_policy = pol;
2089 	return 0;
2090 }
2091 
2092 /*
2093  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2094  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2095  * with the mems_allowed returned by cpuset_mems_allowed().  This
2096  * keeps mempolicies cpuset relative after its cpuset moves.  See
2097  * further kernel/cpuset.c update_nodemask().
2098  *
2099  * current's mempolicy may be rebinded by the other task(the task that changes
2100  * cpuset's mems), so we needn't do rebind work for current task.
2101  */
2102 
2103 /* Slow path of a mempolicy duplicate */
2104 struct mempolicy *__mpol_dup(struct mempolicy *old)
2105 {
2106 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2107 
2108 	if (!new)
2109 		return ERR_PTR(-ENOMEM);
2110 
2111 	/* task's mempolicy is protected by alloc_lock */
2112 	if (old == current->mempolicy) {
2113 		task_lock(current);
2114 		*new = *old;
2115 		task_unlock(current);
2116 	} else
2117 		*new = *old;
2118 
2119 	if (current_cpuset_is_being_rebound()) {
2120 		nodemask_t mems = cpuset_mems_allowed(current);
2121 		if (new->flags & MPOL_F_REBINDING)
2122 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2123 		else
2124 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2125 	}
2126 	atomic_set(&new->refcnt, 1);
2127 	return new;
2128 }
2129 
2130 /* Slow path of a mempolicy comparison */
2131 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2132 {
2133 	if (!a || !b)
2134 		return false;
2135 	if (a->mode != b->mode)
2136 		return false;
2137 	if (a->flags != b->flags)
2138 		return false;
2139 	if (mpol_store_user_nodemask(a))
2140 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2141 			return false;
2142 
2143 	switch (a->mode) {
2144 	case MPOL_BIND:
2145 		/* Fall through */
2146 	case MPOL_INTERLEAVE:
2147 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2148 	case MPOL_PREFERRED:
2149 		return a->v.preferred_node == b->v.preferred_node;
2150 	default:
2151 		BUG();
2152 		return false;
2153 	}
2154 }
2155 
2156 /*
2157  * Shared memory backing store policy support.
2158  *
2159  * Remember policies even when nobody has shared memory mapped.
2160  * The policies are kept in Red-Black tree linked from the inode.
2161  * They are protected by the sp->lock spinlock, which should be held
2162  * for any accesses to the tree.
2163  */
2164 
2165 /* lookup first element intersecting start-end */
2166 /* Caller holds sp->lock */
2167 static struct sp_node *
2168 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2169 {
2170 	struct rb_node *n = sp->root.rb_node;
2171 
2172 	while (n) {
2173 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2174 
2175 		if (start >= p->end)
2176 			n = n->rb_right;
2177 		else if (end <= p->start)
2178 			n = n->rb_left;
2179 		else
2180 			break;
2181 	}
2182 	if (!n)
2183 		return NULL;
2184 	for (;;) {
2185 		struct sp_node *w = NULL;
2186 		struct rb_node *prev = rb_prev(n);
2187 		if (!prev)
2188 			break;
2189 		w = rb_entry(prev, struct sp_node, nd);
2190 		if (w->end <= start)
2191 			break;
2192 		n = prev;
2193 	}
2194 	return rb_entry(n, struct sp_node, nd);
2195 }
2196 
2197 /* Insert a new shared policy into the list. */
2198 /* Caller holds sp->lock */
2199 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2200 {
2201 	struct rb_node **p = &sp->root.rb_node;
2202 	struct rb_node *parent = NULL;
2203 	struct sp_node *nd;
2204 
2205 	while (*p) {
2206 		parent = *p;
2207 		nd = rb_entry(parent, struct sp_node, nd);
2208 		if (new->start < nd->start)
2209 			p = &(*p)->rb_left;
2210 		else if (new->end > nd->end)
2211 			p = &(*p)->rb_right;
2212 		else
2213 			BUG();
2214 	}
2215 	rb_link_node(&new->nd, parent, p);
2216 	rb_insert_color(&new->nd, &sp->root);
2217 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2218 		 new->policy ? new->policy->mode : 0);
2219 }
2220 
2221 /* Find shared policy intersecting idx */
2222 struct mempolicy *
2223 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2224 {
2225 	struct mempolicy *pol = NULL;
2226 	struct sp_node *sn;
2227 
2228 	if (!sp->root.rb_node)
2229 		return NULL;
2230 	spin_lock(&sp->lock);
2231 	sn = sp_lookup(sp, idx, idx+1);
2232 	if (sn) {
2233 		mpol_get(sn->policy);
2234 		pol = sn->policy;
2235 	}
2236 	spin_unlock(&sp->lock);
2237 	return pol;
2238 }
2239 
2240 static void sp_free(struct sp_node *n)
2241 {
2242 	mpol_put(n->policy);
2243 	kmem_cache_free(sn_cache, n);
2244 }
2245 
2246 /**
2247  * mpol_misplaced - check whether current page node is valid in policy
2248  *
2249  * @page: page to be checked
2250  * @vma: vm area where page mapped
2251  * @addr: virtual address where page mapped
2252  *
2253  * Lookup current policy node id for vma,addr and "compare to" page's
2254  * node id.
2255  *
2256  * Returns:
2257  *	-1	- not misplaced, page is in the right node
2258  *	node	- node id where the page should be
2259  *
2260  * Policy determination "mimics" alloc_page_vma().
2261  * Called from fault path where we know the vma and faulting address.
2262  */
2263 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2264 {
2265 	struct mempolicy *pol;
2266 	struct zone *zone;
2267 	int curnid = page_to_nid(page);
2268 	unsigned long pgoff;
2269 	int thiscpu = raw_smp_processor_id();
2270 	int thisnid = cpu_to_node(thiscpu);
2271 	int polnid = -1;
2272 	int ret = -1;
2273 
2274 	BUG_ON(!vma);
2275 
2276 	pol = get_vma_policy(vma, addr);
2277 	if (!(pol->flags & MPOL_F_MOF))
2278 		goto out;
2279 
2280 	switch (pol->mode) {
2281 	case MPOL_INTERLEAVE:
2282 		BUG_ON(addr >= vma->vm_end);
2283 		BUG_ON(addr < vma->vm_start);
2284 
2285 		pgoff = vma->vm_pgoff;
2286 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2287 		polnid = offset_il_node(pol, vma, pgoff);
2288 		break;
2289 
2290 	case MPOL_PREFERRED:
2291 		if (pol->flags & MPOL_F_LOCAL)
2292 			polnid = numa_node_id();
2293 		else
2294 			polnid = pol->v.preferred_node;
2295 		break;
2296 
2297 	case MPOL_BIND:
2298 		/*
2299 		 * allows binding to multiple nodes.
2300 		 * use current page if in policy nodemask,
2301 		 * else select nearest allowed node, if any.
2302 		 * If no allowed nodes, use current [!misplaced].
2303 		 */
2304 		if (node_isset(curnid, pol->v.nodes))
2305 			goto out;
2306 		(void)first_zones_zonelist(
2307 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2308 				gfp_zone(GFP_HIGHUSER),
2309 				&pol->v.nodes, &zone);
2310 		polnid = zone->node;
2311 		break;
2312 
2313 	default:
2314 		BUG();
2315 	}
2316 
2317 	/* Migrate the page towards the node whose CPU is referencing it */
2318 	if (pol->flags & MPOL_F_MORON) {
2319 		polnid = thisnid;
2320 
2321 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2322 			goto out;
2323 	}
2324 
2325 	if (curnid != polnid)
2326 		ret = polnid;
2327 out:
2328 	mpol_cond_put(pol);
2329 
2330 	return ret;
2331 }
2332 
2333 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2334 {
2335 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2336 	rb_erase(&n->nd, &sp->root);
2337 	sp_free(n);
2338 }
2339 
2340 static void sp_node_init(struct sp_node *node, unsigned long start,
2341 			unsigned long end, struct mempolicy *pol)
2342 {
2343 	node->start = start;
2344 	node->end = end;
2345 	node->policy = pol;
2346 }
2347 
2348 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2349 				struct mempolicy *pol)
2350 {
2351 	struct sp_node *n;
2352 	struct mempolicy *newpol;
2353 
2354 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2355 	if (!n)
2356 		return NULL;
2357 
2358 	newpol = mpol_dup(pol);
2359 	if (IS_ERR(newpol)) {
2360 		kmem_cache_free(sn_cache, n);
2361 		return NULL;
2362 	}
2363 	newpol->flags |= MPOL_F_SHARED;
2364 	sp_node_init(n, start, end, newpol);
2365 
2366 	return n;
2367 }
2368 
2369 /* Replace a policy range. */
2370 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2371 				 unsigned long end, struct sp_node *new)
2372 {
2373 	struct sp_node *n;
2374 	struct sp_node *n_new = NULL;
2375 	struct mempolicy *mpol_new = NULL;
2376 	int ret = 0;
2377 
2378 restart:
2379 	spin_lock(&sp->lock);
2380 	n = sp_lookup(sp, start, end);
2381 	/* Take care of old policies in the same range. */
2382 	while (n && n->start < end) {
2383 		struct rb_node *next = rb_next(&n->nd);
2384 		if (n->start >= start) {
2385 			if (n->end <= end)
2386 				sp_delete(sp, n);
2387 			else
2388 				n->start = end;
2389 		} else {
2390 			/* Old policy spanning whole new range. */
2391 			if (n->end > end) {
2392 				if (!n_new)
2393 					goto alloc_new;
2394 
2395 				*mpol_new = *n->policy;
2396 				atomic_set(&mpol_new->refcnt, 1);
2397 				sp_node_init(n_new, end, n->end, mpol_new);
2398 				n->end = start;
2399 				sp_insert(sp, n_new);
2400 				n_new = NULL;
2401 				mpol_new = NULL;
2402 				break;
2403 			} else
2404 				n->end = start;
2405 		}
2406 		if (!next)
2407 			break;
2408 		n = rb_entry(next, struct sp_node, nd);
2409 	}
2410 	if (new)
2411 		sp_insert(sp, new);
2412 	spin_unlock(&sp->lock);
2413 	ret = 0;
2414 
2415 err_out:
2416 	if (mpol_new)
2417 		mpol_put(mpol_new);
2418 	if (n_new)
2419 		kmem_cache_free(sn_cache, n_new);
2420 
2421 	return ret;
2422 
2423 alloc_new:
2424 	spin_unlock(&sp->lock);
2425 	ret = -ENOMEM;
2426 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2427 	if (!n_new)
2428 		goto err_out;
2429 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2430 	if (!mpol_new)
2431 		goto err_out;
2432 	goto restart;
2433 }
2434 
2435 /**
2436  * mpol_shared_policy_init - initialize shared policy for inode
2437  * @sp: pointer to inode shared policy
2438  * @mpol:  struct mempolicy to install
2439  *
2440  * Install non-NULL @mpol in inode's shared policy rb-tree.
2441  * On entry, the current task has a reference on a non-NULL @mpol.
2442  * This must be released on exit.
2443  * This is called at get_inode() calls and we can use GFP_KERNEL.
2444  */
2445 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2446 {
2447 	int ret;
2448 
2449 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2450 	spin_lock_init(&sp->lock);
2451 
2452 	if (mpol) {
2453 		struct vm_area_struct pvma;
2454 		struct mempolicy *new;
2455 		NODEMASK_SCRATCH(scratch);
2456 
2457 		if (!scratch)
2458 			goto put_mpol;
2459 		/* contextualize the tmpfs mount point mempolicy */
2460 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2461 		if (IS_ERR(new))
2462 			goto free_scratch; /* no valid nodemask intersection */
2463 
2464 		task_lock(current);
2465 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2466 		task_unlock(current);
2467 		if (ret)
2468 			goto put_new;
2469 
2470 		/* Create pseudo-vma that contains just the policy */
2471 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2472 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2473 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2474 
2475 put_new:
2476 		mpol_put(new);			/* drop initial ref */
2477 free_scratch:
2478 		NODEMASK_SCRATCH_FREE(scratch);
2479 put_mpol:
2480 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2481 	}
2482 }
2483 
2484 int mpol_set_shared_policy(struct shared_policy *info,
2485 			struct vm_area_struct *vma, struct mempolicy *npol)
2486 {
2487 	int err;
2488 	struct sp_node *new = NULL;
2489 	unsigned long sz = vma_pages(vma);
2490 
2491 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2492 		 vma->vm_pgoff,
2493 		 sz, npol ? npol->mode : -1,
2494 		 npol ? npol->flags : -1,
2495 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2496 
2497 	if (npol) {
2498 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2499 		if (!new)
2500 			return -ENOMEM;
2501 	}
2502 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2503 	if (err && new)
2504 		sp_free(new);
2505 	return err;
2506 }
2507 
2508 /* Free a backing policy store on inode delete. */
2509 void mpol_free_shared_policy(struct shared_policy *p)
2510 {
2511 	struct sp_node *n;
2512 	struct rb_node *next;
2513 
2514 	if (!p->root.rb_node)
2515 		return;
2516 	spin_lock(&p->lock);
2517 	next = rb_first(&p->root);
2518 	while (next) {
2519 		n = rb_entry(next, struct sp_node, nd);
2520 		next = rb_next(&n->nd);
2521 		sp_delete(p, n);
2522 	}
2523 	spin_unlock(&p->lock);
2524 }
2525 
2526 #ifdef CONFIG_NUMA_BALANCING
2527 static int __initdata numabalancing_override;
2528 
2529 static void __init check_numabalancing_enable(void)
2530 {
2531 	bool numabalancing_default = false;
2532 
2533 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2534 		numabalancing_default = true;
2535 
2536 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2537 	if (numabalancing_override)
2538 		set_numabalancing_state(numabalancing_override == 1);
2539 
2540 	if (nr_node_ids > 1 && !numabalancing_override) {
2541 		pr_info("%s automatic NUMA balancing. "
2542 			"Configure with numa_balancing= or the "
2543 			"kernel.numa_balancing sysctl",
2544 			numabalancing_default ? "Enabling" : "Disabling");
2545 		set_numabalancing_state(numabalancing_default);
2546 	}
2547 }
2548 
2549 static int __init setup_numabalancing(char *str)
2550 {
2551 	int ret = 0;
2552 	if (!str)
2553 		goto out;
2554 
2555 	if (!strcmp(str, "enable")) {
2556 		numabalancing_override = 1;
2557 		ret = 1;
2558 	} else if (!strcmp(str, "disable")) {
2559 		numabalancing_override = -1;
2560 		ret = 1;
2561 	}
2562 out:
2563 	if (!ret)
2564 		pr_warn("Unable to parse numa_balancing=\n");
2565 
2566 	return ret;
2567 }
2568 __setup("numa_balancing=", setup_numabalancing);
2569 #else
2570 static inline void __init check_numabalancing_enable(void)
2571 {
2572 }
2573 #endif /* CONFIG_NUMA_BALANCING */
2574 
2575 /* assumes fs == KERNEL_DS */
2576 void __init numa_policy_init(void)
2577 {
2578 	nodemask_t interleave_nodes;
2579 	unsigned long largest = 0;
2580 	int nid, prefer = 0;
2581 
2582 	policy_cache = kmem_cache_create("numa_policy",
2583 					 sizeof(struct mempolicy),
2584 					 0, SLAB_PANIC, NULL);
2585 
2586 	sn_cache = kmem_cache_create("shared_policy_node",
2587 				     sizeof(struct sp_node),
2588 				     0, SLAB_PANIC, NULL);
2589 
2590 	for_each_node(nid) {
2591 		preferred_node_policy[nid] = (struct mempolicy) {
2592 			.refcnt = ATOMIC_INIT(1),
2593 			.mode = MPOL_PREFERRED,
2594 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2595 			.v = { .preferred_node = nid, },
2596 		};
2597 	}
2598 
2599 	/*
2600 	 * Set interleaving policy for system init. Interleaving is only
2601 	 * enabled across suitably sized nodes (default is >= 16MB), or
2602 	 * fall back to the largest node if they're all smaller.
2603 	 */
2604 	nodes_clear(interleave_nodes);
2605 	for_each_node_state(nid, N_MEMORY) {
2606 		unsigned long total_pages = node_present_pages(nid);
2607 
2608 		/* Preserve the largest node */
2609 		if (largest < total_pages) {
2610 			largest = total_pages;
2611 			prefer = nid;
2612 		}
2613 
2614 		/* Interleave this node? */
2615 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2616 			node_set(nid, interleave_nodes);
2617 	}
2618 
2619 	/* All too small, use the largest */
2620 	if (unlikely(nodes_empty(interleave_nodes)))
2621 		node_set(prefer, interleave_nodes);
2622 
2623 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2624 		pr_err("%s: interleaving failed\n", __func__);
2625 
2626 	check_numabalancing_enable();
2627 }
2628 
2629 /* Reset policy of current process to default */
2630 void numa_default_policy(void)
2631 {
2632 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2633 }
2634 
2635 /*
2636  * Parse and format mempolicy from/to strings
2637  */
2638 
2639 /*
2640  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2641  */
2642 static const char * const policy_modes[] =
2643 {
2644 	[MPOL_DEFAULT]    = "default",
2645 	[MPOL_PREFERRED]  = "prefer",
2646 	[MPOL_BIND]       = "bind",
2647 	[MPOL_INTERLEAVE] = "interleave",
2648 	[MPOL_LOCAL]      = "local",
2649 };
2650 
2651 
2652 #ifdef CONFIG_TMPFS
2653 /**
2654  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2655  * @str:  string containing mempolicy to parse
2656  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2657  *
2658  * Format of input:
2659  *	<mode>[=<flags>][:<nodelist>]
2660  *
2661  * On success, returns 0, else 1
2662  */
2663 int mpol_parse_str(char *str, struct mempolicy **mpol)
2664 {
2665 	struct mempolicy *new = NULL;
2666 	unsigned short mode;
2667 	unsigned short mode_flags;
2668 	nodemask_t nodes;
2669 	char *nodelist = strchr(str, ':');
2670 	char *flags = strchr(str, '=');
2671 	int err = 1;
2672 
2673 	if (nodelist) {
2674 		/* NUL-terminate mode or flags string */
2675 		*nodelist++ = '\0';
2676 		if (nodelist_parse(nodelist, nodes))
2677 			goto out;
2678 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2679 			goto out;
2680 	} else
2681 		nodes_clear(nodes);
2682 
2683 	if (flags)
2684 		*flags++ = '\0';	/* terminate mode string */
2685 
2686 	for (mode = 0; mode < MPOL_MAX; mode++) {
2687 		if (!strcmp(str, policy_modes[mode])) {
2688 			break;
2689 		}
2690 	}
2691 	if (mode >= MPOL_MAX)
2692 		goto out;
2693 
2694 	switch (mode) {
2695 	case MPOL_PREFERRED:
2696 		/*
2697 		 * Insist on a nodelist of one node only
2698 		 */
2699 		if (nodelist) {
2700 			char *rest = nodelist;
2701 			while (isdigit(*rest))
2702 				rest++;
2703 			if (*rest)
2704 				goto out;
2705 		}
2706 		break;
2707 	case MPOL_INTERLEAVE:
2708 		/*
2709 		 * Default to online nodes with memory if no nodelist
2710 		 */
2711 		if (!nodelist)
2712 			nodes = node_states[N_MEMORY];
2713 		break;
2714 	case MPOL_LOCAL:
2715 		/*
2716 		 * Don't allow a nodelist;  mpol_new() checks flags
2717 		 */
2718 		if (nodelist)
2719 			goto out;
2720 		mode = MPOL_PREFERRED;
2721 		break;
2722 	case MPOL_DEFAULT:
2723 		/*
2724 		 * Insist on a empty nodelist
2725 		 */
2726 		if (!nodelist)
2727 			err = 0;
2728 		goto out;
2729 	case MPOL_BIND:
2730 		/*
2731 		 * Insist on a nodelist
2732 		 */
2733 		if (!nodelist)
2734 			goto out;
2735 	}
2736 
2737 	mode_flags = 0;
2738 	if (flags) {
2739 		/*
2740 		 * Currently, we only support two mutually exclusive
2741 		 * mode flags.
2742 		 */
2743 		if (!strcmp(flags, "static"))
2744 			mode_flags |= MPOL_F_STATIC_NODES;
2745 		else if (!strcmp(flags, "relative"))
2746 			mode_flags |= MPOL_F_RELATIVE_NODES;
2747 		else
2748 			goto out;
2749 	}
2750 
2751 	new = mpol_new(mode, mode_flags, &nodes);
2752 	if (IS_ERR(new))
2753 		goto out;
2754 
2755 	/*
2756 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2757 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2758 	 */
2759 	if (mode != MPOL_PREFERRED)
2760 		new->v.nodes = nodes;
2761 	else if (nodelist)
2762 		new->v.preferred_node = first_node(nodes);
2763 	else
2764 		new->flags |= MPOL_F_LOCAL;
2765 
2766 	/*
2767 	 * Save nodes for contextualization: this will be used to "clone"
2768 	 * the mempolicy in a specific context [cpuset] at a later time.
2769 	 */
2770 	new->w.user_nodemask = nodes;
2771 
2772 	err = 0;
2773 
2774 out:
2775 	/* Restore string for error message */
2776 	if (nodelist)
2777 		*--nodelist = ':';
2778 	if (flags)
2779 		*--flags = '=';
2780 	if (!err)
2781 		*mpol = new;
2782 	return err;
2783 }
2784 #endif /* CONFIG_TMPFS */
2785 
2786 /**
2787  * mpol_to_str - format a mempolicy structure for printing
2788  * @buffer:  to contain formatted mempolicy string
2789  * @maxlen:  length of @buffer
2790  * @pol:  pointer to mempolicy to be formatted
2791  *
2792  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2793  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2794  * longest flag, "relative", and to display at least a few node ids.
2795  */
2796 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2797 {
2798 	char *p = buffer;
2799 	nodemask_t nodes = NODE_MASK_NONE;
2800 	unsigned short mode = MPOL_DEFAULT;
2801 	unsigned short flags = 0;
2802 
2803 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2804 		mode = pol->mode;
2805 		flags = pol->flags;
2806 	}
2807 
2808 	switch (mode) {
2809 	case MPOL_DEFAULT:
2810 		break;
2811 	case MPOL_PREFERRED:
2812 		if (flags & MPOL_F_LOCAL)
2813 			mode = MPOL_LOCAL;
2814 		else
2815 			node_set(pol->v.preferred_node, nodes);
2816 		break;
2817 	case MPOL_BIND:
2818 	case MPOL_INTERLEAVE:
2819 		nodes = pol->v.nodes;
2820 		break;
2821 	default:
2822 		WARN_ON_ONCE(1);
2823 		snprintf(p, maxlen, "unknown");
2824 		return;
2825 	}
2826 
2827 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2828 
2829 	if (flags & MPOL_MODE_FLAGS) {
2830 		p += snprintf(p, buffer + maxlen - p, "=");
2831 
2832 		/*
2833 		 * Currently, the only defined flags are mutually exclusive
2834 		 */
2835 		if (flags & MPOL_F_STATIC_NODES)
2836 			p += snprintf(p, buffer + maxlen - p, "static");
2837 		else if (flags & MPOL_F_RELATIVE_NODES)
2838 			p += snprintf(p, buffer + maxlen - p, "relative");
2839 	}
2840 
2841 	if (!nodes_empty(nodes)) {
2842 		p += snprintf(p, buffer + maxlen - p, ":");
2843 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2844 	}
2845 }
2846