1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 #include <linux/random.h> 101 102 #include "internal.h" 103 104 /* Internal flags */ 105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 107 108 static struct kmem_cache *policy_cache; 109 static struct kmem_cache *sn_cache; 110 111 /* Highest zone. An specific allocation for a zone below that is not 112 policied. */ 113 enum zone_type policy_zone = 0; 114 115 /* 116 * run-time system-wide default policy => local allocation 117 */ 118 static struct mempolicy default_policy = { 119 .refcnt = ATOMIC_INIT(1), /* never free it */ 120 .mode = MPOL_PREFERRED, 121 .flags = MPOL_F_LOCAL, 122 }; 123 124 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 125 126 struct mempolicy *get_task_policy(struct task_struct *p) 127 { 128 struct mempolicy *pol = p->mempolicy; 129 int node; 130 131 if (pol) 132 return pol; 133 134 node = numa_node_id(); 135 if (node != NUMA_NO_NODE) { 136 pol = &preferred_node_policy[node]; 137 /* preferred_node_policy is not initialised early in boot */ 138 if (pol->mode) 139 return pol; 140 } 141 142 return &default_policy; 143 } 144 145 static const struct mempolicy_operations { 146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 147 /* 148 * If read-side task has no lock to protect task->mempolicy, write-side 149 * task will rebind the task->mempolicy by two step. The first step is 150 * setting all the newly nodes, and the second step is cleaning all the 151 * disallowed nodes. In this way, we can avoid finding no node to alloc 152 * page. 153 * If we have a lock to protect task->mempolicy in read-side, we do 154 * rebind directly. 155 * 156 * step: 157 * MPOL_REBIND_ONCE - do rebind work at once 158 * MPOL_REBIND_STEP1 - set all the newly nodes 159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 160 */ 161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 162 enum mpol_rebind_step step); 163 } mpol_ops[MPOL_MAX]; 164 165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 166 { 167 return pol->flags & MPOL_MODE_FLAGS; 168 } 169 170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 171 const nodemask_t *rel) 172 { 173 nodemask_t tmp; 174 nodes_fold(tmp, *orig, nodes_weight(*rel)); 175 nodes_onto(*ret, tmp, *rel); 176 } 177 178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 179 { 180 if (nodes_empty(*nodes)) 181 return -EINVAL; 182 pol->v.nodes = *nodes; 183 return 0; 184 } 185 186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (!nodes) 189 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 190 else if (nodes_empty(*nodes)) 191 return -EINVAL; /* no allowed nodes */ 192 else 193 pol->v.preferred_node = first_node(*nodes); 194 return 0; 195 } 196 197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 198 { 199 if (nodes_empty(*nodes)) 200 return -EINVAL; 201 pol->v.nodes = *nodes; 202 return 0; 203 } 204 205 /* 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 207 * any, for the new policy. mpol_new() has already validated the nodes 208 * parameter with respect to the policy mode and flags. But, we need to 209 * handle an empty nodemask with MPOL_PREFERRED here. 210 * 211 * Must be called holding task's alloc_lock to protect task's mems_allowed 212 * and mempolicy. May also be called holding the mmap_semaphore for write. 213 */ 214 static int mpol_set_nodemask(struct mempolicy *pol, 215 const nodemask_t *nodes, struct nodemask_scratch *nsc) 216 { 217 int ret; 218 219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 220 if (pol == NULL) 221 return 0; 222 /* Check N_MEMORY */ 223 nodes_and(nsc->mask1, 224 cpuset_current_mems_allowed, node_states[N_MEMORY]); 225 226 VM_BUG_ON(!nodes); 227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 228 nodes = NULL; /* explicit local allocation */ 229 else { 230 if (pol->flags & MPOL_F_RELATIVE_NODES) 231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 232 else 233 nodes_and(nsc->mask2, *nodes, nsc->mask1); 234 235 if (mpol_store_user_nodemask(pol)) 236 pol->w.user_nodemask = *nodes; 237 else 238 pol->w.cpuset_mems_allowed = 239 cpuset_current_mems_allowed; 240 } 241 242 if (nodes) 243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 244 else 245 ret = mpol_ops[pol->mode].create(pol, NULL); 246 return ret; 247 } 248 249 /* 250 * This function just creates a new policy, does some check and simple 251 * initialization. You must invoke mpol_set_nodemask() to set nodes. 252 */ 253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 254 nodemask_t *nodes) 255 { 256 struct mempolicy *policy; 257 258 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 260 261 if (mode == MPOL_DEFAULT) { 262 if (nodes && !nodes_empty(*nodes)) 263 return ERR_PTR(-EINVAL); 264 return NULL; 265 } 266 VM_BUG_ON(!nodes); 267 268 /* 269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 271 * All other modes require a valid pointer to a non-empty nodemask. 272 */ 273 if (mode == MPOL_PREFERRED) { 274 if (nodes_empty(*nodes)) { 275 if (((flags & MPOL_F_STATIC_NODES) || 276 (flags & MPOL_F_RELATIVE_NODES))) 277 return ERR_PTR(-EINVAL); 278 } 279 } else if (mode == MPOL_LOCAL) { 280 if (!nodes_empty(*nodes)) 281 return ERR_PTR(-EINVAL); 282 mode = MPOL_PREFERRED; 283 } else if (nodes_empty(*nodes)) 284 return ERR_PTR(-EINVAL); 285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 286 if (!policy) 287 return ERR_PTR(-ENOMEM); 288 atomic_set(&policy->refcnt, 1); 289 policy->mode = mode; 290 policy->flags = flags; 291 292 return policy; 293 } 294 295 /* Slow path of a mpol destructor. */ 296 void __mpol_put(struct mempolicy *p) 297 { 298 if (!atomic_dec_and_test(&p->refcnt)) 299 return; 300 kmem_cache_free(policy_cache, p); 301 } 302 303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 } 307 308 /* 309 * step: 310 * MPOL_REBIND_ONCE - do rebind work at once 311 * MPOL_REBIND_STEP1 - set all the newly nodes 312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 313 */ 314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 315 enum mpol_rebind_step step) 316 { 317 nodemask_t tmp; 318 319 if (pol->flags & MPOL_F_STATIC_NODES) 320 nodes_and(tmp, pol->w.user_nodemask, *nodes); 321 else if (pol->flags & MPOL_F_RELATIVE_NODES) 322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 323 else { 324 /* 325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 326 * result 327 */ 328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 329 nodes_remap(tmp, pol->v.nodes, 330 pol->w.cpuset_mems_allowed, *nodes); 331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 332 } else if (step == MPOL_REBIND_STEP2) { 333 tmp = pol->w.cpuset_mems_allowed; 334 pol->w.cpuset_mems_allowed = *nodes; 335 } else 336 BUG(); 337 } 338 339 if (nodes_empty(tmp)) 340 tmp = *nodes; 341 342 if (step == MPOL_REBIND_STEP1) 343 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 345 pol->v.nodes = tmp; 346 else 347 BUG(); 348 349 if (!node_isset(current->il_next, tmp)) { 350 current->il_next = next_node(current->il_next, tmp); 351 if (current->il_next >= MAX_NUMNODES) 352 current->il_next = first_node(tmp); 353 if (current->il_next >= MAX_NUMNODES) 354 current->il_next = numa_node_id(); 355 } 356 } 357 358 static void mpol_rebind_preferred(struct mempolicy *pol, 359 const nodemask_t *nodes, 360 enum mpol_rebind_step step) 361 { 362 nodemask_t tmp; 363 364 if (pol->flags & MPOL_F_STATIC_NODES) { 365 int node = first_node(pol->w.user_nodemask); 366 367 if (node_isset(node, *nodes)) { 368 pol->v.preferred_node = node; 369 pol->flags &= ~MPOL_F_LOCAL; 370 } else 371 pol->flags |= MPOL_F_LOCAL; 372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 374 pol->v.preferred_node = first_node(tmp); 375 } else if (!(pol->flags & MPOL_F_LOCAL)) { 376 pol->v.preferred_node = node_remap(pol->v.preferred_node, 377 pol->w.cpuset_mems_allowed, 378 *nodes); 379 pol->w.cpuset_mems_allowed = *nodes; 380 } 381 } 382 383 /* 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes 385 * 386 * If read-side task has no lock to protect task->mempolicy, write-side 387 * task will rebind the task->mempolicy by two step. The first step is 388 * setting all the newly nodes, and the second step is cleaning all the 389 * disallowed nodes. In this way, we can avoid finding no node to alloc 390 * page. 391 * If we have a lock to protect task->mempolicy in read-side, we do 392 * rebind directly. 393 * 394 * step: 395 * MPOL_REBIND_ONCE - do rebind work at once 396 * MPOL_REBIND_STEP1 - set all the newly nodes 397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 398 */ 399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 400 enum mpol_rebind_step step) 401 { 402 if (!pol) 403 return; 404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 406 return; 407 408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 409 return; 410 411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 412 BUG(); 413 414 if (step == MPOL_REBIND_STEP1) 415 pol->flags |= MPOL_F_REBINDING; 416 else if (step == MPOL_REBIND_STEP2) 417 pol->flags &= ~MPOL_F_REBINDING; 418 else if (step >= MPOL_REBIND_NSTEP) 419 BUG(); 420 421 mpol_ops[pol->mode].rebind(pol, newmask, step); 422 } 423 424 /* 425 * Wrapper for mpol_rebind_policy() that just requires task 426 * pointer, and updates task mempolicy. 427 * 428 * Called with task's alloc_lock held. 429 */ 430 431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 432 enum mpol_rebind_step step) 433 { 434 mpol_rebind_policy(tsk->mempolicy, new, step); 435 } 436 437 /* 438 * Rebind each vma in mm to new nodemask. 439 * 440 * Call holding a reference to mm. Takes mm->mmap_sem during call. 441 */ 442 443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 444 { 445 struct vm_area_struct *vma; 446 447 down_write(&mm->mmap_sem); 448 for (vma = mm->mmap; vma; vma = vma->vm_next) 449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 450 up_write(&mm->mmap_sem); 451 } 452 453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 454 [MPOL_DEFAULT] = { 455 .rebind = mpol_rebind_default, 456 }, 457 [MPOL_INTERLEAVE] = { 458 .create = mpol_new_interleave, 459 .rebind = mpol_rebind_nodemask, 460 }, 461 [MPOL_PREFERRED] = { 462 .create = mpol_new_preferred, 463 .rebind = mpol_rebind_preferred, 464 }, 465 [MPOL_BIND] = { 466 .create = mpol_new_bind, 467 .rebind = mpol_rebind_nodemask, 468 }, 469 }; 470 471 static void migrate_page_add(struct page *page, struct list_head *pagelist, 472 unsigned long flags); 473 474 /* 475 * Scan through pages checking if pages follow certain conditions, 476 * and move them to the pagelist if they do. 477 */ 478 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 479 unsigned long addr, unsigned long end, 480 const nodemask_t *nodes, unsigned long flags, 481 void *private) 482 { 483 pte_t *orig_pte; 484 pte_t *pte; 485 spinlock_t *ptl; 486 487 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 488 do { 489 struct page *page; 490 int nid; 491 492 if (!pte_present(*pte)) 493 continue; 494 page = vm_normal_page(vma, addr, *pte); 495 if (!page) 496 continue; 497 /* 498 * vm_normal_page() filters out zero pages, but there might 499 * still be PageReserved pages to skip, perhaps in a VDSO. 500 */ 501 if (PageReserved(page)) 502 continue; 503 nid = page_to_nid(page); 504 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 505 continue; 506 507 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 508 migrate_page_add(page, private, flags); 509 else 510 break; 511 } while (pte++, addr += PAGE_SIZE, addr != end); 512 pte_unmap_unlock(orig_pte, ptl); 513 return addr != end; 514 } 515 516 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma, 517 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags, 518 void *private) 519 { 520 #ifdef CONFIG_HUGETLB_PAGE 521 int nid; 522 struct page *page; 523 spinlock_t *ptl; 524 pte_t entry; 525 526 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd); 527 entry = huge_ptep_get((pte_t *)pmd); 528 if (!pte_present(entry)) 529 goto unlock; 530 page = pte_page(entry); 531 nid = page_to_nid(page); 532 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 533 goto unlock; 534 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 535 if (flags & (MPOL_MF_MOVE_ALL) || 536 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 537 isolate_huge_page(page, private); 538 unlock: 539 spin_unlock(ptl); 540 #else 541 BUG(); 542 #endif 543 } 544 545 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud, 546 unsigned long addr, unsigned long end, 547 const nodemask_t *nodes, unsigned long flags, 548 void *private) 549 { 550 pmd_t *pmd; 551 unsigned long next; 552 553 pmd = pmd_offset(pud, addr); 554 do { 555 next = pmd_addr_end(addr, end); 556 if (!pmd_present(*pmd)) 557 continue; 558 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) { 559 queue_pages_hugetlb_pmd_range(vma, pmd, nodes, 560 flags, private); 561 continue; 562 } 563 split_huge_page_pmd(vma, addr, pmd); 564 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 565 continue; 566 if (queue_pages_pte_range(vma, pmd, addr, next, nodes, 567 flags, private)) 568 return -EIO; 569 } while (pmd++, addr = next, addr != end); 570 return 0; 571 } 572 573 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 574 unsigned long addr, unsigned long end, 575 const nodemask_t *nodes, unsigned long flags, 576 void *private) 577 { 578 pud_t *pud; 579 unsigned long next; 580 581 pud = pud_offset(pgd, addr); 582 do { 583 next = pud_addr_end(addr, end); 584 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) 585 continue; 586 if (pud_none_or_clear_bad(pud)) 587 continue; 588 if (queue_pages_pmd_range(vma, pud, addr, next, nodes, 589 flags, private)) 590 return -EIO; 591 } while (pud++, addr = next, addr != end); 592 return 0; 593 } 594 595 static inline int queue_pages_pgd_range(struct vm_area_struct *vma, 596 unsigned long addr, unsigned long end, 597 const nodemask_t *nodes, unsigned long flags, 598 void *private) 599 { 600 pgd_t *pgd; 601 unsigned long next; 602 603 pgd = pgd_offset(vma->vm_mm, addr); 604 do { 605 next = pgd_addr_end(addr, end); 606 if (pgd_none_or_clear_bad(pgd)) 607 continue; 608 if (queue_pages_pud_range(vma, pgd, addr, next, nodes, 609 flags, private)) 610 return -EIO; 611 } while (pgd++, addr = next, addr != end); 612 return 0; 613 } 614 615 #ifdef CONFIG_NUMA_BALANCING 616 /* 617 * This is used to mark a range of virtual addresses to be inaccessible. 618 * These are later cleared by a NUMA hinting fault. Depending on these 619 * faults, pages may be migrated for better NUMA placement. 620 * 621 * This is assuming that NUMA faults are handled using PROT_NONE. If 622 * an architecture makes a different choice, it will need further 623 * changes to the core. 624 */ 625 unsigned long change_prot_numa(struct vm_area_struct *vma, 626 unsigned long addr, unsigned long end) 627 { 628 int nr_updated; 629 630 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1); 631 if (nr_updated) 632 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 633 634 return nr_updated; 635 } 636 #else 637 static unsigned long change_prot_numa(struct vm_area_struct *vma, 638 unsigned long addr, unsigned long end) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_NUMA_BALANCING */ 643 644 /* 645 * Walk through page tables and collect pages to be migrated. 646 * 647 * If pages found in a given range are on a set of nodes (determined by 648 * @nodes and @flags,) it's isolated and queued to the pagelist which is 649 * passed via @private.) 650 */ 651 static int 652 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 653 const nodemask_t *nodes, unsigned long flags, void *private) 654 { 655 int err = 0; 656 struct vm_area_struct *vma, *prev; 657 658 vma = find_vma(mm, start); 659 if (!vma) 660 return -EFAULT; 661 prev = NULL; 662 for (; vma && vma->vm_start < end; vma = vma->vm_next) { 663 unsigned long endvma = vma->vm_end; 664 665 if (endvma > end) 666 endvma = end; 667 if (vma->vm_start > start) 668 start = vma->vm_start; 669 670 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 671 if (!vma->vm_next && vma->vm_end < end) 672 return -EFAULT; 673 if (prev && prev->vm_end < vma->vm_start) 674 return -EFAULT; 675 } 676 677 if (flags & MPOL_MF_LAZY) { 678 /* Similar to task_numa_work, skip inaccessible VMAs */ 679 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) 680 change_prot_numa(vma, start, endvma); 681 goto next; 682 } 683 684 if ((flags & MPOL_MF_STRICT) || 685 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 686 vma_migratable(vma))) { 687 688 err = queue_pages_pgd_range(vma, start, endvma, nodes, 689 flags, private); 690 if (err) 691 break; 692 } 693 next: 694 prev = vma; 695 } 696 return err; 697 } 698 699 /* 700 * Apply policy to a single VMA 701 * This must be called with the mmap_sem held for writing. 702 */ 703 static int vma_replace_policy(struct vm_area_struct *vma, 704 struct mempolicy *pol) 705 { 706 int err; 707 struct mempolicy *old; 708 struct mempolicy *new; 709 710 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 711 vma->vm_start, vma->vm_end, vma->vm_pgoff, 712 vma->vm_ops, vma->vm_file, 713 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 714 715 new = mpol_dup(pol); 716 if (IS_ERR(new)) 717 return PTR_ERR(new); 718 719 if (vma->vm_ops && vma->vm_ops->set_policy) { 720 err = vma->vm_ops->set_policy(vma, new); 721 if (err) 722 goto err_out; 723 } 724 725 old = vma->vm_policy; 726 vma->vm_policy = new; /* protected by mmap_sem */ 727 mpol_put(old); 728 729 return 0; 730 err_out: 731 mpol_put(new); 732 return err; 733 } 734 735 /* Step 2: apply policy to a range and do splits. */ 736 static int mbind_range(struct mm_struct *mm, unsigned long start, 737 unsigned long end, struct mempolicy *new_pol) 738 { 739 struct vm_area_struct *next; 740 struct vm_area_struct *prev; 741 struct vm_area_struct *vma; 742 int err = 0; 743 pgoff_t pgoff; 744 unsigned long vmstart; 745 unsigned long vmend; 746 747 vma = find_vma(mm, start); 748 if (!vma || vma->vm_start > start) 749 return -EFAULT; 750 751 prev = vma->vm_prev; 752 if (start > vma->vm_start) 753 prev = vma; 754 755 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 756 next = vma->vm_next; 757 vmstart = max(start, vma->vm_start); 758 vmend = min(end, vma->vm_end); 759 760 if (mpol_equal(vma_policy(vma), new_pol)) 761 continue; 762 763 pgoff = vma->vm_pgoff + 764 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 765 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 766 vma->anon_vma, vma->vm_file, pgoff, 767 new_pol); 768 if (prev) { 769 vma = prev; 770 next = vma->vm_next; 771 if (mpol_equal(vma_policy(vma), new_pol)) 772 continue; 773 /* vma_merge() joined vma && vma->next, case 8 */ 774 goto replace; 775 } 776 if (vma->vm_start != vmstart) { 777 err = split_vma(vma->vm_mm, vma, vmstart, 1); 778 if (err) 779 goto out; 780 } 781 if (vma->vm_end != vmend) { 782 err = split_vma(vma->vm_mm, vma, vmend, 0); 783 if (err) 784 goto out; 785 } 786 replace: 787 err = vma_replace_policy(vma, new_pol); 788 if (err) 789 goto out; 790 } 791 792 out: 793 return err; 794 } 795 796 /* Set the process memory policy */ 797 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 798 nodemask_t *nodes) 799 { 800 struct mempolicy *new, *old; 801 NODEMASK_SCRATCH(scratch); 802 int ret; 803 804 if (!scratch) 805 return -ENOMEM; 806 807 new = mpol_new(mode, flags, nodes); 808 if (IS_ERR(new)) { 809 ret = PTR_ERR(new); 810 goto out; 811 } 812 813 task_lock(current); 814 ret = mpol_set_nodemask(new, nodes, scratch); 815 if (ret) { 816 task_unlock(current); 817 mpol_put(new); 818 goto out; 819 } 820 old = current->mempolicy; 821 current->mempolicy = new; 822 if (new && new->mode == MPOL_INTERLEAVE && 823 nodes_weight(new->v.nodes)) 824 current->il_next = first_node(new->v.nodes); 825 task_unlock(current); 826 mpol_put(old); 827 ret = 0; 828 out: 829 NODEMASK_SCRATCH_FREE(scratch); 830 return ret; 831 } 832 833 /* 834 * Return nodemask for policy for get_mempolicy() query 835 * 836 * Called with task's alloc_lock held 837 */ 838 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 839 { 840 nodes_clear(*nodes); 841 if (p == &default_policy) 842 return; 843 844 switch (p->mode) { 845 case MPOL_BIND: 846 /* Fall through */ 847 case MPOL_INTERLEAVE: 848 *nodes = p->v.nodes; 849 break; 850 case MPOL_PREFERRED: 851 if (!(p->flags & MPOL_F_LOCAL)) 852 node_set(p->v.preferred_node, *nodes); 853 /* else return empty node mask for local allocation */ 854 break; 855 default: 856 BUG(); 857 } 858 } 859 860 static int lookup_node(struct mm_struct *mm, unsigned long addr) 861 { 862 struct page *p; 863 int err; 864 865 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 866 if (err >= 0) { 867 err = page_to_nid(p); 868 put_page(p); 869 } 870 return err; 871 } 872 873 /* Retrieve NUMA policy */ 874 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 875 unsigned long addr, unsigned long flags) 876 { 877 int err; 878 struct mm_struct *mm = current->mm; 879 struct vm_area_struct *vma = NULL; 880 struct mempolicy *pol = current->mempolicy; 881 882 if (flags & 883 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 884 return -EINVAL; 885 886 if (flags & MPOL_F_MEMS_ALLOWED) { 887 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 888 return -EINVAL; 889 *policy = 0; /* just so it's initialized */ 890 task_lock(current); 891 *nmask = cpuset_current_mems_allowed; 892 task_unlock(current); 893 return 0; 894 } 895 896 if (flags & MPOL_F_ADDR) { 897 /* 898 * Do NOT fall back to task policy if the 899 * vma/shared policy at addr is NULL. We 900 * want to return MPOL_DEFAULT in this case. 901 */ 902 down_read(&mm->mmap_sem); 903 vma = find_vma_intersection(mm, addr, addr+1); 904 if (!vma) { 905 up_read(&mm->mmap_sem); 906 return -EFAULT; 907 } 908 if (vma->vm_ops && vma->vm_ops->get_policy) 909 pol = vma->vm_ops->get_policy(vma, addr); 910 else 911 pol = vma->vm_policy; 912 } else if (addr) 913 return -EINVAL; 914 915 if (!pol) 916 pol = &default_policy; /* indicates default behavior */ 917 918 if (flags & MPOL_F_NODE) { 919 if (flags & MPOL_F_ADDR) { 920 err = lookup_node(mm, addr); 921 if (err < 0) 922 goto out; 923 *policy = err; 924 } else if (pol == current->mempolicy && 925 pol->mode == MPOL_INTERLEAVE) { 926 *policy = current->il_next; 927 } else { 928 err = -EINVAL; 929 goto out; 930 } 931 } else { 932 *policy = pol == &default_policy ? MPOL_DEFAULT : 933 pol->mode; 934 /* 935 * Internal mempolicy flags must be masked off before exposing 936 * the policy to userspace. 937 */ 938 *policy |= (pol->flags & MPOL_MODE_FLAGS); 939 } 940 941 if (vma) { 942 up_read(¤t->mm->mmap_sem); 943 vma = NULL; 944 } 945 946 err = 0; 947 if (nmask) { 948 if (mpol_store_user_nodemask(pol)) { 949 *nmask = pol->w.user_nodemask; 950 } else { 951 task_lock(current); 952 get_policy_nodemask(pol, nmask); 953 task_unlock(current); 954 } 955 } 956 957 out: 958 mpol_cond_put(pol); 959 if (vma) 960 up_read(¤t->mm->mmap_sem); 961 return err; 962 } 963 964 #ifdef CONFIG_MIGRATION 965 /* 966 * page migration 967 */ 968 static void migrate_page_add(struct page *page, struct list_head *pagelist, 969 unsigned long flags) 970 { 971 /* 972 * Avoid migrating a page that is shared with others. 973 */ 974 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 975 if (!isolate_lru_page(page)) { 976 list_add_tail(&page->lru, pagelist); 977 inc_zone_page_state(page, NR_ISOLATED_ANON + 978 page_is_file_cache(page)); 979 } 980 } 981 } 982 983 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 984 { 985 if (PageHuge(page)) 986 return alloc_huge_page_node(page_hstate(compound_head(page)), 987 node); 988 else 989 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 990 } 991 992 /* 993 * Migrate pages from one node to a target node. 994 * Returns error or the number of pages not migrated. 995 */ 996 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 997 int flags) 998 { 999 nodemask_t nmask; 1000 LIST_HEAD(pagelist); 1001 int err = 0; 1002 1003 nodes_clear(nmask); 1004 node_set(source, nmask); 1005 1006 /* 1007 * This does not "check" the range but isolates all pages that 1008 * need migration. Between passing in the full user address 1009 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1010 */ 1011 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1012 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1013 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1014 1015 if (!list_empty(&pagelist)) { 1016 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1017 MIGRATE_SYNC, MR_SYSCALL); 1018 if (err) 1019 putback_movable_pages(&pagelist); 1020 } 1021 1022 return err; 1023 } 1024 1025 /* 1026 * Move pages between the two nodesets so as to preserve the physical 1027 * layout as much as possible. 1028 * 1029 * Returns the number of page that could not be moved. 1030 */ 1031 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1032 const nodemask_t *to, int flags) 1033 { 1034 int busy = 0; 1035 int err; 1036 nodemask_t tmp; 1037 1038 err = migrate_prep(); 1039 if (err) 1040 return err; 1041 1042 down_read(&mm->mmap_sem); 1043 1044 /* 1045 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1046 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1047 * bit in 'tmp', and return that <source, dest> pair for migration. 1048 * The pair of nodemasks 'to' and 'from' define the map. 1049 * 1050 * If no pair of bits is found that way, fallback to picking some 1051 * pair of 'source' and 'dest' bits that are not the same. If the 1052 * 'source' and 'dest' bits are the same, this represents a node 1053 * that will be migrating to itself, so no pages need move. 1054 * 1055 * If no bits are left in 'tmp', or if all remaining bits left 1056 * in 'tmp' correspond to the same bit in 'to', return false 1057 * (nothing left to migrate). 1058 * 1059 * This lets us pick a pair of nodes to migrate between, such that 1060 * if possible the dest node is not already occupied by some other 1061 * source node, minimizing the risk of overloading the memory on a 1062 * node that would happen if we migrated incoming memory to a node 1063 * before migrating outgoing memory source that same node. 1064 * 1065 * A single scan of tmp is sufficient. As we go, we remember the 1066 * most recent <s, d> pair that moved (s != d). If we find a pair 1067 * that not only moved, but what's better, moved to an empty slot 1068 * (d is not set in tmp), then we break out then, with that pair. 1069 * Otherwise when we finish scanning from_tmp, we at least have the 1070 * most recent <s, d> pair that moved. If we get all the way through 1071 * the scan of tmp without finding any node that moved, much less 1072 * moved to an empty node, then there is nothing left worth migrating. 1073 */ 1074 1075 tmp = *from; 1076 while (!nodes_empty(tmp)) { 1077 int s,d; 1078 int source = NUMA_NO_NODE; 1079 int dest = 0; 1080 1081 for_each_node_mask(s, tmp) { 1082 1083 /* 1084 * do_migrate_pages() tries to maintain the relative 1085 * node relationship of the pages established between 1086 * threads and memory areas. 1087 * 1088 * However if the number of source nodes is not equal to 1089 * the number of destination nodes we can not preserve 1090 * this node relative relationship. In that case, skip 1091 * copying memory from a node that is in the destination 1092 * mask. 1093 * 1094 * Example: [2,3,4] -> [3,4,5] moves everything. 1095 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1096 */ 1097 1098 if ((nodes_weight(*from) != nodes_weight(*to)) && 1099 (node_isset(s, *to))) 1100 continue; 1101 1102 d = node_remap(s, *from, *to); 1103 if (s == d) 1104 continue; 1105 1106 source = s; /* Node moved. Memorize */ 1107 dest = d; 1108 1109 /* dest not in remaining from nodes? */ 1110 if (!node_isset(dest, tmp)) 1111 break; 1112 } 1113 if (source == NUMA_NO_NODE) 1114 break; 1115 1116 node_clear(source, tmp); 1117 err = migrate_to_node(mm, source, dest, flags); 1118 if (err > 0) 1119 busy += err; 1120 if (err < 0) 1121 break; 1122 } 1123 up_read(&mm->mmap_sem); 1124 if (err < 0) 1125 return err; 1126 return busy; 1127 1128 } 1129 1130 /* 1131 * Allocate a new page for page migration based on vma policy. 1132 * Start by assuming the page is mapped by the same vma as contains @start. 1133 * Search forward from there, if not. N.B., this assumes that the 1134 * list of pages handed to migrate_pages()--which is how we get here-- 1135 * is in virtual address order. 1136 */ 1137 static struct page *new_page(struct page *page, unsigned long start, int **x) 1138 { 1139 struct vm_area_struct *vma; 1140 unsigned long uninitialized_var(address); 1141 1142 vma = find_vma(current->mm, start); 1143 while (vma) { 1144 address = page_address_in_vma(page, vma); 1145 if (address != -EFAULT) 1146 break; 1147 vma = vma->vm_next; 1148 } 1149 1150 if (PageHuge(page)) { 1151 BUG_ON(!vma); 1152 return alloc_huge_page_noerr(vma, address, 1); 1153 } 1154 /* 1155 * if !vma, alloc_page_vma() will use task or system default policy 1156 */ 1157 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1158 } 1159 #else 1160 1161 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1162 unsigned long flags) 1163 { 1164 } 1165 1166 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1167 const nodemask_t *to, int flags) 1168 { 1169 return -ENOSYS; 1170 } 1171 1172 static struct page *new_page(struct page *page, unsigned long start, int **x) 1173 { 1174 return NULL; 1175 } 1176 #endif 1177 1178 static long do_mbind(unsigned long start, unsigned long len, 1179 unsigned short mode, unsigned short mode_flags, 1180 nodemask_t *nmask, unsigned long flags) 1181 { 1182 struct mm_struct *mm = current->mm; 1183 struct mempolicy *new; 1184 unsigned long end; 1185 int err; 1186 LIST_HEAD(pagelist); 1187 1188 if (flags & ~(unsigned long)MPOL_MF_VALID) 1189 return -EINVAL; 1190 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1191 return -EPERM; 1192 1193 if (start & ~PAGE_MASK) 1194 return -EINVAL; 1195 1196 if (mode == MPOL_DEFAULT) 1197 flags &= ~MPOL_MF_STRICT; 1198 1199 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1200 end = start + len; 1201 1202 if (end < start) 1203 return -EINVAL; 1204 if (end == start) 1205 return 0; 1206 1207 new = mpol_new(mode, mode_flags, nmask); 1208 if (IS_ERR(new)) 1209 return PTR_ERR(new); 1210 1211 if (flags & MPOL_MF_LAZY) 1212 new->flags |= MPOL_F_MOF; 1213 1214 /* 1215 * If we are using the default policy then operation 1216 * on discontinuous address spaces is okay after all 1217 */ 1218 if (!new) 1219 flags |= MPOL_MF_DISCONTIG_OK; 1220 1221 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1222 start, start + len, mode, mode_flags, 1223 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1224 1225 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1226 1227 err = migrate_prep(); 1228 if (err) 1229 goto mpol_out; 1230 } 1231 { 1232 NODEMASK_SCRATCH(scratch); 1233 if (scratch) { 1234 down_write(&mm->mmap_sem); 1235 task_lock(current); 1236 err = mpol_set_nodemask(new, nmask, scratch); 1237 task_unlock(current); 1238 if (err) 1239 up_write(&mm->mmap_sem); 1240 } else 1241 err = -ENOMEM; 1242 NODEMASK_SCRATCH_FREE(scratch); 1243 } 1244 if (err) 1245 goto mpol_out; 1246 1247 err = queue_pages_range(mm, start, end, nmask, 1248 flags | MPOL_MF_INVERT, &pagelist); 1249 if (!err) 1250 err = mbind_range(mm, start, end, new); 1251 1252 if (!err) { 1253 int nr_failed = 0; 1254 1255 if (!list_empty(&pagelist)) { 1256 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1257 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1258 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1259 if (nr_failed) 1260 putback_movable_pages(&pagelist); 1261 } 1262 1263 if (nr_failed && (flags & MPOL_MF_STRICT)) 1264 err = -EIO; 1265 } else 1266 putback_movable_pages(&pagelist); 1267 1268 up_write(&mm->mmap_sem); 1269 mpol_out: 1270 mpol_put(new); 1271 return err; 1272 } 1273 1274 /* 1275 * User space interface with variable sized bitmaps for nodelists. 1276 */ 1277 1278 /* Copy a node mask from user space. */ 1279 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1280 unsigned long maxnode) 1281 { 1282 unsigned long k; 1283 unsigned long nlongs; 1284 unsigned long endmask; 1285 1286 --maxnode; 1287 nodes_clear(*nodes); 1288 if (maxnode == 0 || !nmask) 1289 return 0; 1290 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1291 return -EINVAL; 1292 1293 nlongs = BITS_TO_LONGS(maxnode); 1294 if ((maxnode % BITS_PER_LONG) == 0) 1295 endmask = ~0UL; 1296 else 1297 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1298 1299 /* When the user specified more nodes than supported just check 1300 if the non supported part is all zero. */ 1301 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1302 if (nlongs > PAGE_SIZE/sizeof(long)) 1303 return -EINVAL; 1304 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1305 unsigned long t; 1306 if (get_user(t, nmask + k)) 1307 return -EFAULT; 1308 if (k == nlongs - 1) { 1309 if (t & endmask) 1310 return -EINVAL; 1311 } else if (t) 1312 return -EINVAL; 1313 } 1314 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1315 endmask = ~0UL; 1316 } 1317 1318 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1319 return -EFAULT; 1320 nodes_addr(*nodes)[nlongs-1] &= endmask; 1321 return 0; 1322 } 1323 1324 /* Copy a kernel node mask to user space */ 1325 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1326 nodemask_t *nodes) 1327 { 1328 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1329 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1330 1331 if (copy > nbytes) { 1332 if (copy > PAGE_SIZE) 1333 return -EINVAL; 1334 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1335 return -EFAULT; 1336 copy = nbytes; 1337 } 1338 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1339 } 1340 1341 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1342 unsigned long, mode, const unsigned long __user *, nmask, 1343 unsigned long, maxnode, unsigned, flags) 1344 { 1345 nodemask_t nodes; 1346 int err; 1347 unsigned short mode_flags; 1348 1349 mode_flags = mode & MPOL_MODE_FLAGS; 1350 mode &= ~MPOL_MODE_FLAGS; 1351 if (mode >= MPOL_MAX) 1352 return -EINVAL; 1353 if ((mode_flags & MPOL_F_STATIC_NODES) && 1354 (mode_flags & MPOL_F_RELATIVE_NODES)) 1355 return -EINVAL; 1356 err = get_nodes(&nodes, nmask, maxnode); 1357 if (err) 1358 return err; 1359 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1360 } 1361 1362 /* Set the process memory policy */ 1363 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1364 unsigned long, maxnode) 1365 { 1366 int err; 1367 nodemask_t nodes; 1368 unsigned short flags; 1369 1370 flags = mode & MPOL_MODE_FLAGS; 1371 mode &= ~MPOL_MODE_FLAGS; 1372 if ((unsigned int)mode >= MPOL_MAX) 1373 return -EINVAL; 1374 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1375 return -EINVAL; 1376 err = get_nodes(&nodes, nmask, maxnode); 1377 if (err) 1378 return err; 1379 return do_set_mempolicy(mode, flags, &nodes); 1380 } 1381 1382 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1383 const unsigned long __user *, old_nodes, 1384 const unsigned long __user *, new_nodes) 1385 { 1386 const struct cred *cred = current_cred(), *tcred; 1387 struct mm_struct *mm = NULL; 1388 struct task_struct *task; 1389 nodemask_t task_nodes; 1390 int err; 1391 nodemask_t *old; 1392 nodemask_t *new; 1393 NODEMASK_SCRATCH(scratch); 1394 1395 if (!scratch) 1396 return -ENOMEM; 1397 1398 old = &scratch->mask1; 1399 new = &scratch->mask2; 1400 1401 err = get_nodes(old, old_nodes, maxnode); 1402 if (err) 1403 goto out; 1404 1405 err = get_nodes(new, new_nodes, maxnode); 1406 if (err) 1407 goto out; 1408 1409 /* Find the mm_struct */ 1410 rcu_read_lock(); 1411 task = pid ? find_task_by_vpid(pid) : current; 1412 if (!task) { 1413 rcu_read_unlock(); 1414 err = -ESRCH; 1415 goto out; 1416 } 1417 get_task_struct(task); 1418 1419 err = -EINVAL; 1420 1421 /* 1422 * Check if this process has the right to modify the specified 1423 * process. The right exists if the process has administrative 1424 * capabilities, superuser privileges or the same 1425 * userid as the target process. 1426 */ 1427 tcred = __task_cred(task); 1428 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1429 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1430 !capable(CAP_SYS_NICE)) { 1431 rcu_read_unlock(); 1432 err = -EPERM; 1433 goto out_put; 1434 } 1435 rcu_read_unlock(); 1436 1437 task_nodes = cpuset_mems_allowed(task); 1438 /* Is the user allowed to access the target nodes? */ 1439 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1440 err = -EPERM; 1441 goto out_put; 1442 } 1443 1444 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1445 err = -EINVAL; 1446 goto out_put; 1447 } 1448 1449 err = security_task_movememory(task); 1450 if (err) 1451 goto out_put; 1452 1453 mm = get_task_mm(task); 1454 put_task_struct(task); 1455 1456 if (!mm) { 1457 err = -EINVAL; 1458 goto out; 1459 } 1460 1461 err = do_migrate_pages(mm, old, new, 1462 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1463 1464 mmput(mm); 1465 out: 1466 NODEMASK_SCRATCH_FREE(scratch); 1467 1468 return err; 1469 1470 out_put: 1471 put_task_struct(task); 1472 goto out; 1473 1474 } 1475 1476 1477 /* Retrieve NUMA policy */ 1478 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1479 unsigned long __user *, nmask, unsigned long, maxnode, 1480 unsigned long, addr, unsigned long, flags) 1481 { 1482 int err; 1483 int uninitialized_var(pval); 1484 nodemask_t nodes; 1485 1486 if (nmask != NULL && maxnode < MAX_NUMNODES) 1487 return -EINVAL; 1488 1489 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1490 1491 if (err) 1492 return err; 1493 1494 if (policy && put_user(pval, policy)) 1495 return -EFAULT; 1496 1497 if (nmask) 1498 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1499 1500 return err; 1501 } 1502 1503 #ifdef CONFIG_COMPAT 1504 1505 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1506 compat_ulong_t __user *, nmask, 1507 compat_ulong_t, maxnode, 1508 compat_ulong_t, addr, compat_ulong_t, flags) 1509 { 1510 long err; 1511 unsigned long __user *nm = NULL; 1512 unsigned long nr_bits, alloc_size; 1513 DECLARE_BITMAP(bm, MAX_NUMNODES); 1514 1515 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1516 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1517 1518 if (nmask) 1519 nm = compat_alloc_user_space(alloc_size); 1520 1521 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1522 1523 if (!err && nmask) { 1524 unsigned long copy_size; 1525 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1526 err = copy_from_user(bm, nm, copy_size); 1527 /* ensure entire bitmap is zeroed */ 1528 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1529 err |= compat_put_bitmap(nmask, bm, nr_bits); 1530 } 1531 1532 return err; 1533 } 1534 1535 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1536 compat_ulong_t, maxnode) 1537 { 1538 long err = 0; 1539 unsigned long __user *nm = NULL; 1540 unsigned long nr_bits, alloc_size; 1541 DECLARE_BITMAP(bm, MAX_NUMNODES); 1542 1543 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1544 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1545 1546 if (nmask) { 1547 err = compat_get_bitmap(bm, nmask, nr_bits); 1548 nm = compat_alloc_user_space(alloc_size); 1549 err |= copy_to_user(nm, bm, alloc_size); 1550 } 1551 1552 if (err) 1553 return -EFAULT; 1554 1555 return sys_set_mempolicy(mode, nm, nr_bits+1); 1556 } 1557 1558 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1559 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1560 compat_ulong_t, maxnode, compat_ulong_t, flags) 1561 { 1562 long err = 0; 1563 unsigned long __user *nm = NULL; 1564 unsigned long nr_bits, alloc_size; 1565 nodemask_t bm; 1566 1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1569 1570 if (nmask) { 1571 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1572 nm = compat_alloc_user_space(alloc_size); 1573 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1574 } 1575 1576 if (err) 1577 return -EFAULT; 1578 1579 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1580 } 1581 1582 #endif 1583 1584 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1585 unsigned long addr) 1586 { 1587 struct mempolicy *pol = NULL; 1588 1589 if (vma) { 1590 if (vma->vm_ops && vma->vm_ops->get_policy) { 1591 pol = vma->vm_ops->get_policy(vma, addr); 1592 } else if (vma->vm_policy) { 1593 pol = vma->vm_policy; 1594 1595 /* 1596 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1597 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1598 * count on these policies which will be dropped by 1599 * mpol_cond_put() later 1600 */ 1601 if (mpol_needs_cond_ref(pol)) 1602 mpol_get(pol); 1603 } 1604 } 1605 1606 return pol; 1607 } 1608 1609 /* 1610 * get_vma_policy(@vma, @addr) 1611 * @vma: virtual memory area whose policy is sought 1612 * @addr: address in @vma for shared policy lookup 1613 * 1614 * Returns effective policy for a VMA at specified address. 1615 * Falls back to current->mempolicy or system default policy, as necessary. 1616 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1617 * count--added by the get_policy() vm_op, as appropriate--to protect against 1618 * freeing by another task. It is the caller's responsibility to free the 1619 * extra reference for shared policies. 1620 */ 1621 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1622 unsigned long addr) 1623 { 1624 struct mempolicy *pol = __get_vma_policy(vma, addr); 1625 1626 if (!pol) 1627 pol = get_task_policy(current); 1628 1629 return pol; 1630 } 1631 1632 bool vma_policy_mof(struct vm_area_struct *vma) 1633 { 1634 struct mempolicy *pol; 1635 1636 if (vma->vm_ops && vma->vm_ops->get_policy) { 1637 bool ret = false; 1638 1639 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1640 if (pol && (pol->flags & MPOL_F_MOF)) 1641 ret = true; 1642 mpol_cond_put(pol); 1643 1644 return ret; 1645 } 1646 1647 pol = vma->vm_policy; 1648 if (!pol) 1649 pol = get_task_policy(current); 1650 1651 return pol->flags & MPOL_F_MOF; 1652 } 1653 1654 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1655 { 1656 enum zone_type dynamic_policy_zone = policy_zone; 1657 1658 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1659 1660 /* 1661 * if policy->v.nodes has movable memory only, 1662 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1663 * 1664 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1665 * so if the following test faile, it implies 1666 * policy->v.nodes has movable memory only. 1667 */ 1668 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1669 dynamic_policy_zone = ZONE_MOVABLE; 1670 1671 return zone >= dynamic_policy_zone; 1672 } 1673 1674 /* 1675 * Return a nodemask representing a mempolicy for filtering nodes for 1676 * page allocation 1677 */ 1678 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1679 { 1680 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1681 if (unlikely(policy->mode == MPOL_BIND) && 1682 apply_policy_zone(policy, gfp_zone(gfp)) && 1683 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1684 return &policy->v.nodes; 1685 1686 return NULL; 1687 } 1688 1689 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1690 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1691 int nd) 1692 { 1693 switch (policy->mode) { 1694 case MPOL_PREFERRED: 1695 if (!(policy->flags & MPOL_F_LOCAL)) 1696 nd = policy->v.preferred_node; 1697 break; 1698 case MPOL_BIND: 1699 /* 1700 * Normally, MPOL_BIND allocations are node-local within the 1701 * allowed nodemask. However, if __GFP_THISNODE is set and the 1702 * current node isn't part of the mask, we use the zonelist for 1703 * the first node in the mask instead. 1704 */ 1705 if (unlikely(gfp & __GFP_THISNODE) && 1706 unlikely(!node_isset(nd, policy->v.nodes))) 1707 nd = first_node(policy->v.nodes); 1708 break; 1709 default: 1710 BUG(); 1711 } 1712 return node_zonelist(nd, gfp); 1713 } 1714 1715 /* Do dynamic interleaving for a process */ 1716 static unsigned interleave_nodes(struct mempolicy *policy) 1717 { 1718 unsigned nid, next; 1719 struct task_struct *me = current; 1720 1721 nid = me->il_next; 1722 next = next_node(nid, policy->v.nodes); 1723 if (next >= MAX_NUMNODES) 1724 next = first_node(policy->v.nodes); 1725 if (next < MAX_NUMNODES) 1726 me->il_next = next; 1727 return nid; 1728 } 1729 1730 /* 1731 * Depending on the memory policy provide a node from which to allocate the 1732 * next slab entry. 1733 */ 1734 unsigned int mempolicy_slab_node(void) 1735 { 1736 struct mempolicy *policy; 1737 int node = numa_mem_id(); 1738 1739 if (in_interrupt()) 1740 return node; 1741 1742 policy = current->mempolicy; 1743 if (!policy || policy->flags & MPOL_F_LOCAL) 1744 return node; 1745 1746 switch (policy->mode) { 1747 case MPOL_PREFERRED: 1748 /* 1749 * handled MPOL_F_LOCAL above 1750 */ 1751 return policy->v.preferred_node; 1752 1753 case MPOL_INTERLEAVE: 1754 return interleave_nodes(policy); 1755 1756 case MPOL_BIND: { 1757 /* 1758 * Follow bind policy behavior and start allocation at the 1759 * first node. 1760 */ 1761 struct zonelist *zonelist; 1762 struct zone *zone; 1763 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1764 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1765 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1766 &policy->v.nodes, 1767 &zone); 1768 return zone ? zone->node : node; 1769 } 1770 1771 default: 1772 BUG(); 1773 } 1774 } 1775 1776 /* Do static interleaving for a VMA with known offset. */ 1777 static unsigned offset_il_node(struct mempolicy *pol, 1778 struct vm_area_struct *vma, unsigned long off) 1779 { 1780 unsigned nnodes = nodes_weight(pol->v.nodes); 1781 unsigned target; 1782 int c; 1783 int nid = NUMA_NO_NODE; 1784 1785 if (!nnodes) 1786 return numa_node_id(); 1787 target = (unsigned int)off % nnodes; 1788 c = 0; 1789 do { 1790 nid = next_node(nid, pol->v.nodes); 1791 c++; 1792 } while (c <= target); 1793 return nid; 1794 } 1795 1796 /* Determine a node number for interleave */ 1797 static inline unsigned interleave_nid(struct mempolicy *pol, 1798 struct vm_area_struct *vma, unsigned long addr, int shift) 1799 { 1800 if (vma) { 1801 unsigned long off; 1802 1803 /* 1804 * for small pages, there is no difference between 1805 * shift and PAGE_SHIFT, so the bit-shift is safe. 1806 * for huge pages, since vm_pgoff is in units of small 1807 * pages, we need to shift off the always 0 bits to get 1808 * a useful offset. 1809 */ 1810 BUG_ON(shift < PAGE_SHIFT); 1811 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1812 off += (addr - vma->vm_start) >> shift; 1813 return offset_il_node(pol, vma, off); 1814 } else 1815 return interleave_nodes(pol); 1816 } 1817 1818 /* 1819 * Return the bit number of a random bit set in the nodemask. 1820 * (returns NUMA_NO_NODE if nodemask is empty) 1821 */ 1822 int node_random(const nodemask_t *maskp) 1823 { 1824 int w, bit = NUMA_NO_NODE; 1825 1826 w = nodes_weight(*maskp); 1827 if (w) 1828 bit = bitmap_ord_to_pos(maskp->bits, 1829 get_random_int() % w, MAX_NUMNODES); 1830 return bit; 1831 } 1832 1833 #ifdef CONFIG_HUGETLBFS 1834 /* 1835 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1836 * @vma: virtual memory area whose policy is sought 1837 * @addr: address in @vma for shared policy lookup and interleave policy 1838 * @gfp_flags: for requested zone 1839 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1840 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1841 * 1842 * Returns a zonelist suitable for a huge page allocation and a pointer 1843 * to the struct mempolicy for conditional unref after allocation. 1844 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1845 * @nodemask for filtering the zonelist. 1846 * 1847 * Must be protected by read_mems_allowed_begin() 1848 */ 1849 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1850 gfp_t gfp_flags, struct mempolicy **mpol, 1851 nodemask_t **nodemask) 1852 { 1853 struct zonelist *zl; 1854 1855 *mpol = get_vma_policy(vma, addr); 1856 *nodemask = NULL; /* assume !MPOL_BIND */ 1857 1858 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1859 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1860 huge_page_shift(hstate_vma(vma))), gfp_flags); 1861 } else { 1862 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1863 if ((*mpol)->mode == MPOL_BIND) 1864 *nodemask = &(*mpol)->v.nodes; 1865 } 1866 return zl; 1867 } 1868 1869 /* 1870 * init_nodemask_of_mempolicy 1871 * 1872 * If the current task's mempolicy is "default" [NULL], return 'false' 1873 * to indicate default policy. Otherwise, extract the policy nodemask 1874 * for 'bind' or 'interleave' policy into the argument nodemask, or 1875 * initialize the argument nodemask to contain the single node for 1876 * 'preferred' or 'local' policy and return 'true' to indicate presence 1877 * of non-default mempolicy. 1878 * 1879 * We don't bother with reference counting the mempolicy [mpol_get/put] 1880 * because the current task is examining it's own mempolicy and a task's 1881 * mempolicy is only ever changed by the task itself. 1882 * 1883 * N.B., it is the caller's responsibility to free a returned nodemask. 1884 */ 1885 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1886 { 1887 struct mempolicy *mempolicy; 1888 int nid; 1889 1890 if (!(mask && current->mempolicy)) 1891 return false; 1892 1893 task_lock(current); 1894 mempolicy = current->mempolicy; 1895 switch (mempolicy->mode) { 1896 case MPOL_PREFERRED: 1897 if (mempolicy->flags & MPOL_F_LOCAL) 1898 nid = numa_node_id(); 1899 else 1900 nid = mempolicy->v.preferred_node; 1901 init_nodemask_of_node(mask, nid); 1902 break; 1903 1904 case MPOL_BIND: 1905 /* Fall through */ 1906 case MPOL_INTERLEAVE: 1907 *mask = mempolicy->v.nodes; 1908 break; 1909 1910 default: 1911 BUG(); 1912 } 1913 task_unlock(current); 1914 1915 return true; 1916 } 1917 #endif 1918 1919 /* 1920 * mempolicy_nodemask_intersects 1921 * 1922 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1923 * policy. Otherwise, check for intersection between mask and the policy 1924 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1925 * policy, always return true since it may allocate elsewhere on fallback. 1926 * 1927 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1928 */ 1929 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1930 const nodemask_t *mask) 1931 { 1932 struct mempolicy *mempolicy; 1933 bool ret = true; 1934 1935 if (!mask) 1936 return ret; 1937 task_lock(tsk); 1938 mempolicy = tsk->mempolicy; 1939 if (!mempolicy) 1940 goto out; 1941 1942 switch (mempolicy->mode) { 1943 case MPOL_PREFERRED: 1944 /* 1945 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1946 * allocate from, they may fallback to other nodes when oom. 1947 * Thus, it's possible for tsk to have allocated memory from 1948 * nodes in mask. 1949 */ 1950 break; 1951 case MPOL_BIND: 1952 case MPOL_INTERLEAVE: 1953 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1954 break; 1955 default: 1956 BUG(); 1957 } 1958 out: 1959 task_unlock(tsk); 1960 return ret; 1961 } 1962 1963 /* Allocate a page in interleaved policy. 1964 Own path because it needs to do special accounting. */ 1965 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1966 unsigned nid) 1967 { 1968 struct zonelist *zl; 1969 struct page *page; 1970 1971 zl = node_zonelist(nid, gfp); 1972 page = __alloc_pages(gfp, order, zl); 1973 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1974 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1975 return page; 1976 } 1977 1978 /** 1979 * alloc_pages_vma - Allocate a page for a VMA. 1980 * 1981 * @gfp: 1982 * %GFP_USER user allocation. 1983 * %GFP_KERNEL kernel allocations, 1984 * %GFP_HIGHMEM highmem/user allocations, 1985 * %GFP_FS allocation should not call back into a file system. 1986 * %GFP_ATOMIC don't sleep. 1987 * 1988 * @order:Order of the GFP allocation. 1989 * @vma: Pointer to VMA or NULL if not available. 1990 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1991 * 1992 * This function allocates a page from the kernel page pool and applies 1993 * a NUMA policy associated with the VMA or the current process. 1994 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1995 * mm_struct of the VMA to prevent it from going away. Should be used for 1996 * all allocations for pages that will be mapped into 1997 * user space. Returns NULL when no page can be allocated. 1998 * 1999 * Should be called with the mm_sem of the vma hold. 2000 */ 2001 struct page * 2002 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2003 unsigned long addr, int node) 2004 { 2005 struct mempolicy *pol; 2006 struct page *page; 2007 unsigned int cpuset_mems_cookie; 2008 2009 retry_cpuset: 2010 pol = get_vma_policy(vma, addr); 2011 cpuset_mems_cookie = read_mems_allowed_begin(); 2012 2013 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 2014 unsigned nid; 2015 2016 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2017 mpol_cond_put(pol); 2018 page = alloc_page_interleave(gfp, order, nid); 2019 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2020 goto retry_cpuset; 2021 2022 return page; 2023 } 2024 page = __alloc_pages_nodemask(gfp, order, 2025 policy_zonelist(gfp, pol, node), 2026 policy_nodemask(gfp, pol)); 2027 mpol_cond_put(pol); 2028 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2029 goto retry_cpuset; 2030 return page; 2031 } 2032 2033 /** 2034 * alloc_pages_current - Allocate pages. 2035 * 2036 * @gfp: 2037 * %GFP_USER user allocation, 2038 * %GFP_KERNEL kernel allocation, 2039 * %GFP_HIGHMEM highmem allocation, 2040 * %GFP_FS don't call back into a file system. 2041 * %GFP_ATOMIC don't sleep. 2042 * @order: Power of two of allocation size in pages. 0 is a single page. 2043 * 2044 * Allocate a page from the kernel page pool. When not in 2045 * interrupt context and apply the current process NUMA policy. 2046 * Returns NULL when no page can be allocated. 2047 * 2048 * Don't call cpuset_update_task_memory_state() unless 2049 * 1) it's ok to take cpuset_sem (can WAIT), and 2050 * 2) allocating for current task (not interrupt). 2051 */ 2052 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2053 { 2054 struct mempolicy *pol = &default_policy; 2055 struct page *page; 2056 unsigned int cpuset_mems_cookie; 2057 2058 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2059 pol = get_task_policy(current); 2060 2061 retry_cpuset: 2062 cpuset_mems_cookie = read_mems_allowed_begin(); 2063 2064 /* 2065 * No reference counting needed for current->mempolicy 2066 * nor system default_policy 2067 */ 2068 if (pol->mode == MPOL_INTERLEAVE) 2069 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2070 else 2071 page = __alloc_pages_nodemask(gfp, order, 2072 policy_zonelist(gfp, pol, numa_node_id()), 2073 policy_nodemask(gfp, pol)); 2074 2075 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2076 goto retry_cpuset; 2077 2078 return page; 2079 } 2080 EXPORT_SYMBOL(alloc_pages_current); 2081 2082 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2083 { 2084 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2085 2086 if (IS_ERR(pol)) 2087 return PTR_ERR(pol); 2088 dst->vm_policy = pol; 2089 return 0; 2090 } 2091 2092 /* 2093 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2094 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2095 * with the mems_allowed returned by cpuset_mems_allowed(). This 2096 * keeps mempolicies cpuset relative after its cpuset moves. See 2097 * further kernel/cpuset.c update_nodemask(). 2098 * 2099 * current's mempolicy may be rebinded by the other task(the task that changes 2100 * cpuset's mems), so we needn't do rebind work for current task. 2101 */ 2102 2103 /* Slow path of a mempolicy duplicate */ 2104 struct mempolicy *__mpol_dup(struct mempolicy *old) 2105 { 2106 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2107 2108 if (!new) 2109 return ERR_PTR(-ENOMEM); 2110 2111 /* task's mempolicy is protected by alloc_lock */ 2112 if (old == current->mempolicy) { 2113 task_lock(current); 2114 *new = *old; 2115 task_unlock(current); 2116 } else 2117 *new = *old; 2118 2119 if (current_cpuset_is_being_rebound()) { 2120 nodemask_t mems = cpuset_mems_allowed(current); 2121 if (new->flags & MPOL_F_REBINDING) 2122 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2123 else 2124 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2125 } 2126 atomic_set(&new->refcnt, 1); 2127 return new; 2128 } 2129 2130 /* Slow path of a mempolicy comparison */ 2131 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2132 { 2133 if (!a || !b) 2134 return false; 2135 if (a->mode != b->mode) 2136 return false; 2137 if (a->flags != b->flags) 2138 return false; 2139 if (mpol_store_user_nodemask(a)) 2140 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2141 return false; 2142 2143 switch (a->mode) { 2144 case MPOL_BIND: 2145 /* Fall through */ 2146 case MPOL_INTERLEAVE: 2147 return !!nodes_equal(a->v.nodes, b->v.nodes); 2148 case MPOL_PREFERRED: 2149 return a->v.preferred_node == b->v.preferred_node; 2150 default: 2151 BUG(); 2152 return false; 2153 } 2154 } 2155 2156 /* 2157 * Shared memory backing store policy support. 2158 * 2159 * Remember policies even when nobody has shared memory mapped. 2160 * The policies are kept in Red-Black tree linked from the inode. 2161 * They are protected by the sp->lock spinlock, which should be held 2162 * for any accesses to the tree. 2163 */ 2164 2165 /* lookup first element intersecting start-end */ 2166 /* Caller holds sp->lock */ 2167 static struct sp_node * 2168 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2169 { 2170 struct rb_node *n = sp->root.rb_node; 2171 2172 while (n) { 2173 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2174 2175 if (start >= p->end) 2176 n = n->rb_right; 2177 else if (end <= p->start) 2178 n = n->rb_left; 2179 else 2180 break; 2181 } 2182 if (!n) 2183 return NULL; 2184 for (;;) { 2185 struct sp_node *w = NULL; 2186 struct rb_node *prev = rb_prev(n); 2187 if (!prev) 2188 break; 2189 w = rb_entry(prev, struct sp_node, nd); 2190 if (w->end <= start) 2191 break; 2192 n = prev; 2193 } 2194 return rb_entry(n, struct sp_node, nd); 2195 } 2196 2197 /* Insert a new shared policy into the list. */ 2198 /* Caller holds sp->lock */ 2199 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2200 { 2201 struct rb_node **p = &sp->root.rb_node; 2202 struct rb_node *parent = NULL; 2203 struct sp_node *nd; 2204 2205 while (*p) { 2206 parent = *p; 2207 nd = rb_entry(parent, struct sp_node, nd); 2208 if (new->start < nd->start) 2209 p = &(*p)->rb_left; 2210 else if (new->end > nd->end) 2211 p = &(*p)->rb_right; 2212 else 2213 BUG(); 2214 } 2215 rb_link_node(&new->nd, parent, p); 2216 rb_insert_color(&new->nd, &sp->root); 2217 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2218 new->policy ? new->policy->mode : 0); 2219 } 2220 2221 /* Find shared policy intersecting idx */ 2222 struct mempolicy * 2223 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2224 { 2225 struct mempolicy *pol = NULL; 2226 struct sp_node *sn; 2227 2228 if (!sp->root.rb_node) 2229 return NULL; 2230 spin_lock(&sp->lock); 2231 sn = sp_lookup(sp, idx, idx+1); 2232 if (sn) { 2233 mpol_get(sn->policy); 2234 pol = sn->policy; 2235 } 2236 spin_unlock(&sp->lock); 2237 return pol; 2238 } 2239 2240 static void sp_free(struct sp_node *n) 2241 { 2242 mpol_put(n->policy); 2243 kmem_cache_free(sn_cache, n); 2244 } 2245 2246 /** 2247 * mpol_misplaced - check whether current page node is valid in policy 2248 * 2249 * @page: page to be checked 2250 * @vma: vm area where page mapped 2251 * @addr: virtual address where page mapped 2252 * 2253 * Lookup current policy node id for vma,addr and "compare to" page's 2254 * node id. 2255 * 2256 * Returns: 2257 * -1 - not misplaced, page is in the right node 2258 * node - node id where the page should be 2259 * 2260 * Policy determination "mimics" alloc_page_vma(). 2261 * Called from fault path where we know the vma and faulting address. 2262 */ 2263 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2264 { 2265 struct mempolicy *pol; 2266 struct zone *zone; 2267 int curnid = page_to_nid(page); 2268 unsigned long pgoff; 2269 int thiscpu = raw_smp_processor_id(); 2270 int thisnid = cpu_to_node(thiscpu); 2271 int polnid = -1; 2272 int ret = -1; 2273 2274 BUG_ON(!vma); 2275 2276 pol = get_vma_policy(vma, addr); 2277 if (!(pol->flags & MPOL_F_MOF)) 2278 goto out; 2279 2280 switch (pol->mode) { 2281 case MPOL_INTERLEAVE: 2282 BUG_ON(addr >= vma->vm_end); 2283 BUG_ON(addr < vma->vm_start); 2284 2285 pgoff = vma->vm_pgoff; 2286 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2287 polnid = offset_il_node(pol, vma, pgoff); 2288 break; 2289 2290 case MPOL_PREFERRED: 2291 if (pol->flags & MPOL_F_LOCAL) 2292 polnid = numa_node_id(); 2293 else 2294 polnid = pol->v.preferred_node; 2295 break; 2296 2297 case MPOL_BIND: 2298 /* 2299 * allows binding to multiple nodes. 2300 * use current page if in policy nodemask, 2301 * else select nearest allowed node, if any. 2302 * If no allowed nodes, use current [!misplaced]. 2303 */ 2304 if (node_isset(curnid, pol->v.nodes)) 2305 goto out; 2306 (void)first_zones_zonelist( 2307 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2308 gfp_zone(GFP_HIGHUSER), 2309 &pol->v.nodes, &zone); 2310 polnid = zone->node; 2311 break; 2312 2313 default: 2314 BUG(); 2315 } 2316 2317 /* Migrate the page towards the node whose CPU is referencing it */ 2318 if (pol->flags & MPOL_F_MORON) { 2319 polnid = thisnid; 2320 2321 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2322 goto out; 2323 } 2324 2325 if (curnid != polnid) 2326 ret = polnid; 2327 out: 2328 mpol_cond_put(pol); 2329 2330 return ret; 2331 } 2332 2333 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2334 { 2335 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2336 rb_erase(&n->nd, &sp->root); 2337 sp_free(n); 2338 } 2339 2340 static void sp_node_init(struct sp_node *node, unsigned long start, 2341 unsigned long end, struct mempolicy *pol) 2342 { 2343 node->start = start; 2344 node->end = end; 2345 node->policy = pol; 2346 } 2347 2348 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2349 struct mempolicy *pol) 2350 { 2351 struct sp_node *n; 2352 struct mempolicy *newpol; 2353 2354 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2355 if (!n) 2356 return NULL; 2357 2358 newpol = mpol_dup(pol); 2359 if (IS_ERR(newpol)) { 2360 kmem_cache_free(sn_cache, n); 2361 return NULL; 2362 } 2363 newpol->flags |= MPOL_F_SHARED; 2364 sp_node_init(n, start, end, newpol); 2365 2366 return n; 2367 } 2368 2369 /* Replace a policy range. */ 2370 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2371 unsigned long end, struct sp_node *new) 2372 { 2373 struct sp_node *n; 2374 struct sp_node *n_new = NULL; 2375 struct mempolicy *mpol_new = NULL; 2376 int ret = 0; 2377 2378 restart: 2379 spin_lock(&sp->lock); 2380 n = sp_lookup(sp, start, end); 2381 /* Take care of old policies in the same range. */ 2382 while (n && n->start < end) { 2383 struct rb_node *next = rb_next(&n->nd); 2384 if (n->start >= start) { 2385 if (n->end <= end) 2386 sp_delete(sp, n); 2387 else 2388 n->start = end; 2389 } else { 2390 /* Old policy spanning whole new range. */ 2391 if (n->end > end) { 2392 if (!n_new) 2393 goto alloc_new; 2394 2395 *mpol_new = *n->policy; 2396 atomic_set(&mpol_new->refcnt, 1); 2397 sp_node_init(n_new, end, n->end, mpol_new); 2398 n->end = start; 2399 sp_insert(sp, n_new); 2400 n_new = NULL; 2401 mpol_new = NULL; 2402 break; 2403 } else 2404 n->end = start; 2405 } 2406 if (!next) 2407 break; 2408 n = rb_entry(next, struct sp_node, nd); 2409 } 2410 if (new) 2411 sp_insert(sp, new); 2412 spin_unlock(&sp->lock); 2413 ret = 0; 2414 2415 err_out: 2416 if (mpol_new) 2417 mpol_put(mpol_new); 2418 if (n_new) 2419 kmem_cache_free(sn_cache, n_new); 2420 2421 return ret; 2422 2423 alloc_new: 2424 spin_unlock(&sp->lock); 2425 ret = -ENOMEM; 2426 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2427 if (!n_new) 2428 goto err_out; 2429 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2430 if (!mpol_new) 2431 goto err_out; 2432 goto restart; 2433 } 2434 2435 /** 2436 * mpol_shared_policy_init - initialize shared policy for inode 2437 * @sp: pointer to inode shared policy 2438 * @mpol: struct mempolicy to install 2439 * 2440 * Install non-NULL @mpol in inode's shared policy rb-tree. 2441 * On entry, the current task has a reference on a non-NULL @mpol. 2442 * This must be released on exit. 2443 * This is called at get_inode() calls and we can use GFP_KERNEL. 2444 */ 2445 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2446 { 2447 int ret; 2448 2449 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2450 spin_lock_init(&sp->lock); 2451 2452 if (mpol) { 2453 struct vm_area_struct pvma; 2454 struct mempolicy *new; 2455 NODEMASK_SCRATCH(scratch); 2456 2457 if (!scratch) 2458 goto put_mpol; 2459 /* contextualize the tmpfs mount point mempolicy */ 2460 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2461 if (IS_ERR(new)) 2462 goto free_scratch; /* no valid nodemask intersection */ 2463 2464 task_lock(current); 2465 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2466 task_unlock(current); 2467 if (ret) 2468 goto put_new; 2469 2470 /* Create pseudo-vma that contains just the policy */ 2471 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2472 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2473 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2474 2475 put_new: 2476 mpol_put(new); /* drop initial ref */ 2477 free_scratch: 2478 NODEMASK_SCRATCH_FREE(scratch); 2479 put_mpol: 2480 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2481 } 2482 } 2483 2484 int mpol_set_shared_policy(struct shared_policy *info, 2485 struct vm_area_struct *vma, struct mempolicy *npol) 2486 { 2487 int err; 2488 struct sp_node *new = NULL; 2489 unsigned long sz = vma_pages(vma); 2490 2491 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2492 vma->vm_pgoff, 2493 sz, npol ? npol->mode : -1, 2494 npol ? npol->flags : -1, 2495 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2496 2497 if (npol) { 2498 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2499 if (!new) 2500 return -ENOMEM; 2501 } 2502 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2503 if (err && new) 2504 sp_free(new); 2505 return err; 2506 } 2507 2508 /* Free a backing policy store on inode delete. */ 2509 void mpol_free_shared_policy(struct shared_policy *p) 2510 { 2511 struct sp_node *n; 2512 struct rb_node *next; 2513 2514 if (!p->root.rb_node) 2515 return; 2516 spin_lock(&p->lock); 2517 next = rb_first(&p->root); 2518 while (next) { 2519 n = rb_entry(next, struct sp_node, nd); 2520 next = rb_next(&n->nd); 2521 sp_delete(p, n); 2522 } 2523 spin_unlock(&p->lock); 2524 } 2525 2526 #ifdef CONFIG_NUMA_BALANCING 2527 static int __initdata numabalancing_override; 2528 2529 static void __init check_numabalancing_enable(void) 2530 { 2531 bool numabalancing_default = false; 2532 2533 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2534 numabalancing_default = true; 2535 2536 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2537 if (numabalancing_override) 2538 set_numabalancing_state(numabalancing_override == 1); 2539 2540 if (nr_node_ids > 1 && !numabalancing_override) { 2541 pr_info("%s automatic NUMA balancing. " 2542 "Configure with numa_balancing= or the " 2543 "kernel.numa_balancing sysctl", 2544 numabalancing_default ? "Enabling" : "Disabling"); 2545 set_numabalancing_state(numabalancing_default); 2546 } 2547 } 2548 2549 static int __init setup_numabalancing(char *str) 2550 { 2551 int ret = 0; 2552 if (!str) 2553 goto out; 2554 2555 if (!strcmp(str, "enable")) { 2556 numabalancing_override = 1; 2557 ret = 1; 2558 } else if (!strcmp(str, "disable")) { 2559 numabalancing_override = -1; 2560 ret = 1; 2561 } 2562 out: 2563 if (!ret) 2564 pr_warn("Unable to parse numa_balancing=\n"); 2565 2566 return ret; 2567 } 2568 __setup("numa_balancing=", setup_numabalancing); 2569 #else 2570 static inline void __init check_numabalancing_enable(void) 2571 { 2572 } 2573 #endif /* CONFIG_NUMA_BALANCING */ 2574 2575 /* assumes fs == KERNEL_DS */ 2576 void __init numa_policy_init(void) 2577 { 2578 nodemask_t interleave_nodes; 2579 unsigned long largest = 0; 2580 int nid, prefer = 0; 2581 2582 policy_cache = kmem_cache_create("numa_policy", 2583 sizeof(struct mempolicy), 2584 0, SLAB_PANIC, NULL); 2585 2586 sn_cache = kmem_cache_create("shared_policy_node", 2587 sizeof(struct sp_node), 2588 0, SLAB_PANIC, NULL); 2589 2590 for_each_node(nid) { 2591 preferred_node_policy[nid] = (struct mempolicy) { 2592 .refcnt = ATOMIC_INIT(1), 2593 .mode = MPOL_PREFERRED, 2594 .flags = MPOL_F_MOF | MPOL_F_MORON, 2595 .v = { .preferred_node = nid, }, 2596 }; 2597 } 2598 2599 /* 2600 * Set interleaving policy for system init. Interleaving is only 2601 * enabled across suitably sized nodes (default is >= 16MB), or 2602 * fall back to the largest node if they're all smaller. 2603 */ 2604 nodes_clear(interleave_nodes); 2605 for_each_node_state(nid, N_MEMORY) { 2606 unsigned long total_pages = node_present_pages(nid); 2607 2608 /* Preserve the largest node */ 2609 if (largest < total_pages) { 2610 largest = total_pages; 2611 prefer = nid; 2612 } 2613 2614 /* Interleave this node? */ 2615 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2616 node_set(nid, interleave_nodes); 2617 } 2618 2619 /* All too small, use the largest */ 2620 if (unlikely(nodes_empty(interleave_nodes))) 2621 node_set(prefer, interleave_nodes); 2622 2623 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2624 pr_err("%s: interleaving failed\n", __func__); 2625 2626 check_numabalancing_enable(); 2627 } 2628 2629 /* Reset policy of current process to default */ 2630 void numa_default_policy(void) 2631 { 2632 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2633 } 2634 2635 /* 2636 * Parse and format mempolicy from/to strings 2637 */ 2638 2639 /* 2640 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2641 */ 2642 static const char * const policy_modes[] = 2643 { 2644 [MPOL_DEFAULT] = "default", 2645 [MPOL_PREFERRED] = "prefer", 2646 [MPOL_BIND] = "bind", 2647 [MPOL_INTERLEAVE] = "interleave", 2648 [MPOL_LOCAL] = "local", 2649 }; 2650 2651 2652 #ifdef CONFIG_TMPFS 2653 /** 2654 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2655 * @str: string containing mempolicy to parse 2656 * @mpol: pointer to struct mempolicy pointer, returned on success. 2657 * 2658 * Format of input: 2659 * <mode>[=<flags>][:<nodelist>] 2660 * 2661 * On success, returns 0, else 1 2662 */ 2663 int mpol_parse_str(char *str, struct mempolicy **mpol) 2664 { 2665 struct mempolicy *new = NULL; 2666 unsigned short mode; 2667 unsigned short mode_flags; 2668 nodemask_t nodes; 2669 char *nodelist = strchr(str, ':'); 2670 char *flags = strchr(str, '='); 2671 int err = 1; 2672 2673 if (nodelist) { 2674 /* NUL-terminate mode or flags string */ 2675 *nodelist++ = '\0'; 2676 if (nodelist_parse(nodelist, nodes)) 2677 goto out; 2678 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2679 goto out; 2680 } else 2681 nodes_clear(nodes); 2682 2683 if (flags) 2684 *flags++ = '\0'; /* terminate mode string */ 2685 2686 for (mode = 0; mode < MPOL_MAX; mode++) { 2687 if (!strcmp(str, policy_modes[mode])) { 2688 break; 2689 } 2690 } 2691 if (mode >= MPOL_MAX) 2692 goto out; 2693 2694 switch (mode) { 2695 case MPOL_PREFERRED: 2696 /* 2697 * Insist on a nodelist of one node only 2698 */ 2699 if (nodelist) { 2700 char *rest = nodelist; 2701 while (isdigit(*rest)) 2702 rest++; 2703 if (*rest) 2704 goto out; 2705 } 2706 break; 2707 case MPOL_INTERLEAVE: 2708 /* 2709 * Default to online nodes with memory if no nodelist 2710 */ 2711 if (!nodelist) 2712 nodes = node_states[N_MEMORY]; 2713 break; 2714 case MPOL_LOCAL: 2715 /* 2716 * Don't allow a nodelist; mpol_new() checks flags 2717 */ 2718 if (nodelist) 2719 goto out; 2720 mode = MPOL_PREFERRED; 2721 break; 2722 case MPOL_DEFAULT: 2723 /* 2724 * Insist on a empty nodelist 2725 */ 2726 if (!nodelist) 2727 err = 0; 2728 goto out; 2729 case MPOL_BIND: 2730 /* 2731 * Insist on a nodelist 2732 */ 2733 if (!nodelist) 2734 goto out; 2735 } 2736 2737 mode_flags = 0; 2738 if (flags) { 2739 /* 2740 * Currently, we only support two mutually exclusive 2741 * mode flags. 2742 */ 2743 if (!strcmp(flags, "static")) 2744 mode_flags |= MPOL_F_STATIC_NODES; 2745 else if (!strcmp(flags, "relative")) 2746 mode_flags |= MPOL_F_RELATIVE_NODES; 2747 else 2748 goto out; 2749 } 2750 2751 new = mpol_new(mode, mode_flags, &nodes); 2752 if (IS_ERR(new)) 2753 goto out; 2754 2755 /* 2756 * Save nodes for mpol_to_str() to show the tmpfs mount options 2757 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2758 */ 2759 if (mode != MPOL_PREFERRED) 2760 new->v.nodes = nodes; 2761 else if (nodelist) 2762 new->v.preferred_node = first_node(nodes); 2763 else 2764 new->flags |= MPOL_F_LOCAL; 2765 2766 /* 2767 * Save nodes for contextualization: this will be used to "clone" 2768 * the mempolicy in a specific context [cpuset] at a later time. 2769 */ 2770 new->w.user_nodemask = nodes; 2771 2772 err = 0; 2773 2774 out: 2775 /* Restore string for error message */ 2776 if (nodelist) 2777 *--nodelist = ':'; 2778 if (flags) 2779 *--flags = '='; 2780 if (!err) 2781 *mpol = new; 2782 return err; 2783 } 2784 #endif /* CONFIG_TMPFS */ 2785 2786 /** 2787 * mpol_to_str - format a mempolicy structure for printing 2788 * @buffer: to contain formatted mempolicy string 2789 * @maxlen: length of @buffer 2790 * @pol: pointer to mempolicy to be formatted 2791 * 2792 * Convert @pol into a string. If @buffer is too short, truncate the string. 2793 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2794 * longest flag, "relative", and to display at least a few node ids. 2795 */ 2796 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2797 { 2798 char *p = buffer; 2799 nodemask_t nodes = NODE_MASK_NONE; 2800 unsigned short mode = MPOL_DEFAULT; 2801 unsigned short flags = 0; 2802 2803 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2804 mode = pol->mode; 2805 flags = pol->flags; 2806 } 2807 2808 switch (mode) { 2809 case MPOL_DEFAULT: 2810 break; 2811 case MPOL_PREFERRED: 2812 if (flags & MPOL_F_LOCAL) 2813 mode = MPOL_LOCAL; 2814 else 2815 node_set(pol->v.preferred_node, nodes); 2816 break; 2817 case MPOL_BIND: 2818 case MPOL_INTERLEAVE: 2819 nodes = pol->v.nodes; 2820 break; 2821 default: 2822 WARN_ON_ONCE(1); 2823 snprintf(p, maxlen, "unknown"); 2824 return; 2825 } 2826 2827 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2828 2829 if (flags & MPOL_MODE_FLAGS) { 2830 p += snprintf(p, buffer + maxlen - p, "="); 2831 2832 /* 2833 * Currently, the only defined flags are mutually exclusive 2834 */ 2835 if (flags & MPOL_F_STATIC_NODES) 2836 p += snprintf(p, buffer + maxlen - p, "static"); 2837 else if (flags & MPOL_F_RELATIVE_NODES) 2838 p += snprintf(p, buffer + maxlen - p, "relative"); 2839 } 2840 2841 if (!nodes_empty(nodes)) { 2842 p += snprintf(p, buffer + maxlen - p, ":"); 2843 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2844 } 2845 } 2846