xref: /openbmc/linux/mm/mempolicy.c (revision c4ee0af3)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94 
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98 
99 #include "internal.h"
100 
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
104 
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107 
108 /* Highest zone. An specific allocation for a zone below that is not
109    policied. */
110 enum zone_type policy_zone = 0;
111 
112 /*
113  * run-time system-wide default policy => local allocation
114  */
115 static struct mempolicy default_policy = {
116 	.refcnt = ATOMIC_INIT(1), /* never free it */
117 	.mode = MPOL_PREFERRED,
118 	.flags = MPOL_F_LOCAL,
119 };
120 
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122 
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 	struct mempolicy *pol = p->mempolicy;
126 
127 	if (!pol) {
128 		int node = numa_node_id();
129 
130 		if (node != NUMA_NO_NODE) {
131 			pol = &preferred_node_policy[node];
132 			/*
133 			 * preferred_node_policy is not initialised early in
134 			 * boot
135 			 */
136 			if (!pol->mode)
137 				pol = NULL;
138 		}
139 	}
140 
141 	return pol;
142 }
143 
144 static const struct mempolicy_operations {
145 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 	/*
147 	 * If read-side task has no lock to protect task->mempolicy, write-side
148 	 * task will rebind the task->mempolicy by two step. The first step is
149 	 * setting all the newly nodes, and the second step is cleaning all the
150 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 	 * page.
152 	 * If we have a lock to protect task->mempolicy in read-side, we do
153 	 * rebind directly.
154 	 *
155 	 * step:
156 	 * 	MPOL_REBIND_ONCE - do rebind work at once
157 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
158 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 	 */
160 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 			enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163 
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169 
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 	return pol->flags & MPOL_MODE_FLAGS;
173 }
174 
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 				   const nodemask_t *rel)
177 {
178 	nodemask_t tmp;
179 	nodes_fold(tmp, *orig, nodes_weight(*rel));
180 	nodes_onto(*ret, tmp, *rel);
181 }
182 
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 	if (nodes_empty(*nodes))
186 		return -EINVAL;
187 	pol->v.nodes = *nodes;
188 	return 0;
189 }
190 
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 	if (!nodes)
194 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
195 	else if (nodes_empty(*nodes))
196 		return -EINVAL;			/*  no allowed nodes */
197 	else
198 		pol->v.preferred_node = first_node(*nodes);
199 	return 0;
200 }
201 
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 	if (!is_valid_nodemask(nodes))
205 		return -EINVAL;
206 	pol->v.nodes = *nodes;
207 	return 0;
208 }
209 
210 /*
211  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212  * any, for the new policy.  mpol_new() has already validated the nodes
213  * parameter with respect to the policy mode and flags.  But, we need to
214  * handle an empty nodemask with MPOL_PREFERRED here.
215  *
216  * Must be called holding task's alloc_lock to protect task's mems_allowed
217  * and mempolicy.  May also be called holding the mmap_semaphore for write.
218  */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 	int ret;
223 
224 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 	if (pol == NULL)
226 		return 0;
227 	/* Check N_MEMORY */
228 	nodes_and(nsc->mask1,
229 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
230 
231 	VM_BUG_ON(!nodes);
232 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 		nodes = NULL;	/* explicit local allocation */
234 	else {
235 		if (pol->flags & MPOL_F_RELATIVE_NODES)
236 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 		else
238 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
239 
240 		if (mpol_store_user_nodemask(pol))
241 			pol->w.user_nodemask = *nodes;
242 		else
243 			pol->w.cpuset_mems_allowed =
244 						cpuset_current_mems_allowed;
245 	}
246 
247 	if (nodes)
248 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 	else
250 		ret = mpol_ops[pol->mode].create(pol, NULL);
251 	return ret;
252 }
253 
254 /*
255  * This function just creates a new policy, does some check and simple
256  * initialization. You must invoke mpol_set_nodemask() to set nodes.
257  */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 				  nodemask_t *nodes)
260 {
261 	struct mempolicy *policy;
262 
263 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265 
266 	if (mode == MPOL_DEFAULT) {
267 		if (nodes && !nodes_empty(*nodes))
268 			return ERR_PTR(-EINVAL);
269 		return NULL;
270 	}
271 	VM_BUG_ON(!nodes);
272 
273 	/*
274 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 	 * All other modes require a valid pointer to a non-empty nodemask.
277 	 */
278 	if (mode == MPOL_PREFERRED) {
279 		if (nodes_empty(*nodes)) {
280 			if (((flags & MPOL_F_STATIC_NODES) ||
281 			     (flags & MPOL_F_RELATIVE_NODES)))
282 				return ERR_PTR(-EINVAL);
283 		}
284 	} else if (mode == MPOL_LOCAL) {
285 		if (!nodes_empty(*nodes))
286 			return ERR_PTR(-EINVAL);
287 		mode = MPOL_PREFERRED;
288 	} else if (nodes_empty(*nodes))
289 		return ERR_PTR(-EINVAL);
290 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 	if (!policy)
292 		return ERR_PTR(-ENOMEM);
293 	atomic_set(&policy->refcnt, 1);
294 	policy->mode = mode;
295 	policy->flags = flags;
296 
297 	return policy;
298 }
299 
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 	if (!atomic_dec_and_test(&p->refcnt))
304 		return;
305 	kmem_cache_free(policy_cache, p);
306 }
307 
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 				enum mpol_rebind_step step)
310 {
311 }
312 
313 /*
314  * step:
315  * 	MPOL_REBIND_ONCE  - do rebind work at once
316  * 	MPOL_REBIND_STEP1 - set all the newly nodes
317  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
318  */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 				 enum mpol_rebind_step step)
321 {
322 	nodemask_t tmp;
323 
324 	if (pol->flags & MPOL_F_STATIC_NODES)
325 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 	else {
329 		/*
330 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 		 * result
332 		 */
333 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 			nodes_remap(tmp, pol->v.nodes,
335 					pol->w.cpuset_mems_allowed, *nodes);
336 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 		} else if (step == MPOL_REBIND_STEP2) {
338 			tmp = pol->w.cpuset_mems_allowed;
339 			pol->w.cpuset_mems_allowed = *nodes;
340 		} else
341 			BUG();
342 	}
343 
344 	if (nodes_empty(tmp))
345 		tmp = *nodes;
346 
347 	if (step == MPOL_REBIND_STEP1)
348 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 		pol->v.nodes = tmp;
351 	else
352 		BUG();
353 
354 	if (!node_isset(current->il_next, tmp)) {
355 		current->il_next = next_node(current->il_next, tmp);
356 		if (current->il_next >= MAX_NUMNODES)
357 			current->il_next = first_node(tmp);
358 		if (current->il_next >= MAX_NUMNODES)
359 			current->il_next = numa_node_id();
360 	}
361 }
362 
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 				  const nodemask_t *nodes,
365 				  enum mpol_rebind_step step)
366 {
367 	nodemask_t tmp;
368 
369 	if (pol->flags & MPOL_F_STATIC_NODES) {
370 		int node = first_node(pol->w.user_nodemask);
371 
372 		if (node_isset(node, *nodes)) {
373 			pol->v.preferred_node = node;
374 			pol->flags &= ~MPOL_F_LOCAL;
375 		} else
376 			pol->flags |= MPOL_F_LOCAL;
377 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 		pol->v.preferred_node = first_node(tmp);
380 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
381 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 						   pol->w.cpuset_mems_allowed,
383 						   *nodes);
384 		pol->w.cpuset_mems_allowed = *nodes;
385 	}
386 }
387 
388 /*
389  * mpol_rebind_policy - Migrate a policy to a different set of nodes
390  *
391  * If read-side task has no lock to protect task->mempolicy, write-side
392  * task will rebind the task->mempolicy by two step. The first step is
393  * setting all the newly nodes, and the second step is cleaning all the
394  * disallowed nodes. In this way, we can avoid finding no node to alloc
395  * page.
396  * If we have a lock to protect task->mempolicy in read-side, we do
397  * rebind directly.
398  *
399  * step:
400  * 	MPOL_REBIND_ONCE  - do rebind work at once
401  * 	MPOL_REBIND_STEP1 - set all the newly nodes
402  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
403  */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 				enum mpol_rebind_step step)
406 {
407 	if (!pol)
408 		return;
409 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 		return;
412 
413 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 		return;
415 
416 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 		BUG();
418 
419 	if (step == MPOL_REBIND_STEP1)
420 		pol->flags |= MPOL_F_REBINDING;
421 	else if (step == MPOL_REBIND_STEP2)
422 		pol->flags &= ~MPOL_F_REBINDING;
423 	else if (step >= MPOL_REBIND_NSTEP)
424 		BUG();
425 
426 	mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428 
429 /*
430  * Wrapper for mpol_rebind_policy() that just requires task
431  * pointer, and updates task mempolicy.
432  *
433  * Called with task's alloc_lock held.
434  */
435 
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 			enum mpol_rebind_step step)
438 {
439 	mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441 
442 /*
443  * Rebind each vma in mm to new nodemask.
444  *
445  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
446  */
447 
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 	struct vm_area_struct *vma;
451 
452 	down_write(&mm->mmap_sem);
453 	for (vma = mm->mmap; vma; vma = vma->vm_next)
454 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 	up_write(&mm->mmap_sem);
456 }
457 
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 	[MPOL_DEFAULT] = {
460 		.rebind = mpol_rebind_default,
461 	},
462 	[MPOL_INTERLEAVE] = {
463 		.create = mpol_new_interleave,
464 		.rebind = mpol_rebind_nodemask,
465 	},
466 	[MPOL_PREFERRED] = {
467 		.create = mpol_new_preferred,
468 		.rebind = mpol_rebind_preferred,
469 	},
470 	[MPOL_BIND] = {
471 		.create = mpol_new_bind,
472 		.rebind = mpol_rebind_nodemask,
473 	},
474 };
475 
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 				unsigned long flags);
478 
479 /*
480  * Scan through pages checking if pages follow certain conditions,
481  * and move them to the pagelist if they do.
482  */
483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
484 		unsigned long addr, unsigned long end,
485 		const nodemask_t *nodes, unsigned long flags,
486 		void *private)
487 {
488 	pte_t *orig_pte;
489 	pte_t *pte;
490 	spinlock_t *ptl;
491 
492 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
493 	do {
494 		struct page *page;
495 		int nid;
496 
497 		if (!pte_present(*pte))
498 			continue;
499 		page = vm_normal_page(vma, addr, *pte);
500 		if (!page)
501 			continue;
502 		/*
503 		 * vm_normal_page() filters out zero pages, but there might
504 		 * still be PageReserved pages to skip, perhaps in a VDSO.
505 		 */
506 		if (PageReserved(page))
507 			continue;
508 		nid = page_to_nid(page);
509 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
510 			continue;
511 
512 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
513 			migrate_page_add(page, private, flags);
514 		else
515 			break;
516 	} while (pte++, addr += PAGE_SIZE, addr != end);
517 	pte_unmap_unlock(orig_pte, ptl);
518 	return addr != end;
519 }
520 
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
522 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
523 				    void *private)
524 {
525 #ifdef CONFIG_HUGETLB_PAGE
526 	int nid;
527 	struct page *page;
528 	spinlock_t *ptl;
529 
530 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
531 	page = pte_page(huge_ptep_get((pte_t *)pmd));
532 	nid = page_to_nid(page);
533 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
534 		goto unlock;
535 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
536 	if (flags & (MPOL_MF_MOVE_ALL) ||
537 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
538 		isolate_huge_page(page, private);
539 unlock:
540 	spin_unlock(ptl);
541 #else
542 	BUG();
543 #endif
544 }
545 
546 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
547 		unsigned long addr, unsigned long end,
548 		const nodemask_t *nodes, unsigned long flags,
549 		void *private)
550 {
551 	pmd_t *pmd;
552 	unsigned long next;
553 
554 	pmd = pmd_offset(pud, addr);
555 	do {
556 		next = pmd_addr_end(addr, end);
557 		if (!pmd_present(*pmd))
558 			continue;
559 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
560 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
561 						flags, private);
562 			continue;
563 		}
564 		split_huge_page_pmd(vma, addr, pmd);
565 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
566 			continue;
567 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
568 				    flags, private))
569 			return -EIO;
570 	} while (pmd++, addr = next, addr != end);
571 	return 0;
572 }
573 
574 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
575 		unsigned long addr, unsigned long end,
576 		const nodemask_t *nodes, unsigned long flags,
577 		void *private)
578 {
579 	pud_t *pud;
580 	unsigned long next;
581 
582 	pud = pud_offset(pgd, addr);
583 	do {
584 		next = pud_addr_end(addr, end);
585 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
586 			continue;
587 		if (pud_none_or_clear_bad(pud))
588 			continue;
589 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
590 				    flags, private))
591 			return -EIO;
592 	} while (pud++, addr = next, addr != end);
593 	return 0;
594 }
595 
596 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
597 		unsigned long addr, unsigned long end,
598 		const nodemask_t *nodes, unsigned long flags,
599 		void *private)
600 {
601 	pgd_t *pgd;
602 	unsigned long next;
603 
604 	pgd = pgd_offset(vma->vm_mm, addr);
605 	do {
606 		next = pgd_addr_end(addr, end);
607 		if (pgd_none_or_clear_bad(pgd))
608 			continue;
609 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
610 				    flags, private))
611 			return -EIO;
612 	} while (pgd++, addr = next, addr != end);
613 	return 0;
614 }
615 
616 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
617 /*
618  * This is used to mark a range of virtual addresses to be inaccessible.
619  * These are later cleared by a NUMA hinting fault. Depending on these
620  * faults, pages may be migrated for better NUMA placement.
621  *
622  * This is assuming that NUMA faults are handled using PROT_NONE. If
623  * an architecture makes a different choice, it will need further
624  * changes to the core.
625  */
626 unsigned long change_prot_numa(struct vm_area_struct *vma,
627 			unsigned long addr, unsigned long end)
628 {
629 	int nr_updated;
630 	BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
631 
632 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
633 	if (nr_updated)
634 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
635 
636 	return nr_updated;
637 }
638 #else
639 static unsigned long change_prot_numa(struct vm_area_struct *vma,
640 			unsigned long addr, unsigned long end)
641 {
642 	return 0;
643 }
644 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
645 
646 /*
647  * Walk through page tables and collect pages to be migrated.
648  *
649  * If pages found in a given range are on a set of nodes (determined by
650  * @nodes and @flags,) it's isolated and queued to the pagelist which is
651  * passed via @private.)
652  */
653 static struct vm_area_struct *
654 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
655 		const nodemask_t *nodes, unsigned long flags, void *private)
656 {
657 	int err;
658 	struct vm_area_struct *first, *vma, *prev;
659 
660 
661 	first = find_vma(mm, start);
662 	if (!first)
663 		return ERR_PTR(-EFAULT);
664 	prev = NULL;
665 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
666 		unsigned long endvma = vma->vm_end;
667 
668 		if (endvma > end)
669 			endvma = end;
670 		if (vma->vm_start > start)
671 			start = vma->vm_start;
672 
673 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
674 			if (!vma->vm_next && vma->vm_end < end)
675 				return ERR_PTR(-EFAULT);
676 			if (prev && prev->vm_end < vma->vm_start)
677 				return ERR_PTR(-EFAULT);
678 		}
679 
680 		if (flags & MPOL_MF_LAZY) {
681 			change_prot_numa(vma, start, endvma);
682 			goto next;
683 		}
684 
685 		if ((flags & MPOL_MF_STRICT) ||
686 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
687 		      vma_migratable(vma))) {
688 
689 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
690 						flags, private);
691 			if (err) {
692 				first = ERR_PTR(err);
693 				break;
694 			}
695 		}
696 next:
697 		prev = vma;
698 	}
699 	return first;
700 }
701 
702 /*
703  * Apply policy to a single VMA
704  * This must be called with the mmap_sem held for writing.
705  */
706 static int vma_replace_policy(struct vm_area_struct *vma,
707 						struct mempolicy *pol)
708 {
709 	int err;
710 	struct mempolicy *old;
711 	struct mempolicy *new;
712 
713 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
714 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
715 		 vma->vm_ops, vma->vm_file,
716 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
717 
718 	new = mpol_dup(pol);
719 	if (IS_ERR(new))
720 		return PTR_ERR(new);
721 
722 	if (vma->vm_ops && vma->vm_ops->set_policy) {
723 		err = vma->vm_ops->set_policy(vma, new);
724 		if (err)
725 			goto err_out;
726 	}
727 
728 	old = vma->vm_policy;
729 	vma->vm_policy = new; /* protected by mmap_sem */
730 	mpol_put(old);
731 
732 	return 0;
733  err_out:
734 	mpol_put(new);
735 	return err;
736 }
737 
738 /* Step 2: apply policy to a range and do splits. */
739 static int mbind_range(struct mm_struct *mm, unsigned long start,
740 		       unsigned long end, struct mempolicy *new_pol)
741 {
742 	struct vm_area_struct *next;
743 	struct vm_area_struct *prev;
744 	struct vm_area_struct *vma;
745 	int err = 0;
746 	pgoff_t pgoff;
747 	unsigned long vmstart;
748 	unsigned long vmend;
749 
750 	vma = find_vma(mm, start);
751 	if (!vma || vma->vm_start > start)
752 		return -EFAULT;
753 
754 	prev = vma->vm_prev;
755 	if (start > vma->vm_start)
756 		prev = vma;
757 
758 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
759 		next = vma->vm_next;
760 		vmstart = max(start, vma->vm_start);
761 		vmend   = min(end, vma->vm_end);
762 
763 		if (mpol_equal(vma_policy(vma), new_pol))
764 			continue;
765 
766 		pgoff = vma->vm_pgoff +
767 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
768 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
769 				  vma->anon_vma, vma->vm_file, pgoff,
770 				  new_pol);
771 		if (prev) {
772 			vma = prev;
773 			next = vma->vm_next;
774 			if (mpol_equal(vma_policy(vma), new_pol))
775 				continue;
776 			/* vma_merge() joined vma && vma->next, case 8 */
777 			goto replace;
778 		}
779 		if (vma->vm_start != vmstart) {
780 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
781 			if (err)
782 				goto out;
783 		}
784 		if (vma->vm_end != vmend) {
785 			err = split_vma(vma->vm_mm, vma, vmend, 0);
786 			if (err)
787 				goto out;
788 		}
789  replace:
790 		err = vma_replace_policy(vma, new_pol);
791 		if (err)
792 			goto out;
793 	}
794 
795  out:
796 	return err;
797 }
798 
799 /*
800  * Update task->flags PF_MEMPOLICY bit: set iff non-default
801  * mempolicy.  Allows more rapid checking of this (combined perhaps
802  * with other PF_* flag bits) on memory allocation hot code paths.
803  *
804  * If called from outside this file, the task 'p' should -only- be
805  * a newly forked child not yet visible on the task list, because
806  * manipulating the task flags of a visible task is not safe.
807  *
808  * The above limitation is why this routine has the funny name
809  * mpol_fix_fork_child_flag().
810  *
811  * It is also safe to call this with a task pointer of current,
812  * which the static wrapper mpol_set_task_struct_flag() does,
813  * for use within this file.
814  */
815 
816 void mpol_fix_fork_child_flag(struct task_struct *p)
817 {
818 	if (p->mempolicy)
819 		p->flags |= PF_MEMPOLICY;
820 	else
821 		p->flags &= ~PF_MEMPOLICY;
822 }
823 
824 static void mpol_set_task_struct_flag(void)
825 {
826 	mpol_fix_fork_child_flag(current);
827 }
828 
829 /* Set the process memory policy */
830 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
831 			     nodemask_t *nodes)
832 {
833 	struct mempolicy *new, *old;
834 	struct mm_struct *mm = current->mm;
835 	NODEMASK_SCRATCH(scratch);
836 	int ret;
837 
838 	if (!scratch)
839 		return -ENOMEM;
840 
841 	new = mpol_new(mode, flags, nodes);
842 	if (IS_ERR(new)) {
843 		ret = PTR_ERR(new);
844 		goto out;
845 	}
846 	/*
847 	 * prevent changing our mempolicy while show_numa_maps()
848 	 * is using it.
849 	 * Note:  do_set_mempolicy() can be called at init time
850 	 * with no 'mm'.
851 	 */
852 	if (mm)
853 		down_write(&mm->mmap_sem);
854 	task_lock(current);
855 	ret = mpol_set_nodemask(new, nodes, scratch);
856 	if (ret) {
857 		task_unlock(current);
858 		if (mm)
859 			up_write(&mm->mmap_sem);
860 		mpol_put(new);
861 		goto out;
862 	}
863 	old = current->mempolicy;
864 	current->mempolicy = new;
865 	mpol_set_task_struct_flag();
866 	if (new && new->mode == MPOL_INTERLEAVE &&
867 	    nodes_weight(new->v.nodes))
868 		current->il_next = first_node(new->v.nodes);
869 	task_unlock(current);
870 	if (mm)
871 		up_write(&mm->mmap_sem);
872 
873 	mpol_put(old);
874 	ret = 0;
875 out:
876 	NODEMASK_SCRATCH_FREE(scratch);
877 	return ret;
878 }
879 
880 /*
881  * Return nodemask for policy for get_mempolicy() query
882  *
883  * Called with task's alloc_lock held
884  */
885 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
886 {
887 	nodes_clear(*nodes);
888 	if (p == &default_policy)
889 		return;
890 
891 	switch (p->mode) {
892 	case MPOL_BIND:
893 		/* Fall through */
894 	case MPOL_INTERLEAVE:
895 		*nodes = p->v.nodes;
896 		break;
897 	case MPOL_PREFERRED:
898 		if (!(p->flags & MPOL_F_LOCAL))
899 			node_set(p->v.preferred_node, *nodes);
900 		/* else return empty node mask for local allocation */
901 		break;
902 	default:
903 		BUG();
904 	}
905 }
906 
907 static int lookup_node(struct mm_struct *mm, unsigned long addr)
908 {
909 	struct page *p;
910 	int err;
911 
912 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
913 	if (err >= 0) {
914 		err = page_to_nid(p);
915 		put_page(p);
916 	}
917 	return err;
918 }
919 
920 /* Retrieve NUMA policy */
921 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
922 			     unsigned long addr, unsigned long flags)
923 {
924 	int err;
925 	struct mm_struct *mm = current->mm;
926 	struct vm_area_struct *vma = NULL;
927 	struct mempolicy *pol = current->mempolicy;
928 
929 	if (flags &
930 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
931 		return -EINVAL;
932 
933 	if (flags & MPOL_F_MEMS_ALLOWED) {
934 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
935 			return -EINVAL;
936 		*policy = 0;	/* just so it's initialized */
937 		task_lock(current);
938 		*nmask  = cpuset_current_mems_allowed;
939 		task_unlock(current);
940 		return 0;
941 	}
942 
943 	if (flags & MPOL_F_ADDR) {
944 		/*
945 		 * Do NOT fall back to task policy if the
946 		 * vma/shared policy at addr is NULL.  We
947 		 * want to return MPOL_DEFAULT in this case.
948 		 */
949 		down_read(&mm->mmap_sem);
950 		vma = find_vma_intersection(mm, addr, addr+1);
951 		if (!vma) {
952 			up_read(&mm->mmap_sem);
953 			return -EFAULT;
954 		}
955 		if (vma->vm_ops && vma->vm_ops->get_policy)
956 			pol = vma->vm_ops->get_policy(vma, addr);
957 		else
958 			pol = vma->vm_policy;
959 	} else if (addr)
960 		return -EINVAL;
961 
962 	if (!pol)
963 		pol = &default_policy;	/* indicates default behavior */
964 
965 	if (flags & MPOL_F_NODE) {
966 		if (flags & MPOL_F_ADDR) {
967 			err = lookup_node(mm, addr);
968 			if (err < 0)
969 				goto out;
970 			*policy = err;
971 		} else if (pol == current->mempolicy &&
972 				pol->mode == MPOL_INTERLEAVE) {
973 			*policy = current->il_next;
974 		} else {
975 			err = -EINVAL;
976 			goto out;
977 		}
978 	} else {
979 		*policy = pol == &default_policy ? MPOL_DEFAULT :
980 						pol->mode;
981 		/*
982 		 * Internal mempolicy flags must be masked off before exposing
983 		 * the policy to userspace.
984 		 */
985 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
986 	}
987 
988 	if (vma) {
989 		up_read(&current->mm->mmap_sem);
990 		vma = NULL;
991 	}
992 
993 	err = 0;
994 	if (nmask) {
995 		if (mpol_store_user_nodemask(pol)) {
996 			*nmask = pol->w.user_nodemask;
997 		} else {
998 			task_lock(current);
999 			get_policy_nodemask(pol, nmask);
1000 			task_unlock(current);
1001 		}
1002 	}
1003 
1004  out:
1005 	mpol_cond_put(pol);
1006 	if (vma)
1007 		up_read(&current->mm->mmap_sem);
1008 	return err;
1009 }
1010 
1011 #ifdef CONFIG_MIGRATION
1012 /*
1013  * page migration
1014  */
1015 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1016 				unsigned long flags)
1017 {
1018 	/*
1019 	 * Avoid migrating a page that is shared with others.
1020 	 */
1021 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1022 		if (!isolate_lru_page(page)) {
1023 			list_add_tail(&page->lru, pagelist);
1024 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1025 					    page_is_file_cache(page));
1026 		}
1027 	}
1028 }
1029 
1030 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1031 {
1032 	if (PageHuge(page))
1033 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1034 					node);
1035 	else
1036 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1037 }
1038 
1039 /*
1040  * Migrate pages from one node to a target node.
1041  * Returns error or the number of pages not migrated.
1042  */
1043 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1044 			   int flags)
1045 {
1046 	nodemask_t nmask;
1047 	LIST_HEAD(pagelist);
1048 	int err = 0;
1049 
1050 	nodes_clear(nmask);
1051 	node_set(source, nmask);
1052 
1053 	/*
1054 	 * This does not "check" the range but isolates all pages that
1055 	 * need migration.  Between passing in the full user address
1056 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1057 	 */
1058 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1059 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1060 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1061 
1062 	if (!list_empty(&pagelist)) {
1063 		err = migrate_pages(&pagelist, new_node_page, dest,
1064 					MIGRATE_SYNC, MR_SYSCALL);
1065 		if (err)
1066 			putback_movable_pages(&pagelist);
1067 	}
1068 
1069 	return err;
1070 }
1071 
1072 /*
1073  * Move pages between the two nodesets so as to preserve the physical
1074  * layout as much as possible.
1075  *
1076  * Returns the number of page that could not be moved.
1077  */
1078 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1079 		     const nodemask_t *to, int flags)
1080 {
1081 	int busy = 0;
1082 	int err;
1083 	nodemask_t tmp;
1084 
1085 	err = migrate_prep();
1086 	if (err)
1087 		return err;
1088 
1089 	down_read(&mm->mmap_sem);
1090 
1091 	err = migrate_vmas(mm, from, to, flags);
1092 	if (err)
1093 		goto out;
1094 
1095 	/*
1096 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1097 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1098 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1099 	 * The pair of nodemasks 'to' and 'from' define the map.
1100 	 *
1101 	 * If no pair of bits is found that way, fallback to picking some
1102 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1103 	 * 'source' and 'dest' bits are the same, this represents a node
1104 	 * that will be migrating to itself, so no pages need move.
1105 	 *
1106 	 * If no bits are left in 'tmp', or if all remaining bits left
1107 	 * in 'tmp' correspond to the same bit in 'to', return false
1108 	 * (nothing left to migrate).
1109 	 *
1110 	 * This lets us pick a pair of nodes to migrate between, such that
1111 	 * if possible the dest node is not already occupied by some other
1112 	 * source node, minimizing the risk of overloading the memory on a
1113 	 * node that would happen if we migrated incoming memory to a node
1114 	 * before migrating outgoing memory source that same node.
1115 	 *
1116 	 * A single scan of tmp is sufficient.  As we go, we remember the
1117 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1118 	 * that not only moved, but what's better, moved to an empty slot
1119 	 * (d is not set in tmp), then we break out then, with that pair.
1120 	 * Otherwise when we finish scanning from_tmp, we at least have the
1121 	 * most recent <s, d> pair that moved.  If we get all the way through
1122 	 * the scan of tmp without finding any node that moved, much less
1123 	 * moved to an empty node, then there is nothing left worth migrating.
1124 	 */
1125 
1126 	tmp = *from;
1127 	while (!nodes_empty(tmp)) {
1128 		int s,d;
1129 		int source = NUMA_NO_NODE;
1130 		int dest = 0;
1131 
1132 		for_each_node_mask(s, tmp) {
1133 
1134 			/*
1135 			 * do_migrate_pages() tries to maintain the relative
1136 			 * node relationship of the pages established between
1137 			 * threads and memory areas.
1138                          *
1139 			 * However if the number of source nodes is not equal to
1140 			 * the number of destination nodes we can not preserve
1141 			 * this node relative relationship.  In that case, skip
1142 			 * copying memory from a node that is in the destination
1143 			 * mask.
1144 			 *
1145 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1146 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1147 			 */
1148 
1149 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1150 						(node_isset(s, *to)))
1151 				continue;
1152 
1153 			d = node_remap(s, *from, *to);
1154 			if (s == d)
1155 				continue;
1156 
1157 			source = s;	/* Node moved. Memorize */
1158 			dest = d;
1159 
1160 			/* dest not in remaining from nodes? */
1161 			if (!node_isset(dest, tmp))
1162 				break;
1163 		}
1164 		if (source == NUMA_NO_NODE)
1165 			break;
1166 
1167 		node_clear(source, tmp);
1168 		err = migrate_to_node(mm, source, dest, flags);
1169 		if (err > 0)
1170 			busy += err;
1171 		if (err < 0)
1172 			break;
1173 	}
1174 out:
1175 	up_read(&mm->mmap_sem);
1176 	if (err < 0)
1177 		return err;
1178 	return busy;
1179 
1180 }
1181 
1182 /*
1183  * Allocate a new page for page migration based on vma policy.
1184  * Start assuming that page is mapped by vma pointed to by @private.
1185  * Search forward from there, if not.  N.B., this assumes that the
1186  * list of pages handed to migrate_pages()--which is how we get here--
1187  * is in virtual address order.
1188  */
1189 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1190 {
1191 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1192 	unsigned long uninitialized_var(address);
1193 
1194 	while (vma) {
1195 		address = page_address_in_vma(page, vma);
1196 		if (address != -EFAULT)
1197 			break;
1198 		vma = vma->vm_next;
1199 	}
1200 
1201 	if (PageHuge(page)) {
1202 		if (vma)
1203 			return alloc_huge_page_noerr(vma, address, 1);
1204 		else
1205 			return NULL;
1206 	}
1207 	/*
1208 	 * if !vma, alloc_page_vma() will use task or system default policy
1209 	 */
1210 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1211 }
1212 #else
1213 
1214 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1215 				unsigned long flags)
1216 {
1217 }
1218 
1219 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1220 		     const nodemask_t *to, int flags)
1221 {
1222 	return -ENOSYS;
1223 }
1224 
1225 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1226 {
1227 	return NULL;
1228 }
1229 #endif
1230 
1231 static long do_mbind(unsigned long start, unsigned long len,
1232 		     unsigned short mode, unsigned short mode_flags,
1233 		     nodemask_t *nmask, unsigned long flags)
1234 {
1235 	struct vm_area_struct *vma;
1236 	struct mm_struct *mm = current->mm;
1237 	struct mempolicy *new;
1238 	unsigned long end;
1239 	int err;
1240 	LIST_HEAD(pagelist);
1241 
1242 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1243 		return -EINVAL;
1244 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1245 		return -EPERM;
1246 
1247 	if (start & ~PAGE_MASK)
1248 		return -EINVAL;
1249 
1250 	if (mode == MPOL_DEFAULT)
1251 		flags &= ~MPOL_MF_STRICT;
1252 
1253 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1254 	end = start + len;
1255 
1256 	if (end < start)
1257 		return -EINVAL;
1258 	if (end == start)
1259 		return 0;
1260 
1261 	new = mpol_new(mode, mode_flags, nmask);
1262 	if (IS_ERR(new))
1263 		return PTR_ERR(new);
1264 
1265 	if (flags & MPOL_MF_LAZY)
1266 		new->flags |= MPOL_F_MOF;
1267 
1268 	/*
1269 	 * If we are using the default policy then operation
1270 	 * on discontinuous address spaces is okay after all
1271 	 */
1272 	if (!new)
1273 		flags |= MPOL_MF_DISCONTIG_OK;
1274 
1275 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1276 		 start, start + len, mode, mode_flags,
1277 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1278 
1279 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1280 
1281 		err = migrate_prep();
1282 		if (err)
1283 			goto mpol_out;
1284 	}
1285 	{
1286 		NODEMASK_SCRATCH(scratch);
1287 		if (scratch) {
1288 			down_write(&mm->mmap_sem);
1289 			task_lock(current);
1290 			err = mpol_set_nodemask(new, nmask, scratch);
1291 			task_unlock(current);
1292 			if (err)
1293 				up_write(&mm->mmap_sem);
1294 		} else
1295 			err = -ENOMEM;
1296 		NODEMASK_SCRATCH_FREE(scratch);
1297 	}
1298 	if (err)
1299 		goto mpol_out;
1300 
1301 	vma = queue_pages_range(mm, start, end, nmask,
1302 			  flags | MPOL_MF_INVERT, &pagelist);
1303 
1304 	err = PTR_ERR(vma);	/* maybe ... */
1305 	if (!IS_ERR(vma))
1306 		err = mbind_range(mm, start, end, new);
1307 
1308 	if (!err) {
1309 		int nr_failed = 0;
1310 
1311 		if (!list_empty(&pagelist)) {
1312 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1313 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1314 					(unsigned long)vma,
1315 					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1316 			if (nr_failed)
1317 				putback_movable_pages(&pagelist);
1318 		}
1319 
1320 		if (nr_failed && (flags & MPOL_MF_STRICT))
1321 			err = -EIO;
1322 	} else
1323 		putback_movable_pages(&pagelist);
1324 
1325 	up_write(&mm->mmap_sem);
1326  mpol_out:
1327 	mpol_put(new);
1328 	return err;
1329 }
1330 
1331 /*
1332  * User space interface with variable sized bitmaps for nodelists.
1333  */
1334 
1335 /* Copy a node mask from user space. */
1336 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1337 		     unsigned long maxnode)
1338 {
1339 	unsigned long k;
1340 	unsigned long nlongs;
1341 	unsigned long endmask;
1342 
1343 	--maxnode;
1344 	nodes_clear(*nodes);
1345 	if (maxnode == 0 || !nmask)
1346 		return 0;
1347 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1348 		return -EINVAL;
1349 
1350 	nlongs = BITS_TO_LONGS(maxnode);
1351 	if ((maxnode % BITS_PER_LONG) == 0)
1352 		endmask = ~0UL;
1353 	else
1354 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1355 
1356 	/* When the user specified more nodes than supported just check
1357 	   if the non supported part is all zero. */
1358 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1359 		if (nlongs > PAGE_SIZE/sizeof(long))
1360 			return -EINVAL;
1361 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1362 			unsigned long t;
1363 			if (get_user(t, nmask + k))
1364 				return -EFAULT;
1365 			if (k == nlongs - 1) {
1366 				if (t & endmask)
1367 					return -EINVAL;
1368 			} else if (t)
1369 				return -EINVAL;
1370 		}
1371 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1372 		endmask = ~0UL;
1373 	}
1374 
1375 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1376 		return -EFAULT;
1377 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1378 	return 0;
1379 }
1380 
1381 /* Copy a kernel node mask to user space */
1382 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1383 			      nodemask_t *nodes)
1384 {
1385 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1386 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1387 
1388 	if (copy > nbytes) {
1389 		if (copy > PAGE_SIZE)
1390 			return -EINVAL;
1391 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1392 			return -EFAULT;
1393 		copy = nbytes;
1394 	}
1395 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1396 }
1397 
1398 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1399 		unsigned long, mode, unsigned long __user *, nmask,
1400 		unsigned long, maxnode, unsigned, flags)
1401 {
1402 	nodemask_t nodes;
1403 	int err;
1404 	unsigned short mode_flags;
1405 
1406 	mode_flags = mode & MPOL_MODE_FLAGS;
1407 	mode &= ~MPOL_MODE_FLAGS;
1408 	if (mode >= MPOL_MAX)
1409 		return -EINVAL;
1410 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1411 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1412 		return -EINVAL;
1413 	err = get_nodes(&nodes, nmask, maxnode);
1414 	if (err)
1415 		return err;
1416 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1417 }
1418 
1419 /* Set the process memory policy */
1420 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1421 		unsigned long, maxnode)
1422 {
1423 	int err;
1424 	nodemask_t nodes;
1425 	unsigned short flags;
1426 
1427 	flags = mode & MPOL_MODE_FLAGS;
1428 	mode &= ~MPOL_MODE_FLAGS;
1429 	if ((unsigned int)mode >= MPOL_MAX)
1430 		return -EINVAL;
1431 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1432 		return -EINVAL;
1433 	err = get_nodes(&nodes, nmask, maxnode);
1434 	if (err)
1435 		return err;
1436 	return do_set_mempolicy(mode, flags, &nodes);
1437 }
1438 
1439 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1440 		const unsigned long __user *, old_nodes,
1441 		const unsigned long __user *, new_nodes)
1442 {
1443 	const struct cred *cred = current_cred(), *tcred;
1444 	struct mm_struct *mm = NULL;
1445 	struct task_struct *task;
1446 	nodemask_t task_nodes;
1447 	int err;
1448 	nodemask_t *old;
1449 	nodemask_t *new;
1450 	NODEMASK_SCRATCH(scratch);
1451 
1452 	if (!scratch)
1453 		return -ENOMEM;
1454 
1455 	old = &scratch->mask1;
1456 	new = &scratch->mask2;
1457 
1458 	err = get_nodes(old, old_nodes, maxnode);
1459 	if (err)
1460 		goto out;
1461 
1462 	err = get_nodes(new, new_nodes, maxnode);
1463 	if (err)
1464 		goto out;
1465 
1466 	/* Find the mm_struct */
1467 	rcu_read_lock();
1468 	task = pid ? find_task_by_vpid(pid) : current;
1469 	if (!task) {
1470 		rcu_read_unlock();
1471 		err = -ESRCH;
1472 		goto out;
1473 	}
1474 	get_task_struct(task);
1475 
1476 	err = -EINVAL;
1477 
1478 	/*
1479 	 * Check if this process has the right to modify the specified
1480 	 * process. The right exists if the process has administrative
1481 	 * capabilities, superuser privileges or the same
1482 	 * userid as the target process.
1483 	 */
1484 	tcred = __task_cred(task);
1485 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1486 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1487 	    !capable(CAP_SYS_NICE)) {
1488 		rcu_read_unlock();
1489 		err = -EPERM;
1490 		goto out_put;
1491 	}
1492 	rcu_read_unlock();
1493 
1494 	task_nodes = cpuset_mems_allowed(task);
1495 	/* Is the user allowed to access the target nodes? */
1496 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1497 		err = -EPERM;
1498 		goto out_put;
1499 	}
1500 
1501 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1502 		err = -EINVAL;
1503 		goto out_put;
1504 	}
1505 
1506 	err = security_task_movememory(task);
1507 	if (err)
1508 		goto out_put;
1509 
1510 	mm = get_task_mm(task);
1511 	put_task_struct(task);
1512 
1513 	if (!mm) {
1514 		err = -EINVAL;
1515 		goto out;
1516 	}
1517 
1518 	err = do_migrate_pages(mm, old, new,
1519 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1520 
1521 	mmput(mm);
1522 out:
1523 	NODEMASK_SCRATCH_FREE(scratch);
1524 
1525 	return err;
1526 
1527 out_put:
1528 	put_task_struct(task);
1529 	goto out;
1530 
1531 }
1532 
1533 
1534 /* Retrieve NUMA policy */
1535 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1536 		unsigned long __user *, nmask, unsigned long, maxnode,
1537 		unsigned long, addr, unsigned long, flags)
1538 {
1539 	int err;
1540 	int uninitialized_var(pval);
1541 	nodemask_t nodes;
1542 
1543 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1544 		return -EINVAL;
1545 
1546 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1547 
1548 	if (err)
1549 		return err;
1550 
1551 	if (policy && put_user(pval, policy))
1552 		return -EFAULT;
1553 
1554 	if (nmask)
1555 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1556 
1557 	return err;
1558 }
1559 
1560 #ifdef CONFIG_COMPAT
1561 
1562 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1563 				     compat_ulong_t __user *nmask,
1564 				     compat_ulong_t maxnode,
1565 				     compat_ulong_t addr, compat_ulong_t flags)
1566 {
1567 	long err;
1568 	unsigned long __user *nm = NULL;
1569 	unsigned long nr_bits, alloc_size;
1570 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1571 
1572 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1573 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1574 
1575 	if (nmask)
1576 		nm = compat_alloc_user_space(alloc_size);
1577 
1578 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1579 
1580 	if (!err && nmask) {
1581 		unsigned long copy_size;
1582 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1583 		err = copy_from_user(bm, nm, copy_size);
1584 		/* ensure entire bitmap is zeroed */
1585 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1586 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1587 	}
1588 
1589 	return err;
1590 }
1591 
1592 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1593 				     compat_ulong_t maxnode)
1594 {
1595 	long err = 0;
1596 	unsigned long __user *nm = NULL;
1597 	unsigned long nr_bits, alloc_size;
1598 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1599 
1600 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1601 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1602 
1603 	if (nmask) {
1604 		err = compat_get_bitmap(bm, nmask, nr_bits);
1605 		nm = compat_alloc_user_space(alloc_size);
1606 		err |= copy_to_user(nm, bm, alloc_size);
1607 	}
1608 
1609 	if (err)
1610 		return -EFAULT;
1611 
1612 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1613 }
1614 
1615 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1616 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1617 			     compat_ulong_t maxnode, compat_ulong_t flags)
1618 {
1619 	long err = 0;
1620 	unsigned long __user *nm = NULL;
1621 	unsigned long nr_bits, alloc_size;
1622 	nodemask_t bm;
1623 
1624 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1625 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1626 
1627 	if (nmask) {
1628 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1629 		nm = compat_alloc_user_space(alloc_size);
1630 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1631 	}
1632 
1633 	if (err)
1634 		return -EFAULT;
1635 
1636 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1637 }
1638 
1639 #endif
1640 
1641 /*
1642  * get_vma_policy(@task, @vma, @addr)
1643  * @task - task for fallback if vma policy == default
1644  * @vma   - virtual memory area whose policy is sought
1645  * @addr  - address in @vma for shared policy lookup
1646  *
1647  * Returns effective policy for a VMA at specified address.
1648  * Falls back to @task or system default policy, as necessary.
1649  * Current or other task's task mempolicy and non-shared vma policies must be
1650  * protected by task_lock(task) by the caller.
1651  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1652  * count--added by the get_policy() vm_op, as appropriate--to protect against
1653  * freeing by another task.  It is the caller's responsibility to free the
1654  * extra reference for shared policies.
1655  */
1656 struct mempolicy *get_vma_policy(struct task_struct *task,
1657 		struct vm_area_struct *vma, unsigned long addr)
1658 {
1659 	struct mempolicy *pol = get_task_policy(task);
1660 
1661 	if (vma) {
1662 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1663 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1664 									addr);
1665 			if (vpol)
1666 				pol = vpol;
1667 		} else if (vma->vm_policy) {
1668 			pol = vma->vm_policy;
1669 
1670 			/*
1671 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1672 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1673 			 * count on these policies which will be dropped by
1674 			 * mpol_cond_put() later
1675 			 */
1676 			if (mpol_needs_cond_ref(pol))
1677 				mpol_get(pol);
1678 		}
1679 	}
1680 	if (!pol)
1681 		pol = &default_policy;
1682 	return pol;
1683 }
1684 
1685 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1686 {
1687 	struct mempolicy *pol = get_task_policy(task);
1688 	if (vma) {
1689 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1690 			bool ret = false;
1691 
1692 			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1693 			if (pol && (pol->flags & MPOL_F_MOF))
1694 				ret = true;
1695 			mpol_cond_put(pol);
1696 
1697 			return ret;
1698 		} else if (vma->vm_policy) {
1699 			pol = vma->vm_policy;
1700 		}
1701 	}
1702 
1703 	if (!pol)
1704 		return default_policy.flags & MPOL_F_MOF;
1705 
1706 	return pol->flags & MPOL_F_MOF;
1707 }
1708 
1709 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1710 {
1711 	enum zone_type dynamic_policy_zone = policy_zone;
1712 
1713 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1714 
1715 	/*
1716 	 * if policy->v.nodes has movable memory only,
1717 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1718 	 *
1719 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1720 	 * so if the following test faile, it implies
1721 	 * policy->v.nodes has movable memory only.
1722 	 */
1723 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1724 		dynamic_policy_zone = ZONE_MOVABLE;
1725 
1726 	return zone >= dynamic_policy_zone;
1727 }
1728 
1729 /*
1730  * Return a nodemask representing a mempolicy for filtering nodes for
1731  * page allocation
1732  */
1733 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1734 {
1735 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1736 	if (unlikely(policy->mode == MPOL_BIND) &&
1737 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1738 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1739 		return &policy->v.nodes;
1740 
1741 	return NULL;
1742 }
1743 
1744 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1745 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1746 	int nd)
1747 {
1748 	switch (policy->mode) {
1749 	case MPOL_PREFERRED:
1750 		if (!(policy->flags & MPOL_F_LOCAL))
1751 			nd = policy->v.preferred_node;
1752 		break;
1753 	case MPOL_BIND:
1754 		/*
1755 		 * Normally, MPOL_BIND allocations are node-local within the
1756 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1757 		 * current node isn't part of the mask, we use the zonelist for
1758 		 * the first node in the mask instead.
1759 		 */
1760 		if (unlikely(gfp & __GFP_THISNODE) &&
1761 				unlikely(!node_isset(nd, policy->v.nodes)))
1762 			nd = first_node(policy->v.nodes);
1763 		break;
1764 	default:
1765 		BUG();
1766 	}
1767 	return node_zonelist(nd, gfp);
1768 }
1769 
1770 /* Do dynamic interleaving for a process */
1771 static unsigned interleave_nodes(struct mempolicy *policy)
1772 {
1773 	unsigned nid, next;
1774 	struct task_struct *me = current;
1775 
1776 	nid = me->il_next;
1777 	next = next_node(nid, policy->v.nodes);
1778 	if (next >= MAX_NUMNODES)
1779 		next = first_node(policy->v.nodes);
1780 	if (next < MAX_NUMNODES)
1781 		me->il_next = next;
1782 	return nid;
1783 }
1784 
1785 /*
1786  * Depending on the memory policy provide a node from which to allocate the
1787  * next slab entry.
1788  * @policy must be protected by freeing by the caller.  If @policy is
1789  * the current task's mempolicy, this protection is implicit, as only the
1790  * task can change it's policy.  The system default policy requires no
1791  * such protection.
1792  */
1793 unsigned slab_node(void)
1794 {
1795 	struct mempolicy *policy;
1796 
1797 	if (in_interrupt())
1798 		return numa_node_id();
1799 
1800 	policy = current->mempolicy;
1801 	if (!policy || policy->flags & MPOL_F_LOCAL)
1802 		return numa_node_id();
1803 
1804 	switch (policy->mode) {
1805 	case MPOL_PREFERRED:
1806 		/*
1807 		 * handled MPOL_F_LOCAL above
1808 		 */
1809 		return policy->v.preferred_node;
1810 
1811 	case MPOL_INTERLEAVE:
1812 		return interleave_nodes(policy);
1813 
1814 	case MPOL_BIND: {
1815 		/*
1816 		 * Follow bind policy behavior and start allocation at the
1817 		 * first node.
1818 		 */
1819 		struct zonelist *zonelist;
1820 		struct zone *zone;
1821 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1822 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1823 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1824 							&policy->v.nodes,
1825 							&zone);
1826 		return zone ? zone->node : numa_node_id();
1827 	}
1828 
1829 	default:
1830 		BUG();
1831 	}
1832 }
1833 
1834 /* Do static interleaving for a VMA with known offset. */
1835 static unsigned offset_il_node(struct mempolicy *pol,
1836 		struct vm_area_struct *vma, unsigned long off)
1837 {
1838 	unsigned nnodes = nodes_weight(pol->v.nodes);
1839 	unsigned target;
1840 	int c;
1841 	int nid = NUMA_NO_NODE;
1842 
1843 	if (!nnodes)
1844 		return numa_node_id();
1845 	target = (unsigned int)off % nnodes;
1846 	c = 0;
1847 	do {
1848 		nid = next_node(nid, pol->v.nodes);
1849 		c++;
1850 	} while (c <= target);
1851 	return nid;
1852 }
1853 
1854 /* Determine a node number for interleave */
1855 static inline unsigned interleave_nid(struct mempolicy *pol,
1856 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1857 {
1858 	if (vma) {
1859 		unsigned long off;
1860 
1861 		/*
1862 		 * for small pages, there is no difference between
1863 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1864 		 * for huge pages, since vm_pgoff is in units of small
1865 		 * pages, we need to shift off the always 0 bits to get
1866 		 * a useful offset.
1867 		 */
1868 		BUG_ON(shift < PAGE_SHIFT);
1869 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1870 		off += (addr - vma->vm_start) >> shift;
1871 		return offset_il_node(pol, vma, off);
1872 	} else
1873 		return interleave_nodes(pol);
1874 }
1875 
1876 /*
1877  * Return the bit number of a random bit set in the nodemask.
1878  * (returns NUMA_NO_NODE if nodemask is empty)
1879  */
1880 int node_random(const nodemask_t *maskp)
1881 {
1882 	int w, bit = NUMA_NO_NODE;
1883 
1884 	w = nodes_weight(*maskp);
1885 	if (w)
1886 		bit = bitmap_ord_to_pos(maskp->bits,
1887 			get_random_int() % w, MAX_NUMNODES);
1888 	return bit;
1889 }
1890 
1891 #ifdef CONFIG_HUGETLBFS
1892 /*
1893  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1894  * @vma = virtual memory area whose policy is sought
1895  * @addr = address in @vma for shared policy lookup and interleave policy
1896  * @gfp_flags = for requested zone
1897  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1898  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1899  *
1900  * Returns a zonelist suitable for a huge page allocation and a pointer
1901  * to the struct mempolicy for conditional unref after allocation.
1902  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1903  * @nodemask for filtering the zonelist.
1904  *
1905  * Must be protected by get_mems_allowed()
1906  */
1907 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1908 				gfp_t gfp_flags, struct mempolicy **mpol,
1909 				nodemask_t **nodemask)
1910 {
1911 	struct zonelist *zl;
1912 
1913 	*mpol = get_vma_policy(current, vma, addr);
1914 	*nodemask = NULL;	/* assume !MPOL_BIND */
1915 
1916 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1917 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1918 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1919 	} else {
1920 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1921 		if ((*mpol)->mode == MPOL_BIND)
1922 			*nodemask = &(*mpol)->v.nodes;
1923 	}
1924 	return zl;
1925 }
1926 
1927 /*
1928  * init_nodemask_of_mempolicy
1929  *
1930  * If the current task's mempolicy is "default" [NULL], return 'false'
1931  * to indicate default policy.  Otherwise, extract the policy nodemask
1932  * for 'bind' or 'interleave' policy into the argument nodemask, or
1933  * initialize the argument nodemask to contain the single node for
1934  * 'preferred' or 'local' policy and return 'true' to indicate presence
1935  * of non-default mempolicy.
1936  *
1937  * We don't bother with reference counting the mempolicy [mpol_get/put]
1938  * because the current task is examining it's own mempolicy and a task's
1939  * mempolicy is only ever changed by the task itself.
1940  *
1941  * N.B., it is the caller's responsibility to free a returned nodemask.
1942  */
1943 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1944 {
1945 	struct mempolicy *mempolicy;
1946 	int nid;
1947 
1948 	if (!(mask && current->mempolicy))
1949 		return false;
1950 
1951 	task_lock(current);
1952 	mempolicy = current->mempolicy;
1953 	switch (mempolicy->mode) {
1954 	case MPOL_PREFERRED:
1955 		if (mempolicy->flags & MPOL_F_LOCAL)
1956 			nid = numa_node_id();
1957 		else
1958 			nid = mempolicy->v.preferred_node;
1959 		init_nodemask_of_node(mask, nid);
1960 		break;
1961 
1962 	case MPOL_BIND:
1963 		/* Fall through */
1964 	case MPOL_INTERLEAVE:
1965 		*mask =  mempolicy->v.nodes;
1966 		break;
1967 
1968 	default:
1969 		BUG();
1970 	}
1971 	task_unlock(current);
1972 
1973 	return true;
1974 }
1975 #endif
1976 
1977 /*
1978  * mempolicy_nodemask_intersects
1979  *
1980  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1981  * policy.  Otherwise, check for intersection between mask and the policy
1982  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1983  * policy, always return true since it may allocate elsewhere on fallback.
1984  *
1985  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1986  */
1987 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1988 					const nodemask_t *mask)
1989 {
1990 	struct mempolicy *mempolicy;
1991 	bool ret = true;
1992 
1993 	if (!mask)
1994 		return ret;
1995 	task_lock(tsk);
1996 	mempolicy = tsk->mempolicy;
1997 	if (!mempolicy)
1998 		goto out;
1999 
2000 	switch (mempolicy->mode) {
2001 	case MPOL_PREFERRED:
2002 		/*
2003 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2004 		 * allocate from, they may fallback to other nodes when oom.
2005 		 * Thus, it's possible for tsk to have allocated memory from
2006 		 * nodes in mask.
2007 		 */
2008 		break;
2009 	case MPOL_BIND:
2010 	case MPOL_INTERLEAVE:
2011 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2012 		break;
2013 	default:
2014 		BUG();
2015 	}
2016 out:
2017 	task_unlock(tsk);
2018 	return ret;
2019 }
2020 
2021 /* Allocate a page in interleaved policy.
2022    Own path because it needs to do special accounting. */
2023 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2024 					unsigned nid)
2025 {
2026 	struct zonelist *zl;
2027 	struct page *page;
2028 
2029 	zl = node_zonelist(nid, gfp);
2030 	page = __alloc_pages(gfp, order, zl);
2031 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2032 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2033 	return page;
2034 }
2035 
2036 /**
2037  * 	alloc_pages_vma	- Allocate a page for a VMA.
2038  *
2039  * 	@gfp:
2040  *      %GFP_USER    user allocation.
2041  *      %GFP_KERNEL  kernel allocations,
2042  *      %GFP_HIGHMEM highmem/user allocations,
2043  *      %GFP_FS      allocation should not call back into a file system.
2044  *      %GFP_ATOMIC  don't sleep.
2045  *
2046  *	@order:Order of the GFP allocation.
2047  * 	@vma:  Pointer to VMA or NULL if not available.
2048  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2049  *
2050  * 	This function allocates a page from the kernel page pool and applies
2051  *	a NUMA policy associated with the VMA or the current process.
2052  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2053  *	mm_struct of the VMA to prevent it from going away. Should be used for
2054  *	all allocations for pages that will be mapped into
2055  * 	user space. Returns NULL when no page can be allocated.
2056  *
2057  *	Should be called with the mm_sem of the vma hold.
2058  */
2059 struct page *
2060 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2061 		unsigned long addr, int node)
2062 {
2063 	struct mempolicy *pol;
2064 	struct page *page;
2065 	unsigned int cpuset_mems_cookie;
2066 
2067 retry_cpuset:
2068 	pol = get_vma_policy(current, vma, addr);
2069 	cpuset_mems_cookie = get_mems_allowed();
2070 
2071 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2072 		unsigned nid;
2073 
2074 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2075 		mpol_cond_put(pol);
2076 		page = alloc_page_interleave(gfp, order, nid);
2077 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2078 			goto retry_cpuset;
2079 
2080 		return page;
2081 	}
2082 	page = __alloc_pages_nodemask(gfp, order,
2083 				      policy_zonelist(gfp, pol, node),
2084 				      policy_nodemask(gfp, pol));
2085 	if (unlikely(mpol_needs_cond_ref(pol)))
2086 		__mpol_put(pol);
2087 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2088 		goto retry_cpuset;
2089 	return page;
2090 }
2091 
2092 /**
2093  * 	alloc_pages_current - Allocate pages.
2094  *
2095  *	@gfp:
2096  *		%GFP_USER   user allocation,
2097  *      	%GFP_KERNEL kernel allocation,
2098  *      	%GFP_HIGHMEM highmem allocation,
2099  *      	%GFP_FS     don't call back into a file system.
2100  *      	%GFP_ATOMIC don't sleep.
2101  *	@order: Power of two of allocation size in pages. 0 is a single page.
2102  *
2103  *	Allocate a page from the kernel page pool.  When not in
2104  *	interrupt context and apply the current process NUMA policy.
2105  *	Returns NULL when no page can be allocated.
2106  *
2107  *	Don't call cpuset_update_task_memory_state() unless
2108  *	1) it's ok to take cpuset_sem (can WAIT), and
2109  *	2) allocating for current task (not interrupt).
2110  */
2111 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2112 {
2113 	struct mempolicy *pol = get_task_policy(current);
2114 	struct page *page;
2115 	unsigned int cpuset_mems_cookie;
2116 
2117 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2118 		pol = &default_policy;
2119 
2120 retry_cpuset:
2121 	cpuset_mems_cookie = get_mems_allowed();
2122 
2123 	/*
2124 	 * No reference counting needed for current->mempolicy
2125 	 * nor system default_policy
2126 	 */
2127 	if (pol->mode == MPOL_INTERLEAVE)
2128 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2129 	else
2130 		page = __alloc_pages_nodemask(gfp, order,
2131 				policy_zonelist(gfp, pol, numa_node_id()),
2132 				policy_nodemask(gfp, pol));
2133 
2134 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2135 		goto retry_cpuset;
2136 
2137 	return page;
2138 }
2139 EXPORT_SYMBOL(alloc_pages_current);
2140 
2141 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2142 {
2143 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2144 
2145 	if (IS_ERR(pol))
2146 		return PTR_ERR(pol);
2147 	dst->vm_policy = pol;
2148 	return 0;
2149 }
2150 
2151 /*
2152  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2153  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2154  * with the mems_allowed returned by cpuset_mems_allowed().  This
2155  * keeps mempolicies cpuset relative after its cpuset moves.  See
2156  * further kernel/cpuset.c update_nodemask().
2157  *
2158  * current's mempolicy may be rebinded by the other task(the task that changes
2159  * cpuset's mems), so we needn't do rebind work for current task.
2160  */
2161 
2162 /* Slow path of a mempolicy duplicate */
2163 struct mempolicy *__mpol_dup(struct mempolicy *old)
2164 {
2165 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2166 
2167 	if (!new)
2168 		return ERR_PTR(-ENOMEM);
2169 
2170 	/* task's mempolicy is protected by alloc_lock */
2171 	if (old == current->mempolicy) {
2172 		task_lock(current);
2173 		*new = *old;
2174 		task_unlock(current);
2175 	} else
2176 		*new = *old;
2177 
2178 	rcu_read_lock();
2179 	if (current_cpuset_is_being_rebound()) {
2180 		nodemask_t mems = cpuset_mems_allowed(current);
2181 		if (new->flags & MPOL_F_REBINDING)
2182 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2183 		else
2184 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2185 	}
2186 	rcu_read_unlock();
2187 	atomic_set(&new->refcnt, 1);
2188 	return new;
2189 }
2190 
2191 /* Slow path of a mempolicy comparison */
2192 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2193 {
2194 	if (!a || !b)
2195 		return false;
2196 	if (a->mode != b->mode)
2197 		return false;
2198 	if (a->flags != b->flags)
2199 		return false;
2200 	if (mpol_store_user_nodemask(a))
2201 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2202 			return false;
2203 
2204 	switch (a->mode) {
2205 	case MPOL_BIND:
2206 		/* Fall through */
2207 	case MPOL_INTERLEAVE:
2208 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2209 	case MPOL_PREFERRED:
2210 		return a->v.preferred_node == b->v.preferred_node;
2211 	default:
2212 		BUG();
2213 		return false;
2214 	}
2215 }
2216 
2217 /*
2218  * Shared memory backing store policy support.
2219  *
2220  * Remember policies even when nobody has shared memory mapped.
2221  * The policies are kept in Red-Black tree linked from the inode.
2222  * They are protected by the sp->lock spinlock, which should be held
2223  * for any accesses to the tree.
2224  */
2225 
2226 /* lookup first element intersecting start-end */
2227 /* Caller holds sp->lock */
2228 static struct sp_node *
2229 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2230 {
2231 	struct rb_node *n = sp->root.rb_node;
2232 
2233 	while (n) {
2234 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2235 
2236 		if (start >= p->end)
2237 			n = n->rb_right;
2238 		else if (end <= p->start)
2239 			n = n->rb_left;
2240 		else
2241 			break;
2242 	}
2243 	if (!n)
2244 		return NULL;
2245 	for (;;) {
2246 		struct sp_node *w = NULL;
2247 		struct rb_node *prev = rb_prev(n);
2248 		if (!prev)
2249 			break;
2250 		w = rb_entry(prev, struct sp_node, nd);
2251 		if (w->end <= start)
2252 			break;
2253 		n = prev;
2254 	}
2255 	return rb_entry(n, struct sp_node, nd);
2256 }
2257 
2258 /* Insert a new shared policy into the list. */
2259 /* Caller holds sp->lock */
2260 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2261 {
2262 	struct rb_node **p = &sp->root.rb_node;
2263 	struct rb_node *parent = NULL;
2264 	struct sp_node *nd;
2265 
2266 	while (*p) {
2267 		parent = *p;
2268 		nd = rb_entry(parent, struct sp_node, nd);
2269 		if (new->start < nd->start)
2270 			p = &(*p)->rb_left;
2271 		else if (new->end > nd->end)
2272 			p = &(*p)->rb_right;
2273 		else
2274 			BUG();
2275 	}
2276 	rb_link_node(&new->nd, parent, p);
2277 	rb_insert_color(&new->nd, &sp->root);
2278 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2279 		 new->policy ? new->policy->mode : 0);
2280 }
2281 
2282 /* Find shared policy intersecting idx */
2283 struct mempolicy *
2284 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2285 {
2286 	struct mempolicy *pol = NULL;
2287 	struct sp_node *sn;
2288 
2289 	if (!sp->root.rb_node)
2290 		return NULL;
2291 	spin_lock(&sp->lock);
2292 	sn = sp_lookup(sp, idx, idx+1);
2293 	if (sn) {
2294 		mpol_get(sn->policy);
2295 		pol = sn->policy;
2296 	}
2297 	spin_unlock(&sp->lock);
2298 	return pol;
2299 }
2300 
2301 static void sp_free(struct sp_node *n)
2302 {
2303 	mpol_put(n->policy);
2304 	kmem_cache_free(sn_cache, n);
2305 }
2306 
2307 #ifdef CONFIG_NUMA_BALANCING
2308 static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2309 {
2310 	/* Never defer a private fault */
2311 	if (cpupid_match_pid(p, last_cpupid))
2312 		return false;
2313 
2314 	if (p->numa_migrate_deferred) {
2315 		p->numa_migrate_deferred--;
2316 		return true;
2317 	}
2318 	return false;
2319 }
2320 
2321 static inline void defer_numa_migrate(struct task_struct *p)
2322 {
2323 	p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
2324 }
2325 #else
2326 static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2327 {
2328 	return false;
2329 }
2330 
2331 static inline void defer_numa_migrate(struct task_struct *p)
2332 {
2333 }
2334 #endif /* CONFIG_NUMA_BALANCING */
2335 
2336 /**
2337  * mpol_misplaced - check whether current page node is valid in policy
2338  *
2339  * @page   - page to be checked
2340  * @vma    - vm area where page mapped
2341  * @addr   - virtual address where page mapped
2342  *
2343  * Lookup current policy node id for vma,addr and "compare to" page's
2344  * node id.
2345  *
2346  * Returns:
2347  *	-1	- not misplaced, page is in the right node
2348  *	node	- node id where the page should be
2349  *
2350  * Policy determination "mimics" alloc_page_vma().
2351  * Called from fault path where we know the vma and faulting address.
2352  */
2353 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2354 {
2355 	struct mempolicy *pol;
2356 	struct zone *zone;
2357 	int curnid = page_to_nid(page);
2358 	unsigned long pgoff;
2359 	int thiscpu = raw_smp_processor_id();
2360 	int thisnid = cpu_to_node(thiscpu);
2361 	int polnid = -1;
2362 	int ret = -1;
2363 
2364 	BUG_ON(!vma);
2365 
2366 	pol = get_vma_policy(current, vma, addr);
2367 	if (!(pol->flags & MPOL_F_MOF))
2368 		goto out;
2369 
2370 	switch (pol->mode) {
2371 	case MPOL_INTERLEAVE:
2372 		BUG_ON(addr >= vma->vm_end);
2373 		BUG_ON(addr < vma->vm_start);
2374 
2375 		pgoff = vma->vm_pgoff;
2376 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2377 		polnid = offset_il_node(pol, vma, pgoff);
2378 		break;
2379 
2380 	case MPOL_PREFERRED:
2381 		if (pol->flags & MPOL_F_LOCAL)
2382 			polnid = numa_node_id();
2383 		else
2384 			polnid = pol->v.preferred_node;
2385 		break;
2386 
2387 	case MPOL_BIND:
2388 		/*
2389 		 * allows binding to multiple nodes.
2390 		 * use current page if in policy nodemask,
2391 		 * else select nearest allowed node, if any.
2392 		 * If no allowed nodes, use current [!misplaced].
2393 		 */
2394 		if (node_isset(curnid, pol->v.nodes))
2395 			goto out;
2396 		(void)first_zones_zonelist(
2397 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2398 				gfp_zone(GFP_HIGHUSER),
2399 				&pol->v.nodes, &zone);
2400 		polnid = zone->node;
2401 		break;
2402 
2403 	default:
2404 		BUG();
2405 	}
2406 
2407 	/* Migrate the page towards the node whose CPU is referencing it */
2408 	if (pol->flags & MPOL_F_MORON) {
2409 		int last_cpupid;
2410 		int this_cpupid;
2411 
2412 		polnid = thisnid;
2413 		this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
2414 
2415 		/*
2416 		 * Multi-stage node selection is used in conjunction
2417 		 * with a periodic migration fault to build a temporal
2418 		 * task<->page relation. By using a two-stage filter we
2419 		 * remove short/unlikely relations.
2420 		 *
2421 		 * Using P(p) ~ n_p / n_t as per frequentist
2422 		 * probability, we can equate a task's usage of a
2423 		 * particular page (n_p) per total usage of this
2424 		 * page (n_t) (in a given time-span) to a probability.
2425 		 *
2426 		 * Our periodic faults will sample this probability and
2427 		 * getting the same result twice in a row, given these
2428 		 * samples are fully independent, is then given by
2429 		 * P(n)^2, provided our sample period is sufficiently
2430 		 * short compared to the usage pattern.
2431 		 *
2432 		 * This quadric squishes small probabilities, making
2433 		 * it less likely we act on an unlikely task<->page
2434 		 * relation.
2435 		 */
2436 		last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
2437 		if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
2438 
2439 			/* See sysctl_numa_balancing_migrate_deferred comment */
2440 			if (!cpupid_match_pid(current, last_cpupid))
2441 				defer_numa_migrate(current);
2442 
2443 			goto out;
2444 		}
2445 
2446 		/*
2447 		 * The quadratic filter above reduces extraneous migration
2448 		 * of shared pages somewhat. This code reduces it even more,
2449 		 * reducing the overhead of page migrations of shared pages.
2450 		 * This makes workloads with shared pages rely more on
2451 		 * "move task near its memory", and less on "move memory
2452 		 * towards its task", which is exactly what we want.
2453 		 */
2454 		if (numa_migrate_deferred(current, last_cpupid))
2455 			goto out;
2456 	}
2457 
2458 	if (curnid != polnid)
2459 		ret = polnid;
2460 out:
2461 	mpol_cond_put(pol);
2462 
2463 	return ret;
2464 }
2465 
2466 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2467 {
2468 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2469 	rb_erase(&n->nd, &sp->root);
2470 	sp_free(n);
2471 }
2472 
2473 static void sp_node_init(struct sp_node *node, unsigned long start,
2474 			unsigned long end, struct mempolicy *pol)
2475 {
2476 	node->start = start;
2477 	node->end = end;
2478 	node->policy = pol;
2479 }
2480 
2481 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2482 				struct mempolicy *pol)
2483 {
2484 	struct sp_node *n;
2485 	struct mempolicy *newpol;
2486 
2487 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2488 	if (!n)
2489 		return NULL;
2490 
2491 	newpol = mpol_dup(pol);
2492 	if (IS_ERR(newpol)) {
2493 		kmem_cache_free(sn_cache, n);
2494 		return NULL;
2495 	}
2496 	newpol->flags |= MPOL_F_SHARED;
2497 	sp_node_init(n, start, end, newpol);
2498 
2499 	return n;
2500 }
2501 
2502 /* Replace a policy range. */
2503 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2504 				 unsigned long end, struct sp_node *new)
2505 {
2506 	struct sp_node *n;
2507 	struct sp_node *n_new = NULL;
2508 	struct mempolicy *mpol_new = NULL;
2509 	int ret = 0;
2510 
2511 restart:
2512 	spin_lock(&sp->lock);
2513 	n = sp_lookup(sp, start, end);
2514 	/* Take care of old policies in the same range. */
2515 	while (n && n->start < end) {
2516 		struct rb_node *next = rb_next(&n->nd);
2517 		if (n->start >= start) {
2518 			if (n->end <= end)
2519 				sp_delete(sp, n);
2520 			else
2521 				n->start = end;
2522 		} else {
2523 			/* Old policy spanning whole new range. */
2524 			if (n->end > end) {
2525 				if (!n_new)
2526 					goto alloc_new;
2527 
2528 				*mpol_new = *n->policy;
2529 				atomic_set(&mpol_new->refcnt, 1);
2530 				sp_node_init(n_new, end, n->end, mpol_new);
2531 				n->end = start;
2532 				sp_insert(sp, n_new);
2533 				n_new = NULL;
2534 				mpol_new = NULL;
2535 				break;
2536 			} else
2537 				n->end = start;
2538 		}
2539 		if (!next)
2540 			break;
2541 		n = rb_entry(next, struct sp_node, nd);
2542 	}
2543 	if (new)
2544 		sp_insert(sp, new);
2545 	spin_unlock(&sp->lock);
2546 	ret = 0;
2547 
2548 err_out:
2549 	if (mpol_new)
2550 		mpol_put(mpol_new);
2551 	if (n_new)
2552 		kmem_cache_free(sn_cache, n_new);
2553 
2554 	return ret;
2555 
2556 alloc_new:
2557 	spin_unlock(&sp->lock);
2558 	ret = -ENOMEM;
2559 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2560 	if (!n_new)
2561 		goto err_out;
2562 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2563 	if (!mpol_new)
2564 		goto err_out;
2565 	goto restart;
2566 }
2567 
2568 /**
2569  * mpol_shared_policy_init - initialize shared policy for inode
2570  * @sp: pointer to inode shared policy
2571  * @mpol:  struct mempolicy to install
2572  *
2573  * Install non-NULL @mpol in inode's shared policy rb-tree.
2574  * On entry, the current task has a reference on a non-NULL @mpol.
2575  * This must be released on exit.
2576  * This is called at get_inode() calls and we can use GFP_KERNEL.
2577  */
2578 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2579 {
2580 	int ret;
2581 
2582 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2583 	spin_lock_init(&sp->lock);
2584 
2585 	if (mpol) {
2586 		struct vm_area_struct pvma;
2587 		struct mempolicy *new;
2588 		NODEMASK_SCRATCH(scratch);
2589 
2590 		if (!scratch)
2591 			goto put_mpol;
2592 		/* contextualize the tmpfs mount point mempolicy */
2593 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2594 		if (IS_ERR(new))
2595 			goto free_scratch; /* no valid nodemask intersection */
2596 
2597 		task_lock(current);
2598 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2599 		task_unlock(current);
2600 		if (ret)
2601 			goto put_new;
2602 
2603 		/* Create pseudo-vma that contains just the policy */
2604 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2605 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2606 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2607 
2608 put_new:
2609 		mpol_put(new);			/* drop initial ref */
2610 free_scratch:
2611 		NODEMASK_SCRATCH_FREE(scratch);
2612 put_mpol:
2613 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2614 	}
2615 }
2616 
2617 int mpol_set_shared_policy(struct shared_policy *info,
2618 			struct vm_area_struct *vma, struct mempolicy *npol)
2619 {
2620 	int err;
2621 	struct sp_node *new = NULL;
2622 	unsigned long sz = vma_pages(vma);
2623 
2624 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2625 		 vma->vm_pgoff,
2626 		 sz, npol ? npol->mode : -1,
2627 		 npol ? npol->flags : -1,
2628 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2629 
2630 	if (npol) {
2631 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2632 		if (!new)
2633 			return -ENOMEM;
2634 	}
2635 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2636 	if (err && new)
2637 		sp_free(new);
2638 	return err;
2639 }
2640 
2641 /* Free a backing policy store on inode delete. */
2642 void mpol_free_shared_policy(struct shared_policy *p)
2643 {
2644 	struct sp_node *n;
2645 	struct rb_node *next;
2646 
2647 	if (!p->root.rb_node)
2648 		return;
2649 	spin_lock(&p->lock);
2650 	next = rb_first(&p->root);
2651 	while (next) {
2652 		n = rb_entry(next, struct sp_node, nd);
2653 		next = rb_next(&n->nd);
2654 		sp_delete(p, n);
2655 	}
2656 	spin_unlock(&p->lock);
2657 }
2658 
2659 #ifdef CONFIG_NUMA_BALANCING
2660 static bool __initdata numabalancing_override;
2661 
2662 static void __init check_numabalancing_enable(void)
2663 {
2664 	bool numabalancing_default = false;
2665 
2666 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2667 		numabalancing_default = true;
2668 
2669 	if (nr_node_ids > 1 && !numabalancing_override) {
2670 		printk(KERN_INFO "Enabling automatic NUMA balancing. "
2671 			"Configure with numa_balancing= or sysctl");
2672 		set_numabalancing_state(numabalancing_default);
2673 	}
2674 }
2675 
2676 static int __init setup_numabalancing(char *str)
2677 {
2678 	int ret = 0;
2679 	if (!str)
2680 		goto out;
2681 	numabalancing_override = true;
2682 
2683 	if (!strcmp(str, "enable")) {
2684 		set_numabalancing_state(true);
2685 		ret = 1;
2686 	} else if (!strcmp(str, "disable")) {
2687 		set_numabalancing_state(false);
2688 		ret = 1;
2689 	}
2690 out:
2691 	if (!ret)
2692 		printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2693 
2694 	return ret;
2695 }
2696 __setup("numa_balancing=", setup_numabalancing);
2697 #else
2698 static inline void __init check_numabalancing_enable(void)
2699 {
2700 }
2701 #endif /* CONFIG_NUMA_BALANCING */
2702 
2703 /* assumes fs == KERNEL_DS */
2704 void __init numa_policy_init(void)
2705 {
2706 	nodemask_t interleave_nodes;
2707 	unsigned long largest = 0;
2708 	int nid, prefer = 0;
2709 
2710 	policy_cache = kmem_cache_create("numa_policy",
2711 					 sizeof(struct mempolicy),
2712 					 0, SLAB_PANIC, NULL);
2713 
2714 	sn_cache = kmem_cache_create("shared_policy_node",
2715 				     sizeof(struct sp_node),
2716 				     0, SLAB_PANIC, NULL);
2717 
2718 	for_each_node(nid) {
2719 		preferred_node_policy[nid] = (struct mempolicy) {
2720 			.refcnt = ATOMIC_INIT(1),
2721 			.mode = MPOL_PREFERRED,
2722 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2723 			.v = { .preferred_node = nid, },
2724 		};
2725 	}
2726 
2727 	/*
2728 	 * Set interleaving policy for system init. Interleaving is only
2729 	 * enabled across suitably sized nodes (default is >= 16MB), or
2730 	 * fall back to the largest node if they're all smaller.
2731 	 */
2732 	nodes_clear(interleave_nodes);
2733 	for_each_node_state(nid, N_MEMORY) {
2734 		unsigned long total_pages = node_present_pages(nid);
2735 
2736 		/* Preserve the largest node */
2737 		if (largest < total_pages) {
2738 			largest = total_pages;
2739 			prefer = nid;
2740 		}
2741 
2742 		/* Interleave this node? */
2743 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2744 			node_set(nid, interleave_nodes);
2745 	}
2746 
2747 	/* All too small, use the largest */
2748 	if (unlikely(nodes_empty(interleave_nodes)))
2749 		node_set(prefer, interleave_nodes);
2750 
2751 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2752 		printk("numa_policy_init: interleaving failed\n");
2753 
2754 	check_numabalancing_enable();
2755 }
2756 
2757 /* Reset policy of current process to default */
2758 void numa_default_policy(void)
2759 {
2760 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2761 }
2762 
2763 /*
2764  * Parse and format mempolicy from/to strings
2765  */
2766 
2767 /*
2768  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2769  */
2770 static const char * const policy_modes[] =
2771 {
2772 	[MPOL_DEFAULT]    = "default",
2773 	[MPOL_PREFERRED]  = "prefer",
2774 	[MPOL_BIND]       = "bind",
2775 	[MPOL_INTERLEAVE] = "interleave",
2776 	[MPOL_LOCAL]      = "local",
2777 };
2778 
2779 
2780 #ifdef CONFIG_TMPFS
2781 /**
2782  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2783  * @str:  string containing mempolicy to parse
2784  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2785  *
2786  * Format of input:
2787  *	<mode>[=<flags>][:<nodelist>]
2788  *
2789  * On success, returns 0, else 1
2790  */
2791 int mpol_parse_str(char *str, struct mempolicy **mpol)
2792 {
2793 	struct mempolicy *new = NULL;
2794 	unsigned short mode;
2795 	unsigned short mode_flags;
2796 	nodemask_t nodes;
2797 	char *nodelist = strchr(str, ':');
2798 	char *flags = strchr(str, '=');
2799 	int err = 1;
2800 
2801 	if (nodelist) {
2802 		/* NUL-terminate mode or flags string */
2803 		*nodelist++ = '\0';
2804 		if (nodelist_parse(nodelist, nodes))
2805 			goto out;
2806 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2807 			goto out;
2808 	} else
2809 		nodes_clear(nodes);
2810 
2811 	if (flags)
2812 		*flags++ = '\0';	/* terminate mode string */
2813 
2814 	for (mode = 0; mode < MPOL_MAX; mode++) {
2815 		if (!strcmp(str, policy_modes[mode])) {
2816 			break;
2817 		}
2818 	}
2819 	if (mode >= MPOL_MAX)
2820 		goto out;
2821 
2822 	switch (mode) {
2823 	case MPOL_PREFERRED:
2824 		/*
2825 		 * Insist on a nodelist of one node only
2826 		 */
2827 		if (nodelist) {
2828 			char *rest = nodelist;
2829 			while (isdigit(*rest))
2830 				rest++;
2831 			if (*rest)
2832 				goto out;
2833 		}
2834 		break;
2835 	case MPOL_INTERLEAVE:
2836 		/*
2837 		 * Default to online nodes with memory if no nodelist
2838 		 */
2839 		if (!nodelist)
2840 			nodes = node_states[N_MEMORY];
2841 		break;
2842 	case MPOL_LOCAL:
2843 		/*
2844 		 * Don't allow a nodelist;  mpol_new() checks flags
2845 		 */
2846 		if (nodelist)
2847 			goto out;
2848 		mode = MPOL_PREFERRED;
2849 		break;
2850 	case MPOL_DEFAULT:
2851 		/*
2852 		 * Insist on a empty nodelist
2853 		 */
2854 		if (!nodelist)
2855 			err = 0;
2856 		goto out;
2857 	case MPOL_BIND:
2858 		/*
2859 		 * Insist on a nodelist
2860 		 */
2861 		if (!nodelist)
2862 			goto out;
2863 	}
2864 
2865 	mode_flags = 0;
2866 	if (flags) {
2867 		/*
2868 		 * Currently, we only support two mutually exclusive
2869 		 * mode flags.
2870 		 */
2871 		if (!strcmp(flags, "static"))
2872 			mode_flags |= MPOL_F_STATIC_NODES;
2873 		else if (!strcmp(flags, "relative"))
2874 			mode_flags |= MPOL_F_RELATIVE_NODES;
2875 		else
2876 			goto out;
2877 	}
2878 
2879 	new = mpol_new(mode, mode_flags, &nodes);
2880 	if (IS_ERR(new))
2881 		goto out;
2882 
2883 	/*
2884 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886 	 */
2887 	if (mode != MPOL_PREFERRED)
2888 		new->v.nodes = nodes;
2889 	else if (nodelist)
2890 		new->v.preferred_node = first_node(nodes);
2891 	else
2892 		new->flags |= MPOL_F_LOCAL;
2893 
2894 	/*
2895 	 * Save nodes for contextualization: this will be used to "clone"
2896 	 * the mempolicy in a specific context [cpuset] at a later time.
2897 	 */
2898 	new->w.user_nodemask = nodes;
2899 
2900 	err = 0;
2901 
2902 out:
2903 	/* Restore string for error message */
2904 	if (nodelist)
2905 		*--nodelist = ':';
2906 	if (flags)
2907 		*--flags = '=';
2908 	if (!err)
2909 		*mpol = new;
2910 	return err;
2911 }
2912 #endif /* CONFIG_TMPFS */
2913 
2914 /**
2915  * mpol_to_str - format a mempolicy structure for printing
2916  * @buffer:  to contain formatted mempolicy string
2917  * @maxlen:  length of @buffer
2918  * @pol:  pointer to mempolicy to be formatted
2919  *
2920  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922  * longest flag, "relative", and to display at least a few node ids.
2923  */
2924 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925 {
2926 	char *p = buffer;
2927 	nodemask_t nodes = NODE_MASK_NONE;
2928 	unsigned short mode = MPOL_DEFAULT;
2929 	unsigned short flags = 0;
2930 
2931 	if (pol && pol != &default_policy) {
2932 		mode = pol->mode;
2933 		flags = pol->flags;
2934 	}
2935 
2936 	switch (mode) {
2937 	case MPOL_DEFAULT:
2938 		break;
2939 	case MPOL_PREFERRED:
2940 		if (flags & MPOL_F_LOCAL)
2941 			mode = MPOL_LOCAL;
2942 		else
2943 			node_set(pol->v.preferred_node, nodes);
2944 		break;
2945 	case MPOL_BIND:
2946 	case MPOL_INTERLEAVE:
2947 		nodes = pol->v.nodes;
2948 		break;
2949 	default:
2950 		WARN_ON_ONCE(1);
2951 		snprintf(p, maxlen, "unknown");
2952 		return;
2953 	}
2954 
2955 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956 
2957 	if (flags & MPOL_MODE_FLAGS) {
2958 		p += snprintf(p, buffer + maxlen - p, "=");
2959 
2960 		/*
2961 		 * Currently, the only defined flags are mutually exclusive
2962 		 */
2963 		if (flags & MPOL_F_STATIC_NODES)
2964 			p += snprintf(p, buffer + maxlen - p, "static");
2965 		else if (flags & MPOL_F_RELATIVE_NODES)
2966 			p += snprintf(p, buffer + maxlen - p, "relative");
2967 	}
2968 
2969 	if (!nodes_empty(nodes)) {
2970 		p += snprintf(p, buffer + maxlen - p, ":");
2971 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2972 	}
2973 }
2974