xref: /openbmc/linux/mm/mempolicy.c (revision bf070bb0)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = tmp;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 				unsigned long end, struct mm_walk *walk)
433 {
434 	int ret = 0;
435 	struct page *page;
436 	struct queue_pages *qp = walk->private;
437 	unsigned long flags;
438 
439 	if (unlikely(is_pmd_migration_entry(*pmd))) {
440 		ret = 1;
441 		goto unlock;
442 	}
443 	page = pmd_page(*pmd);
444 	if (is_huge_zero_page(page)) {
445 		spin_unlock(ptl);
446 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 		goto out;
448 	}
449 	if (!thp_migration_supported()) {
450 		get_page(page);
451 		spin_unlock(ptl);
452 		lock_page(page);
453 		ret = split_huge_page(page);
454 		unlock_page(page);
455 		put_page(page);
456 		goto out;
457 	}
458 	if (!queue_pages_required(page, qp)) {
459 		ret = 1;
460 		goto unlock;
461 	}
462 
463 	ret = 1;
464 	flags = qp->flags;
465 	/* go to thp migration */
466 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 		migrate_page_add(page, qp->pagelist, flags);
468 unlock:
469 	spin_unlock(ptl);
470 out:
471 	return ret;
472 }
473 
474 /*
475  * Scan through pages checking if pages follow certain conditions,
476  * and move them to the pagelist if they do.
477  */
478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 			unsigned long end, struct mm_walk *walk)
480 {
481 	struct vm_area_struct *vma = walk->vma;
482 	struct page *page;
483 	struct queue_pages *qp = walk->private;
484 	unsigned long flags = qp->flags;
485 	int ret;
486 	pte_t *pte;
487 	spinlock_t *ptl;
488 
489 	ptl = pmd_trans_huge_lock(pmd, vma);
490 	if (ptl) {
491 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 		if (ret)
493 			return 0;
494 	}
495 
496 	if (pmd_trans_unstable(pmd))
497 		return 0;
498 retry:
499 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 	for (; addr != end; pte++, addr += PAGE_SIZE) {
501 		if (!pte_present(*pte))
502 			continue;
503 		page = vm_normal_page(vma, addr, *pte);
504 		if (!page)
505 			continue;
506 		/*
507 		 * vm_normal_page() filters out zero pages, but there might
508 		 * still be PageReserved pages to skip, perhaps in a VDSO.
509 		 */
510 		if (PageReserved(page))
511 			continue;
512 		if (!queue_pages_required(page, qp))
513 			continue;
514 		if (PageTransCompound(page) && !thp_migration_supported()) {
515 			get_page(page);
516 			pte_unmap_unlock(pte, ptl);
517 			lock_page(page);
518 			ret = split_huge_page(page);
519 			unlock_page(page);
520 			put_page(page);
521 			/* Failed to split -- skip. */
522 			if (ret) {
523 				pte = pte_offset_map_lock(walk->mm, pmd,
524 						addr, &ptl);
525 				continue;
526 			}
527 			goto retry;
528 		}
529 
530 		migrate_page_add(page, qp->pagelist, flags);
531 	}
532 	pte_unmap_unlock(pte - 1, ptl);
533 	cond_resched();
534 	return 0;
535 }
536 
537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 			       unsigned long addr, unsigned long end,
539 			       struct mm_walk *walk)
540 {
541 #ifdef CONFIG_HUGETLB_PAGE
542 	struct queue_pages *qp = walk->private;
543 	unsigned long flags = qp->flags;
544 	struct page *page;
545 	spinlock_t *ptl;
546 	pte_t entry;
547 
548 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 	entry = huge_ptep_get(pte);
550 	if (!pte_present(entry))
551 		goto unlock;
552 	page = pte_page(entry);
553 	if (!queue_pages_required(page, qp))
554 		goto unlock;
555 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 	if (flags & (MPOL_MF_MOVE_ALL) ||
557 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 		isolate_huge_page(page, qp->pagelist);
559 unlock:
560 	spin_unlock(ptl);
561 #else
562 	BUG();
563 #endif
564 	return 0;
565 }
566 
567 #ifdef CONFIG_NUMA_BALANCING
568 /*
569  * This is used to mark a range of virtual addresses to be inaccessible.
570  * These are later cleared by a NUMA hinting fault. Depending on these
571  * faults, pages may be migrated for better NUMA placement.
572  *
573  * This is assuming that NUMA faults are handled using PROT_NONE. If
574  * an architecture makes a different choice, it will need further
575  * changes to the core.
576  */
577 unsigned long change_prot_numa(struct vm_area_struct *vma,
578 			unsigned long addr, unsigned long end)
579 {
580 	int nr_updated;
581 
582 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 	if (nr_updated)
584 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585 
586 	return nr_updated;
587 }
588 #else
589 static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 			unsigned long addr, unsigned long end)
591 {
592 	return 0;
593 }
594 #endif /* CONFIG_NUMA_BALANCING */
595 
596 static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 				struct mm_walk *walk)
598 {
599 	struct vm_area_struct *vma = walk->vma;
600 	struct queue_pages *qp = walk->private;
601 	unsigned long endvma = vma->vm_end;
602 	unsigned long flags = qp->flags;
603 
604 	if (!vma_migratable(vma))
605 		return 1;
606 
607 	if (endvma > end)
608 		endvma = end;
609 	if (vma->vm_start > start)
610 		start = vma->vm_start;
611 
612 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 		if (!vma->vm_next && vma->vm_end < end)
614 			return -EFAULT;
615 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 			return -EFAULT;
617 	}
618 
619 	qp->prev = vma;
620 
621 	if (flags & MPOL_MF_LAZY) {
622 		/* Similar to task_numa_work, skip inaccessible VMAs */
623 		if (!is_vm_hugetlb_page(vma) &&
624 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 			!(vma->vm_flags & VM_MIXEDMAP))
626 			change_prot_numa(vma, start, endvma);
627 		return 1;
628 	}
629 
630 	/* queue pages from current vma */
631 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 		return 0;
633 	return 1;
634 }
635 
636 /*
637  * Walk through page tables and collect pages to be migrated.
638  *
639  * If pages found in a given range are on a set of nodes (determined by
640  * @nodes and @flags,) it's isolated and queued to the pagelist which is
641  * passed via @private.)
642  */
643 static int
644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 		nodemask_t *nodes, unsigned long flags,
646 		struct list_head *pagelist)
647 {
648 	struct queue_pages qp = {
649 		.pagelist = pagelist,
650 		.flags = flags,
651 		.nmask = nodes,
652 		.prev = NULL,
653 	};
654 	struct mm_walk queue_pages_walk = {
655 		.hugetlb_entry = queue_pages_hugetlb,
656 		.pmd_entry = queue_pages_pte_range,
657 		.test_walk = queue_pages_test_walk,
658 		.mm = mm,
659 		.private = &qp,
660 	};
661 
662 	return walk_page_range(start, end, &queue_pages_walk);
663 }
664 
665 /*
666  * Apply policy to a single VMA
667  * This must be called with the mmap_sem held for writing.
668  */
669 static int vma_replace_policy(struct vm_area_struct *vma,
670 						struct mempolicy *pol)
671 {
672 	int err;
673 	struct mempolicy *old;
674 	struct mempolicy *new;
675 
676 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 		 vma->vm_ops, vma->vm_file,
679 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680 
681 	new = mpol_dup(pol);
682 	if (IS_ERR(new))
683 		return PTR_ERR(new);
684 
685 	if (vma->vm_ops && vma->vm_ops->set_policy) {
686 		err = vma->vm_ops->set_policy(vma, new);
687 		if (err)
688 			goto err_out;
689 	}
690 
691 	old = vma->vm_policy;
692 	vma->vm_policy = new; /* protected by mmap_sem */
693 	mpol_put(old);
694 
695 	return 0;
696  err_out:
697 	mpol_put(new);
698 	return err;
699 }
700 
701 /* Step 2: apply policy to a range and do splits. */
702 static int mbind_range(struct mm_struct *mm, unsigned long start,
703 		       unsigned long end, struct mempolicy *new_pol)
704 {
705 	struct vm_area_struct *next;
706 	struct vm_area_struct *prev;
707 	struct vm_area_struct *vma;
708 	int err = 0;
709 	pgoff_t pgoff;
710 	unsigned long vmstart;
711 	unsigned long vmend;
712 
713 	vma = find_vma(mm, start);
714 	if (!vma || vma->vm_start > start)
715 		return -EFAULT;
716 
717 	prev = vma->vm_prev;
718 	if (start > vma->vm_start)
719 		prev = vma;
720 
721 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 		next = vma->vm_next;
723 		vmstart = max(start, vma->vm_start);
724 		vmend   = min(end, vma->vm_end);
725 
726 		if (mpol_equal(vma_policy(vma), new_pol))
727 			continue;
728 
729 		pgoff = vma->vm_pgoff +
730 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 				 vma->anon_vma, vma->vm_file, pgoff,
733 				 new_pol, vma->vm_userfaultfd_ctx);
734 		if (prev) {
735 			vma = prev;
736 			next = vma->vm_next;
737 			if (mpol_equal(vma_policy(vma), new_pol))
738 				continue;
739 			/* vma_merge() joined vma && vma->next, case 8 */
740 			goto replace;
741 		}
742 		if (vma->vm_start != vmstart) {
743 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 			if (err)
745 				goto out;
746 		}
747 		if (vma->vm_end != vmend) {
748 			err = split_vma(vma->vm_mm, vma, vmend, 0);
749 			if (err)
750 				goto out;
751 		}
752  replace:
753 		err = vma_replace_policy(vma, new_pol);
754 		if (err)
755 			goto out;
756 	}
757 
758  out:
759 	return err;
760 }
761 
762 /* Set the process memory policy */
763 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 			     nodemask_t *nodes)
765 {
766 	struct mempolicy *new, *old;
767 	NODEMASK_SCRATCH(scratch);
768 	int ret;
769 
770 	if (!scratch)
771 		return -ENOMEM;
772 
773 	new = mpol_new(mode, flags, nodes);
774 	if (IS_ERR(new)) {
775 		ret = PTR_ERR(new);
776 		goto out;
777 	}
778 
779 	task_lock(current);
780 	ret = mpol_set_nodemask(new, nodes, scratch);
781 	if (ret) {
782 		task_unlock(current);
783 		mpol_put(new);
784 		goto out;
785 	}
786 	old = current->mempolicy;
787 	current->mempolicy = new;
788 	if (new && new->mode == MPOL_INTERLEAVE)
789 		current->il_prev = MAX_NUMNODES-1;
790 	task_unlock(current);
791 	mpol_put(old);
792 	ret = 0;
793 out:
794 	NODEMASK_SCRATCH_FREE(scratch);
795 	return ret;
796 }
797 
798 /*
799  * Return nodemask for policy for get_mempolicy() query
800  *
801  * Called with task's alloc_lock held
802  */
803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804 {
805 	nodes_clear(*nodes);
806 	if (p == &default_policy)
807 		return;
808 
809 	switch (p->mode) {
810 	case MPOL_BIND:
811 		/* Fall through */
812 	case MPOL_INTERLEAVE:
813 		*nodes = p->v.nodes;
814 		break;
815 	case MPOL_PREFERRED:
816 		if (!(p->flags & MPOL_F_LOCAL))
817 			node_set(p->v.preferred_node, *nodes);
818 		/* else return empty node mask for local allocation */
819 		break;
820 	default:
821 		BUG();
822 	}
823 }
824 
825 static int lookup_node(unsigned long addr)
826 {
827 	struct page *p;
828 	int err;
829 
830 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 	if (err >= 0) {
832 		err = page_to_nid(p);
833 		put_page(p);
834 	}
835 	return err;
836 }
837 
838 /* Retrieve NUMA policy */
839 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 			     unsigned long addr, unsigned long flags)
841 {
842 	int err;
843 	struct mm_struct *mm = current->mm;
844 	struct vm_area_struct *vma = NULL;
845 	struct mempolicy *pol = current->mempolicy;
846 
847 	if (flags &
848 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 		return -EINVAL;
850 
851 	if (flags & MPOL_F_MEMS_ALLOWED) {
852 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 			return -EINVAL;
854 		*policy = 0;	/* just so it's initialized */
855 		task_lock(current);
856 		*nmask  = cpuset_current_mems_allowed;
857 		task_unlock(current);
858 		return 0;
859 	}
860 
861 	if (flags & MPOL_F_ADDR) {
862 		/*
863 		 * Do NOT fall back to task policy if the
864 		 * vma/shared policy at addr is NULL.  We
865 		 * want to return MPOL_DEFAULT in this case.
866 		 */
867 		down_read(&mm->mmap_sem);
868 		vma = find_vma_intersection(mm, addr, addr+1);
869 		if (!vma) {
870 			up_read(&mm->mmap_sem);
871 			return -EFAULT;
872 		}
873 		if (vma->vm_ops && vma->vm_ops->get_policy)
874 			pol = vma->vm_ops->get_policy(vma, addr);
875 		else
876 			pol = vma->vm_policy;
877 	} else if (addr)
878 		return -EINVAL;
879 
880 	if (!pol)
881 		pol = &default_policy;	/* indicates default behavior */
882 
883 	if (flags & MPOL_F_NODE) {
884 		if (flags & MPOL_F_ADDR) {
885 			err = lookup_node(addr);
886 			if (err < 0)
887 				goto out;
888 			*policy = err;
889 		} else if (pol == current->mempolicy &&
890 				pol->mode == MPOL_INTERLEAVE) {
891 			*policy = next_node_in(current->il_prev, pol->v.nodes);
892 		} else {
893 			err = -EINVAL;
894 			goto out;
895 		}
896 	} else {
897 		*policy = pol == &default_policy ? MPOL_DEFAULT :
898 						pol->mode;
899 		/*
900 		 * Internal mempolicy flags must be masked off before exposing
901 		 * the policy to userspace.
902 		 */
903 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
904 	}
905 
906 	err = 0;
907 	if (nmask) {
908 		if (mpol_store_user_nodemask(pol)) {
909 			*nmask = pol->w.user_nodemask;
910 		} else {
911 			task_lock(current);
912 			get_policy_nodemask(pol, nmask);
913 			task_unlock(current);
914 		}
915 	}
916 
917  out:
918 	mpol_cond_put(pol);
919 	if (vma)
920 		up_read(&current->mm->mmap_sem);
921 	return err;
922 }
923 
924 #ifdef CONFIG_MIGRATION
925 /*
926  * page migration, thp tail pages can be passed.
927  */
928 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 				unsigned long flags)
930 {
931 	struct page *head = compound_head(page);
932 	/*
933 	 * Avoid migrating a page that is shared with others.
934 	 */
935 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 		if (!isolate_lru_page(head)) {
937 			list_add_tail(&head->lru, pagelist);
938 			mod_node_page_state(page_pgdat(head),
939 				NR_ISOLATED_ANON + page_is_file_cache(head),
940 				hpage_nr_pages(head));
941 		}
942 	}
943 }
944 
945 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946 {
947 	if (PageHuge(page))
948 		return alloc_huge_page_node(page_hstate(compound_head(page)),
949 					node);
950 	else if (thp_migration_supported() && PageTransHuge(page)) {
951 		struct page *thp;
952 
953 		thp = alloc_pages_node(node,
954 			(GFP_TRANSHUGE | __GFP_THISNODE),
955 			HPAGE_PMD_ORDER);
956 		if (!thp)
957 			return NULL;
958 		prep_transhuge_page(thp);
959 		return thp;
960 	} else
961 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 						    __GFP_THISNODE, 0);
963 }
964 
965 /*
966  * Migrate pages from one node to a target node.
967  * Returns error or the number of pages not migrated.
968  */
969 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 			   int flags)
971 {
972 	nodemask_t nmask;
973 	LIST_HEAD(pagelist);
974 	int err = 0;
975 
976 	nodes_clear(nmask);
977 	node_set(source, nmask);
978 
979 	/*
980 	 * This does not "check" the range but isolates all pages that
981 	 * need migration.  Between passing in the full user address
982 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 	 */
984 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987 
988 	if (!list_empty(&pagelist)) {
989 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 					MIGRATE_SYNC, MR_SYSCALL);
991 		if (err)
992 			putback_movable_pages(&pagelist);
993 	}
994 
995 	return err;
996 }
997 
998 /*
999  * Move pages between the two nodesets so as to preserve the physical
1000  * layout as much as possible.
1001  *
1002  * Returns the number of page that could not be moved.
1003  */
1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 		     const nodemask_t *to, int flags)
1006 {
1007 	int busy = 0;
1008 	int err;
1009 	nodemask_t tmp;
1010 
1011 	err = migrate_prep();
1012 	if (err)
1013 		return err;
1014 
1015 	down_read(&mm->mmap_sem);
1016 
1017 	/*
1018 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1020 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 	 * The pair of nodemasks 'to' and 'from' define the map.
1022 	 *
1023 	 * If no pair of bits is found that way, fallback to picking some
1024 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1025 	 * 'source' and 'dest' bits are the same, this represents a node
1026 	 * that will be migrating to itself, so no pages need move.
1027 	 *
1028 	 * If no bits are left in 'tmp', or if all remaining bits left
1029 	 * in 'tmp' correspond to the same bit in 'to', return false
1030 	 * (nothing left to migrate).
1031 	 *
1032 	 * This lets us pick a pair of nodes to migrate between, such that
1033 	 * if possible the dest node is not already occupied by some other
1034 	 * source node, minimizing the risk of overloading the memory on a
1035 	 * node that would happen if we migrated incoming memory to a node
1036 	 * before migrating outgoing memory source that same node.
1037 	 *
1038 	 * A single scan of tmp is sufficient.  As we go, we remember the
1039 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1040 	 * that not only moved, but what's better, moved to an empty slot
1041 	 * (d is not set in tmp), then we break out then, with that pair.
1042 	 * Otherwise when we finish scanning from_tmp, we at least have the
1043 	 * most recent <s, d> pair that moved.  If we get all the way through
1044 	 * the scan of tmp without finding any node that moved, much less
1045 	 * moved to an empty node, then there is nothing left worth migrating.
1046 	 */
1047 
1048 	tmp = *from;
1049 	while (!nodes_empty(tmp)) {
1050 		int s,d;
1051 		int source = NUMA_NO_NODE;
1052 		int dest = 0;
1053 
1054 		for_each_node_mask(s, tmp) {
1055 
1056 			/*
1057 			 * do_migrate_pages() tries to maintain the relative
1058 			 * node relationship of the pages established between
1059 			 * threads and memory areas.
1060                          *
1061 			 * However if the number of source nodes is not equal to
1062 			 * the number of destination nodes we can not preserve
1063 			 * this node relative relationship.  In that case, skip
1064 			 * copying memory from a node that is in the destination
1065 			 * mask.
1066 			 *
1067 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 			 */
1070 
1071 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 						(node_isset(s, *to)))
1073 				continue;
1074 
1075 			d = node_remap(s, *from, *to);
1076 			if (s == d)
1077 				continue;
1078 
1079 			source = s;	/* Node moved. Memorize */
1080 			dest = d;
1081 
1082 			/* dest not in remaining from nodes? */
1083 			if (!node_isset(dest, tmp))
1084 				break;
1085 		}
1086 		if (source == NUMA_NO_NODE)
1087 			break;
1088 
1089 		node_clear(source, tmp);
1090 		err = migrate_to_node(mm, source, dest, flags);
1091 		if (err > 0)
1092 			busy += err;
1093 		if (err < 0)
1094 			break;
1095 	}
1096 	up_read(&mm->mmap_sem);
1097 	if (err < 0)
1098 		return err;
1099 	return busy;
1100 
1101 }
1102 
1103 /*
1104  * Allocate a new page for page migration based on vma policy.
1105  * Start by assuming the page is mapped by the same vma as contains @start.
1106  * Search forward from there, if not.  N.B., this assumes that the
1107  * list of pages handed to migrate_pages()--which is how we get here--
1108  * is in virtual address order.
1109  */
1110 static struct page *new_page(struct page *page, unsigned long start, int **x)
1111 {
1112 	struct vm_area_struct *vma;
1113 	unsigned long uninitialized_var(address);
1114 
1115 	vma = find_vma(current->mm, start);
1116 	while (vma) {
1117 		address = page_address_in_vma(page, vma);
1118 		if (address != -EFAULT)
1119 			break;
1120 		vma = vma->vm_next;
1121 	}
1122 
1123 	if (PageHuge(page)) {
1124 		BUG_ON(!vma);
1125 		return alloc_huge_page_noerr(vma, address, 1);
1126 	} else if (thp_migration_supported() && PageTransHuge(page)) {
1127 		struct page *thp;
1128 
1129 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 					 HPAGE_PMD_ORDER);
1131 		if (!thp)
1132 			return NULL;
1133 		prep_transhuge_page(thp);
1134 		return thp;
1135 	}
1136 	/*
1137 	 * if !vma, alloc_page_vma() will use task or system default policy
1138 	 */
1139 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 			vma, address);
1141 }
1142 #else
1143 
1144 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 				unsigned long flags)
1146 {
1147 }
1148 
1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 		     const nodemask_t *to, int flags)
1151 {
1152 	return -ENOSYS;
1153 }
1154 
1155 static struct page *new_page(struct page *page, unsigned long start, int **x)
1156 {
1157 	return NULL;
1158 }
1159 #endif
1160 
1161 static long do_mbind(unsigned long start, unsigned long len,
1162 		     unsigned short mode, unsigned short mode_flags,
1163 		     nodemask_t *nmask, unsigned long flags)
1164 {
1165 	struct mm_struct *mm = current->mm;
1166 	struct mempolicy *new;
1167 	unsigned long end;
1168 	int err;
1169 	LIST_HEAD(pagelist);
1170 
1171 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 		return -EINVAL;
1173 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 		return -EPERM;
1175 
1176 	if (start & ~PAGE_MASK)
1177 		return -EINVAL;
1178 
1179 	if (mode == MPOL_DEFAULT)
1180 		flags &= ~MPOL_MF_STRICT;
1181 
1182 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 	end = start + len;
1184 
1185 	if (end < start)
1186 		return -EINVAL;
1187 	if (end == start)
1188 		return 0;
1189 
1190 	new = mpol_new(mode, mode_flags, nmask);
1191 	if (IS_ERR(new))
1192 		return PTR_ERR(new);
1193 
1194 	if (flags & MPOL_MF_LAZY)
1195 		new->flags |= MPOL_F_MOF;
1196 
1197 	/*
1198 	 * If we are using the default policy then operation
1199 	 * on discontinuous address spaces is okay after all
1200 	 */
1201 	if (!new)
1202 		flags |= MPOL_MF_DISCONTIG_OK;
1203 
1204 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 		 start, start + len, mode, mode_flags,
1206 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207 
1208 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209 
1210 		err = migrate_prep();
1211 		if (err)
1212 			goto mpol_out;
1213 	}
1214 	{
1215 		NODEMASK_SCRATCH(scratch);
1216 		if (scratch) {
1217 			down_write(&mm->mmap_sem);
1218 			task_lock(current);
1219 			err = mpol_set_nodemask(new, nmask, scratch);
1220 			task_unlock(current);
1221 			if (err)
1222 				up_write(&mm->mmap_sem);
1223 		} else
1224 			err = -ENOMEM;
1225 		NODEMASK_SCRATCH_FREE(scratch);
1226 	}
1227 	if (err)
1228 		goto mpol_out;
1229 
1230 	err = queue_pages_range(mm, start, end, nmask,
1231 			  flags | MPOL_MF_INVERT, &pagelist);
1232 	if (!err)
1233 		err = mbind_range(mm, start, end, new);
1234 
1235 	if (!err) {
1236 		int nr_failed = 0;
1237 
1238 		if (!list_empty(&pagelist)) {
1239 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 			if (nr_failed)
1243 				putback_movable_pages(&pagelist);
1244 		}
1245 
1246 		if (nr_failed && (flags & MPOL_MF_STRICT))
1247 			err = -EIO;
1248 	} else
1249 		putback_movable_pages(&pagelist);
1250 
1251 	up_write(&mm->mmap_sem);
1252  mpol_out:
1253 	mpol_put(new);
1254 	return err;
1255 }
1256 
1257 /*
1258  * User space interface with variable sized bitmaps for nodelists.
1259  */
1260 
1261 /* Copy a node mask from user space. */
1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 		     unsigned long maxnode)
1264 {
1265 	unsigned long k;
1266 	unsigned long nlongs;
1267 	unsigned long endmask;
1268 
1269 	--maxnode;
1270 	nodes_clear(*nodes);
1271 	if (maxnode == 0 || !nmask)
1272 		return 0;
1273 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1274 		return -EINVAL;
1275 
1276 	nlongs = BITS_TO_LONGS(maxnode);
1277 	if ((maxnode % BITS_PER_LONG) == 0)
1278 		endmask = ~0UL;
1279 	else
1280 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1281 
1282 	/* When the user specified more nodes than supported just check
1283 	   if the non supported part is all zero. */
1284 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1285 		if (nlongs > PAGE_SIZE/sizeof(long))
1286 			return -EINVAL;
1287 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1288 			unsigned long t;
1289 			if (get_user(t, nmask + k))
1290 				return -EFAULT;
1291 			if (k == nlongs - 1) {
1292 				if (t & endmask)
1293 					return -EINVAL;
1294 			} else if (t)
1295 				return -EINVAL;
1296 		}
1297 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1298 		endmask = ~0UL;
1299 	}
1300 
1301 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1302 		return -EFAULT;
1303 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1304 	return 0;
1305 }
1306 
1307 /* Copy a kernel node mask to user space */
1308 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1309 			      nodemask_t *nodes)
1310 {
1311 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1312 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1313 
1314 	if (copy > nbytes) {
1315 		if (copy > PAGE_SIZE)
1316 			return -EINVAL;
1317 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1318 			return -EFAULT;
1319 		copy = nbytes;
1320 	}
1321 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1322 }
1323 
1324 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1325 		unsigned long, mode, const unsigned long __user *, nmask,
1326 		unsigned long, maxnode, unsigned, flags)
1327 {
1328 	nodemask_t nodes;
1329 	int err;
1330 	unsigned short mode_flags;
1331 
1332 	mode_flags = mode & MPOL_MODE_FLAGS;
1333 	mode &= ~MPOL_MODE_FLAGS;
1334 	if (mode >= MPOL_MAX)
1335 		return -EINVAL;
1336 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1337 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1338 		return -EINVAL;
1339 	err = get_nodes(&nodes, nmask, maxnode);
1340 	if (err)
1341 		return err;
1342 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1343 }
1344 
1345 /* Set the process memory policy */
1346 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1347 		unsigned long, maxnode)
1348 {
1349 	int err;
1350 	nodemask_t nodes;
1351 	unsigned short flags;
1352 
1353 	flags = mode & MPOL_MODE_FLAGS;
1354 	mode &= ~MPOL_MODE_FLAGS;
1355 	if ((unsigned int)mode >= MPOL_MAX)
1356 		return -EINVAL;
1357 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1358 		return -EINVAL;
1359 	err = get_nodes(&nodes, nmask, maxnode);
1360 	if (err)
1361 		return err;
1362 	return do_set_mempolicy(mode, flags, &nodes);
1363 }
1364 
1365 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1366 		const unsigned long __user *, old_nodes,
1367 		const unsigned long __user *, new_nodes)
1368 {
1369 	struct mm_struct *mm = NULL;
1370 	struct task_struct *task;
1371 	nodemask_t task_nodes;
1372 	int err;
1373 	nodemask_t *old;
1374 	nodemask_t *new;
1375 	NODEMASK_SCRATCH(scratch);
1376 
1377 	if (!scratch)
1378 		return -ENOMEM;
1379 
1380 	old = &scratch->mask1;
1381 	new = &scratch->mask2;
1382 
1383 	err = get_nodes(old, old_nodes, maxnode);
1384 	if (err)
1385 		goto out;
1386 
1387 	err = get_nodes(new, new_nodes, maxnode);
1388 	if (err)
1389 		goto out;
1390 
1391 	/* Find the mm_struct */
1392 	rcu_read_lock();
1393 	task = pid ? find_task_by_vpid(pid) : current;
1394 	if (!task) {
1395 		rcu_read_unlock();
1396 		err = -ESRCH;
1397 		goto out;
1398 	}
1399 	get_task_struct(task);
1400 
1401 	err = -EINVAL;
1402 
1403 	/*
1404 	 * Check if this process has the right to modify the specified process.
1405 	 * Use the regular "ptrace_may_access()" checks.
1406 	 */
1407 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1408 		rcu_read_unlock();
1409 		err = -EPERM;
1410 		goto out_put;
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	task_nodes = cpuset_mems_allowed(task);
1415 	/* Is the user allowed to access the target nodes? */
1416 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1417 		err = -EPERM;
1418 		goto out_put;
1419 	}
1420 
1421 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1422 		err = -EINVAL;
1423 		goto out_put;
1424 	}
1425 
1426 	err = security_task_movememory(task);
1427 	if (err)
1428 		goto out_put;
1429 
1430 	mm = get_task_mm(task);
1431 	put_task_struct(task);
1432 
1433 	if (!mm) {
1434 		err = -EINVAL;
1435 		goto out;
1436 	}
1437 
1438 	err = do_migrate_pages(mm, old, new,
1439 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1440 
1441 	mmput(mm);
1442 out:
1443 	NODEMASK_SCRATCH_FREE(scratch);
1444 
1445 	return err;
1446 
1447 out_put:
1448 	put_task_struct(task);
1449 	goto out;
1450 
1451 }
1452 
1453 
1454 /* Retrieve NUMA policy */
1455 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1456 		unsigned long __user *, nmask, unsigned long, maxnode,
1457 		unsigned long, addr, unsigned long, flags)
1458 {
1459 	int err;
1460 	int uninitialized_var(pval);
1461 	nodemask_t nodes;
1462 
1463 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1464 		return -EINVAL;
1465 
1466 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1467 
1468 	if (err)
1469 		return err;
1470 
1471 	if (policy && put_user(pval, policy))
1472 		return -EFAULT;
1473 
1474 	if (nmask)
1475 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1476 
1477 	return err;
1478 }
1479 
1480 #ifdef CONFIG_COMPAT
1481 
1482 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1483 		       compat_ulong_t __user *, nmask,
1484 		       compat_ulong_t, maxnode,
1485 		       compat_ulong_t, addr, compat_ulong_t, flags)
1486 {
1487 	long err;
1488 	unsigned long __user *nm = NULL;
1489 	unsigned long nr_bits, alloc_size;
1490 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1491 
1492 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1493 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1494 
1495 	if (nmask)
1496 		nm = compat_alloc_user_space(alloc_size);
1497 
1498 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1499 
1500 	if (!err && nmask) {
1501 		unsigned long copy_size;
1502 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1503 		err = copy_from_user(bm, nm, copy_size);
1504 		/* ensure entire bitmap is zeroed */
1505 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1506 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1513 		       compat_ulong_t, maxnode)
1514 {
1515 	unsigned long __user *nm = NULL;
1516 	unsigned long nr_bits, alloc_size;
1517 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1518 
1519 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1520 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1521 
1522 	if (nmask) {
1523 		if (compat_get_bitmap(bm, nmask, nr_bits))
1524 			return -EFAULT;
1525 		nm = compat_alloc_user_space(alloc_size);
1526 		if (copy_to_user(nm, bm, alloc_size))
1527 			return -EFAULT;
1528 	}
1529 
1530 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1531 }
1532 
1533 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1534 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1535 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1536 {
1537 	unsigned long __user *nm = NULL;
1538 	unsigned long nr_bits, alloc_size;
1539 	nodemask_t bm;
1540 
1541 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1542 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1543 
1544 	if (nmask) {
1545 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1546 			return -EFAULT;
1547 		nm = compat_alloc_user_space(alloc_size);
1548 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1549 			return -EFAULT;
1550 	}
1551 
1552 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1553 }
1554 
1555 #endif
1556 
1557 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1558 						unsigned long addr)
1559 {
1560 	struct mempolicy *pol = NULL;
1561 
1562 	if (vma) {
1563 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1564 			pol = vma->vm_ops->get_policy(vma, addr);
1565 		} else if (vma->vm_policy) {
1566 			pol = vma->vm_policy;
1567 
1568 			/*
1569 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1570 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1571 			 * count on these policies which will be dropped by
1572 			 * mpol_cond_put() later
1573 			 */
1574 			if (mpol_needs_cond_ref(pol))
1575 				mpol_get(pol);
1576 		}
1577 	}
1578 
1579 	return pol;
1580 }
1581 
1582 /*
1583  * get_vma_policy(@vma, @addr)
1584  * @vma: virtual memory area whose policy is sought
1585  * @addr: address in @vma for shared policy lookup
1586  *
1587  * Returns effective policy for a VMA at specified address.
1588  * Falls back to current->mempolicy or system default policy, as necessary.
1589  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1590  * count--added by the get_policy() vm_op, as appropriate--to protect against
1591  * freeing by another task.  It is the caller's responsibility to free the
1592  * extra reference for shared policies.
1593  */
1594 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1595 						unsigned long addr)
1596 {
1597 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1598 
1599 	if (!pol)
1600 		pol = get_task_policy(current);
1601 
1602 	return pol;
1603 }
1604 
1605 bool vma_policy_mof(struct vm_area_struct *vma)
1606 {
1607 	struct mempolicy *pol;
1608 
1609 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1610 		bool ret = false;
1611 
1612 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1613 		if (pol && (pol->flags & MPOL_F_MOF))
1614 			ret = true;
1615 		mpol_cond_put(pol);
1616 
1617 		return ret;
1618 	}
1619 
1620 	pol = vma->vm_policy;
1621 	if (!pol)
1622 		pol = get_task_policy(current);
1623 
1624 	return pol->flags & MPOL_F_MOF;
1625 }
1626 
1627 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1628 {
1629 	enum zone_type dynamic_policy_zone = policy_zone;
1630 
1631 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1632 
1633 	/*
1634 	 * if policy->v.nodes has movable memory only,
1635 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1636 	 *
1637 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1638 	 * so if the following test faile, it implies
1639 	 * policy->v.nodes has movable memory only.
1640 	 */
1641 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1642 		dynamic_policy_zone = ZONE_MOVABLE;
1643 
1644 	return zone >= dynamic_policy_zone;
1645 }
1646 
1647 /*
1648  * Return a nodemask representing a mempolicy for filtering nodes for
1649  * page allocation
1650  */
1651 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1652 {
1653 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1654 	if (unlikely(policy->mode == MPOL_BIND) &&
1655 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1656 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1657 		return &policy->v.nodes;
1658 
1659 	return NULL;
1660 }
1661 
1662 /* Return the node id preferred by the given mempolicy, or the given id */
1663 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1664 								int nd)
1665 {
1666 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1667 		nd = policy->v.preferred_node;
1668 	else {
1669 		/*
1670 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1671 		 * because we might easily break the expectation to stay on the
1672 		 * requested node and not break the policy.
1673 		 */
1674 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1675 	}
1676 
1677 	return nd;
1678 }
1679 
1680 /* Do dynamic interleaving for a process */
1681 static unsigned interleave_nodes(struct mempolicy *policy)
1682 {
1683 	unsigned next;
1684 	struct task_struct *me = current;
1685 
1686 	next = next_node_in(me->il_prev, policy->v.nodes);
1687 	if (next < MAX_NUMNODES)
1688 		me->il_prev = next;
1689 	return next;
1690 }
1691 
1692 /*
1693  * Depending on the memory policy provide a node from which to allocate the
1694  * next slab entry.
1695  */
1696 unsigned int mempolicy_slab_node(void)
1697 {
1698 	struct mempolicy *policy;
1699 	int node = numa_mem_id();
1700 
1701 	if (in_interrupt())
1702 		return node;
1703 
1704 	policy = current->mempolicy;
1705 	if (!policy || policy->flags & MPOL_F_LOCAL)
1706 		return node;
1707 
1708 	switch (policy->mode) {
1709 	case MPOL_PREFERRED:
1710 		/*
1711 		 * handled MPOL_F_LOCAL above
1712 		 */
1713 		return policy->v.preferred_node;
1714 
1715 	case MPOL_INTERLEAVE:
1716 		return interleave_nodes(policy);
1717 
1718 	case MPOL_BIND: {
1719 		struct zoneref *z;
1720 
1721 		/*
1722 		 * Follow bind policy behavior and start allocation at the
1723 		 * first node.
1724 		 */
1725 		struct zonelist *zonelist;
1726 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1727 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1728 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1729 							&policy->v.nodes);
1730 		return z->zone ? z->zone->node : node;
1731 	}
1732 
1733 	default:
1734 		BUG();
1735 	}
1736 }
1737 
1738 /*
1739  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1740  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1741  * number of present nodes.
1742  */
1743 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1744 {
1745 	unsigned nnodes = nodes_weight(pol->v.nodes);
1746 	unsigned target;
1747 	int i;
1748 	int nid;
1749 
1750 	if (!nnodes)
1751 		return numa_node_id();
1752 	target = (unsigned int)n % nnodes;
1753 	nid = first_node(pol->v.nodes);
1754 	for (i = 0; i < target; i++)
1755 		nid = next_node(nid, pol->v.nodes);
1756 	return nid;
1757 }
1758 
1759 /* Determine a node number for interleave */
1760 static inline unsigned interleave_nid(struct mempolicy *pol,
1761 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1762 {
1763 	if (vma) {
1764 		unsigned long off;
1765 
1766 		/*
1767 		 * for small pages, there is no difference between
1768 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1769 		 * for huge pages, since vm_pgoff is in units of small
1770 		 * pages, we need to shift off the always 0 bits to get
1771 		 * a useful offset.
1772 		 */
1773 		BUG_ON(shift < PAGE_SHIFT);
1774 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1775 		off += (addr - vma->vm_start) >> shift;
1776 		return offset_il_node(pol, off);
1777 	} else
1778 		return interleave_nodes(pol);
1779 }
1780 
1781 #ifdef CONFIG_HUGETLBFS
1782 /*
1783  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1784  * @vma: virtual memory area whose policy is sought
1785  * @addr: address in @vma for shared policy lookup and interleave policy
1786  * @gfp_flags: for requested zone
1787  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1788  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1789  *
1790  * Returns a nid suitable for a huge page allocation and a pointer
1791  * to the struct mempolicy for conditional unref after allocation.
1792  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1793  * @nodemask for filtering the zonelist.
1794  *
1795  * Must be protected by read_mems_allowed_begin()
1796  */
1797 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1798 				struct mempolicy **mpol, nodemask_t **nodemask)
1799 {
1800 	int nid;
1801 
1802 	*mpol = get_vma_policy(vma, addr);
1803 	*nodemask = NULL;	/* assume !MPOL_BIND */
1804 
1805 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1806 		nid = interleave_nid(*mpol, vma, addr,
1807 					huge_page_shift(hstate_vma(vma)));
1808 	} else {
1809 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1810 		if ((*mpol)->mode == MPOL_BIND)
1811 			*nodemask = &(*mpol)->v.nodes;
1812 	}
1813 	return nid;
1814 }
1815 
1816 /*
1817  * init_nodemask_of_mempolicy
1818  *
1819  * If the current task's mempolicy is "default" [NULL], return 'false'
1820  * to indicate default policy.  Otherwise, extract the policy nodemask
1821  * for 'bind' or 'interleave' policy into the argument nodemask, or
1822  * initialize the argument nodemask to contain the single node for
1823  * 'preferred' or 'local' policy and return 'true' to indicate presence
1824  * of non-default mempolicy.
1825  *
1826  * We don't bother with reference counting the mempolicy [mpol_get/put]
1827  * because the current task is examining it's own mempolicy and a task's
1828  * mempolicy is only ever changed by the task itself.
1829  *
1830  * N.B., it is the caller's responsibility to free a returned nodemask.
1831  */
1832 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1833 {
1834 	struct mempolicy *mempolicy;
1835 	int nid;
1836 
1837 	if (!(mask && current->mempolicy))
1838 		return false;
1839 
1840 	task_lock(current);
1841 	mempolicy = current->mempolicy;
1842 	switch (mempolicy->mode) {
1843 	case MPOL_PREFERRED:
1844 		if (mempolicy->flags & MPOL_F_LOCAL)
1845 			nid = numa_node_id();
1846 		else
1847 			nid = mempolicy->v.preferred_node;
1848 		init_nodemask_of_node(mask, nid);
1849 		break;
1850 
1851 	case MPOL_BIND:
1852 		/* Fall through */
1853 	case MPOL_INTERLEAVE:
1854 		*mask =  mempolicy->v.nodes;
1855 		break;
1856 
1857 	default:
1858 		BUG();
1859 	}
1860 	task_unlock(current);
1861 
1862 	return true;
1863 }
1864 #endif
1865 
1866 /*
1867  * mempolicy_nodemask_intersects
1868  *
1869  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1870  * policy.  Otherwise, check for intersection between mask and the policy
1871  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1872  * policy, always return true since it may allocate elsewhere on fallback.
1873  *
1874  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1875  */
1876 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1877 					const nodemask_t *mask)
1878 {
1879 	struct mempolicy *mempolicy;
1880 	bool ret = true;
1881 
1882 	if (!mask)
1883 		return ret;
1884 	task_lock(tsk);
1885 	mempolicy = tsk->mempolicy;
1886 	if (!mempolicy)
1887 		goto out;
1888 
1889 	switch (mempolicy->mode) {
1890 	case MPOL_PREFERRED:
1891 		/*
1892 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1893 		 * allocate from, they may fallback to other nodes when oom.
1894 		 * Thus, it's possible for tsk to have allocated memory from
1895 		 * nodes in mask.
1896 		 */
1897 		break;
1898 	case MPOL_BIND:
1899 	case MPOL_INTERLEAVE:
1900 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1901 		break;
1902 	default:
1903 		BUG();
1904 	}
1905 out:
1906 	task_unlock(tsk);
1907 	return ret;
1908 }
1909 
1910 /* Allocate a page in interleaved policy.
1911    Own path because it needs to do special accounting. */
1912 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1913 					unsigned nid)
1914 {
1915 	struct page *page;
1916 
1917 	page = __alloc_pages(gfp, order, nid);
1918 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1919 	if (!static_branch_likely(&vm_numa_stat_key))
1920 		return page;
1921 	if (page && page_to_nid(page) == nid) {
1922 		preempt_disable();
1923 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1924 		preempt_enable();
1925 	}
1926 	return page;
1927 }
1928 
1929 /**
1930  * 	alloc_pages_vma	- Allocate a page for a VMA.
1931  *
1932  * 	@gfp:
1933  *      %GFP_USER    user allocation.
1934  *      %GFP_KERNEL  kernel allocations,
1935  *      %GFP_HIGHMEM highmem/user allocations,
1936  *      %GFP_FS      allocation should not call back into a file system.
1937  *      %GFP_ATOMIC  don't sleep.
1938  *
1939  *	@order:Order of the GFP allocation.
1940  * 	@vma:  Pointer to VMA or NULL if not available.
1941  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1942  *	@node: Which node to prefer for allocation (modulo policy).
1943  *	@hugepage: for hugepages try only the preferred node if possible
1944  *
1945  * 	This function allocates a page from the kernel page pool and applies
1946  *	a NUMA policy associated with the VMA or the current process.
1947  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1948  *	mm_struct of the VMA to prevent it from going away. Should be used for
1949  *	all allocations for pages that will be mapped into user space. Returns
1950  *	NULL when no page can be allocated.
1951  */
1952 struct page *
1953 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1954 		unsigned long addr, int node, bool hugepage)
1955 {
1956 	struct mempolicy *pol;
1957 	struct page *page;
1958 	int preferred_nid;
1959 	nodemask_t *nmask;
1960 
1961 	pol = get_vma_policy(vma, addr);
1962 
1963 	if (pol->mode == MPOL_INTERLEAVE) {
1964 		unsigned nid;
1965 
1966 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1967 		mpol_cond_put(pol);
1968 		page = alloc_page_interleave(gfp, order, nid);
1969 		goto out;
1970 	}
1971 
1972 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1973 		int hpage_node = node;
1974 
1975 		/*
1976 		 * For hugepage allocation and non-interleave policy which
1977 		 * allows the current node (or other explicitly preferred
1978 		 * node) we only try to allocate from the current/preferred
1979 		 * node and don't fall back to other nodes, as the cost of
1980 		 * remote accesses would likely offset THP benefits.
1981 		 *
1982 		 * If the policy is interleave, or does not allow the current
1983 		 * node in its nodemask, we allocate the standard way.
1984 		 */
1985 		if (pol->mode == MPOL_PREFERRED &&
1986 						!(pol->flags & MPOL_F_LOCAL))
1987 			hpage_node = pol->v.preferred_node;
1988 
1989 		nmask = policy_nodemask(gfp, pol);
1990 		if (!nmask || node_isset(hpage_node, *nmask)) {
1991 			mpol_cond_put(pol);
1992 			page = __alloc_pages_node(hpage_node,
1993 						gfp | __GFP_THISNODE, order);
1994 			goto out;
1995 		}
1996 	}
1997 
1998 	nmask = policy_nodemask(gfp, pol);
1999 	preferred_nid = policy_node(gfp, pol, node);
2000 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2001 	mpol_cond_put(pol);
2002 out:
2003 	return page;
2004 }
2005 
2006 /**
2007  * 	alloc_pages_current - Allocate pages.
2008  *
2009  *	@gfp:
2010  *		%GFP_USER   user allocation,
2011  *      	%GFP_KERNEL kernel allocation,
2012  *      	%GFP_HIGHMEM highmem allocation,
2013  *      	%GFP_FS     don't call back into a file system.
2014  *      	%GFP_ATOMIC don't sleep.
2015  *	@order: Power of two of allocation size in pages. 0 is a single page.
2016  *
2017  *	Allocate a page from the kernel page pool.  When not in
2018  *	interrupt context and apply the current process NUMA policy.
2019  *	Returns NULL when no page can be allocated.
2020  */
2021 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2022 {
2023 	struct mempolicy *pol = &default_policy;
2024 	struct page *page;
2025 
2026 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2027 		pol = get_task_policy(current);
2028 
2029 	/*
2030 	 * No reference counting needed for current->mempolicy
2031 	 * nor system default_policy
2032 	 */
2033 	if (pol->mode == MPOL_INTERLEAVE)
2034 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2035 	else
2036 		page = __alloc_pages_nodemask(gfp, order,
2037 				policy_node(gfp, pol, numa_node_id()),
2038 				policy_nodemask(gfp, pol));
2039 
2040 	return page;
2041 }
2042 EXPORT_SYMBOL(alloc_pages_current);
2043 
2044 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2045 {
2046 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2047 
2048 	if (IS_ERR(pol))
2049 		return PTR_ERR(pol);
2050 	dst->vm_policy = pol;
2051 	return 0;
2052 }
2053 
2054 /*
2055  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2056  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2057  * with the mems_allowed returned by cpuset_mems_allowed().  This
2058  * keeps mempolicies cpuset relative after its cpuset moves.  See
2059  * further kernel/cpuset.c update_nodemask().
2060  *
2061  * current's mempolicy may be rebinded by the other task(the task that changes
2062  * cpuset's mems), so we needn't do rebind work for current task.
2063  */
2064 
2065 /* Slow path of a mempolicy duplicate */
2066 struct mempolicy *__mpol_dup(struct mempolicy *old)
2067 {
2068 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2069 
2070 	if (!new)
2071 		return ERR_PTR(-ENOMEM);
2072 
2073 	/* task's mempolicy is protected by alloc_lock */
2074 	if (old == current->mempolicy) {
2075 		task_lock(current);
2076 		*new = *old;
2077 		task_unlock(current);
2078 	} else
2079 		*new = *old;
2080 
2081 	if (current_cpuset_is_being_rebound()) {
2082 		nodemask_t mems = cpuset_mems_allowed(current);
2083 		mpol_rebind_policy(new, &mems);
2084 	}
2085 	atomic_set(&new->refcnt, 1);
2086 	return new;
2087 }
2088 
2089 /* Slow path of a mempolicy comparison */
2090 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2091 {
2092 	if (!a || !b)
2093 		return false;
2094 	if (a->mode != b->mode)
2095 		return false;
2096 	if (a->flags != b->flags)
2097 		return false;
2098 	if (mpol_store_user_nodemask(a))
2099 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2100 			return false;
2101 
2102 	switch (a->mode) {
2103 	case MPOL_BIND:
2104 		/* Fall through */
2105 	case MPOL_INTERLEAVE:
2106 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2107 	case MPOL_PREFERRED:
2108 		return a->v.preferred_node == b->v.preferred_node;
2109 	default:
2110 		BUG();
2111 		return false;
2112 	}
2113 }
2114 
2115 /*
2116  * Shared memory backing store policy support.
2117  *
2118  * Remember policies even when nobody has shared memory mapped.
2119  * The policies are kept in Red-Black tree linked from the inode.
2120  * They are protected by the sp->lock rwlock, which should be held
2121  * for any accesses to the tree.
2122  */
2123 
2124 /*
2125  * lookup first element intersecting start-end.  Caller holds sp->lock for
2126  * reading or for writing
2127  */
2128 static struct sp_node *
2129 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2130 {
2131 	struct rb_node *n = sp->root.rb_node;
2132 
2133 	while (n) {
2134 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2135 
2136 		if (start >= p->end)
2137 			n = n->rb_right;
2138 		else if (end <= p->start)
2139 			n = n->rb_left;
2140 		else
2141 			break;
2142 	}
2143 	if (!n)
2144 		return NULL;
2145 	for (;;) {
2146 		struct sp_node *w = NULL;
2147 		struct rb_node *prev = rb_prev(n);
2148 		if (!prev)
2149 			break;
2150 		w = rb_entry(prev, struct sp_node, nd);
2151 		if (w->end <= start)
2152 			break;
2153 		n = prev;
2154 	}
2155 	return rb_entry(n, struct sp_node, nd);
2156 }
2157 
2158 /*
2159  * Insert a new shared policy into the list.  Caller holds sp->lock for
2160  * writing.
2161  */
2162 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2163 {
2164 	struct rb_node **p = &sp->root.rb_node;
2165 	struct rb_node *parent = NULL;
2166 	struct sp_node *nd;
2167 
2168 	while (*p) {
2169 		parent = *p;
2170 		nd = rb_entry(parent, struct sp_node, nd);
2171 		if (new->start < nd->start)
2172 			p = &(*p)->rb_left;
2173 		else if (new->end > nd->end)
2174 			p = &(*p)->rb_right;
2175 		else
2176 			BUG();
2177 	}
2178 	rb_link_node(&new->nd, parent, p);
2179 	rb_insert_color(&new->nd, &sp->root);
2180 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2181 		 new->policy ? new->policy->mode : 0);
2182 }
2183 
2184 /* Find shared policy intersecting idx */
2185 struct mempolicy *
2186 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2187 {
2188 	struct mempolicy *pol = NULL;
2189 	struct sp_node *sn;
2190 
2191 	if (!sp->root.rb_node)
2192 		return NULL;
2193 	read_lock(&sp->lock);
2194 	sn = sp_lookup(sp, idx, idx+1);
2195 	if (sn) {
2196 		mpol_get(sn->policy);
2197 		pol = sn->policy;
2198 	}
2199 	read_unlock(&sp->lock);
2200 	return pol;
2201 }
2202 
2203 static void sp_free(struct sp_node *n)
2204 {
2205 	mpol_put(n->policy);
2206 	kmem_cache_free(sn_cache, n);
2207 }
2208 
2209 /**
2210  * mpol_misplaced - check whether current page node is valid in policy
2211  *
2212  * @page: page to be checked
2213  * @vma: vm area where page mapped
2214  * @addr: virtual address where page mapped
2215  *
2216  * Lookup current policy node id for vma,addr and "compare to" page's
2217  * node id.
2218  *
2219  * Returns:
2220  *	-1	- not misplaced, page is in the right node
2221  *	node	- node id where the page should be
2222  *
2223  * Policy determination "mimics" alloc_page_vma().
2224  * Called from fault path where we know the vma and faulting address.
2225  */
2226 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2227 {
2228 	struct mempolicy *pol;
2229 	struct zoneref *z;
2230 	int curnid = page_to_nid(page);
2231 	unsigned long pgoff;
2232 	int thiscpu = raw_smp_processor_id();
2233 	int thisnid = cpu_to_node(thiscpu);
2234 	int polnid = -1;
2235 	int ret = -1;
2236 
2237 	pol = get_vma_policy(vma, addr);
2238 	if (!(pol->flags & MPOL_F_MOF))
2239 		goto out;
2240 
2241 	switch (pol->mode) {
2242 	case MPOL_INTERLEAVE:
2243 		pgoff = vma->vm_pgoff;
2244 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2245 		polnid = offset_il_node(pol, pgoff);
2246 		break;
2247 
2248 	case MPOL_PREFERRED:
2249 		if (pol->flags & MPOL_F_LOCAL)
2250 			polnid = numa_node_id();
2251 		else
2252 			polnid = pol->v.preferred_node;
2253 		break;
2254 
2255 	case MPOL_BIND:
2256 
2257 		/*
2258 		 * allows binding to multiple nodes.
2259 		 * use current page if in policy nodemask,
2260 		 * else select nearest allowed node, if any.
2261 		 * If no allowed nodes, use current [!misplaced].
2262 		 */
2263 		if (node_isset(curnid, pol->v.nodes))
2264 			goto out;
2265 		z = first_zones_zonelist(
2266 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2267 				gfp_zone(GFP_HIGHUSER),
2268 				&pol->v.nodes);
2269 		polnid = z->zone->node;
2270 		break;
2271 
2272 	default:
2273 		BUG();
2274 	}
2275 
2276 	/* Migrate the page towards the node whose CPU is referencing it */
2277 	if (pol->flags & MPOL_F_MORON) {
2278 		polnid = thisnid;
2279 
2280 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2281 			goto out;
2282 	}
2283 
2284 	if (curnid != polnid)
2285 		ret = polnid;
2286 out:
2287 	mpol_cond_put(pol);
2288 
2289 	return ret;
2290 }
2291 
2292 /*
2293  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2294  * dropped after task->mempolicy is set to NULL so that any allocation done as
2295  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2296  * policy.
2297  */
2298 void mpol_put_task_policy(struct task_struct *task)
2299 {
2300 	struct mempolicy *pol;
2301 
2302 	task_lock(task);
2303 	pol = task->mempolicy;
2304 	task->mempolicy = NULL;
2305 	task_unlock(task);
2306 	mpol_put(pol);
2307 }
2308 
2309 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2310 {
2311 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2312 	rb_erase(&n->nd, &sp->root);
2313 	sp_free(n);
2314 }
2315 
2316 static void sp_node_init(struct sp_node *node, unsigned long start,
2317 			unsigned long end, struct mempolicy *pol)
2318 {
2319 	node->start = start;
2320 	node->end = end;
2321 	node->policy = pol;
2322 }
2323 
2324 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2325 				struct mempolicy *pol)
2326 {
2327 	struct sp_node *n;
2328 	struct mempolicy *newpol;
2329 
2330 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2331 	if (!n)
2332 		return NULL;
2333 
2334 	newpol = mpol_dup(pol);
2335 	if (IS_ERR(newpol)) {
2336 		kmem_cache_free(sn_cache, n);
2337 		return NULL;
2338 	}
2339 	newpol->flags |= MPOL_F_SHARED;
2340 	sp_node_init(n, start, end, newpol);
2341 
2342 	return n;
2343 }
2344 
2345 /* Replace a policy range. */
2346 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2347 				 unsigned long end, struct sp_node *new)
2348 {
2349 	struct sp_node *n;
2350 	struct sp_node *n_new = NULL;
2351 	struct mempolicy *mpol_new = NULL;
2352 	int ret = 0;
2353 
2354 restart:
2355 	write_lock(&sp->lock);
2356 	n = sp_lookup(sp, start, end);
2357 	/* Take care of old policies in the same range. */
2358 	while (n && n->start < end) {
2359 		struct rb_node *next = rb_next(&n->nd);
2360 		if (n->start >= start) {
2361 			if (n->end <= end)
2362 				sp_delete(sp, n);
2363 			else
2364 				n->start = end;
2365 		} else {
2366 			/* Old policy spanning whole new range. */
2367 			if (n->end > end) {
2368 				if (!n_new)
2369 					goto alloc_new;
2370 
2371 				*mpol_new = *n->policy;
2372 				atomic_set(&mpol_new->refcnt, 1);
2373 				sp_node_init(n_new, end, n->end, mpol_new);
2374 				n->end = start;
2375 				sp_insert(sp, n_new);
2376 				n_new = NULL;
2377 				mpol_new = NULL;
2378 				break;
2379 			} else
2380 				n->end = start;
2381 		}
2382 		if (!next)
2383 			break;
2384 		n = rb_entry(next, struct sp_node, nd);
2385 	}
2386 	if (new)
2387 		sp_insert(sp, new);
2388 	write_unlock(&sp->lock);
2389 	ret = 0;
2390 
2391 err_out:
2392 	if (mpol_new)
2393 		mpol_put(mpol_new);
2394 	if (n_new)
2395 		kmem_cache_free(sn_cache, n_new);
2396 
2397 	return ret;
2398 
2399 alloc_new:
2400 	write_unlock(&sp->lock);
2401 	ret = -ENOMEM;
2402 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2403 	if (!n_new)
2404 		goto err_out;
2405 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2406 	if (!mpol_new)
2407 		goto err_out;
2408 	goto restart;
2409 }
2410 
2411 /**
2412  * mpol_shared_policy_init - initialize shared policy for inode
2413  * @sp: pointer to inode shared policy
2414  * @mpol:  struct mempolicy to install
2415  *
2416  * Install non-NULL @mpol in inode's shared policy rb-tree.
2417  * On entry, the current task has a reference on a non-NULL @mpol.
2418  * This must be released on exit.
2419  * This is called at get_inode() calls and we can use GFP_KERNEL.
2420  */
2421 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2422 {
2423 	int ret;
2424 
2425 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2426 	rwlock_init(&sp->lock);
2427 
2428 	if (mpol) {
2429 		struct vm_area_struct pvma;
2430 		struct mempolicy *new;
2431 		NODEMASK_SCRATCH(scratch);
2432 
2433 		if (!scratch)
2434 			goto put_mpol;
2435 		/* contextualize the tmpfs mount point mempolicy */
2436 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2437 		if (IS_ERR(new))
2438 			goto free_scratch; /* no valid nodemask intersection */
2439 
2440 		task_lock(current);
2441 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2442 		task_unlock(current);
2443 		if (ret)
2444 			goto put_new;
2445 
2446 		/* Create pseudo-vma that contains just the policy */
2447 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2448 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2449 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2450 
2451 put_new:
2452 		mpol_put(new);			/* drop initial ref */
2453 free_scratch:
2454 		NODEMASK_SCRATCH_FREE(scratch);
2455 put_mpol:
2456 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2457 	}
2458 }
2459 
2460 int mpol_set_shared_policy(struct shared_policy *info,
2461 			struct vm_area_struct *vma, struct mempolicy *npol)
2462 {
2463 	int err;
2464 	struct sp_node *new = NULL;
2465 	unsigned long sz = vma_pages(vma);
2466 
2467 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2468 		 vma->vm_pgoff,
2469 		 sz, npol ? npol->mode : -1,
2470 		 npol ? npol->flags : -1,
2471 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2472 
2473 	if (npol) {
2474 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2475 		if (!new)
2476 			return -ENOMEM;
2477 	}
2478 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2479 	if (err && new)
2480 		sp_free(new);
2481 	return err;
2482 }
2483 
2484 /* Free a backing policy store on inode delete. */
2485 void mpol_free_shared_policy(struct shared_policy *p)
2486 {
2487 	struct sp_node *n;
2488 	struct rb_node *next;
2489 
2490 	if (!p->root.rb_node)
2491 		return;
2492 	write_lock(&p->lock);
2493 	next = rb_first(&p->root);
2494 	while (next) {
2495 		n = rb_entry(next, struct sp_node, nd);
2496 		next = rb_next(&n->nd);
2497 		sp_delete(p, n);
2498 	}
2499 	write_unlock(&p->lock);
2500 }
2501 
2502 #ifdef CONFIG_NUMA_BALANCING
2503 static int __initdata numabalancing_override;
2504 
2505 static void __init check_numabalancing_enable(void)
2506 {
2507 	bool numabalancing_default = false;
2508 
2509 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2510 		numabalancing_default = true;
2511 
2512 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2513 	if (numabalancing_override)
2514 		set_numabalancing_state(numabalancing_override == 1);
2515 
2516 	if (num_online_nodes() > 1 && !numabalancing_override) {
2517 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2518 			numabalancing_default ? "Enabling" : "Disabling");
2519 		set_numabalancing_state(numabalancing_default);
2520 	}
2521 }
2522 
2523 static int __init setup_numabalancing(char *str)
2524 {
2525 	int ret = 0;
2526 	if (!str)
2527 		goto out;
2528 
2529 	if (!strcmp(str, "enable")) {
2530 		numabalancing_override = 1;
2531 		ret = 1;
2532 	} else if (!strcmp(str, "disable")) {
2533 		numabalancing_override = -1;
2534 		ret = 1;
2535 	}
2536 out:
2537 	if (!ret)
2538 		pr_warn("Unable to parse numa_balancing=\n");
2539 
2540 	return ret;
2541 }
2542 __setup("numa_balancing=", setup_numabalancing);
2543 #else
2544 static inline void __init check_numabalancing_enable(void)
2545 {
2546 }
2547 #endif /* CONFIG_NUMA_BALANCING */
2548 
2549 /* assumes fs == KERNEL_DS */
2550 void __init numa_policy_init(void)
2551 {
2552 	nodemask_t interleave_nodes;
2553 	unsigned long largest = 0;
2554 	int nid, prefer = 0;
2555 
2556 	policy_cache = kmem_cache_create("numa_policy",
2557 					 sizeof(struct mempolicy),
2558 					 0, SLAB_PANIC, NULL);
2559 
2560 	sn_cache = kmem_cache_create("shared_policy_node",
2561 				     sizeof(struct sp_node),
2562 				     0, SLAB_PANIC, NULL);
2563 
2564 	for_each_node(nid) {
2565 		preferred_node_policy[nid] = (struct mempolicy) {
2566 			.refcnt = ATOMIC_INIT(1),
2567 			.mode = MPOL_PREFERRED,
2568 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2569 			.v = { .preferred_node = nid, },
2570 		};
2571 	}
2572 
2573 	/*
2574 	 * Set interleaving policy for system init. Interleaving is only
2575 	 * enabled across suitably sized nodes (default is >= 16MB), or
2576 	 * fall back to the largest node if they're all smaller.
2577 	 */
2578 	nodes_clear(interleave_nodes);
2579 	for_each_node_state(nid, N_MEMORY) {
2580 		unsigned long total_pages = node_present_pages(nid);
2581 
2582 		/* Preserve the largest node */
2583 		if (largest < total_pages) {
2584 			largest = total_pages;
2585 			prefer = nid;
2586 		}
2587 
2588 		/* Interleave this node? */
2589 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2590 			node_set(nid, interleave_nodes);
2591 	}
2592 
2593 	/* All too small, use the largest */
2594 	if (unlikely(nodes_empty(interleave_nodes)))
2595 		node_set(prefer, interleave_nodes);
2596 
2597 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2598 		pr_err("%s: interleaving failed\n", __func__);
2599 
2600 	check_numabalancing_enable();
2601 }
2602 
2603 /* Reset policy of current process to default */
2604 void numa_default_policy(void)
2605 {
2606 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2607 }
2608 
2609 /*
2610  * Parse and format mempolicy from/to strings
2611  */
2612 
2613 /*
2614  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2615  */
2616 static const char * const policy_modes[] =
2617 {
2618 	[MPOL_DEFAULT]    = "default",
2619 	[MPOL_PREFERRED]  = "prefer",
2620 	[MPOL_BIND]       = "bind",
2621 	[MPOL_INTERLEAVE] = "interleave",
2622 	[MPOL_LOCAL]      = "local",
2623 };
2624 
2625 
2626 #ifdef CONFIG_TMPFS
2627 /**
2628  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2629  * @str:  string containing mempolicy to parse
2630  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2631  *
2632  * Format of input:
2633  *	<mode>[=<flags>][:<nodelist>]
2634  *
2635  * On success, returns 0, else 1
2636  */
2637 int mpol_parse_str(char *str, struct mempolicy **mpol)
2638 {
2639 	struct mempolicy *new = NULL;
2640 	unsigned short mode;
2641 	unsigned short mode_flags;
2642 	nodemask_t nodes;
2643 	char *nodelist = strchr(str, ':');
2644 	char *flags = strchr(str, '=');
2645 	int err = 1;
2646 
2647 	if (nodelist) {
2648 		/* NUL-terminate mode or flags string */
2649 		*nodelist++ = '\0';
2650 		if (nodelist_parse(nodelist, nodes))
2651 			goto out;
2652 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2653 			goto out;
2654 	} else
2655 		nodes_clear(nodes);
2656 
2657 	if (flags)
2658 		*flags++ = '\0';	/* terminate mode string */
2659 
2660 	for (mode = 0; mode < MPOL_MAX; mode++) {
2661 		if (!strcmp(str, policy_modes[mode])) {
2662 			break;
2663 		}
2664 	}
2665 	if (mode >= MPOL_MAX)
2666 		goto out;
2667 
2668 	switch (mode) {
2669 	case MPOL_PREFERRED:
2670 		/*
2671 		 * Insist on a nodelist of one node only
2672 		 */
2673 		if (nodelist) {
2674 			char *rest = nodelist;
2675 			while (isdigit(*rest))
2676 				rest++;
2677 			if (*rest)
2678 				goto out;
2679 		}
2680 		break;
2681 	case MPOL_INTERLEAVE:
2682 		/*
2683 		 * Default to online nodes with memory if no nodelist
2684 		 */
2685 		if (!nodelist)
2686 			nodes = node_states[N_MEMORY];
2687 		break;
2688 	case MPOL_LOCAL:
2689 		/*
2690 		 * Don't allow a nodelist;  mpol_new() checks flags
2691 		 */
2692 		if (nodelist)
2693 			goto out;
2694 		mode = MPOL_PREFERRED;
2695 		break;
2696 	case MPOL_DEFAULT:
2697 		/*
2698 		 * Insist on a empty nodelist
2699 		 */
2700 		if (!nodelist)
2701 			err = 0;
2702 		goto out;
2703 	case MPOL_BIND:
2704 		/*
2705 		 * Insist on a nodelist
2706 		 */
2707 		if (!nodelist)
2708 			goto out;
2709 	}
2710 
2711 	mode_flags = 0;
2712 	if (flags) {
2713 		/*
2714 		 * Currently, we only support two mutually exclusive
2715 		 * mode flags.
2716 		 */
2717 		if (!strcmp(flags, "static"))
2718 			mode_flags |= MPOL_F_STATIC_NODES;
2719 		else if (!strcmp(flags, "relative"))
2720 			mode_flags |= MPOL_F_RELATIVE_NODES;
2721 		else
2722 			goto out;
2723 	}
2724 
2725 	new = mpol_new(mode, mode_flags, &nodes);
2726 	if (IS_ERR(new))
2727 		goto out;
2728 
2729 	/*
2730 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2731 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2732 	 */
2733 	if (mode != MPOL_PREFERRED)
2734 		new->v.nodes = nodes;
2735 	else if (nodelist)
2736 		new->v.preferred_node = first_node(nodes);
2737 	else
2738 		new->flags |= MPOL_F_LOCAL;
2739 
2740 	/*
2741 	 * Save nodes for contextualization: this will be used to "clone"
2742 	 * the mempolicy in a specific context [cpuset] at a later time.
2743 	 */
2744 	new->w.user_nodemask = nodes;
2745 
2746 	err = 0;
2747 
2748 out:
2749 	/* Restore string for error message */
2750 	if (nodelist)
2751 		*--nodelist = ':';
2752 	if (flags)
2753 		*--flags = '=';
2754 	if (!err)
2755 		*mpol = new;
2756 	return err;
2757 }
2758 #endif /* CONFIG_TMPFS */
2759 
2760 /**
2761  * mpol_to_str - format a mempolicy structure for printing
2762  * @buffer:  to contain formatted mempolicy string
2763  * @maxlen:  length of @buffer
2764  * @pol:  pointer to mempolicy to be formatted
2765  *
2766  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2767  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2768  * longest flag, "relative", and to display at least a few node ids.
2769  */
2770 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2771 {
2772 	char *p = buffer;
2773 	nodemask_t nodes = NODE_MASK_NONE;
2774 	unsigned short mode = MPOL_DEFAULT;
2775 	unsigned short flags = 0;
2776 
2777 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2778 		mode = pol->mode;
2779 		flags = pol->flags;
2780 	}
2781 
2782 	switch (mode) {
2783 	case MPOL_DEFAULT:
2784 		break;
2785 	case MPOL_PREFERRED:
2786 		if (flags & MPOL_F_LOCAL)
2787 			mode = MPOL_LOCAL;
2788 		else
2789 			node_set(pol->v.preferred_node, nodes);
2790 		break;
2791 	case MPOL_BIND:
2792 	case MPOL_INTERLEAVE:
2793 		nodes = pol->v.nodes;
2794 		break;
2795 	default:
2796 		WARN_ON_ONCE(1);
2797 		snprintf(p, maxlen, "unknown");
2798 		return;
2799 	}
2800 
2801 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2802 
2803 	if (flags & MPOL_MODE_FLAGS) {
2804 		p += snprintf(p, buffer + maxlen - p, "=");
2805 
2806 		/*
2807 		 * Currently, the only defined flags are mutually exclusive
2808 		 */
2809 		if (flags & MPOL_F_STATIC_NODES)
2810 			p += snprintf(p, buffer + maxlen - p, "static");
2811 		else if (flags & MPOL_F_RELATIVE_NODES)
2812 			p += snprintf(p, buffer + maxlen - p, "relative");
2813 	}
2814 
2815 	if (!nodes_empty(nodes))
2816 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2817 			       nodemask_pr_args(&nodes));
2818 }
2819