xref: /openbmc/linux/mm/mempolicy.c (revision bc000245)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94 
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98 
99 #include "internal.h"
100 
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
104 
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107 
108 /* Highest zone. An specific allocation for a zone below that is not
109    policied. */
110 enum zone_type policy_zone = 0;
111 
112 /*
113  * run-time system-wide default policy => local allocation
114  */
115 static struct mempolicy default_policy = {
116 	.refcnt = ATOMIC_INIT(1), /* never free it */
117 	.mode = MPOL_PREFERRED,
118 	.flags = MPOL_F_LOCAL,
119 };
120 
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122 
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 	struct mempolicy *pol = p->mempolicy;
126 
127 	if (!pol) {
128 		int node = numa_node_id();
129 
130 		if (node != NUMA_NO_NODE) {
131 			pol = &preferred_node_policy[node];
132 			/*
133 			 * preferred_node_policy is not initialised early in
134 			 * boot
135 			 */
136 			if (!pol->mode)
137 				pol = NULL;
138 		}
139 	}
140 
141 	return pol;
142 }
143 
144 static const struct mempolicy_operations {
145 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 	/*
147 	 * If read-side task has no lock to protect task->mempolicy, write-side
148 	 * task will rebind the task->mempolicy by two step. The first step is
149 	 * setting all the newly nodes, and the second step is cleaning all the
150 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 	 * page.
152 	 * If we have a lock to protect task->mempolicy in read-side, we do
153 	 * rebind directly.
154 	 *
155 	 * step:
156 	 * 	MPOL_REBIND_ONCE - do rebind work at once
157 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
158 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 	 */
160 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 			enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163 
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169 
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 	return pol->flags & MPOL_MODE_FLAGS;
173 }
174 
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 				   const nodemask_t *rel)
177 {
178 	nodemask_t tmp;
179 	nodes_fold(tmp, *orig, nodes_weight(*rel));
180 	nodes_onto(*ret, tmp, *rel);
181 }
182 
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 	if (nodes_empty(*nodes))
186 		return -EINVAL;
187 	pol->v.nodes = *nodes;
188 	return 0;
189 }
190 
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 	if (!nodes)
194 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
195 	else if (nodes_empty(*nodes))
196 		return -EINVAL;			/*  no allowed nodes */
197 	else
198 		pol->v.preferred_node = first_node(*nodes);
199 	return 0;
200 }
201 
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 	if (!is_valid_nodemask(nodes))
205 		return -EINVAL;
206 	pol->v.nodes = *nodes;
207 	return 0;
208 }
209 
210 /*
211  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212  * any, for the new policy.  mpol_new() has already validated the nodes
213  * parameter with respect to the policy mode and flags.  But, we need to
214  * handle an empty nodemask with MPOL_PREFERRED here.
215  *
216  * Must be called holding task's alloc_lock to protect task's mems_allowed
217  * and mempolicy.  May also be called holding the mmap_semaphore for write.
218  */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 	int ret;
223 
224 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 	if (pol == NULL)
226 		return 0;
227 	/* Check N_MEMORY */
228 	nodes_and(nsc->mask1,
229 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
230 
231 	VM_BUG_ON(!nodes);
232 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 		nodes = NULL;	/* explicit local allocation */
234 	else {
235 		if (pol->flags & MPOL_F_RELATIVE_NODES)
236 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 		else
238 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
239 
240 		if (mpol_store_user_nodemask(pol))
241 			pol->w.user_nodemask = *nodes;
242 		else
243 			pol->w.cpuset_mems_allowed =
244 						cpuset_current_mems_allowed;
245 	}
246 
247 	if (nodes)
248 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 	else
250 		ret = mpol_ops[pol->mode].create(pol, NULL);
251 	return ret;
252 }
253 
254 /*
255  * This function just creates a new policy, does some check and simple
256  * initialization. You must invoke mpol_set_nodemask() to set nodes.
257  */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 				  nodemask_t *nodes)
260 {
261 	struct mempolicy *policy;
262 
263 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265 
266 	if (mode == MPOL_DEFAULT) {
267 		if (nodes && !nodes_empty(*nodes))
268 			return ERR_PTR(-EINVAL);
269 		return NULL;
270 	}
271 	VM_BUG_ON(!nodes);
272 
273 	/*
274 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 	 * All other modes require a valid pointer to a non-empty nodemask.
277 	 */
278 	if (mode == MPOL_PREFERRED) {
279 		if (nodes_empty(*nodes)) {
280 			if (((flags & MPOL_F_STATIC_NODES) ||
281 			     (flags & MPOL_F_RELATIVE_NODES)))
282 				return ERR_PTR(-EINVAL);
283 		}
284 	} else if (mode == MPOL_LOCAL) {
285 		if (!nodes_empty(*nodes))
286 			return ERR_PTR(-EINVAL);
287 		mode = MPOL_PREFERRED;
288 	} else if (nodes_empty(*nodes))
289 		return ERR_PTR(-EINVAL);
290 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 	if (!policy)
292 		return ERR_PTR(-ENOMEM);
293 	atomic_set(&policy->refcnt, 1);
294 	policy->mode = mode;
295 	policy->flags = flags;
296 
297 	return policy;
298 }
299 
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 	if (!atomic_dec_and_test(&p->refcnt))
304 		return;
305 	kmem_cache_free(policy_cache, p);
306 }
307 
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 				enum mpol_rebind_step step)
310 {
311 }
312 
313 /*
314  * step:
315  * 	MPOL_REBIND_ONCE  - do rebind work at once
316  * 	MPOL_REBIND_STEP1 - set all the newly nodes
317  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
318  */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 				 enum mpol_rebind_step step)
321 {
322 	nodemask_t tmp;
323 
324 	if (pol->flags & MPOL_F_STATIC_NODES)
325 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 	else {
329 		/*
330 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 		 * result
332 		 */
333 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 			nodes_remap(tmp, pol->v.nodes,
335 					pol->w.cpuset_mems_allowed, *nodes);
336 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 		} else if (step == MPOL_REBIND_STEP2) {
338 			tmp = pol->w.cpuset_mems_allowed;
339 			pol->w.cpuset_mems_allowed = *nodes;
340 		} else
341 			BUG();
342 	}
343 
344 	if (nodes_empty(tmp))
345 		tmp = *nodes;
346 
347 	if (step == MPOL_REBIND_STEP1)
348 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 		pol->v.nodes = tmp;
351 	else
352 		BUG();
353 
354 	if (!node_isset(current->il_next, tmp)) {
355 		current->il_next = next_node(current->il_next, tmp);
356 		if (current->il_next >= MAX_NUMNODES)
357 			current->il_next = first_node(tmp);
358 		if (current->il_next >= MAX_NUMNODES)
359 			current->il_next = numa_node_id();
360 	}
361 }
362 
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 				  const nodemask_t *nodes,
365 				  enum mpol_rebind_step step)
366 {
367 	nodemask_t tmp;
368 
369 	if (pol->flags & MPOL_F_STATIC_NODES) {
370 		int node = first_node(pol->w.user_nodemask);
371 
372 		if (node_isset(node, *nodes)) {
373 			pol->v.preferred_node = node;
374 			pol->flags &= ~MPOL_F_LOCAL;
375 		} else
376 			pol->flags |= MPOL_F_LOCAL;
377 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 		pol->v.preferred_node = first_node(tmp);
380 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
381 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 						   pol->w.cpuset_mems_allowed,
383 						   *nodes);
384 		pol->w.cpuset_mems_allowed = *nodes;
385 	}
386 }
387 
388 /*
389  * mpol_rebind_policy - Migrate a policy to a different set of nodes
390  *
391  * If read-side task has no lock to protect task->mempolicy, write-side
392  * task will rebind the task->mempolicy by two step. The first step is
393  * setting all the newly nodes, and the second step is cleaning all the
394  * disallowed nodes. In this way, we can avoid finding no node to alloc
395  * page.
396  * If we have a lock to protect task->mempolicy in read-side, we do
397  * rebind directly.
398  *
399  * step:
400  * 	MPOL_REBIND_ONCE  - do rebind work at once
401  * 	MPOL_REBIND_STEP1 - set all the newly nodes
402  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
403  */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 				enum mpol_rebind_step step)
406 {
407 	if (!pol)
408 		return;
409 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 		return;
412 
413 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 		return;
415 
416 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 		BUG();
418 
419 	if (step == MPOL_REBIND_STEP1)
420 		pol->flags |= MPOL_F_REBINDING;
421 	else if (step == MPOL_REBIND_STEP2)
422 		pol->flags &= ~MPOL_F_REBINDING;
423 	else if (step >= MPOL_REBIND_NSTEP)
424 		BUG();
425 
426 	mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428 
429 /*
430  * Wrapper for mpol_rebind_policy() that just requires task
431  * pointer, and updates task mempolicy.
432  *
433  * Called with task's alloc_lock held.
434  */
435 
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 			enum mpol_rebind_step step)
438 {
439 	mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441 
442 /*
443  * Rebind each vma in mm to new nodemask.
444  *
445  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
446  */
447 
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 	struct vm_area_struct *vma;
451 
452 	down_write(&mm->mmap_sem);
453 	for (vma = mm->mmap; vma; vma = vma->vm_next)
454 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 	up_write(&mm->mmap_sem);
456 }
457 
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 	[MPOL_DEFAULT] = {
460 		.rebind = mpol_rebind_default,
461 	},
462 	[MPOL_INTERLEAVE] = {
463 		.create = mpol_new_interleave,
464 		.rebind = mpol_rebind_nodemask,
465 	},
466 	[MPOL_PREFERRED] = {
467 		.create = mpol_new_preferred,
468 		.rebind = mpol_rebind_preferred,
469 	},
470 	[MPOL_BIND] = {
471 		.create = mpol_new_bind,
472 		.rebind = mpol_rebind_nodemask,
473 	},
474 };
475 
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 				unsigned long flags);
478 
479 /*
480  * Scan through pages checking if pages follow certain conditions,
481  * and move them to the pagelist if they do.
482  */
483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
484 		unsigned long addr, unsigned long end,
485 		const nodemask_t *nodes, unsigned long flags,
486 		void *private)
487 {
488 	pte_t *orig_pte;
489 	pte_t *pte;
490 	spinlock_t *ptl;
491 
492 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
493 	do {
494 		struct page *page;
495 		int nid;
496 
497 		if (!pte_present(*pte))
498 			continue;
499 		page = vm_normal_page(vma, addr, *pte);
500 		if (!page)
501 			continue;
502 		/*
503 		 * vm_normal_page() filters out zero pages, but there might
504 		 * still be PageReserved pages to skip, perhaps in a VDSO.
505 		 */
506 		if (PageReserved(page))
507 			continue;
508 		nid = page_to_nid(page);
509 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
510 			continue;
511 
512 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
513 			migrate_page_add(page, private, flags);
514 		else
515 			break;
516 	} while (pte++, addr += PAGE_SIZE, addr != end);
517 	pte_unmap_unlock(orig_pte, ptl);
518 	return addr != end;
519 }
520 
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
522 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
523 				    void *private)
524 {
525 #ifdef CONFIG_HUGETLB_PAGE
526 	int nid;
527 	struct page *page;
528 	spinlock_t *ptl;
529 
530 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
531 	page = pte_page(huge_ptep_get((pte_t *)pmd));
532 	nid = page_to_nid(page);
533 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
534 		goto unlock;
535 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
536 	if (flags & (MPOL_MF_MOVE_ALL) ||
537 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
538 		isolate_huge_page(page, private);
539 unlock:
540 	spin_unlock(ptl);
541 #else
542 	BUG();
543 #endif
544 }
545 
546 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
547 		unsigned long addr, unsigned long end,
548 		const nodemask_t *nodes, unsigned long flags,
549 		void *private)
550 {
551 	pmd_t *pmd;
552 	unsigned long next;
553 
554 	pmd = pmd_offset(pud, addr);
555 	do {
556 		next = pmd_addr_end(addr, end);
557 		if (!pmd_present(*pmd))
558 			continue;
559 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
560 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
561 						flags, private);
562 			continue;
563 		}
564 		split_huge_page_pmd(vma, addr, pmd);
565 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
566 			continue;
567 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
568 				    flags, private))
569 			return -EIO;
570 	} while (pmd++, addr = next, addr != end);
571 	return 0;
572 }
573 
574 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
575 		unsigned long addr, unsigned long end,
576 		const nodemask_t *nodes, unsigned long flags,
577 		void *private)
578 {
579 	pud_t *pud;
580 	unsigned long next;
581 
582 	pud = pud_offset(pgd, addr);
583 	do {
584 		next = pud_addr_end(addr, end);
585 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
586 			continue;
587 		if (pud_none_or_clear_bad(pud))
588 			continue;
589 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
590 				    flags, private))
591 			return -EIO;
592 	} while (pud++, addr = next, addr != end);
593 	return 0;
594 }
595 
596 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
597 		unsigned long addr, unsigned long end,
598 		const nodemask_t *nodes, unsigned long flags,
599 		void *private)
600 {
601 	pgd_t *pgd;
602 	unsigned long next;
603 
604 	pgd = pgd_offset(vma->vm_mm, addr);
605 	do {
606 		next = pgd_addr_end(addr, end);
607 		if (pgd_none_or_clear_bad(pgd))
608 			continue;
609 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
610 				    flags, private))
611 			return -EIO;
612 	} while (pgd++, addr = next, addr != end);
613 	return 0;
614 }
615 
616 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
617 /*
618  * This is used to mark a range of virtual addresses to be inaccessible.
619  * These are later cleared by a NUMA hinting fault. Depending on these
620  * faults, pages may be migrated for better NUMA placement.
621  *
622  * This is assuming that NUMA faults are handled using PROT_NONE. If
623  * an architecture makes a different choice, it will need further
624  * changes to the core.
625  */
626 unsigned long change_prot_numa(struct vm_area_struct *vma,
627 			unsigned long addr, unsigned long end)
628 {
629 	int nr_updated;
630 	BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
631 
632 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
633 	if (nr_updated)
634 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
635 
636 	return nr_updated;
637 }
638 #else
639 static unsigned long change_prot_numa(struct vm_area_struct *vma,
640 			unsigned long addr, unsigned long end)
641 {
642 	return 0;
643 }
644 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
645 
646 /*
647  * Walk through page tables and collect pages to be migrated.
648  *
649  * If pages found in a given range are on a set of nodes (determined by
650  * @nodes and @flags,) it's isolated and queued to the pagelist which is
651  * passed via @private.)
652  */
653 static struct vm_area_struct *
654 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
655 		const nodemask_t *nodes, unsigned long flags, void *private)
656 {
657 	int err;
658 	struct vm_area_struct *first, *vma, *prev;
659 
660 
661 	first = find_vma(mm, start);
662 	if (!first)
663 		return ERR_PTR(-EFAULT);
664 	prev = NULL;
665 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
666 		unsigned long endvma = vma->vm_end;
667 
668 		if (endvma > end)
669 			endvma = end;
670 		if (vma->vm_start > start)
671 			start = vma->vm_start;
672 
673 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
674 			if (!vma->vm_next && vma->vm_end < end)
675 				return ERR_PTR(-EFAULT);
676 			if (prev && prev->vm_end < vma->vm_start)
677 				return ERR_PTR(-EFAULT);
678 		}
679 
680 		if (flags & MPOL_MF_LAZY) {
681 			change_prot_numa(vma, start, endvma);
682 			goto next;
683 		}
684 
685 		if ((flags & MPOL_MF_STRICT) ||
686 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
687 		      vma_migratable(vma))) {
688 
689 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
690 						flags, private);
691 			if (err) {
692 				first = ERR_PTR(err);
693 				break;
694 			}
695 		}
696 next:
697 		prev = vma;
698 	}
699 	return first;
700 }
701 
702 /*
703  * Apply policy to a single VMA
704  * This must be called with the mmap_sem held for writing.
705  */
706 static int vma_replace_policy(struct vm_area_struct *vma,
707 						struct mempolicy *pol)
708 {
709 	int err;
710 	struct mempolicy *old;
711 	struct mempolicy *new;
712 
713 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
714 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
715 		 vma->vm_ops, vma->vm_file,
716 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
717 
718 	new = mpol_dup(pol);
719 	if (IS_ERR(new))
720 		return PTR_ERR(new);
721 
722 	if (vma->vm_ops && vma->vm_ops->set_policy) {
723 		err = vma->vm_ops->set_policy(vma, new);
724 		if (err)
725 			goto err_out;
726 	}
727 
728 	old = vma->vm_policy;
729 	vma->vm_policy = new; /* protected by mmap_sem */
730 	mpol_put(old);
731 
732 	return 0;
733  err_out:
734 	mpol_put(new);
735 	return err;
736 }
737 
738 /* Step 2: apply policy to a range and do splits. */
739 static int mbind_range(struct mm_struct *mm, unsigned long start,
740 		       unsigned long end, struct mempolicy *new_pol)
741 {
742 	struct vm_area_struct *next;
743 	struct vm_area_struct *prev;
744 	struct vm_area_struct *vma;
745 	int err = 0;
746 	pgoff_t pgoff;
747 	unsigned long vmstart;
748 	unsigned long vmend;
749 
750 	vma = find_vma(mm, start);
751 	if (!vma || vma->vm_start > start)
752 		return -EFAULT;
753 
754 	prev = vma->vm_prev;
755 	if (start > vma->vm_start)
756 		prev = vma;
757 
758 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
759 		next = vma->vm_next;
760 		vmstart = max(start, vma->vm_start);
761 		vmend   = min(end, vma->vm_end);
762 
763 		if (mpol_equal(vma_policy(vma), new_pol))
764 			continue;
765 
766 		pgoff = vma->vm_pgoff +
767 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
768 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
769 				  vma->anon_vma, vma->vm_file, pgoff,
770 				  new_pol);
771 		if (prev) {
772 			vma = prev;
773 			next = vma->vm_next;
774 			if (mpol_equal(vma_policy(vma), new_pol))
775 				continue;
776 			/* vma_merge() joined vma && vma->next, case 8 */
777 			goto replace;
778 		}
779 		if (vma->vm_start != vmstart) {
780 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
781 			if (err)
782 				goto out;
783 		}
784 		if (vma->vm_end != vmend) {
785 			err = split_vma(vma->vm_mm, vma, vmend, 0);
786 			if (err)
787 				goto out;
788 		}
789  replace:
790 		err = vma_replace_policy(vma, new_pol);
791 		if (err)
792 			goto out;
793 	}
794 
795  out:
796 	return err;
797 }
798 
799 /*
800  * Update task->flags PF_MEMPOLICY bit: set iff non-default
801  * mempolicy.  Allows more rapid checking of this (combined perhaps
802  * with other PF_* flag bits) on memory allocation hot code paths.
803  *
804  * If called from outside this file, the task 'p' should -only- be
805  * a newly forked child not yet visible on the task list, because
806  * manipulating the task flags of a visible task is not safe.
807  *
808  * The above limitation is why this routine has the funny name
809  * mpol_fix_fork_child_flag().
810  *
811  * It is also safe to call this with a task pointer of current,
812  * which the static wrapper mpol_set_task_struct_flag() does,
813  * for use within this file.
814  */
815 
816 void mpol_fix_fork_child_flag(struct task_struct *p)
817 {
818 	if (p->mempolicy)
819 		p->flags |= PF_MEMPOLICY;
820 	else
821 		p->flags &= ~PF_MEMPOLICY;
822 }
823 
824 static void mpol_set_task_struct_flag(void)
825 {
826 	mpol_fix_fork_child_flag(current);
827 }
828 
829 /* Set the process memory policy */
830 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
831 			     nodemask_t *nodes)
832 {
833 	struct mempolicy *new, *old;
834 	struct mm_struct *mm = current->mm;
835 	NODEMASK_SCRATCH(scratch);
836 	int ret;
837 
838 	if (!scratch)
839 		return -ENOMEM;
840 
841 	new = mpol_new(mode, flags, nodes);
842 	if (IS_ERR(new)) {
843 		ret = PTR_ERR(new);
844 		goto out;
845 	}
846 	/*
847 	 * prevent changing our mempolicy while show_numa_maps()
848 	 * is using it.
849 	 * Note:  do_set_mempolicy() can be called at init time
850 	 * with no 'mm'.
851 	 */
852 	if (mm)
853 		down_write(&mm->mmap_sem);
854 	task_lock(current);
855 	ret = mpol_set_nodemask(new, nodes, scratch);
856 	if (ret) {
857 		task_unlock(current);
858 		if (mm)
859 			up_write(&mm->mmap_sem);
860 		mpol_put(new);
861 		goto out;
862 	}
863 	old = current->mempolicy;
864 	current->mempolicy = new;
865 	mpol_set_task_struct_flag();
866 	if (new && new->mode == MPOL_INTERLEAVE &&
867 	    nodes_weight(new->v.nodes))
868 		current->il_next = first_node(new->v.nodes);
869 	task_unlock(current);
870 	if (mm)
871 		up_write(&mm->mmap_sem);
872 
873 	mpol_put(old);
874 	ret = 0;
875 out:
876 	NODEMASK_SCRATCH_FREE(scratch);
877 	return ret;
878 }
879 
880 /*
881  * Return nodemask for policy for get_mempolicy() query
882  *
883  * Called with task's alloc_lock held
884  */
885 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
886 {
887 	nodes_clear(*nodes);
888 	if (p == &default_policy)
889 		return;
890 
891 	switch (p->mode) {
892 	case MPOL_BIND:
893 		/* Fall through */
894 	case MPOL_INTERLEAVE:
895 		*nodes = p->v.nodes;
896 		break;
897 	case MPOL_PREFERRED:
898 		if (!(p->flags & MPOL_F_LOCAL))
899 			node_set(p->v.preferred_node, *nodes);
900 		/* else return empty node mask for local allocation */
901 		break;
902 	default:
903 		BUG();
904 	}
905 }
906 
907 static int lookup_node(struct mm_struct *mm, unsigned long addr)
908 {
909 	struct page *p;
910 	int err;
911 
912 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
913 	if (err >= 0) {
914 		err = page_to_nid(p);
915 		put_page(p);
916 	}
917 	return err;
918 }
919 
920 /* Retrieve NUMA policy */
921 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
922 			     unsigned long addr, unsigned long flags)
923 {
924 	int err;
925 	struct mm_struct *mm = current->mm;
926 	struct vm_area_struct *vma = NULL;
927 	struct mempolicy *pol = current->mempolicy;
928 
929 	if (flags &
930 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
931 		return -EINVAL;
932 
933 	if (flags & MPOL_F_MEMS_ALLOWED) {
934 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
935 			return -EINVAL;
936 		*policy = 0;	/* just so it's initialized */
937 		task_lock(current);
938 		*nmask  = cpuset_current_mems_allowed;
939 		task_unlock(current);
940 		return 0;
941 	}
942 
943 	if (flags & MPOL_F_ADDR) {
944 		/*
945 		 * Do NOT fall back to task policy if the
946 		 * vma/shared policy at addr is NULL.  We
947 		 * want to return MPOL_DEFAULT in this case.
948 		 */
949 		down_read(&mm->mmap_sem);
950 		vma = find_vma_intersection(mm, addr, addr+1);
951 		if (!vma) {
952 			up_read(&mm->mmap_sem);
953 			return -EFAULT;
954 		}
955 		if (vma->vm_ops && vma->vm_ops->get_policy)
956 			pol = vma->vm_ops->get_policy(vma, addr);
957 		else
958 			pol = vma->vm_policy;
959 	} else if (addr)
960 		return -EINVAL;
961 
962 	if (!pol)
963 		pol = &default_policy;	/* indicates default behavior */
964 
965 	if (flags & MPOL_F_NODE) {
966 		if (flags & MPOL_F_ADDR) {
967 			err = lookup_node(mm, addr);
968 			if (err < 0)
969 				goto out;
970 			*policy = err;
971 		} else if (pol == current->mempolicy &&
972 				pol->mode == MPOL_INTERLEAVE) {
973 			*policy = current->il_next;
974 		} else {
975 			err = -EINVAL;
976 			goto out;
977 		}
978 	} else {
979 		*policy = pol == &default_policy ? MPOL_DEFAULT :
980 						pol->mode;
981 		/*
982 		 * Internal mempolicy flags must be masked off before exposing
983 		 * the policy to userspace.
984 		 */
985 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
986 	}
987 
988 	if (vma) {
989 		up_read(&current->mm->mmap_sem);
990 		vma = NULL;
991 	}
992 
993 	err = 0;
994 	if (nmask) {
995 		if (mpol_store_user_nodemask(pol)) {
996 			*nmask = pol->w.user_nodemask;
997 		} else {
998 			task_lock(current);
999 			get_policy_nodemask(pol, nmask);
1000 			task_unlock(current);
1001 		}
1002 	}
1003 
1004  out:
1005 	mpol_cond_put(pol);
1006 	if (vma)
1007 		up_read(&current->mm->mmap_sem);
1008 	return err;
1009 }
1010 
1011 #ifdef CONFIG_MIGRATION
1012 /*
1013  * page migration
1014  */
1015 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1016 				unsigned long flags)
1017 {
1018 	/*
1019 	 * Avoid migrating a page that is shared with others.
1020 	 */
1021 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1022 		if (!isolate_lru_page(page)) {
1023 			list_add_tail(&page->lru, pagelist);
1024 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1025 					    page_is_file_cache(page));
1026 		}
1027 	}
1028 }
1029 
1030 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1031 {
1032 	if (PageHuge(page))
1033 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1034 					node);
1035 	else
1036 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1037 }
1038 
1039 /*
1040  * Migrate pages from one node to a target node.
1041  * Returns error or the number of pages not migrated.
1042  */
1043 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1044 			   int flags)
1045 {
1046 	nodemask_t nmask;
1047 	LIST_HEAD(pagelist);
1048 	int err = 0;
1049 
1050 	nodes_clear(nmask);
1051 	node_set(source, nmask);
1052 
1053 	/*
1054 	 * This does not "check" the range but isolates all pages that
1055 	 * need migration.  Between passing in the full user address
1056 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1057 	 */
1058 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1059 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1060 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1061 
1062 	if (!list_empty(&pagelist)) {
1063 		err = migrate_pages(&pagelist, new_node_page, dest,
1064 					MIGRATE_SYNC, MR_SYSCALL);
1065 		if (err)
1066 			putback_movable_pages(&pagelist);
1067 	}
1068 
1069 	return err;
1070 }
1071 
1072 /*
1073  * Move pages between the two nodesets so as to preserve the physical
1074  * layout as much as possible.
1075  *
1076  * Returns the number of page that could not be moved.
1077  */
1078 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1079 		     const nodemask_t *to, int flags)
1080 {
1081 	int busy = 0;
1082 	int err;
1083 	nodemask_t tmp;
1084 
1085 	err = migrate_prep();
1086 	if (err)
1087 		return err;
1088 
1089 	down_read(&mm->mmap_sem);
1090 
1091 	err = migrate_vmas(mm, from, to, flags);
1092 	if (err)
1093 		goto out;
1094 
1095 	/*
1096 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1097 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1098 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1099 	 * The pair of nodemasks 'to' and 'from' define the map.
1100 	 *
1101 	 * If no pair of bits is found that way, fallback to picking some
1102 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1103 	 * 'source' and 'dest' bits are the same, this represents a node
1104 	 * that will be migrating to itself, so no pages need move.
1105 	 *
1106 	 * If no bits are left in 'tmp', or if all remaining bits left
1107 	 * in 'tmp' correspond to the same bit in 'to', return false
1108 	 * (nothing left to migrate).
1109 	 *
1110 	 * This lets us pick a pair of nodes to migrate between, such that
1111 	 * if possible the dest node is not already occupied by some other
1112 	 * source node, minimizing the risk of overloading the memory on a
1113 	 * node that would happen if we migrated incoming memory to a node
1114 	 * before migrating outgoing memory source that same node.
1115 	 *
1116 	 * A single scan of tmp is sufficient.  As we go, we remember the
1117 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1118 	 * that not only moved, but what's better, moved to an empty slot
1119 	 * (d is not set in tmp), then we break out then, with that pair.
1120 	 * Otherwise when we finish scanning from_tmp, we at least have the
1121 	 * most recent <s, d> pair that moved.  If we get all the way through
1122 	 * the scan of tmp without finding any node that moved, much less
1123 	 * moved to an empty node, then there is nothing left worth migrating.
1124 	 */
1125 
1126 	tmp = *from;
1127 	while (!nodes_empty(tmp)) {
1128 		int s,d;
1129 		int source = NUMA_NO_NODE;
1130 		int dest = 0;
1131 
1132 		for_each_node_mask(s, tmp) {
1133 
1134 			/*
1135 			 * do_migrate_pages() tries to maintain the relative
1136 			 * node relationship of the pages established between
1137 			 * threads and memory areas.
1138                          *
1139 			 * However if the number of source nodes is not equal to
1140 			 * the number of destination nodes we can not preserve
1141 			 * this node relative relationship.  In that case, skip
1142 			 * copying memory from a node that is in the destination
1143 			 * mask.
1144 			 *
1145 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1146 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1147 			 */
1148 
1149 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1150 						(node_isset(s, *to)))
1151 				continue;
1152 
1153 			d = node_remap(s, *from, *to);
1154 			if (s == d)
1155 				continue;
1156 
1157 			source = s;	/* Node moved. Memorize */
1158 			dest = d;
1159 
1160 			/* dest not in remaining from nodes? */
1161 			if (!node_isset(dest, tmp))
1162 				break;
1163 		}
1164 		if (source == NUMA_NO_NODE)
1165 			break;
1166 
1167 		node_clear(source, tmp);
1168 		err = migrate_to_node(mm, source, dest, flags);
1169 		if (err > 0)
1170 			busy += err;
1171 		if (err < 0)
1172 			break;
1173 	}
1174 out:
1175 	up_read(&mm->mmap_sem);
1176 	if (err < 0)
1177 		return err;
1178 	return busy;
1179 
1180 }
1181 
1182 /*
1183  * Allocate a new page for page migration based on vma policy.
1184  * Start assuming that page is mapped by vma pointed to by @private.
1185  * Search forward from there, if not.  N.B., this assumes that the
1186  * list of pages handed to migrate_pages()--which is how we get here--
1187  * is in virtual address order.
1188  */
1189 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1190 {
1191 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1192 	unsigned long uninitialized_var(address);
1193 
1194 	while (vma) {
1195 		address = page_address_in_vma(page, vma);
1196 		if (address != -EFAULT)
1197 			break;
1198 		vma = vma->vm_next;
1199 	}
1200 	/*
1201 	 * queue_pages_range() confirms that @page belongs to some vma,
1202 	 * so vma shouldn't be NULL.
1203 	 */
1204 	BUG_ON(!vma);
1205 
1206 	if (PageHuge(page))
1207 		return alloc_huge_page_noerr(vma, address, 1);
1208 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1209 }
1210 #else
1211 
1212 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1213 				unsigned long flags)
1214 {
1215 }
1216 
1217 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1218 		     const nodemask_t *to, int flags)
1219 {
1220 	return -ENOSYS;
1221 }
1222 
1223 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1224 {
1225 	return NULL;
1226 }
1227 #endif
1228 
1229 static long do_mbind(unsigned long start, unsigned long len,
1230 		     unsigned short mode, unsigned short mode_flags,
1231 		     nodemask_t *nmask, unsigned long flags)
1232 {
1233 	struct vm_area_struct *vma;
1234 	struct mm_struct *mm = current->mm;
1235 	struct mempolicy *new;
1236 	unsigned long end;
1237 	int err;
1238 	LIST_HEAD(pagelist);
1239 
1240 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1241 		return -EINVAL;
1242 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1243 		return -EPERM;
1244 
1245 	if (start & ~PAGE_MASK)
1246 		return -EINVAL;
1247 
1248 	if (mode == MPOL_DEFAULT)
1249 		flags &= ~MPOL_MF_STRICT;
1250 
1251 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1252 	end = start + len;
1253 
1254 	if (end < start)
1255 		return -EINVAL;
1256 	if (end == start)
1257 		return 0;
1258 
1259 	new = mpol_new(mode, mode_flags, nmask);
1260 	if (IS_ERR(new))
1261 		return PTR_ERR(new);
1262 
1263 	if (flags & MPOL_MF_LAZY)
1264 		new->flags |= MPOL_F_MOF;
1265 
1266 	/*
1267 	 * If we are using the default policy then operation
1268 	 * on discontinuous address spaces is okay after all
1269 	 */
1270 	if (!new)
1271 		flags |= MPOL_MF_DISCONTIG_OK;
1272 
1273 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1274 		 start, start + len, mode, mode_flags,
1275 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1276 
1277 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1278 
1279 		err = migrate_prep();
1280 		if (err)
1281 			goto mpol_out;
1282 	}
1283 	{
1284 		NODEMASK_SCRATCH(scratch);
1285 		if (scratch) {
1286 			down_write(&mm->mmap_sem);
1287 			task_lock(current);
1288 			err = mpol_set_nodemask(new, nmask, scratch);
1289 			task_unlock(current);
1290 			if (err)
1291 				up_write(&mm->mmap_sem);
1292 		} else
1293 			err = -ENOMEM;
1294 		NODEMASK_SCRATCH_FREE(scratch);
1295 	}
1296 	if (err)
1297 		goto mpol_out;
1298 
1299 	vma = queue_pages_range(mm, start, end, nmask,
1300 			  flags | MPOL_MF_INVERT, &pagelist);
1301 
1302 	err = PTR_ERR(vma);	/* maybe ... */
1303 	if (!IS_ERR(vma))
1304 		err = mbind_range(mm, start, end, new);
1305 
1306 	if (!err) {
1307 		int nr_failed = 0;
1308 
1309 		if (!list_empty(&pagelist)) {
1310 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1311 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1312 					(unsigned long)vma,
1313 					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1314 			if (nr_failed)
1315 				putback_movable_pages(&pagelist);
1316 		}
1317 
1318 		if (nr_failed && (flags & MPOL_MF_STRICT))
1319 			err = -EIO;
1320 	} else
1321 		putback_lru_pages(&pagelist);
1322 
1323 	up_write(&mm->mmap_sem);
1324  mpol_out:
1325 	mpol_put(new);
1326 	return err;
1327 }
1328 
1329 /*
1330  * User space interface with variable sized bitmaps for nodelists.
1331  */
1332 
1333 /* Copy a node mask from user space. */
1334 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1335 		     unsigned long maxnode)
1336 {
1337 	unsigned long k;
1338 	unsigned long nlongs;
1339 	unsigned long endmask;
1340 
1341 	--maxnode;
1342 	nodes_clear(*nodes);
1343 	if (maxnode == 0 || !nmask)
1344 		return 0;
1345 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1346 		return -EINVAL;
1347 
1348 	nlongs = BITS_TO_LONGS(maxnode);
1349 	if ((maxnode % BITS_PER_LONG) == 0)
1350 		endmask = ~0UL;
1351 	else
1352 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1353 
1354 	/* When the user specified more nodes than supported just check
1355 	   if the non supported part is all zero. */
1356 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1357 		if (nlongs > PAGE_SIZE/sizeof(long))
1358 			return -EINVAL;
1359 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1360 			unsigned long t;
1361 			if (get_user(t, nmask + k))
1362 				return -EFAULT;
1363 			if (k == nlongs - 1) {
1364 				if (t & endmask)
1365 					return -EINVAL;
1366 			} else if (t)
1367 				return -EINVAL;
1368 		}
1369 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1370 		endmask = ~0UL;
1371 	}
1372 
1373 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1374 		return -EFAULT;
1375 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1376 	return 0;
1377 }
1378 
1379 /* Copy a kernel node mask to user space */
1380 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1381 			      nodemask_t *nodes)
1382 {
1383 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1384 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1385 
1386 	if (copy > nbytes) {
1387 		if (copy > PAGE_SIZE)
1388 			return -EINVAL;
1389 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1390 			return -EFAULT;
1391 		copy = nbytes;
1392 	}
1393 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1394 }
1395 
1396 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1397 		unsigned long, mode, unsigned long __user *, nmask,
1398 		unsigned long, maxnode, unsigned, flags)
1399 {
1400 	nodemask_t nodes;
1401 	int err;
1402 	unsigned short mode_flags;
1403 
1404 	mode_flags = mode & MPOL_MODE_FLAGS;
1405 	mode &= ~MPOL_MODE_FLAGS;
1406 	if (mode >= MPOL_MAX)
1407 		return -EINVAL;
1408 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1409 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1410 		return -EINVAL;
1411 	err = get_nodes(&nodes, nmask, maxnode);
1412 	if (err)
1413 		return err;
1414 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1415 }
1416 
1417 /* Set the process memory policy */
1418 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1419 		unsigned long, maxnode)
1420 {
1421 	int err;
1422 	nodemask_t nodes;
1423 	unsigned short flags;
1424 
1425 	flags = mode & MPOL_MODE_FLAGS;
1426 	mode &= ~MPOL_MODE_FLAGS;
1427 	if ((unsigned int)mode >= MPOL_MAX)
1428 		return -EINVAL;
1429 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1430 		return -EINVAL;
1431 	err = get_nodes(&nodes, nmask, maxnode);
1432 	if (err)
1433 		return err;
1434 	return do_set_mempolicy(mode, flags, &nodes);
1435 }
1436 
1437 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1438 		const unsigned long __user *, old_nodes,
1439 		const unsigned long __user *, new_nodes)
1440 {
1441 	const struct cred *cred = current_cred(), *tcred;
1442 	struct mm_struct *mm = NULL;
1443 	struct task_struct *task;
1444 	nodemask_t task_nodes;
1445 	int err;
1446 	nodemask_t *old;
1447 	nodemask_t *new;
1448 	NODEMASK_SCRATCH(scratch);
1449 
1450 	if (!scratch)
1451 		return -ENOMEM;
1452 
1453 	old = &scratch->mask1;
1454 	new = &scratch->mask2;
1455 
1456 	err = get_nodes(old, old_nodes, maxnode);
1457 	if (err)
1458 		goto out;
1459 
1460 	err = get_nodes(new, new_nodes, maxnode);
1461 	if (err)
1462 		goto out;
1463 
1464 	/* Find the mm_struct */
1465 	rcu_read_lock();
1466 	task = pid ? find_task_by_vpid(pid) : current;
1467 	if (!task) {
1468 		rcu_read_unlock();
1469 		err = -ESRCH;
1470 		goto out;
1471 	}
1472 	get_task_struct(task);
1473 
1474 	err = -EINVAL;
1475 
1476 	/*
1477 	 * Check if this process has the right to modify the specified
1478 	 * process. The right exists if the process has administrative
1479 	 * capabilities, superuser privileges or the same
1480 	 * userid as the target process.
1481 	 */
1482 	tcred = __task_cred(task);
1483 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1484 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1485 	    !capable(CAP_SYS_NICE)) {
1486 		rcu_read_unlock();
1487 		err = -EPERM;
1488 		goto out_put;
1489 	}
1490 	rcu_read_unlock();
1491 
1492 	task_nodes = cpuset_mems_allowed(task);
1493 	/* Is the user allowed to access the target nodes? */
1494 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1495 		err = -EPERM;
1496 		goto out_put;
1497 	}
1498 
1499 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1500 		err = -EINVAL;
1501 		goto out_put;
1502 	}
1503 
1504 	err = security_task_movememory(task);
1505 	if (err)
1506 		goto out_put;
1507 
1508 	mm = get_task_mm(task);
1509 	put_task_struct(task);
1510 
1511 	if (!mm) {
1512 		err = -EINVAL;
1513 		goto out;
1514 	}
1515 
1516 	err = do_migrate_pages(mm, old, new,
1517 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1518 
1519 	mmput(mm);
1520 out:
1521 	NODEMASK_SCRATCH_FREE(scratch);
1522 
1523 	return err;
1524 
1525 out_put:
1526 	put_task_struct(task);
1527 	goto out;
1528 
1529 }
1530 
1531 
1532 /* Retrieve NUMA policy */
1533 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1534 		unsigned long __user *, nmask, unsigned long, maxnode,
1535 		unsigned long, addr, unsigned long, flags)
1536 {
1537 	int err;
1538 	int uninitialized_var(pval);
1539 	nodemask_t nodes;
1540 
1541 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1542 		return -EINVAL;
1543 
1544 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1545 
1546 	if (err)
1547 		return err;
1548 
1549 	if (policy && put_user(pval, policy))
1550 		return -EFAULT;
1551 
1552 	if (nmask)
1553 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1554 
1555 	return err;
1556 }
1557 
1558 #ifdef CONFIG_COMPAT
1559 
1560 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1561 				     compat_ulong_t __user *nmask,
1562 				     compat_ulong_t maxnode,
1563 				     compat_ulong_t addr, compat_ulong_t flags)
1564 {
1565 	long err;
1566 	unsigned long __user *nm = NULL;
1567 	unsigned long nr_bits, alloc_size;
1568 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1569 
1570 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572 
1573 	if (nmask)
1574 		nm = compat_alloc_user_space(alloc_size);
1575 
1576 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1577 
1578 	if (!err && nmask) {
1579 		unsigned long copy_size;
1580 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1581 		err = copy_from_user(bm, nm, copy_size);
1582 		/* ensure entire bitmap is zeroed */
1583 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1584 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1585 	}
1586 
1587 	return err;
1588 }
1589 
1590 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1591 				     compat_ulong_t maxnode)
1592 {
1593 	long err = 0;
1594 	unsigned long __user *nm = NULL;
1595 	unsigned long nr_bits, alloc_size;
1596 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1597 
1598 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1599 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1600 
1601 	if (nmask) {
1602 		err = compat_get_bitmap(bm, nmask, nr_bits);
1603 		nm = compat_alloc_user_space(alloc_size);
1604 		err |= copy_to_user(nm, bm, alloc_size);
1605 	}
1606 
1607 	if (err)
1608 		return -EFAULT;
1609 
1610 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1611 }
1612 
1613 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1614 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1615 			     compat_ulong_t maxnode, compat_ulong_t flags)
1616 {
1617 	long err = 0;
1618 	unsigned long __user *nm = NULL;
1619 	unsigned long nr_bits, alloc_size;
1620 	nodemask_t bm;
1621 
1622 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1623 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1624 
1625 	if (nmask) {
1626 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1627 		nm = compat_alloc_user_space(alloc_size);
1628 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1629 	}
1630 
1631 	if (err)
1632 		return -EFAULT;
1633 
1634 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1635 }
1636 
1637 #endif
1638 
1639 /*
1640  * get_vma_policy(@task, @vma, @addr)
1641  * @task - task for fallback if vma policy == default
1642  * @vma   - virtual memory area whose policy is sought
1643  * @addr  - address in @vma for shared policy lookup
1644  *
1645  * Returns effective policy for a VMA at specified address.
1646  * Falls back to @task or system default policy, as necessary.
1647  * Current or other task's task mempolicy and non-shared vma policies must be
1648  * protected by task_lock(task) by the caller.
1649  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1650  * count--added by the get_policy() vm_op, as appropriate--to protect against
1651  * freeing by another task.  It is the caller's responsibility to free the
1652  * extra reference for shared policies.
1653  */
1654 struct mempolicy *get_vma_policy(struct task_struct *task,
1655 		struct vm_area_struct *vma, unsigned long addr)
1656 {
1657 	struct mempolicy *pol = get_task_policy(task);
1658 
1659 	if (vma) {
1660 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1661 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1662 									addr);
1663 			if (vpol)
1664 				pol = vpol;
1665 		} else if (vma->vm_policy) {
1666 			pol = vma->vm_policy;
1667 
1668 			/*
1669 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1670 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1671 			 * count on these policies which will be dropped by
1672 			 * mpol_cond_put() later
1673 			 */
1674 			if (mpol_needs_cond_ref(pol))
1675 				mpol_get(pol);
1676 		}
1677 	}
1678 	if (!pol)
1679 		pol = &default_policy;
1680 	return pol;
1681 }
1682 
1683 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1684 {
1685 	struct mempolicy *pol = get_task_policy(task);
1686 	if (vma) {
1687 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1688 			bool ret = false;
1689 
1690 			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1691 			if (pol && (pol->flags & MPOL_F_MOF))
1692 				ret = true;
1693 			mpol_cond_put(pol);
1694 
1695 			return ret;
1696 		} else if (vma->vm_policy) {
1697 			pol = vma->vm_policy;
1698 		}
1699 	}
1700 
1701 	if (!pol)
1702 		return default_policy.flags & MPOL_F_MOF;
1703 
1704 	return pol->flags & MPOL_F_MOF;
1705 }
1706 
1707 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1708 {
1709 	enum zone_type dynamic_policy_zone = policy_zone;
1710 
1711 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1712 
1713 	/*
1714 	 * if policy->v.nodes has movable memory only,
1715 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1716 	 *
1717 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1718 	 * so if the following test faile, it implies
1719 	 * policy->v.nodes has movable memory only.
1720 	 */
1721 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1722 		dynamic_policy_zone = ZONE_MOVABLE;
1723 
1724 	return zone >= dynamic_policy_zone;
1725 }
1726 
1727 /*
1728  * Return a nodemask representing a mempolicy for filtering nodes for
1729  * page allocation
1730  */
1731 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1732 {
1733 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1734 	if (unlikely(policy->mode == MPOL_BIND) &&
1735 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1736 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1737 		return &policy->v.nodes;
1738 
1739 	return NULL;
1740 }
1741 
1742 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1743 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1744 	int nd)
1745 {
1746 	switch (policy->mode) {
1747 	case MPOL_PREFERRED:
1748 		if (!(policy->flags & MPOL_F_LOCAL))
1749 			nd = policy->v.preferred_node;
1750 		break;
1751 	case MPOL_BIND:
1752 		/*
1753 		 * Normally, MPOL_BIND allocations are node-local within the
1754 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1755 		 * current node isn't part of the mask, we use the zonelist for
1756 		 * the first node in the mask instead.
1757 		 */
1758 		if (unlikely(gfp & __GFP_THISNODE) &&
1759 				unlikely(!node_isset(nd, policy->v.nodes)))
1760 			nd = first_node(policy->v.nodes);
1761 		break;
1762 	default:
1763 		BUG();
1764 	}
1765 	return node_zonelist(nd, gfp);
1766 }
1767 
1768 /* Do dynamic interleaving for a process */
1769 static unsigned interleave_nodes(struct mempolicy *policy)
1770 {
1771 	unsigned nid, next;
1772 	struct task_struct *me = current;
1773 
1774 	nid = me->il_next;
1775 	next = next_node(nid, policy->v.nodes);
1776 	if (next >= MAX_NUMNODES)
1777 		next = first_node(policy->v.nodes);
1778 	if (next < MAX_NUMNODES)
1779 		me->il_next = next;
1780 	return nid;
1781 }
1782 
1783 /*
1784  * Depending on the memory policy provide a node from which to allocate the
1785  * next slab entry.
1786  * @policy must be protected by freeing by the caller.  If @policy is
1787  * the current task's mempolicy, this protection is implicit, as only the
1788  * task can change it's policy.  The system default policy requires no
1789  * such protection.
1790  */
1791 unsigned slab_node(void)
1792 {
1793 	struct mempolicy *policy;
1794 
1795 	if (in_interrupt())
1796 		return numa_node_id();
1797 
1798 	policy = current->mempolicy;
1799 	if (!policy || policy->flags & MPOL_F_LOCAL)
1800 		return numa_node_id();
1801 
1802 	switch (policy->mode) {
1803 	case MPOL_PREFERRED:
1804 		/*
1805 		 * handled MPOL_F_LOCAL above
1806 		 */
1807 		return policy->v.preferred_node;
1808 
1809 	case MPOL_INTERLEAVE:
1810 		return interleave_nodes(policy);
1811 
1812 	case MPOL_BIND: {
1813 		/*
1814 		 * Follow bind policy behavior and start allocation at the
1815 		 * first node.
1816 		 */
1817 		struct zonelist *zonelist;
1818 		struct zone *zone;
1819 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1820 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1821 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1822 							&policy->v.nodes,
1823 							&zone);
1824 		return zone ? zone->node : numa_node_id();
1825 	}
1826 
1827 	default:
1828 		BUG();
1829 	}
1830 }
1831 
1832 /* Do static interleaving for a VMA with known offset. */
1833 static unsigned offset_il_node(struct mempolicy *pol,
1834 		struct vm_area_struct *vma, unsigned long off)
1835 {
1836 	unsigned nnodes = nodes_weight(pol->v.nodes);
1837 	unsigned target;
1838 	int c;
1839 	int nid = NUMA_NO_NODE;
1840 
1841 	if (!nnodes)
1842 		return numa_node_id();
1843 	target = (unsigned int)off % nnodes;
1844 	c = 0;
1845 	do {
1846 		nid = next_node(nid, pol->v.nodes);
1847 		c++;
1848 	} while (c <= target);
1849 	return nid;
1850 }
1851 
1852 /* Determine a node number for interleave */
1853 static inline unsigned interleave_nid(struct mempolicy *pol,
1854 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1855 {
1856 	if (vma) {
1857 		unsigned long off;
1858 
1859 		/*
1860 		 * for small pages, there is no difference between
1861 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1862 		 * for huge pages, since vm_pgoff is in units of small
1863 		 * pages, we need to shift off the always 0 bits to get
1864 		 * a useful offset.
1865 		 */
1866 		BUG_ON(shift < PAGE_SHIFT);
1867 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1868 		off += (addr - vma->vm_start) >> shift;
1869 		return offset_il_node(pol, vma, off);
1870 	} else
1871 		return interleave_nodes(pol);
1872 }
1873 
1874 /*
1875  * Return the bit number of a random bit set in the nodemask.
1876  * (returns NUMA_NO_NODE if nodemask is empty)
1877  */
1878 int node_random(const nodemask_t *maskp)
1879 {
1880 	int w, bit = NUMA_NO_NODE;
1881 
1882 	w = nodes_weight(*maskp);
1883 	if (w)
1884 		bit = bitmap_ord_to_pos(maskp->bits,
1885 			get_random_int() % w, MAX_NUMNODES);
1886 	return bit;
1887 }
1888 
1889 #ifdef CONFIG_HUGETLBFS
1890 /*
1891  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1892  * @vma = virtual memory area whose policy is sought
1893  * @addr = address in @vma for shared policy lookup and interleave policy
1894  * @gfp_flags = for requested zone
1895  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1896  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1897  *
1898  * Returns a zonelist suitable for a huge page allocation and a pointer
1899  * to the struct mempolicy for conditional unref after allocation.
1900  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1901  * @nodemask for filtering the zonelist.
1902  *
1903  * Must be protected by get_mems_allowed()
1904  */
1905 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1906 				gfp_t gfp_flags, struct mempolicy **mpol,
1907 				nodemask_t **nodemask)
1908 {
1909 	struct zonelist *zl;
1910 
1911 	*mpol = get_vma_policy(current, vma, addr);
1912 	*nodemask = NULL;	/* assume !MPOL_BIND */
1913 
1914 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1915 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1916 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1917 	} else {
1918 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1919 		if ((*mpol)->mode == MPOL_BIND)
1920 			*nodemask = &(*mpol)->v.nodes;
1921 	}
1922 	return zl;
1923 }
1924 
1925 /*
1926  * init_nodemask_of_mempolicy
1927  *
1928  * If the current task's mempolicy is "default" [NULL], return 'false'
1929  * to indicate default policy.  Otherwise, extract the policy nodemask
1930  * for 'bind' or 'interleave' policy into the argument nodemask, or
1931  * initialize the argument nodemask to contain the single node for
1932  * 'preferred' or 'local' policy and return 'true' to indicate presence
1933  * of non-default mempolicy.
1934  *
1935  * We don't bother with reference counting the mempolicy [mpol_get/put]
1936  * because the current task is examining it's own mempolicy and a task's
1937  * mempolicy is only ever changed by the task itself.
1938  *
1939  * N.B., it is the caller's responsibility to free a returned nodemask.
1940  */
1941 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1942 {
1943 	struct mempolicy *mempolicy;
1944 	int nid;
1945 
1946 	if (!(mask && current->mempolicy))
1947 		return false;
1948 
1949 	task_lock(current);
1950 	mempolicy = current->mempolicy;
1951 	switch (mempolicy->mode) {
1952 	case MPOL_PREFERRED:
1953 		if (mempolicy->flags & MPOL_F_LOCAL)
1954 			nid = numa_node_id();
1955 		else
1956 			nid = mempolicy->v.preferred_node;
1957 		init_nodemask_of_node(mask, nid);
1958 		break;
1959 
1960 	case MPOL_BIND:
1961 		/* Fall through */
1962 	case MPOL_INTERLEAVE:
1963 		*mask =  mempolicy->v.nodes;
1964 		break;
1965 
1966 	default:
1967 		BUG();
1968 	}
1969 	task_unlock(current);
1970 
1971 	return true;
1972 }
1973 #endif
1974 
1975 /*
1976  * mempolicy_nodemask_intersects
1977  *
1978  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1979  * policy.  Otherwise, check for intersection between mask and the policy
1980  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1981  * policy, always return true since it may allocate elsewhere on fallback.
1982  *
1983  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1984  */
1985 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1986 					const nodemask_t *mask)
1987 {
1988 	struct mempolicy *mempolicy;
1989 	bool ret = true;
1990 
1991 	if (!mask)
1992 		return ret;
1993 	task_lock(tsk);
1994 	mempolicy = tsk->mempolicy;
1995 	if (!mempolicy)
1996 		goto out;
1997 
1998 	switch (mempolicy->mode) {
1999 	case MPOL_PREFERRED:
2000 		/*
2001 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2002 		 * allocate from, they may fallback to other nodes when oom.
2003 		 * Thus, it's possible for tsk to have allocated memory from
2004 		 * nodes in mask.
2005 		 */
2006 		break;
2007 	case MPOL_BIND:
2008 	case MPOL_INTERLEAVE:
2009 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2010 		break;
2011 	default:
2012 		BUG();
2013 	}
2014 out:
2015 	task_unlock(tsk);
2016 	return ret;
2017 }
2018 
2019 /* Allocate a page in interleaved policy.
2020    Own path because it needs to do special accounting. */
2021 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2022 					unsigned nid)
2023 {
2024 	struct zonelist *zl;
2025 	struct page *page;
2026 
2027 	zl = node_zonelist(nid, gfp);
2028 	page = __alloc_pages(gfp, order, zl);
2029 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2030 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2031 	return page;
2032 }
2033 
2034 /**
2035  * 	alloc_pages_vma	- Allocate a page for a VMA.
2036  *
2037  * 	@gfp:
2038  *      %GFP_USER    user allocation.
2039  *      %GFP_KERNEL  kernel allocations,
2040  *      %GFP_HIGHMEM highmem/user allocations,
2041  *      %GFP_FS      allocation should not call back into a file system.
2042  *      %GFP_ATOMIC  don't sleep.
2043  *
2044  *	@order:Order of the GFP allocation.
2045  * 	@vma:  Pointer to VMA or NULL if not available.
2046  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2047  *
2048  * 	This function allocates a page from the kernel page pool and applies
2049  *	a NUMA policy associated with the VMA or the current process.
2050  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2051  *	mm_struct of the VMA to prevent it from going away. Should be used for
2052  *	all allocations for pages that will be mapped into
2053  * 	user space. Returns NULL when no page can be allocated.
2054  *
2055  *	Should be called with the mm_sem of the vma hold.
2056  */
2057 struct page *
2058 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2059 		unsigned long addr, int node)
2060 {
2061 	struct mempolicy *pol;
2062 	struct page *page;
2063 	unsigned int cpuset_mems_cookie;
2064 
2065 retry_cpuset:
2066 	pol = get_vma_policy(current, vma, addr);
2067 	cpuset_mems_cookie = get_mems_allowed();
2068 
2069 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2070 		unsigned nid;
2071 
2072 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2073 		mpol_cond_put(pol);
2074 		page = alloc_page_interleave(gfp, order, nid);
2075 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2076 			goto retry_cpuset;
2077 
2078 		return page;
2079 	}
2080 	page = __alloc_pages_nodemask(gfp, order,
2081 				      policy_zonelist(gfp, pol, node),
2082 				      policy_nodemask(gfp, pol));
2083 	if (unlikely(mpol_needs_cond_ref(pol)))
2084 		__mpol_put(pol);
2085 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2086 		goto retry_cpuset;
2087 	return page;
2088 }
2089 
2090 /**
2091  * 	alloc_pages_current - Allocate pages.
2092  *
2093  *	@gfp:
2094  *		%GFP_USER   user allocation,
2095  *      	%GFP_KERNEL kernel allocation,
2096  *      	%GFP_HIGHMEM highmem allocation,
2097  *      	%GFP_FS     don't call back into a file system.
2098  *      	%GFP_ATOMIC don't sleep.
2099  *	@order: Power of two of allocation size in pages. 0 is a single page.
2100  *
2101  *	Allocate a page from the kernel page pool.  When not in
2102  *	interrupt context and apply the current process NUMA policy.
2103  *	Returns NULL when no page can be allocated.
2104  *
2105  *	Don't call cpuset_update_task_memory_state() unless
2106  *	1) it's ok to take cpuset_sem (can WAIT), and
2107  *	2) allocating for current task (not interrupt).
2108  */
2109 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2110 {
2111 	struct mempolicy *pol = get_task_policy(current);
2112 	struct page *page;
2113 	unsigned int cpuset_mems_cookie;
2114 
2115 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2116 		pol = &default_policy;
2117 
2118 retry_cpuset:
2119 	cpuset_mems_cookie = get_mems_allowed();
2120 
2121 	/*
2122 	 * No reference counting needed for current->mempolicy
2123 	 * nor system default_policy
2124 	 */
2125 	if (pol->mode == MPOL_INTERLEAVE)
2126 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2127 	else
2128 		page = __alloc_pages_nodemask(gfp, order,
2129 				policy_zonelist(gfp, pol, numa_node_id()),
2130 				policy_nodemask(gfp, pol));
2131 
2132 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2133 		goto retry_cpuset;
2134 
2135 	return page;
2136 }
2137 EXPORT_SYMBOL(alloc_pages_current);
2138 
2139 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2140 {
2141 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2142 
2143 	if (IS_ERR(pol))
2144 		return PTR_ERR(pol);
2145 	dst->vm_policy = pol;
2146 	return 0;
2147 }
2148 
2149 /*
2150  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2151  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2152  * with the mems_allowed returned by cpuset_mems_allowed().  This
2153  * keeps mempolicies cpuset relative after its cpuset moves.  See
2154  * further kernel/cpuset.c update_nodemask().
2155  *
2156  * current's mempolicy may be rebinded by the other task(the task that changes
2157  * cpuset's mems), so we needn't do rebind work for current task.
2158  */
2159 
2160 /* Slow path of a mempolicy duplicate */
2161 struct mempolicy *__mpol_dup(struct mempolicy *old)
2162 {
2163 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2164 
2165 	if (!new)
2166 		return ERR_PTR(-ENOMEM);
2167 
2168 	/* task's mempolicy is protected by alloc_lock */
2169 	if (old == current->mempolicy) {
2170 		task_lock(current);
2171 		*new = *old;
2172 		task_unlock(current);
2173 	} else
2174 		*new = *old;
2175 
2176 	rcu_read_lock();
2177 	if (current_cpuset_is_being_rebound()) {
2178 		nodemask_t mems = cpuset_mems_allowed(current);
2179 		if (new->flags & MPOL_F_REBINDING)
2180 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2181 		else
2182 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2183 	}
2184 	rcu_read_unlock();
2185 	atomic_set(&new->refcnt, 1);
2186 	return new;
2187 }
2188 
2189 /* Slow path of a mempolicy comparison */
2190 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2191 {
2192 	if (!a || !b)
2193 		return false;
2194 	if (a->mode != b->mode)
2195 		return false;
2196 	if (a->flags != b->flags)
2197 		return false;
2198 	if (mpol_store_user_nodemask(a))
2199 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2200 			return false;
2201 
2202 	switch (a->mode) {
2203 	case MPOL_BIND:
2204 		/* Fall through */
2205 	case MPOL_INTERLEAVE:
2206 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2207 	case MPOL_PREFERRED:
2208 		return a->v.preferred_node == b->v.preferred_node;
2209 	default:
2210 		BUG();
2211 		return false;
2212 	}
2213 }
2214 
2215 /*
2216  * Shared memory backing store policy support.
2217  *
2218  * Remember policies even when nobody has shared memory mapped.
2219  * The policies are kept in Red-Black tree linked from the inode.
2220  * They are protected by the sp->lock spinlock, which should be held
2221  * for any accesses to the tree.
2222  */
2223 
2224 /* lookup first element intersecting start-end */
2225 /* Caller holds sp->lock */
2226 static struct sp_node *
2227 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2228 {
2229 	struct rb_node *n = sp->root.rb_node;
2230 
2231 	while (n) {
2232 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2233 
2234 		if (start >= p->end)
2235 			n = n->rb_right;
2236 		else if (end <= p->start)
2237 			n = n->rb_left;
2238 		else
2239 			break;
2240 	}
2241 	if (!n)
2242 		return NULL;
2243 	for (;;) {
2244 		struct sp_node *w = NULL;
2245 		struct rb_node *prev = rb_prev(n);
2246 		if (!prev)
2247 			break;
2248 		w = rb_entry(prev, struct sp_node, nd);
2249 		if (w->end <= start)
2250 			break;
2251 		n = prev;
2252 	}
2253 	return rb_entry(n, struct sp_node, nd);
2254 }
2255 
2256 /* Insert a new shared policy into the list. */
2257 /* Caller holds sp->lock */
2258 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2259 {
2260 	struct rb_node **p = &sp->root.rb_node;
2261 	struct rb_node *parent = NULL;
2262 	struct sp_node *nd;
2263 
2264 	while (*p) {
2265 		parent = *p;
2266 		nd = rb_entry(parent, struct sp_node, nd);
2267 		if (new->start < nd->start)
2268 			p = &(*p)->rb_left;
2269 		else if (new->end > nd->end)
2270 			p = &(*p)->rb_right;
2271 		else
2272 			BUG();
2273 	}
2274 	rb_link_node(&new->nd, parent, p);
2275 	rb_insert_color(&new->nd, &sp->root);
2276 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2277 		 new->policy ? new->policy->mode : 0);
2278 }
2279 
2280 /* Find shared policy intersecting idx */
2281 struct mempolicy *
2282 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2283 {
2284 	struct mempolicy *pol = NULL;
2285 	struct sp_node *sn;
2286 
2287 	if (!sp->root.rb_node)
2288 		return NULL;
2289 	spin_lock(&sp->lock);
2290 	sn = sp_lookup(sp, idx, idx+1);
2291 	if (sn) {
2292 		mpol_get(sn->policy);
2293 		pol = sn->policy;
2294 	}
2295 	spin_unlock(&sp->lock);
2296 	return pol;
2297 }
2298 
2299 static void sp_free(struct sp_node *n)
2300 {
2301 	mpol_put(n->policy);
2302 	kmem_cache_free(sn_cache, n);
2303 }
2304 
2305 #ifdef CONFIG_NUMA_BALANCING
2306 static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2307 {
2308 	/* Never defer a private fault */
2309 	if (cpupid_match_pid(p, last_cpupid))
2310 		return false;
2311 
2312 	if (p->numa_migrate_deferred) {
2313 		p->numa_migrate_deferred--;
2314 		return true;
2315 	}
2316 	return false;
2317 }
2318 
2319 static inline void defer_numa_migrate(struct task_struct *p)
2320 {
2321 	p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
2322 }
2323 #else
2324 static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2325 {
2326 	return false;
2327 }
2328 
2329 static inline void defer_numa_migrate(struct task_struct *p)
2330 {
2331 }
2332 #endif /* CONFIG_NUMA_BALANCING */
2333 
2334 /**
2335  * mpol_misplaced - check whether current page node is valid in policy
2336  *
2337  * @page   - page to be checked
2338  * @vma    - vm area where page mapped
2339  * @addr   - virtual address where page mapped
2340  *
2341  * Lookup current policy node id for vma,addr and "compare to" page's
2342  * node id.
2343  *
2344  * Returns:
2345  *	-1	- not misplaced, page is in the right node
2346  *	node	- node id where the page should be
2347  *
2348  * Policy determination "mimics" alloc_page_vma().
2349  * Called from fault path where we know the vma and faulting address.
2350  */
2351 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2352 {
2353 	struct mempolicy *pol;
2354 	struct zone *zone;
2355 	int curnid = page_to_nid(page);
2356 	unsigned long pgoff;
2357 	int thiscpu = raw_smp_processor_id();
2358 	int thisnid = cpu_to_node(thiscpu);
2359 	int polnid = -1;
2360 	int ret = -1;
2361 
2362 	BUG_ON(!vma);
2363 
2364 	pol = get_vma_policy(current, vma, addr);
2365 	if (!(pol->flags & MPOL_F_MOF))
2366 		goto out;
2367 
2368 	switch (pol->mode) {
2369 	case MPOL_INTERLEAVE:
2370 		BUG_ON(addr >= vma->vm_end);
2371 		BUG_ON(addr < vma->vm_start);
2372 
2373 		pgoff = vma->vm_pgoff;
2374 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2375 		polnid = offset_il_node(pol, vma, pgoff);
2376 		break;
2377 
2378 	case MPOL_PREFERRED:
2379 		if (pol->flags & MPOL_F_LOCAL)
2380 			polnid = numa_node_id();
2381 		else
2382 			polnid = pol->v.preferred_node;
2383 		break;
2384 
2385 	case MPOL_BIND:
2386 		/*
2387 		 * allows binding to multiple nodes.
2388 		 * use current page if in policy nodemask,
2389 		 * else select nearest allowed node, if any.
2390 		 * If no allowed nodes, use current [!misplaced].
2391 		 */
2392 		if (node_isset(curnid, pol->v.nodes))
2393 			goto out;
2394 		(void)first_zones_zonelist(
2395 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2396 				gfp_zone(GFP_HIGHUSER),
2397 				&pol->v.nodes, &zone);
2398 		polnid = zone->node;
2399 		break;
2400 
2401 	default:
2402 		BUG();
2403 	}
2404 
2405 	/* Migrate the page towards the node whose CPU is referencing it */
2406 	if (pol->flags & MPOL_F_MORON) {
2407 		int last_cpupid;
2408 		int this_cpupid;
2409 
2410 		polnid = thisnid;
2411 		this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
2412 
2413 		/*
2414 		 * Multi-stage node selection is used in conjunction
2415 		 * with a periodic migration fault to build a temporal
2416 		 * task<->page relation. By using a two-stage filter we
2417 		 * remove short/unlikely relations.
2418 		 *
2419 		 * Using P(p) ~ n_p / n_t as per frequentist
2420 		 * probability, we can equate a task's usage of a
2421 		 * particular page (n_p) per total usage of this
2422 		 * page (n_t) (in a given time-span) to a probability.
2423 		 *
2424 		 * Our periodic faults will sample this probability and
2425 		 * getting the same result twice in a row, given these
2426 		 * samples are fully independent, is then given by
2427 		 * P(n)^2, provided our sample period is sufficiently
2428 		 * short compared to the usage pattern.
2429 		 *
2430 		 * This quadric squishes small probabilities, making
2431 		 * it less likely we act on an unlikely task<->page
2432 		 * relation.
2433 		 */
2434 		last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
2435 		if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
2436 
2437 			/* See sysctl_numa_balancing_migrate_deferred comment */
2438 			if (!cpupid_match_pid(current, last_cpupid))
2439 				defer_numa_migrate(current);
2440 
2441 			goto out;
2442 		}
2443 
2444 		/*
2445 		 * The quadratic filter above reduces extraneous migration
2446 		 * of shared pages somewhat. This code reduces it even more,
2447 		 * reducing the overhead of page migrations of shared pages.
2448 		 * This makes workloads with shared pages rely more on
2449 		 * "move task near its memory", and less on "move memory
2450 		 * towards its task", which is exactly what we want.
2451 		 */
2452 		if (numa_migrate_deferred(current, last_cpupid))
2453 			goto out;
2454 	}
2455 
2456 	if (curnid != polnid)
2457 		ret = polnid;
2458 out:
2459 	mpol_cond_put(pol);
2460 
2461 	return ret;
2462 }
2463 
2464 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2465 {
2466 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2467 	rb_erase(&n->nd, &sp->root);
2468 	sp_free(n);
2469 }
2470 
2471 static void sp_node_init(struct sp_node *node, unsigned long start,
2472 			unsigned long end, struct mempolicy *pol)
2473 {
2474 	node->start = start;
2475 	node->end = end;
2476 	node->policy = pol;
2477 }
2478 
2479 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2480 				struct mempolicy *pol)
2481 {
2482 	struct sp_node *n;
2483 	struct mempolicy *newpol;
2484 
2485 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2486 	if (!n)
2487 		return NULL;
2488 
2489 	newpol = mpol_dup(pol);
2490 	if (IS_ERR(newpol)) {
2491 		kmem_cache_free(sn_cache, n);
2492 		return NULL;
2493 	}
2494 	newpol->flags |= MPOL_F_SHARED;
2495 	sp_node_init(n, start, end, newpol);
2496 
2497 	return n;
2498 }
2499 
2500 /* Replace a policy range. */
2501 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2502 				 unsigned long end, struct sp_node *new)
2503 {
2504 	struct sp_node *n;
2505 	struct sp_node *n_new = NULL;
2506 	struct mempolicy *mpol_new = NULL;
2507 	int ret = 0;
2508 
2509 restart:
2510 	spin_lock(&sp->lock);
2511 	n = sp_lookup(sp, start, end);
2512 	/* Take care of old policies in the same range. */
2513 	while (n && n->start < end) {
2514 		struct rb_node *next = rb_next(&n->nd);
2515 		if (n->start >= start) {
2516 			if (n->end <= end)
2517 				sp_delete(sp, n);
2518 			else
2519 				n->start = end;
2520 		} else {
2521 			/* Old policy spanning whole new range. */
2522 			if (n->end > end) {
2523 				if (!n_new)
2524 					goto alloc_new;
2525 
2526 				*mpol_new = *n->policy;
2527 				atomic_set(&mpol_new->refcnt, 1);
2528 				sp_node_init(n_new, end, n->end, mpol_new);
2529 				n->end = start;
2530 				sp_insert(sp, n_new);
2531 				n_new = NULL;
2532 				mpol_new = NULL;
2533 				break;
2534 			} else
2535 				n->end = start;
2536 		}
2537 		if (!next)
2538 			break;
2539 		n = rb_entry(next, struct sp_node, nd);
2540 	}
2541 	if (new)
2542 		sp_insert(sp, new);
2543 	spin_unlock(&sp->lock);
2544 	ret = 0;
2545 
2546 err_out:
2547 	if (mpol_new)
2548 		mpol_put(mpol_new);
2549 	if (n_new)
2550 		kmem_cache_free(sn_cache, n_new);
2551 
2552 	return ret;
2553 
2554 alloc_new:
2555 	spin_unlock(&sp->lock);
2556 	ret = -ENOMEM;
2557 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2558 	if (!n_new)
2559 		goto err_out;
2560 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2561 	if (!mpol_new)
2562 		goto err_out;
2563 	goto restart;
2564 }
2565 
2566 /**
2567  * mpol_shared_policy_init - initialize shared policy for inode
2568  * @sp: pointer to inode shared policy
2569  * @mpol:  struct mempolicy to install
2570  *
2571  * Install non-NULL @mpol in inode's shared policy rb-tree.
2572  * On entry, the current task has a reference on a non-NULL @mpol.
2573  * This must be released on exit.
2574  * This is called at get_inode() calls and we can use GFP_KERNEL.
2575  */
2576 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2577 {
2578 	int ret;
2579 
2580 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2581 	spin_lock_init(&sp->lock);
2582 
2583 	if (mpol) {
2584 		struct vm_area_struct pvma;
2585 		struct mempolicy *new;
2586 		NODEMASK_SCRATCH(scratch);
2587 
2588 		if (!scratch)
2589 			goto put_mpol;
2590 		/* contextualize the tmpfs mount point mempolicy */
2591 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2592 		if (IS_ERR(new))
2593 			goto free_scratch; /* no valid nodemask intersection */
2594 
2595 		task_lock(current);
2596 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2597 		task_unlock(current);
2598 		if (ret)
2599 			goto put_new;
2600 
2601 		/* Create pseudo-vma that contains just the policy */
2602 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2603 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2604 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2605 
2606 put_new:
2607 		mpol_put(new);			/* drop initial ref */
2608 free_scratch:
2609 		NODEMASK_SCRATCH_FREE(scratch);
2610 put_mpol:
2611 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2612 	}
2613 }
2614 
2615 int mpol_set_shared_policy(struct shared_policy *info,
2616 			struct vm_area_struct *vma, struct mempolicy *npol)
2617 {
2618 	int err;
2619 	struct sp_node *new = NULL;
2620 	unsigned long sz = vma_pages(vma);
2621 
2622 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2623 		 vma->vm_pgoff,
2624 		 sz, npol ? npol->mode : -1,
2625 		 npol ? npol->flags : -1,
2626 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2627 
2628 	if (npol) {
2629 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2630 		if (!new)
2631 			return -ENOMEM;
2632 	}
2633 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2634 	if (err && new)
2635 		sp_free(new);
2636 	return err;
2637 }
2638 
2639 /* Free a backing policy store on inode delete. */
2640 void mpol_free_shared_policy(struct shared_policy *p)
2641 {
2642 	struct sp_node *n;
2643 	struct rb_node *next;
2644 
2645 	if (!p->root.rb_node)
2646 		return;
2647 	spin_lock(&p->lock);
2648 	next = rb_first(&p->root);
2649 	while (next) {
2650 		n = rb_entry(next, struct sp_node, nd);
2651 		next = rb_next(&n->nd);
2652 		sp_delete(p, n);
2653 	}
2654 	spin_unlock(&p->lock);
2655 }
2656 
2657 #ifdef CONFIG_NUMA_BALANCING
2658 static bool __initdata numabalancing_override;
2659 
2660 static void __init check_numabalancing_enable(void)
2661 {
2662 	bool numabalancing_default = false;
2663 
2664 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2665 		numabalancing_default = true;
2666 
2667 	if (nr_node_ids > 1 && !numabalancing_override) {
2668 		printk(KERN_INFO "Enabling automatic NUMA balancing. "
2669 			"Configure with numa_balancing= or sysctl");
2670 		set_numabalancing_state(numabalancing_default);
2671 	}
2672 }
2673 
2674 static int __init setup_numabalancing(char *str)
2675 {
2676 	int ret = 0;
2677 	if (!str)
2678 		goto out;
2679 	numabalancing_override = true;
2680 
2681 	if (!strcmp(str, "enable")) {
2682 		set_numabalancing_state(true);
2683 		ret = 1;
2684 	} else if (!strcmp(str, "disable")) {
2685 		set_numabalancing_state(false);
2686 		ret = 1;
2687 	}
2688 out:
2689 	if (!ret)
2690 		printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2691 
2692 	return ret;
2693 }
2694 __setup("numa_balancing=", setup_numabalancing);
2695 #else
2696 static inline void __init check_numabalancing_enable(void)
2697 {
2698 }
2699 #endif /* CONFIG_NUMA_BALANCING */
2700 
2701 /* assumes fs == KERNEL_DS */
2702 void __init numa_policy_init(void)
2703 {
2704 	nodemask_t interleave_nodes;
2705 	unsigned long largest = 0;
2706 	int nid, prefer = 0;
2707 
2708 	policy_cache = kmem_cache_create("numa_policy",
2709 					 sizeof(struct mempolicy),
2710 					 0, SLAB_PANIC, NULL);
2711 
2712 	sn_cache = kmem_cache_create("shared_policy_node",
2713 				     sizeof(struct sp_node),
2714 				     0, SLAB_PANIC, NULL);
2715 
2716 	for_each_node(nid) {
2717 		preferred_node_policy[nid] = (struct mempolicy) {
2718 			.refcnt = ATOMIC_INIT(1),
2719 			.mode = MPOL_PREFERRED,
2720 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2721 			.v = { .preferred_node = nid, },
2722 		};
2723 	}
2724 
2725 	/*
2726 	 * Set interleaving policy for system init. Interleaving is only
2727 	 * enabled across suitably sized nodes (default is >= 16MB), or
2728 	 * fall back to the largest node if they're all smaller.
2729 	 */
2730 	nodes_clear(interleave_nodes);
2731 	for_each_node_state(nid, N_MEMORY) {
2732 		unsigned long total_pages = node_present_pages(nid);
2733 
2734 		/* Preserve the largest node */
2735 		if (largest < total_pages) {
2736 			largest = total_pages;
2737 			prefer = nid;
2738 		}
2739 
2740 		/* Interleave this node? */
2741 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2742 			node_set(nid, interleave_nodes);
2743 	}
2744 
2745 	/* All too small, use the largest */
2746 	if (unlikely(nodes_empty(interleave_nodes)))
2747 		node_set(prefer, interleave_nodes);
2748 
2749 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2750 		printk("numa_policy_init: interleaving failed\n");
2751 
2752 	check_numabalancing_enable();
2753 }
2754 
2755 /* Reset policy of current process to default */
2756 void numa_default_policy(void)
2757 {
2758 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2759 }
2760 
2761 /*
2762  * Parse and format mempolicy from/to strings
2763  */
2764 
2765 /*
2766  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2767  */
2768 static const char * const policy_modes[] =
2769 {
2770 	[MPOL_DEFAULT]    = "default",
2771 	[MPOL_PREFERRED]  = "prefer",
2772 	[MPOL_BIND]       = "bind",
2773 	[MPOL_INTERLEAVE] = "interleave",
2774 	[MPOL_LOCAL]      = "local",
2775 };
2776 
2777 
2778 #ifdef CONFIG_TMPFS
2779 /**
2780  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2781  * @str:  string containing mempolicy to parse
2782  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2783  *
2784  * Format of input:
2785  *	<mode>[=<flags>][:<nodelist>]
2786  *
2787  * On success, returns 0, else 1
2788  */
2789 int mpol_parse_str(char *str, struct mempolicy **mpol)
2790 {
2791 	struct mempolicy *new = NULL;
2792 	unsigned short mode;
2793 	unsigned short mode_flags;
2794 	nodemask_t nodes;
2795 	char *nodelist = strchr(str, ':');
2796 	char *flags = strchr(str, '=');
2797 	int err = 1;
2798 
2799 	if (nodelist) {
2800 		/* NUL-terminate mode or flags string */
2801 		*nodelist++ = '\0';
2802 		if (nodelist_parse(nodelist, nodes))
2803 			goto out;
2804 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2805 			goto out;
2806 	} else
2807 		nodes_clear(nodes);
2808 
2809 	if (flags)
2810 		*flags++ = '\0';	/* terminate mode string */
2811 
2812 	for (mode = 0; mode < MPOL_MAX; mode++) {
2813 		if (!strcmp(str, policy_modes[mode])) {
2814 			break;
2815 		}
2816 	}
2817 	if (mode >= MPOL_MAX)
2818 		goto out;
2819 
2820 	switch (mode) {
2821 	case MPOL_PREFERRED:
2822 		/*
2823 		 * Insist on a nodelist of one node only
2824 		 */
2825 		if (nodelist) {
2826 			char *rest = nodelist;
2827 			while (isdigit(*rest))
2828 				rest++;
2829 			if (*rest)
2830 				goto out;
2831 		}
2832 		break;
2833 	case MPOL_INTERLEAVE:
2834 		/*
2835 		 * Default to online nodes with memory if no nodelist
2836 		 */
2837 		if (!nodelist)
2838 			nodes = node_states[N_MEMORY];
2839 		break;
2840 	case MPOL_LOCAL:
2841 		/*
2842 		 * Don't allow a nodelist;  mpol_new() checks flags
2843 		 */
2844 		if (nodelist)
2845 			goto out;
2846 		mode = MPOL_PREFERRED;
2847 		break;
2848 	case MPOL_DEFAULT:
2849 		/*
2850 		 * Insist on a empty nodelist
2851 		 */
2852 		if (!nodelist)
2853 			err = 0;
2854 		goto out;
2855 	case MPOL_BIND:
2856 		/*
2857 		 * Insist on a nodelist
2858 		 */
2859 		if (!nodelist)
2860 			goto out;
2861 	}
2862 
2863 	mode_flags = 0;
2864 	if (flags) {
2865 		/*
2866 		 * Currently, we only support two mutually exclusive
2867 		 * mode flags.
2868 		 */
2869 		if (!strcmp(flags, "static"))
2870 			mode_flags |= MPOL_F_STATIC_NODES;
2871 		else if (!strcmp(flags, "relative"))
2872 			mode_flags |= MPOL_F_RELATIVE_NODES;
2873 		else
2874 			goto out;
2875 	}
2876 
2877 	new = mpol_new(mode, mode_flags, &nodes);
2878 	if (IS_ERR(new))
2879 		goto out;
2880 
2881 	/*
2882 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2883 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2884 	 */
2885 	if (mode != MPOL_PREFERRED)
2886 		new->v.nodes = nodes;
2887 	else if (nodelist)
2888 		new->v.preferred_node = first_node(nodes);
2889 	else
2890 		new->flags |= MPOL_F_LOCAL;
2891 
2892 	/*
2893 	 * Save nodes for contextualization: this will be used to "clone"
2894 	 * the mempolicy in a specific context [cpuset] at a later time.
2895 	 */
2896 	new->w.user_nodemask = nodes;
2897 
2898 	err = 0;
2899 
2900 out:
2901 	/* Restore string for error message */
2902 	if (nodelist)
2903 		*--nodelist = ':';
2904 	if (flags)
2905 		*--flags = '=';
2906 	if (!err)
2907 		*mpol = new;
2908 	return err;
2909 }
2910 #endif /* CONFIG_TMPFS */
2911 
2912 /**
2913  * mpol_to_str - format a mempolicy structure for printing
2914  * @buffer:  to contain formatted mempolicy string
2915  * @maxlen:  length of @buffer
2916  * @pol:  pointer to mempolicy to be formatted
2917  *
2918  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2919  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2920  * longest flag, "relative", and to display at least a few node ids.
2921  */
2922 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2923 {
2924 	char *p = buffer;
2925 	nodemask_t nodes = NODE_MASK_NONE;
2926 	unsigned short mode = MPOL_DEFAULT;
2927 	unsigned short flags = 0;
2928 
2929 	if (pol && pol != &default_policy) {
2930 		mode = pol->mode;
2931 		flags = pol->flags;
2932 	}
2933 
2934 	switch (mode) {
2935 	case MPOL_DEFAULT:
2936 		break;
2937 	case MPOL_PREFERRED:
2938 		if (flags & MPOL_F_LOCAL)
2939 			mode = MPOL_LOCAL;
2940 		else
2941 			node_set(pol->v.preferred_node, nodes);
2942 		break;
2943 	case MPOL_BIND:
2944 	case MPOL_INTERLEAVE:
2945 		nodes = pol->v.nodes;
2946 		break;
2947 	default:
2948 		WARN_ON_ONCE(1);
2949 		snprintf(p, maxlen, "unknown");
2950 		return;
2951 	}
2952 
2953 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2954 
2955 	if (flags & MPOL_MODE_FLAGS) {
2956 		p += snprintf(p, buffer + maxlen - p, "=");
2957 
2958 		/*
2959 		 * Currently, the only defined flags are mutually exclusive
2960 		 */
2961 		if (flags & MPOL_F_STATIC_NODES)
2962 			p += snprintf(p, buffer + maxlen - p, "static");
2963 		else if (flags & MPOL_F_RELATIVE_NODES)
2964 			p += snprintf(p, buffer + maxlen - p, "relative");
2965 	}
2966 
2967 	if (!nodes_empty(nodes)) {
2968 		p += snprintf(p, buffer + maxlen - p, ":");
2969 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2970 	}
2971 }
2972