1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/slab.h> 77 #include <linux/string.h> 78 #include <linux/export.h> 79 #include <linux/nsproxy.h> 80 #include <linux/interrupt.h> 81 #include <linux/init.h> 82 #include <linux/compat.h> 83 #include <linux/swap.h> 84 #include <linux/seq_file.h> 85 #include <linux/proc_fs.h> 86 #include <linux/migrate.h> 87 #include <linux/ksm.h> 88 #include <linux/rmap.h> 89 #include <linux/security.h> 90 #include <linux/syscalls.h> 91 #include <linux/ctype.h> 92 #include <linux/mm_inline.h> 93 #include <linux/mmu_notifier.h> 94 95 #include <asm/tlbflush.h> 96 #include <asm/uaccess.h> 97 #include <linux/random.h> 98 99 #include "internal.h" 100 101 /* Internal flags */ 102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 104 105 static struct kmem_cache *policy_cache; 106 static struct kmem_cache *sn_cache; 107 108 /* Highest zone. An specific allocation for a zone below that is not 109 policied. */ 110 enum zone_type policy_zone = 0; 111 112 /* 113 * run-time system-wide default policy => local allocation 114 */ 115 static struct mempolicy default_policy = { 116 .refcnt = ATOMIC_INIT(1), /* never free it */ 117 .mode = MPOL_PREFERRED, 118 .flags = MPOL_F_LOCAL, 119 }; 120 121 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 122 123 static struct mempolicy *get_task_policy(struct task_struct *p) 124 { 125 struct mempolicy *pol = p->mempolicy; 126 127 if (!pol) { 128 int node = numa_node_id(); 129 130 if (node != NUMA_NO_NODE) { 131 pol = &preferred_node_policy[node]; 132 /* 133 * preferred_node_policy is not initialised early in 134 * boot 135 */ 136 if (!pol->mode) 137 pol = NULL; 138 } 139 } 140 141 return pol; 142 } 143 144 static const struct mempolicy_operations { 145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 146 /* 147 * If read-side task has no lock to protect task->mempolicy, write-side 148 * task will rebind the task->mempolicy by two step. The first step is 149 * setting all the newly nodes, and the second step is cleaning all the 150 * disallowed nodes. In this way, we can avoid finding no node to alloc 151 * page. 152 * If we have a lock to protect task->mempolicy in read-side, we do 153 * rebind directly. 154 * 155 * step: 156 * MPOL_REBIND_ONCE - do rebind work at once 157 * MPOL_REBIND_STEP1 - set all the newly nodes 158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 159 */ 160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 161 enum mpol_rebind_step step); 162 } mpol_ops[MPOL_MAX]; 163 164 /* Check that the nodemask contains at least one populated zone */ 165 static int is_valid_nodemask(const nodemask_t *nodemask) 166 { 167 return nodes_intersects(*nodemask, node_states[N_MEMORY]); 168 } 169 170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 171 { 172 return pol->flags & MPOL_MODE_FLAGS; 173 } 174 175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 176 const nodemask_t *rel) 177 { 178 nodemask_t tmp; 179 nodes_fold(tmp, *orig, nodes_weight(*rel)); 180 nodes_onto(*ret, tmp, *rel); 181 } 182 183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 184 { 185 if (nodes_empty(*nodes)) 186 return -EINVAL; 187 pol->v.nodes = *nodes; 188 return 0; 189 } 190 191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 192 { 193 if (!nodes) 194 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 195 else if (nodes_empty(*nodes)) 196 return -EINVAL; /* no allowed nodes */ 197 else 198 pol->v.preferred_node = first_node(*nodes); 199 return 0; 200 } 201 202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 203 { 204 if (!is_valid_nodemask(nodes)) 205 return -EINVAL; 206 pol->v.nodes = *nodes; 207 return 0; 208 } 209 210 /* 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 212 * any, for the new policy. mpol_new() has already validated the nodes 213 * parameter with respect to the policy mode and flags. But, we need to 214 * handle an empty nodemask with MPOL_PREFERRED here. 215 * 216 * Must be called holding task's alloc_lock to protect task's mems_allowed 217 * and mempolicy. May also be called holding the mmap_semaphore for write. 218 */ 219 static int mpol_set_nodemask(struct mempolicy *pol, 220 const nodemask_t *nodes, struct nodemask_scratch *nsc) 221 { 222 int ret; 223 224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 225 if (pol == NULL) 226 return 0; 227 /* Check N_MEMORY */ 228 nodes_and(nsc->mask1, 229 cpuset_current_mems_allowed, node_states[N_MEMORY]); 230 231 VM_BUG_ON(!nodes); 232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 233 nodes = NULL; /* explicit local allocation */ 234 else { 235 if (pol->flags & MPOL_F_RELATIVE_NODES) 236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 237 else 238 nodes_and(nsc->mask2, *nodes, nsc->mask1); 239 240 if (mpol_store_user_nodemask(pol)) 241 pol->w.user_nodemask = *nodes; 242 else 243 pol->w.cpuset_mems_allowed = 244 cpuset_current_mems_allowed; 245 } 246 247 if (nodes) 248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 249 else 250 ret = mpol_ops[pol->mode].create(pol, NULL); 251 return ret; 252 } 253 254 /* 255 * This function just creates a new policy, does some check and simple 256 * initialization. You must invoke mpol_set_nodemask() to set nodes. 257 */ 258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 259 nodemask_t *nodes) 260 { 261 struct mempolicy *policy; 262 263 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 265 266 if (mode == MPOL_DEFAULT) { 267 if (nodes && !nodes_empty(*nodes)) 268 return ERR_PTR(-EINVAL); 269 return NULL; 270 } 271 VM_BUG_ON(!nodes); 272 273 /* 274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 276 * All other modes require a valid pointer to a non-empty nodemask. 277 */ 278 if (mode == MPOL_PREFERRED) { 279 if (nodes_empty(*nodes)) { 280 if (((flags & MPOL_F_STATIC_NODES) || 281 (flags & MPOL_F_RELATIVE_NODES))) 282 return ERR_PTR(-EINVAL); 283 } 284 } else if (mode == MPOL_LOCAL) { 285 if (!nodes_empty(*nodes)) 286 return ERR_PTR(-EINVAL); 287 mode = MPOL_PREFERRED; 288 } else if (nodes_empty(*nodes)) 289 return ERR_PTR(-EINVAL); 290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 291 if (!policy) 292 return ERR_PTR(-ENOMEM); 293 atomic_set(&policy->refcnt, 1); 294 policy->mode = mode; 295 policy->flags = flags; 296 297 return policy; 298 } 299 300 /* Slow path of a mpol destructor. */ 301 void __mpol_put(struct mempolicy *p) 302 { 303 if (!atomic_dec_and_test(&p->refcnt)) 304 return; 305 kmem_cache_free(policy_cache, p); 306 } 307 308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 309 enum mpol_rebind_step step) 310 { 311 } 312 313 /* 314 * step: 315 * MPOL_REBIND_ONCE - do rebind work at once 316 * MPOL_REBIND_STEP1 - set all the newly nodes 317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 318 */ 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 320 enum mpol_rebind_step step) 321 { 322 nodemask_t tmp; 323 324 if (pol->flags & MPOL_F_STATIC_NODES) 325 nodes_and(tmp, pol->w.user_nodemask, *nodes); 326 else if (pol->flags & MPOL_F_RELATIVE_NODES) 327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 328 else { 329 /* 330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 331 * result 332 */ 333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 334 nodes_remap(tmp, pol->v.nodes, 335 pol->w.cpuset_mems_allowed, *nodes); 336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 337 } else if (step == MPOL_REBIND_STEP2) { 338 tmp = pol->w.cpuset_mems_allowed; 339 pol->w.cpuset_mems_allowed = *nodes; 340 } else 341 BUG(); 342 } 343 344 if (nodes_empty(tmp)) 345 tmp = *nodes; 346 347 if (step == MPOL_REBIND_STEP1) 348 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 350 pol->v.nodes = tmp; 351 else 352 BUG(); 353 354 if (!node_isset(current->il_next, tmp)) { 355 current->il_next = next_node(current->il_next, tmp); 356 if (current->il_next >= MAX_NUMNODES) 357 current->il_next = first_node(tmp); 358 if (current->il_next >= MAX_NUMNODES) 359 current->il_next = numa_node_id(); 360 } 361 } 362 363 static void mpol_rebind_preferred(struct mempolicy *pol, 364 const nodemask_t *nodes, 365 enum mpol_rebind_step step) 366 { 367 nodemask_t tmp; 368 369 if (pol->flags & MPOL_F_STATIC_NODES) { 370 int node = first_node(pol->w.user_nodemask); 371 372 if (node_isset(node, *nodes)) { 373 pol->v.preferred_node = node; 374 pol->flags &= ~MPOL_F_LOCAL; 375 } else 376 pol->flags |= MPOL_F_LOCAL; 377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 379 pol->v.preferred_node = first_node(tmp); 380 } else if (!(pol->flags & MPOL_F_LOCAL)) { 381 pol->v.preferred_node = node_remap(pol->v.preferred_node, 382 pol->w.cpuset_mems_allowed, 383 *nodes); 384 pol->w.cpuset_mems_allowed = *nodes; 385 } 386 } 387 388 /* 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes 390 * 391 * If read-side task has no lock to protect task->mempolicy, write-side 392 * task will rebind the task->mempolicy by two step. The first step is 393 * setting all the newly nodes, and the second step is cleaning all the 394 * disallowed nodes. In this way, we can avoid finding no node to alloc 395 * page. 396 * If we have a lock to protect task->mempolicy in read-side, we do 397 * rebind directly. 398 * 399 * step: 400 * MPOL_REBIND_ONCE - do rebind work at once 401 * MPOL_REBIND_STEP1 - set all the newly nodes 402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 403 */ 404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 405 enum mpol_rebind_step step) 406 { 407 if (!pol) 408 return; 409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 411 return; 412 413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 414 return; 415 416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 417 BUG(); 418 419 if (step == MPOL_REBIND_STEP1) 420 pol->flags |= MPOL_F_REBINDING; 421 else if (step == MPOL_REBIND_STEP2) 422 pol->flags &= ~MPOL_F_REBINDING; 423 else if (step >= MPOL_REBIND_NSTEP) 424 BUG(); 425 426 mpol_ops[pol->mode].rebind(pol, newmask, step); 427 } 428 429 /* 430 * Wrapper for mpol_rebind_policy() that just requires task 431 * pointer, and updates task mempolicy. 432 * 433 * Called with task's alloc_lock held. 434 */ 435 436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 437 enum mpol_rebind_step step) 438 { 439 mpol_rebind_policy(tsk->mempolicy, new, step); 440 } 441 442 /* 443 * Rebind each vma in mm to new nodemask. 444 * 445 * Call holding a reference to mm. Takes mm->mmap_sem during call. 446 */ 447 448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 449 { 450 struct vm_area_struct *vma; 451 452 down_write(&mm->mmap_sem); 453 for (vma = mm->mmap; vma; vma = vma->vm_next) 454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 455 up_write(&mm->mmap_sem); 456 } 457 458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 459 [MPOL_DEFAULT] = { 460 .rebind = mpol_rebind_default, 461 }, 462 [MPOL_INTERLEAVE] = { 463 .create = mpol_new_interleave, 464 .rebind = mpol_rebind_nodemask, 465 }, 466 [MPOL_PREFERRED] = { 467 .create = mpol_new_preferred, 468 .rebind = mpol_rebind_preferred, 469 }, 470 [MPOL_BIND] = { 471 .create = mpol_new_bind, 472 .rebind = mpol_rebind_nodemask, 473 }, 474 }; 475 476 static void migrate_page_add(struct page *page, struct list_head *pagelist, 477 unsigned long flags); 478 479 /* 480 * Scan through pages checking if pages follow certain conditions, 481 * and move them to the pagelist if they do. 482 */ 483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 484 unsigned long addr, unsigned long end, 485 const nodemask_t *nodes, unsigned long flags, 486 void *private) 487 { 488 pte_t *orig_pte; 489 pte_t *pte; 490 spinlock_t *ptl; 491 492 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 493 do { 494 struct page *page; 495 int nid; 496 497 if (!pte_present(*pte)) 498 continue; 499 page = vm_normal_page(vma, addr, *pte); 500 if (!page) 501 continue; 502 /* 503 * vm_normal_page() filters out zero pages, but there might 504 * still be PageReserved pages to skip, perhaps in a VDSO. 505 */ 506 if (PageReserved(page)) 507 continue; 508 nid = page_to_nid(page); 509 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 510 continue; 511 512 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 513 migrate_page_add(page, private, flags); 514 else 515 break; 516 } while (pte++, addr += PAGE_SIZE, addr != end); 517 pte_unmap_unlock(orig_pte, ptl); 518 return addr != end; 519 } 520 521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma, 522 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags, 523 void *private) 524 { 525 #ifdef CONFIG_HUGETLB_PAGE 526 int nid; 527 struct page *page; 528 spinlock_t *ptl; 529 530 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd); 531 page = pte_page(huge_ptep_get((pte_t *)pmd)); 532 nid = page_to_nid(page); 533 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 534 goto unlock; 535 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 536 if (flags & (MPOL_MF_MOVE_ALL) || 537 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 538 isolate_huge_page(page, private); 539 unlock: 540 spin_unlock(ptl); 541 #else 542 BUG(); 543 #endif 544 } 545 546 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud, 547 unsigned long addr, unsigned long end, 548 const nodemask_t *nodes, unsigned long flags, 549 void *private) 550 { 551 pmd_t *pmd; 552 unsigned long next; 553 554 pmd = pmd_offset(pud, addr); 555 do { 556 next = pmd_addr_end(addr, end); 557 if (!pmd_present(*pmd)) 558 continue; 559 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) { 560 queue_pages_hugetlb_pmd_range(vma, pmd, nodes, 561 flags, private); 562 continue; 563 } 564 split_huge_page_pmd(vma, addr, pmd); 565 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 566 continue; 567 if (queue_pages_pte_range(vma, pmd, addr, next, nodes, 568 flags, private)) 569 return -EIO; 570 } while (pmd++, addr = next, addr != end); 571 return 0; 572 } 573 574 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 575 unsigned long addr, unsigned long end, 576 const nodemask_t *nodes, unsigned long flags, 577 void *private) 578 { 579 pud_t *pud; 580 unsigned long next; 581 582 pud = pud_offset(pgd, addr); 583 do { 584 next = pud_addr_end(addr, end); 585 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) 586 continue; 587 if (pud_none_or_clear_bad(pud)) 588 continue; 589 if (queue_pages_pmd_range(vma, pud, addr, next, nodes, 590 flags, private)) 591 return -EIO; 592 } while (pud++, addr = next, addr != end); 593 return 0; 594 } 595 596 static inline int queue_pages_pgd_range(struct vm_area_struct *vma, 597 unsigned long addr, unsigned long end, 598 const nodemask_t *nodes, unsigned long flags, 599 void *private) 600 { 601 pgd_t *pgd; 602 unsigned long next; 603 604 pgd = pgd_offset(vma->vm_mm, addr); 605 do { 606 next = pgd_addr_end(addr, end); 607 if (pgd_none_or_clear_bad(pgd)) 608 continue; 609 if (queue_pages_pud_range(vma, pgd, addr, next, nodes, 610 flags, private)) 611 return -EIO; 612 } while (pgd++, addr = next, addr != end); 613 return 0; 614 } 615 616 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 617 /* 618 * This is used to mark a range of virtual addresses to be inaccessible. 619 * These are later cleared by a NUMA hinting fault. Depending on these 620 * faults, pages may be migrated for better NUMA placement. 621 * 622 * This is assuming that NUMA faults are handled using PROT_NONE. If 623 * an architecture makes a different choice, it will need further 624 * changes to the core. 625 */ 626 unsigned long change_prot_numa(struct vm_area_struct *vma, 627 unsigned long addr, unsigned long end) 628 { 629 int nr_updated; 630 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE); 631 632 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1); 633 if (nr_updated) 634 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 635 636 return nr_updated; 637 } 638 #else 639 static unsigned long change_prot_numa(struct vm_area_struct *vma, 640 unsigned long addr, unsigned long end) 641 { 642 return 0; 643 } 644 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 645 646 /* 647 * Walk through page tables and collect pages to be migrated. 648 * 649 * If pages found in a given range are on a set of nodes (determined by 650 * @nodes and @flags,) it's isolated and queued to the pagelist which is 651 * passed via @private.) 652 */ 653 static struct vm_area_struct * 654 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 655 const nodemask_t *nodes, unsigned long flags, void *private) 656 { 657 int err; 658 struct vm_area_struct *first, *vma, *prev; 659 660 661 first = find_vma(mm, start); 662 if (!first) 663 return ERR_PTR(-EFAULT); 664 prev = NULL; 665 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 666 unsigned long endvma = vma->vm_end; 667 668 if (endvma > end) 669 endvma = end; 670 if (vma->vm_start > start) 671 start = vma->vm_start; 672 673 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 674 if (!vma->vm_next && vma->vm_end < end) 675 return ERR_PTR(-EFAULT); 676 if (prev && prev->vm_end < vma->vm_start) 677 return ERR_PTR(-EFAULT); 678 } 679 680 if (flags & MPOL_MF_LAZY) { 681 change_prot_numa(vma, start, endvma); 682 goto next; 683 } 684 685 if ((flags & MPOL_MF_STRICT) || 686 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 687 vma_migratable(vma))) { 688 689 err = queue_pages_pgd_range(vma, start, endvma, nodes, 690 flags, private); 691 if (err) { 692 first = ERR_PTR(err); 693 break; 694 } 695 } 696 next: 697 prev = vma; 698 } 699 return first; 700 } 701 702 /* 703 * Apply policy to a single VMA 704 * This must be called with the mmap_sem held for writing. 705 */ 706 static int vma_replace_policy(struct vm_area_struct *vma, 707 struct mempolicy *pol) 708 { 709 int err; 710 struct mempolicy *old; 711 struct mempolicy *new; 712 713 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 714 vma->vm_start, vma->vm_end, vma->vm_pgoff, 715 vma->vm_ops, vma->vm_file, 716 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 717 718 new = mpol_dup(pol); 719 if (IS_ERR(new)) 720 return PTR_ERR(new); 721 722 if (vma->vm_ops && vma->vm_ops->set_policy) { 723 err = vma->vm_ops->set_policy(vma, new); 724 if (err) 725 goto err_out; 726 } 727 728 old = vma->vm_policy; 729 vma->vm_policy = new; /* protected by mmap_sem */ 730 mpol_put(old); 731 732 return 0; 733 err_out: 734 mpol_put(new); 735 return err; 736 } 737 738 /* Step 2: apply policy to a range and do splits. */ 739 static int mbind_range(struct mm_struct *mm, unsigned long start, 740 unsigned long end, struct mempolicy *new_pol) 741 { 742 struct vm_area_struct *next; 743 struct vm_area_struct *prev; 744 struct vm_area_struct *vma; 745 int err = 0; 746 pgoff_t pgoff; 747 unsigned long vmstart; 748 unsigned long vmend; 749 750 vma = find_vma(mm, start); 751 if (!vma || vma->vm_start > start) 752 return -EFAULT; 753 754 prev = vma->vm_prev; 755 if (start > vma->vm_start) 756 prev = vma; 757 758 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 759 next = vma->vm_next; 760 vmstart = max(start, vma->vm_start); 761 vmend = min(end, vma->vm_end); 762 763 if (mpol_equal(vma_policy(vma), new_pol)) 764 continue; 765 766 pgoff = vma->vm_pgoff + 767 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 768 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 769 vma->anon_vma, vma->vm_file, pgoff, 770 new_pol); 771 if (prev) { 772 vma = prev; 773 next = vma->vm_next; 774 if (mpol_equal(vma_policy(vma), new_pol)) 775 continue; 776 /* vma_merge() joined vma && vma->next, case 8 */ 777 goto replace; 778 } 779 if (vma->vm_start != vmstart) { 780 err = split_vma(vma->vm_mm, vma, vmstart, 1); 781 if (err) 782 goto out; 783 } 784 if (vma->vm_end != vmend) { 785 err = split_vma(vma->vm_mm, vma, vmend, 0); 786 if (err) 787 goto out; 788 } 789 replace: 790 err = vma_replace_policy(vma, new_pol); 791 if (err) 792 goto out; 793 } 794 795 out: 796 return err; 797 } 798 799 /* 800 * Update task->flags PF_MEMPOLICY bit: set iff non-default 801 * mempolicy. Allows more rapid checking of this (combined perhaps 802 * with other PF_* flag bits) on memory allocation hot code paths. 803 * 804 * If called from outside this file, the task 'p' should -only- be 805 * a newly forked child not yet visible on the task list, because 806 * manipulating the task flags of a visible task is not safe. 807 * 808 * The above limitation is why this routine has the funny name 809 * mpol_fix_fork_child_flag(). 810 * 811 * It is also safe to call this with a task pointer of current, 812 * which the static wrapper mpol_set_task_struct_flag() does, 813 * for use within this file. 814 */ 815 816 void mpol_fix_fork_child_flag(struct task_struct *p) 817 { 818 if (p->mempolicy) 819 p->flags |= PF_MEMPOLICY; 820 else 821 p->flags &= ~PF_MEMPOLICY; 822 } 823 824 static void mpol_set_task_struct_flag(void) 825 { 826 mpol_fix_fork_child_flag(current); 827 } 828 829 /* Set the process memory policy */ 830 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 831 nodemask_t *nodes) 832 { 833 struct mempolicy *new, *old; 834 struct mm_struct *mm = current->mm; 835 NODEMASK_SCRATCH(scratch); 836 int ret; 837 838 if (!scratch) 839 return -ENOMEM; 840 841 new = mpol_new(mode, flags, nodes); 842 if (IS_ERR(new)) { 843 ret = PTR_ERR(new); 844 goto out; 845 } 846 /* 847 * prevent changing our mempolicy while show_numa_maps() 848 * is using it. 849 * Note: do_set_mempolicy() can be called at init time 850 * with no 'mm'. 851 */ 852 if (mm) 853 down_write(&mm->mmap_sem); 854 task_lock(current); 855 ret = mpol_set_nodemask(new, nodes, scratch); 856 if (ret) { 857 task_unlock(current); 858 if (mm) 859 up_write(&mm->mmap_sem); 860 mpol_put(new); 861 goto out; 862 } 863 old = current->mempolicy; 864 current->mempolicy = new; 865 mpol_set_task_struct_flag(); 866 if (new && new->mode == MPOL_INTERLEAVE && 867 nodes_weight(new->v.nodes)) 868 current->il_next = first_node(new->v.nodes); 869 task_unlock(current); 870 if (mm) 871 up_write(&mm->mmap_sem); 872 873 mpol_put(old); 874 ret = 0; 875 out: 876 NODEMASK_SCRATCH_FREE(scratch); 877 return ret; 878 } 879 880 /* 881 * Return nodemask for policy for get_mempolicy() query 882 * 883 * Called with task's alloc_lock held 884 */ 885 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 886 { 887 nodes_clear(*nodes); 888 if (p == &default_policy) 889 return; 890 891 switch (p->mode) { 892 case MPOL_BIND: 893 /* Fall through */ 894 case MPOL_INTERLEAVE: 895 *nodes = p->v.nodes; 896 break; 897 case MPOL_PREFERRED: 898 if (!(p->flags & MPOL_F_LOCAL)) 899 node_set(p->v.preferred_node, *nodes); 900 /* else return empty node mask for local allocation */ 901 break; 902 default: 903 BUG(); 904 } 905 } 906 907 static int lookup_node(struct mm_struct *mm, unsigned long addr) 908 { 909 struct page *p; 910 int err; 911 912 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 913 if (err >= 0) { 914 err = page_to_nid(p); 915 put_page(p); 916 } 917 return err; 918 } 919 920 /* Retrieve NUMA policy */ 921 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 922 unsigned long addr, unsigned long flags) 923 { 924 int err; 925 struct mm_struct *mm = current->mm; 926 struct vm_area_struct *vma = NULL; 927 struct mempolicy *pol = current->mempolicy; 928 929 if (flags & 930 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 931 return -EINVAL; 932 933 if (flags & MPOL_F_MEMS_ALLOWED) { 934 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 935 return -EINVAL; 936 *policy = 0; /* just so it's initialized */ 937 task_lock(current); 938 *nmask = cpuset_current_mems_allowed; 939 task_unlock(current); 940 return 0; 941 } 942 943 if (flags & MPOL_F_ADDR) { 944 /* 945 * Do NOT fall back to task policy if the 946 * vma/shared policy at addr is NULL. We 947 * want to return MPOL_DEFAULT in this case. 948 */ 949 down_read(&mm->mmap_sem); 950 vma = find_vma_intersection(mm, addr, addr+1); 951 if (!vma) { 952 up_read(&mm->mmap_sem); 953 return -EFAULT; 954 } 955 if (vma->vm_ops && vma->vm_ops->get_policy) 956 pol = vma->vm_ops->get_policy(vma, addr); 957 else 958 pol = vma->vm_policy; 959 } else if (addr) 960 return -EINVAL; 961 962 if (!pol) 963 pol = &default_policy; /* indicates default behavior */ 964 965 if (flags & MPOL_F_NODE) { 966 if (flags & MPOL_F_ADDR) { 967 err = lookup_node(mm, addr); 968 if (err < 0) 969 goto out; 970 *policy = err; 971 } else if (pol == current->mempolicy && 972 pol->mode == MPOL_INTERLEAVE) { 973 *policy = current->il_next; 974 } else { 975 err = -EINVAL; 976 goto out; 977 } 978 } else { 979 *policy = pol == &default_policy ? MPOL_DEFAULT : 980 pol->mode; 981 /* 982 * Internal mempolicy flags must be masked off before exposing 983 * the policy to userspace. 984 */ 985 *policy |= (pol->flags & MPOL_MODE_FLAGS); 986 } 987 988 if (vma) { 989 up_read(¤t->mm->mmap_sem); 990 vma = NULL; 991 } 992 993 err = 0; 994 if (nmask) { 995 if (mpol_store_user_nodemask(pol)) { 996 *nmask = pol->w.user_nodemask; 997 } else { 998 task_lock(current); 999 get_policy_nodemask(pol, nmask); 1000 task_unlock(current); 1001 } 1002 } 1003 1004 out: 1005 mpol_cond_put(pol); 1006 if (vma) 1007 up_read(¤t->mm->mmap_sem); 1008 return err; 1009 } 1010 1011 #ifdef CONFIG_MIGRATION 1012 /* 1013 * page migration 1014 */ 1015 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1016 unsigned long flags) 1017 { 1018 /* 1019 * Avoid migrating a page that is shared with others. 1020 */ 1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 1022 if (!isolate_lru_page(page)) { 1023 list_add_tail(&page->lru, pagelist); 1024 inc_zone_page_state(page, NR_ISOLATED_ANON + 1025 page_is_file_cache(page)); 1026 } 1027 } 1028 } 1029 1030 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 1031 { 1032 if (PageHuge(page)) 1033 return alloc_huge_page_node(page_hstate(compound_head(page)), 1034 node); 1035 else 1036 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 1037 } 1038 1039 /* 1040 * Migrate pages from one node to a target node. 1041 * Returns error or the number of pages not migrated. 1042 */ 1043 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1044 int flags) 1045 { 1046 nodemask_t nmask; 1047 LIST_HEAD(pagelist); 1048 int err = 0; 1049 1050 nodes_clear(nmask); 1051 node_set(source, nmask); 1052 1053 /* 1054 * This does not "check" the range but isolates all pages that 1055 * need migration. Between passing in the full user address 1056 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1057 */ 1058 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1059 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1060 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1061 1062 if (!list_empty(&pagelist)) { 1063 err = migrate_pages(&pagelist, new_node_page, dest, 1064 MIGRATE_SYNC, MR_SYSCALL); 1065 if (err) 1066 putback_movable_pages(&pagelist); 1067 } 1068 1069 return err; 1070 } 1071 1072 /* 1073 * Move pages between the two nodesets so as to preserve the physical 1074 * layout as much as possible. 1075 * 1076 * Returns the number of page that could not be moved. 1077 */ 1078 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1079 const nodemask_t *to, int flags) 1080 { 1081 int busy = 0; 1082 int err; 1083 nodemask_t tmp; 1084 1085 err = migrate_prep(); 1086 if (err) 1087 return err; 1088 1089 down_read(&mm->mmap_sem); 1090 1091 err = migrate_vmas(mm, from, to, flags); 1092 if (err) 1093 goto out; 1094 1095 /* 1096 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1097 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1098 * bit in 'tmp', and return that <source, dest> pair for migration. 1099 * The pair of nodemasks 'to' and 'from' define the map. 1100 * 1101 * If no pair of bits is found that way, fallback to picking some 1102 * pair of 'source' and 'dest' bits that are not the same. If the 1103 * 'source' and 'dest' bits are the same, this represents a node 1104 * that will be migrating to itself, so no pages need move. 1105 * 1106 * If no bits are left in 'tmp', or if all remaining bits left 1107 * in 'tmp' correspond to the same bit in 'to', return false 1108 * (nothing left to migrate). 1109 * 1110 * This lets us pick a pair of nodes to migrate between, such that 1111 * if possible the dest node is not already occupied by some other 1112 * source node, minimizing the risk of overloading the memory on a 1113 * node that would happen if we migrated incoming memory to a node 1114 * before migrating outgoing memory source that same node. 1115 * 1116 * A single scan of tmp is sufficient. As we go, we remember the 1117 * most recent <s, d> pair that moved (s != d). If we find a pair 1118 * that not only moved, but what's better, moved to an empty slot 1119 * (d is not set in tmp), then we break out then, with that pair. 1120 * Otherwise when we finish scanning from_tmp, we at least have the 1121 * most recent <s, d> pair that moved. If we get all the way through 1122 * the scan of tmp without finding any node that moved, much less 1123 * moved to an empty node, then there is nothing left worth migrating. 1124 */ 1125 1126 tmp = *from; 1127 while (!nodes_empty(tmp)) { 1128 int s,d; 1129 int source = NUMA_NO_NODE; 1130 int dest = 0; 1131 1132 for_each_node_mask(s, tmp) { 1133 1134 /* 1135 * do_migrate_pages() tries to maintain the relative 1136 * node relationship of the pages established between 1137 * threads and memory areas. 1138 * 1139 * However if the number of source nodes is not equal to 1140 * the number of destination nodes we can not preserve 1141 * this node relative relationship. In that case, skip 1142 * copying memory from a node that is in the destination 1143 * mask. 1144 * 1145 * Example: [2,3,4] -> [3,4,5] moves everything. 1146 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1147 */ 1148 1149 if ((nodes_weight(*from) != nodes_weight(*to)) && 1150 (node_isset(s, *to))) 1151 continue; 1152 1153 d = node_remap(s, *from, *to); 1154 if (s == d) 1155 continue; 1156 1157 source = s; /* Node moved. Memorize */ 1158 dest = d; 1159 1160 /* dest not in remaining from nodes? */ 1161 if (!node_isset(dest, tmp)) 1162 break; 1163 } 1164 if (source == NUMA_NO_NODE) 1165 break; 1166 1167 node_clear(source, tmp); 1168 err = migrate_to_node(mm, source, dest, flags); 1169 if (err > 0) 1170 busy += err; 1171 if (err < 0) 1172 break; 1173 } 1174 out: 1175 up_read(&mm->mmap_sem); 1176 if (err < 0) 1177 return err; 1178 return busy; 1179 1180 } 1181 1182 /* 1183 * Allocate a new page for page migration based on vma policy. 1184 * Start assuming that page is mapped by vma pointed to by @private. 1185 * Search forward from there, if not. N.B., this assumes that the 1186 * list of pages handed to migrate_pages()--which is how we get here-- 1187 * is in virtual address order. 1188 */ 1189 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1190 { 1191 struct vm_area_struct *vma = (struct vm_area_struct *)private; 1192 unsigned long uninitialized_var(address); 1193 1194 while (vma) { 1195 address = page_address_in_vma(page, vma); 1196 if (address != -EFAULT) 1197 break; 1198 vma = vma->vm_next; 1199 } 1200 /* 1201 * queue_pages_range() confirms that @page belongs to some vma, 1202 * so vma shouldn't be NULL. 1203 */ 1204 BUG_ON(!vma); 1205 1206 if (PageHuge(page)) 1207 return alloc_huge_page_noerr(vma, address, 1); 1208 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1209 } 1210 #else 1211 1212 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1213 unsigned long flags) 1214 { 1215 } 1216 1217 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1218 const nodemask_t *to, int flags) 1219 { 1220 return -ENOSYS; 1221 } 1222 1223 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1224 { 1225 return NULL; 1226 } 1227 #endif 1228 1229 static long do_mbind(unsigned long start, unsigned long len, 1230 unsigned short mode, unsigned short mode_flags, 1231 nodemask_t *nmask, unsigned long flags) 1232 { 1233 struct vm_area_struct *vma; 1234 struct mm_struct *mm = current->mm; 1235 struct mempolicy *new; 1236 unsigned long end; 1237 int err; 1238 LIST_HEAD(pagelist); 1239 1240 if (flags & ~(unsigned long)MPOL_MF_VALID) 1241 return -EINVAL; 1242 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1243 return -EPERM; 1244 1245 if (start & ~PAGE_MASK) 1246 return -EINVAL; 1247 1248 if (mode == MPOL_DEFAULT) 1249 flags &= ~MPOL_MF_STRICT; 1250 1251 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1252 end = start + len; 1253 1254 if (end < start) 1255 return -EINVAL; 1256 if (end == start) 1257 return 0; 1258 1259 new = mpol_new(mode, mode_flags, nmask); 1260 if (IS_ERR(new)) 1261 return PTR_ERR(new); 1262 1263 if (flags & MPOL_MF_LAZY) 1264 new->flags |= MPOL_F_MOF; 1265 1266 /* 1267 * If we are using the default policy then operation 1268 * on discontinuous address spaces is okay after all 1269 */ 1270 if (!new) 1271 flags |= MPOL_MF_DISCONTIG_OK; 1272 1273 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1274 start, start + len, mode, mode_flags, 1275 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1276 1277 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1278 1279 err = migrate_prep(); 1280 if (err) 1281 goto mpol_out; 1282 } 1283 { 1284 NODEMASK_SCRATCH(scratch); 1285 if (scratch) { 1286 down_write(&mm->mmap_sem); 1287 task_lock(current); 1288 err = mpol_set_nodemask(new, nmask, scratch); 1289 task_unlock(current); 1290 if (err) 1291 up_write(&mm->mmap_sem); 1292 } else 1293 err = -ENOMEM; 1294 NODEMASK_SCRATCH_FREE(scratch); 1295 } 1296 if (err) 1297 goto mpol_out; 1298 1299 vma = queue_pages_range(mm, start, end, nmask, 1300 flags | MPOL_MF_INVERT, &pagelist); 1301 1302 err = PTR_ERR(vma); /* maybe ... */ 1303 if (!IS_ERR(vma)) 1304 err = mbind_range(mm, start, end, new); 1305 1306 if (!err) { 1307 int nr_failed = 0; 1308 1309 if (!list_empty(&pagelist)) { 1310 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1311 nr_failed = migrate_pages(&pagelist, new_vma_page, 1312 (unsigned long)vma, 1313 MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1314 if (nr_failed) 1315 putback_movable_pages(&pagelist); 1316 } 1317 1318 if (nr_failed && (flags & MPOL_MF_STRICT)) 1319 err = -EIO; 1320 } else 1321 putback_lru_pages(&pagelist); 1322 1323 up_write(&mm->mmap_sem); 1324 mpol_out: 1325 mpol_put(new); 1326 return err; 1327 } 1328 1329 /* 1330 * User space interface with variable sized bitmaps for nodelists. 1331 */ 1332 1333 /* Copy a node mask from user space. */ 1334 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1335 unsigned long maxnode) 1336 { 1337 unsigned long k; 1338 unsigned long nlongs; 1339 unsigned long endmask; 1340 1341 --maxnode; 1342 nodes_clear(*nodes); 1343 if (maxnode == 0 || !nmask) 1344 return 0; 1345 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1346 return -EINVAL; 1347 1348 nlongs = BITS_TO_LONGS(maxnode); 1349 if ((maxnode % BITS_PER_LONG) == 0) 1350 endmask = ~0UL; 1351 else 1352 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1353 1354 /* When the user specified more nodes than supported just check 1355 if the non supported part is all zero. */ 1356 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1357 if (nlongs > PAGE_SIZE/sizeof(long)) 1358 return -EINVAL; 1359 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1360 unsigned long t; 1361 if (get_user(t, nmask + k)) 1362 return -EFAULT; 1363 if (k == nlongs - 1) { 1364 if (t & endmask) 1365 return -EINVAL; 1366 } else if (t) 1367 return -EINVAL; 1368 } 1369 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1370 endmask = ~0UL; 1371 } 1372 1373 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1374 return -EFAULT; 1375 nodes_addr(*nodes)[nlongs-1] &= endmask; 1376 return 0; 1377 } 1378 1379 /* Copy a kernel node mask to user space */ 1380 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1381 nodemask_t *nodes) 1382 { 1383 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1384 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1385 1386 if (copy > nbytes) { 1387 if (copy > PAGE_SIZE) 1388 return -EINVAL; 1389 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1390 return -EFAULT; 1391 copy = nbytes; 1392 } 1393 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1394 } 1395 1396 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1397 unsigned long, mode, unsigned long __user *, nmask, 1398 unsigned long, maxnode, unsigned, flags) 1399 { 1400 nodemask_t nodes; 1401 int err; 1402 unsigned short mode_flags; 1403 1404 mode_flags = mode & MPOL_MODE_FLAGS; 1405 mode &= ~MPOL_MODE_FLAGS; 1406 if (mode >= MPOL_MAX) 1407 return -EINVAL; 1408 if ((mode_flags & MPOL_F_STATIC_NODES) && 1409 (mode_flags & MPOL_F_RELATIVE_NODES)) 1410 return -EINVAL; 1411 err = get_nodes(&nodes, nmask, maxnode); 1412 if (err) 1413 return err; 1414 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1415 } 1416 1417 /* Set the process memory policy */ 1418 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1419 unsigned long, maxnode) 1420 { 1421 int err; 1422 nodemask_t nodes; 1423 unsigned short flags; 1424 1425 flags = mode & MPOL_MODE_FLAGS; 1426 mode &= ~MPOL_MODE_FLAGS; 1427 if ((unsigned int)mode >= MPOL_MAX) 1428 return -EINVAL; 1429 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1430 return -EINVAL; 1431 err = get_nodes(&nodes, nmask, maxnode); 1432 if (err) 1433 return err; 1434 return do_set_mempolicy(mode, flags, &nodes); 1435 } 1436 1437 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1438 const unsigned long __user *, old_nodes, 1439 const unsigned long __user *, new_nodes) 1440 { 1441 const struct cred *cred = current_cred(), *tcred; 1442 struct mm_struct *mm = NULL; 1443 struct task_struct *task; 1444 nodemask_t task_nodes; 1445 int err; 1446 nodemask_t *old; 1447 nodemask_t *new; 1448 NODEMASK_SCRATCH(scratch); 1449 1450 if (!scratch) 1451 return -ENOMEM; 1452 1453 old = &scratch->mask1; 1454 new = &scratch->mask2; 1455 1456 err = get_nodes(old, old_nodes, maxnode); 1457 if (err) 1458 goto out; 1459 1460 err = get_nodes(new, new_nodes, maxnode); 1461 if (err) 1462 goto out; 1463 1464 /* Find the mm_struct */ 1465 rcu_read_lock(); 1466 task = pid ? find_task_by_vpid(pid) : current; 1467 if (!task) { 1468 rcu_read_unlock(); 1469 err = -ESRCH; 1470 goto out; 1471 } 1472 get_task_struct(task); 1473 1474 err = -EINVAL; 1475 1476 /* 1477 * Check if this process has the right to modify the specified 1478 * process. The right exists if the process has administrative 1479 * capabilities, superuser privileges or the same 1480 * userid as the target process. 1481 */ 1482 tcred = __task_cred(task); 1483 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1484 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1485 !capable(CAP_SYS_NICE)) { 1486 rcu_read_unlock(); 1487 err = -EPERM; 1488 goto out_put; 1489 } 1490 rcu_read_unlock(); 1491 1492 task_nodes = cpuset_mems_allowed(task); 1493 /* Is the user allowed to access the target nodes? */ 1494 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1495 err = -EPERM; 1496 goto out_put; 1497 } 1498 1499 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1500 err = -EINVAL; 1501 goto out_put; 1502 } 1503 1504 err = security_task_movememory(task); 1505 if (err) 1506 goto out_put; 1507 1508 mm = get_task_mm(task); 1509 put_task_struct(task); 1510 1511 if (!mm) { 1512 err = -EINVAL; 1513 goto out; 1514 } 1515 1516 err = do_migrate_pages(mm, old, new, 1517 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1518 1519 mmput(mm); 1520 out: 1521 NODEMASK_SCRATCH_FREE(scratch); 1522 1523 return err; 1524 1525 out_put: 1526 put_task_struct(task); 1527 goto out; 1528 1529 } 1530 1531 1532 /* Retrieve NUMA policy */ 1533 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1534 unsigned long __user *, nmask, unsigned long, maxnode, 1535 unsigned long, addr, unsigned long, flags) 1536 { 1537 int err; 1538 int uninitialized_var(pval); 1539 nodemask_t nodes; 1540 1541 if (nmask != NULL && maxnode < MAX_NUMNODES) 1542 return -EINVAL; 1543 1544 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1545 1546 if (err) 1547 return err; 1548 1549 if (policy && put_user(pval, policy)) 1550 return -EFAULT; 1551 1552 if (nmask) 1553 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1554 1555 return err; 1556 } 1557 1558 #ifdef CONFIG_COMPAT 1559 1560 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1561 compat_ulong_t __user *nmask, 1562 compat_ulong_t maxnode, 1563 compat_ulong_t addr, compat_ulong_t flags) 1564 { 1565 long err; 1566 unsigned long __user *nm = NULL; 1567 unsigned long nr_bits, alloc_size; 1568 DECLARE_BITMAP(bm, MAX_NUMNODES); 1569 1570 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1571 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1572 1573 if (nmask) 1574 nm = compat_alloc_user_space(alloc_size); 1575 1576 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1577 1578 if (!err && nmask) { 1579 unsigned long copy_size; 1580 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1581 err = copy_from_user(bm, nm, copy_size); 1582 /* ensure entire bitmap is zeroed */ 1583 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1584 err |= compat_put_bitmap(nmask, bm, nr_bits); 1585 } 1586 1587 return err; 1588 } 1589 1590 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1591 compat_ulong_t maxnode) 1592 { 1593 long err = 0; 1594 unsigned long __user *nm = NULL; 1595 unsigned long nr_bits, alloc_size; 1596 DECLARE_BITMAP(bm, MAX_NUMNODES); 1597 1598 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1599 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1600 1601 if (nmask) { 1602 err = compat_get_bitmap(bm, nmask, nr_bits); 1603 nm = compat_alloc_user_space(alloc_size); 1604 err |= copy_to_user(nm, bm, alloc_size); 1605 } 1606 1607 if (err) 1608 return -EFAULT; 1609 1610 return sys_set_mempolicy(mode, nm, nr_bits+1); 1611 } 1612 1613 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1614 compat_ulong_t mode, compat_ulong_t __user *nmask, 1615 compat_ulong_t maxnode, compat_ulong_t flags) 1616 { 1617 long err = 0; 1618 unsigned long __user *nm = NULL; 1619 unsigned long nr_bits, alloc_size; 1620 nodemask_t bm; 1621 1622 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1623 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1624 1625 if (nmask) { 1626 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1627 nm = compat_alloc_user_space(alloc_size); 1628 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1629 } 1630 1631 if (err) 1632 return -EFAULT; 1633 1634 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1635 } 1636 1637 #endif 1638 1639 /* 1640 * get_vma_policy(@task, @vma, @addr) 1641 * @task - task for fallback if vma policy == default 1642 * @vma - virtual memory area whose policy is sought 1643 * @addr - address in @vma for shared policy lookup 1644 * 1645 * Returns effective policy for a VMA at specified address. 1646 * Falls back to @task or system default policy, as necessary. 1647 * Current or other task's task mempolicy and non-shared vma policies must be 1648 * protected by task_lock(task) by the caller. 1649 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1650 * count--added by the get_policy() vm_op, as appropriate--to protect against 1651 * freeing by another task. It is the caller's responsibility to free the 1652 * extra reference for shared policies. 1653 */ 1654 struct mempolicy *get_vma_policy(struct task_struct *task, 1655 struct vm_area_struct *vma, unsigned long addr) 1656 { 1657 struct mempolicy *pol = get_task_policy(task); 1658 1659 if (vma) { 1660 if (vma->vm_ops && vma->vm_ops->get_policy) { 1661 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1662 addr); 1663 if (vpol) 1664 pol = vpol; 1665 } else if (vma->vm_policy) { 1666 pol = vma->vm_policy; 1667 1668 /* 1669 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1670 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1671 * count on these policies which will be dropped by 1672 * mpol_cond_put() later 1673 */ 1674 if (mpol_needs_cond_ref(pol)) 1675 mpol_get(pol); 1676 } 1677 } 1678 if (!pol) 1679 pol = &default_policy; 1680 return pol; 1681 } 1682 1683 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma) 1684 { 1685 struct mempolicy *pol = get_task_policy(task); 1686 if (vma) { 1687 if (vma->vm_ops && vma->vm_ops->get_policy) { 1688 bool ret = false; 1689 1690 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1691 if (pol && (pol->flags & MPOL_F_MOF)) 1692 ret = true; 1693 mpol_cond_put(pol); 1694 1695 return ret; 1696 } else if (vma->vm_policy) { 1697 pol = vma->vm_policy; 1698 } 1699 } 1700 1701 if (!pol) 1702 return default_policy.flags & MPOL_F_MOF; 1703 1704 return pol->flags & MPOL_F_MOF; 1705 } 1706 1707 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1708 { 1709 enum zone_type dynamic_policy_zone = policy_zone; 1710 1711 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1712 1713 /* 1714 * if policy->v.nodes has movable memory only, 1715 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1716 * 1717 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1718 * so if the following test faile, it implies 1719 * policy->v.nodes has movable memory only. 1720 */ 1721 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1722 dynamic_policy_zone = ZONE_MOVABLE; 1723 1724 return zone >= dynamic_policy_zone; 1725 } 1726 1727 /* 1728 * Return a nodemask representing a mempolicy for filtering nodes for 1729 * page allocation 1730 */ 1731 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1732 { 1733 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1734 if (unlikely(policy->mode == MPOL_BIND) && 1735 apply_policy_zone(policy, gfp_zone(gfp)) && 1736 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1737 return &policy->v.nodes; 1738 1739 return NULL; 1740 } 1741 1742 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1743 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1744 int nd) 1745 { 1746 switch (policy->mode) { 1747 case MPOL_PREFERRED: 1748 if (!(policy->flags & MPOL_F_LOCAL)) 1749 nd = policy->v.preferred_node; 1750 break; 1751 case MPOL_BIND: 1752 /* 1753 * Normally, MPOL_BIND allocations are node-local within the 1754 * allowed nodemask. However, if __GFP_THISNODE is set and the 1755 * current node isn't part of the mask, we use the zonelist for 1756 * the first node in the mask instead. 1757 */ 1758 if (unlikely(gfp & __GFP_THISNODE) && 1759 unlikely(!node_isset(nd, policy->v.nodes))) 1760 nd = first_node(policy->v.nodes); 1761 break; 1762 default: 1763 BUG(); 1764 } 1765 return node_zonelist(nd, gfp); 1766 } 1767 1768 /* Do dynamic interleaving for a process */ 1769 static unsigned interleave_nodes(struct mempolicy *policy) 1770 { 1771 unsigned nid, next; 1772 struct task_struct *me = current; 1773 1774 nid = me->il_next; 1775 next = next_node(nid, policy->v.nodes); 1776 if (next >= MAX_NUMNODES) 1777 next = first_node(policy->v.nodes); 1778 if (next < MAX_NUMNODES) 1779 me->il_next = next; 1780 return nid; 1781 } 1782 1783 /* 1784 * Depending on the memory policy provide a node from which to allocate the 1785 * next slab entry. 1786 * @policy must be protected by freeing by the caller. If @policy is 1787 * the current task's mempolicy, this protection is implicit, as only the 1788 * task can change it's policy. The system default policy requires no 1789 * such protection. 1790 */ 1791 unsigned slab_node(void) 1792 { 1793 struct mempolicy *policy; 1794 1795 if (in_interrupt()) 1796 return numa_node_id(); 1797 1798 policy = current->mempolicy; 1799 if (!policy || policy->flags & MPOL_F_LOCAL) 1800 return numa_node_id(); 1801 1802 switch (policy->mode) { 1803 case MPOL_PREFERRED: 1804 /* 1805 * handled MPOL_F_LOCAL above 1806 */ 1807 return policy->v.preferred_node; 1808 1809 case MPOL_INTERLEAVE: 1810 return interleave_nodes(policy); 1811 1812 case MPOL_BIND: { 1813 /* 1814 * Follow bind policy behavior and start allocation at the 1815 * first node. 1816 */ 1817 struct zonelist *zonelist; 1818 struct zone *zone; 1819 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1820 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1821 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1822 &policy->v.nodes, 1823 &zone); 1824 return zone ? zone->node : numa_node_id(); 1825 } 1826 1827 default: 1828 BUG(); 1829 } 1830 } 1831 1832 /* Do static interleaving for a VMA with known offset. */ 1833 static unsigned offset_il_node(struct mempolicy *pol, 1834 struct vm_area_struct *vma, unsigned long off) 1835 { 1836 unsigned nnodes = nodes_weight(pol->v.nodes); 1837 unsigned target; 1838 int c; 1839 int nid = NUMA_NO_NODE; 1840 1841 if (!nnodes) 1842 return numa_node_id(); 1843 target = (unsigned int)off % nnodes; 1844 c = 0; 1845 do { 1846 nid = next_node(nid, pol->v.nodes); 1847 c++; 1848 } while (c <= target); 1849 return nid; 1850 } 1851 1852 /* Determine a node number for interleave */ 1853 static inline unsigned interleave_nid(struct mempolicy *pol, 1854 struct vm_area_struct *vma, unsigned long addr, int shift) 1855 { 1856 if (vma) { 1857 unsigned long off; 1858 1859 /* 1860 * for small pages, there is no difference between 1861 * shift and PAGE_SHIFT, so the bit-shift is safe. 1862 * for huge pages, since vm_pgoff is in units of small 1863 * pages, we need to shift off the always 0 bits to get 1864 * a useful offset. 1865 */ 1866 BUG_ON(shift < PAGE_SHIFT); 1867 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1868 off += (addr - vma->vm_start) >> shift; 1869 return offset_il_node(pol, vma, off); 1870 } else 1871 return interleave_nodes(pol); 1872 } 1873 1874 /* 1875 * Return the bit number of a random bit set in the nodemask. 1876 * (returns NUMA_NO_NODE if nodemask is empty) 1877 */ 1878 int node_random(const nodemask_t *maskp) 1879 { 1880 int w, bit = NUMA_NO_NODE; 1881 1882 w = nodes_weight(*maskp); 1883 if (w) 1884 bit = bitmap_ord_to_pos(maskp->bits, 1885 get_random_int() % w, MAX_NUMNODES); 1886 return bit; 1887 } 1888 1889 #ifdef CONFIG_HUGETLBFS 1890 /* 1891 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1892 * @vma = virtual memory area whose policy is sought 1893 * @addr = address in @vma for shared policy lookup and interleave policy 1894 * @gfp_flags = for requested zone 1895 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1896 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1897 * 1898 * Returns a zonelist suitable for a huge page allocation and a pointer 1899 * to the struct mempolicy for conditional unref after allocation. 1900 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1901 * @nodemask for filtering the zonelist. 1902 * 1903 * Must be protected by get_mems_allowed() 1904 */ 1905 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1906 gfp_t gfp_flags, struct mempolicy **mpol, 1907 nodemask_t **nodemask) 1908 { 1909 struct zonelist *zl; 1910 1911 *mpol = get_vma_policy(current, vma, addr); 1912 *nodemask = NULL; /* assume !MPOL_BIND */ 1913 1914 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1915 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1916 huge_page_shift(hstate_vma(vma))), gfp_flags); 1917 } else { 1918 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1919 if ((*mpol)->mode == MPOL_BIND) 1920 *nodemask = &(*mpol)->v.nodes; 1921 } 1922 return zl; 1923 } 1924 1925 /* 1926 * init_nodemask_of_mempolicy 1927 * 1928 * If the current task's mempolicy is "default" [NULL], return 'false' 1929 * to indicate default policy. Otherwise, extract the policy nodemask 1930 * for 'bind' or 'interleave' policy into the argument nodemask, or 1931 * initialize the argument nodemask to contain the single node for 1932 * 'preferred' or 'local' policy and return 'true' to indicate presence 1933 * of non-default mempolicy. 1934 * 1935 * We don't bother with reference counting the mempolicy [mpol_get/put] 1936 * because the current task is examining it's own mempolicy and a task's 1937 * mempolicy is only ever changed by the task itself. 1938 * 1939 * N.B., it is the caller's responsibility to free a returned nodemask. 1940 */ 1941 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1942 { 1943 struct mempolicy *mempolicy; 1944 int nid; 1945 1946 if (!(mask && current->mempolicy)) 1947 return false; 1948 1949 task_lock(current); 1950 mempolicy = current->mempolicy; 1951 switch (mempolicy->mode) { 1952 case MPOL_PREFERRED: 1953 if (mempolicy->flags & MPOL_F_LOCAL) 1954 nid = numa_node_id(); 1955 else 1956 nid = mempolicy->v.preferred_node; 1957 init_nodemask_of_node(mask, nid); 1958 break; 1959 1960 case MPOL_BIND: 1961 /* Fall through */ 1962 case MPOL_INTERLEAVE: 1963 *mask = mempolicy->v.nodes; 1964 break; 1965 1966 default: 1967 BUG(); 1968 } 1969 task_unlock(current); 1970 1971 return true; 1972 } 1973 #endif 1974 1975 /* 1976 * mempolicy_nodemask_intersects 1977 * 1978 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1979 * policy. Otherwise, check for intersection between mask and the policy 1980 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1981 * policy, always return true since it may allocate elsewhere on fallback. 1982 * 1983 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1984 */ 1985 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1986 const nodemask_t *mask) 1987 { 1988 struct mempolicy *mempolicy; 1989 bool ret = true; 1990 1991 if (!mask) 1992 return ret; 1993 task_lock(tsk); 1994 mempolicy = tsk->mempolicy; 1995 if (!mempolicy) 1996 goto out; 1997 1998 switch (mempolicy->mode) { 1999 case MPOL_PREFERRED: 2000 /* 2001 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2002 * allocate from, they may fallback to other nodes when oom. 2003 * Thus, it's possible for tsk to have allocated memory from 2004 * nodes in mask. 2005 */ 2006 break; 2007 case MPOL_BIND: 2008 case MPOL_INTERLEAVE: 2009 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2010 break; 2011 default: 2012 BUG(); 2013 } 2014 out: 2015 task_unlock(tsk); 2016 return ret; 2017 } 2018 2019 /* Allocate a page in interleaved policy. 2020 Own path because it needs to do special accounting. */ 2021 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2022 unsigned nid) 2023 { 2024 struct zonelist *zl; 2025 struct page *page; 2026 2027 zl = node_zonelist(nid, gfp); 2028 page = __alloc_pages(gfp, order, zl); 2029 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 2030 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 2031 return page; 2032 } 2033 2034 /** 2035 * alloc_pages_vma - Allocate a page for a VMA. 2036 * 2037 * @gfp: 2038 * %GFP_USER user allocation. 2039 * %GFP_KERNEL kernel allocations, 2040 * %GFP_HIGHMEM highmem/user allocations, 2041 * %GFP_FS allocation should not call back into a file system. 2042 * %GFP_ATOMIC don't sleep. 2043 * 2044 * @order:Order of the GFP allocation. 2045 * @vma: Pointer to VMA or NULL if not available. 2046 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2047 * 2048 * This function allocates a page from the kernel page pool and applies 2049 * a NUMA policy associated with the VMA or the current process. 2050 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2051 * mm_struct of the VMA to prevent it from going away. Should be used for 2052 * all allocations for pages that will be mapped into 2053 * user space. Returns NULL when no page can be allocated. 2054 * 2055 * Should be called with the mm_sem of the vma hold. 2056 */ 2057 struct page * 2058 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2059 unsigned long addr, int node) 2060 { 2061 struct mempolicy *pol; 2062 struct page *page; 2063 unsigned int cpuset_mems_cookie; 2064 2065 retry_cpuset: 2066 pol = get_vma_policy(current, vma, addr); 2067 cpuset_mems_cookie = get_mems_allowed(); 2068 2069 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 2070 unsigned nid; 2071 2072 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2073 mpol_cond_put(pol); 2074 page = alloc_page_interleave(gfp, order, nid); 2075 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2076 goto retry_cpuset; 2077 2078 return page; 2079 } 2080 page = __alloc_pages_nodemask(gfp, order, 2081 policy_zonelist(gfp, pol, node), 2082 policy_nodemask(gfp, pol)); 2083 if (unlikely(mpol_needs_cond_ref(pol))) 2084 __mpol_put(pol); 2085 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2086 goto retry_cpuset; 2087 return page; 2088 } 2089 2090 /** 2091 * alloc_pages_current - Allocate pages. 2092 * 2093 * @gfp: 2094 * %GFP_USER user allocation, 2095 * %GFP_KERNEL kernel allocation, 2096 * %GFP_HIGHMEM highmem allocation, 2097 * %GFP_FS don't call back into a file system. 2098 * %GFP_ATOMIC don't sleep. 2099 * @order: Power of two of allocation size in pages. 0 is a single page. 2100 * 2101 * Allocate a page from the kernel page pool. When not in 2102 * interrupt context and apply the current process NUMA policy. 2103 * Returns NULL when no page can be allocated. 2104 * 2105 * Don't call cpuset_update_task_memory_state() unless 2106 * 1) it's ok to take cpuset_sem (can WAIT), and 2107 * 2) allocating for current task (not interrupt). 2108 */ 2109 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2110 { 2111 struct mempolicy *pol = get_task_policy(current); 2112 struct page *page; 2113 unsigned int cpuset_mems_cookie; 2114 2115 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 2116 pol = &default_policy; 2117 2118 retry_cpuset: 2119 cpuset_mems_cookie = get_mems_allowed(); 2120 2121 /* 2122 * No reference counting needed for current->mempolicy 2123 * nor system default_policy 2124 */ 2125 if (pol->mode == MPOL_INTERLEAVE) 2126 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2127 else 2128 page = __alloc_pages_nodemask(gfp, order, 2129 policy_zonelist(gfp, pol, numa_node_id()), 2130 policy_nodemask(gfp, pol)); 2131 2132 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2133 goto retry_cpuset; 2134 2135 return page; 2136 } 2137 EXPORT_SYMBOL(alloc_pages_current); 2138 2139 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2140 { 2141 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2142 2143 if (IS_ERR(pol)) 2144 return PTR_ERR(pol); 2145 dst->vm_policy = pol; 2146 return 0; 2147 } 2148 2149 /* 2150 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2151 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2152 * with the mems_allowed returned by cpuset_mems_allowed(). This 2153 * keeps mempolicies cpuset relative after its cpuset moves. See 2154 * further kernel/cpuset.c update_nodemask(). 2155 * 2156 * current's mempolicy may be rebinded by the other task(the task that changes 2157 * cpuset's mems), so we needn't do rebind work for current task. 2158 */ 2159 2160 /* Slow path of a mempolicy duplicate */ 2161 struct mempolicy *__mpol_dup(struct mempolicy *old) 2162 { 2163 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2164 2165 if (!new) 2166 return ERR_PTR(-ENOMEM); 2167 2168 /* task's mempolicy is protected by alloc_lock */ 2169 if (old == current->mempolicy) { 2170 task_lock(current); 2171 *new = *old; 2172 task_unlock(current); 2173 } else 2174 *new = *old; 2175 2176 rcu_read_lock(); 2177 if (current_cpuset_is_being_rebound()) { 2178 nodemask_t mems = cpuset_mems_allowed(current); 2179 if (new->flags & MPOL_F_REBINDING) 2180 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2181 else 2182 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2183 } 2184 rcu_read_unlock(); 2185 atomic_set(&new->refcnt, 1); 2186 return new; 2187 } 2188 2189 /* Slow path of a mempolicy comparison */ 2190 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2191 { 2192 if (!a || !b) 2193 return false; 2194 if (a->mode != b->mode) 2195 return false; 2196 if (a->flags != b->flags) 2197 return false; 2198 if (mpol_store_user_nodemask(a)) 2199 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2200 return false; 2201 2202 switch (a->mode) { 2203 case MPOL_BIND: 2204 /* Fall through */ 2205 case MPOL_INTERLEAVE: 2206 return !!nodes_equal(a->v.nodes, b->v.nodes); 2207 case MPOL_PREFERRED: 2208 return a->v.preferred_node == b->v.preferred_node; 2209 default: 2210 BUG(); 2211 return false; 2212 } 2213 } 2214 2215 /* 2216 * Shared memory backing store policy support. 2217 * 2218 * Remember policies even when nobody has shared memory mapped. 2219 * The policies are kept in Red-Black tree linked from the inode. 2220 * They are protected by the sp->lock spinlock, which should be held 2221 * for any accesses to the tree. 2222 */ 2223 2224 /* lookup first element intersecting start-end */ 2225 /* Caller holds sp->lock */ 2226 static struct sp_node * 2227 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2228 { 2229 struct rb_node *n = sp->root.rb_node; 2230 2231 while (n) { 2232 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2233 2234 if (start >= p->end) 2235 n = n->rb_right; 2236 else if (end <= p->start) 2237 n = n->rb_left; 2238 else 2239 break; 2240 } 2241 if (!n) 2242 return NULL; 2243 for (;;) { 2244 struct sp_node *w = NULL; 2245 struct rb_node *prev = rb_prev(n); 2246 if (!prev) 2247 break; 2248 w = rb_entry(prev, struct sp_node, nd); 2249 if (w->end <= start) 2250 break; 2251 n = prev; 2252 } 2253 return rb_entry(n, struct sp_node, nd); 2254 } 2255 2256 /* Insert a new shared policy into the list. */ 2257 /* Caller holds sp->lock */ 2258 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2259 { 2260 struct rb_node **p = &sp->root.rb_node; 2261 struct rb_node *parent = NULL; 2262 struct sp_node *nd; 2263 2264 while (*p) { 2265 parent = *p; 2266 nd = rb_entry(parent, struct sp_node, nd); 2267 if (new->start < nd->start) 2268 p = &(*p)->rb_left; 2269 else if (new->end > nd->end) 2270 p = &(*p)->rb_right; 2271 else 2272 BUG(); 2273 } 2274 rb_link_node(&new->nd, parent, p); 2275 rb_insert_color(&new->nd, &sp->root); 2276 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2277 new->policy ? new->policy->mode : 0); 2278 } 2279 2280 /* Find shared policy intersecting idx */ 2281 struct mempolicy * 2282 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2283 { 2284 struct mempolicy *pol = NULL; 2285 struct sp_node *sn; 2286 2287 if (!sp->root.rb_node) 2288 return NULL; 2289 spin_lock(&sp->lock); 2290 sn = sp_lookup(sp, idx, idx+1); 2291 if (sn) { 2292 mpol_get(sn->policy); 2293 pol = sn->policy; 2294 } 2295 spin_unlock(&sp->lock); 2296 return pol; 2297 } 2298 2299 static void sp_free(struct sp_node *n) 2300 { 2301 mpol_put(n->policy); 2302 kmem_cache_free(sn_cache, n); 2303 } 2304 2305 #ifdef CONFIG_NUMA_BALANCING 2306 static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid) 2307 { 2308 /* Never defer a private fault */ 2309 if (cpupid_match_pid(p, last_cpupid)) 2310 return false; 2311 2312 if (p->numa_migrate_deferred) { 2313 p->numa_migrate_deferred--; 2314 return true; 2315 } 2316 return false; 2317 } 2318 2319 static inline void defer_numa_migrate(struct task_struct *p) 2320 { 2321 p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred; 2322 } 2323 #else 2324 static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid) 2325 { 2326 return false; 2327 } 2328 2329 static inline void defer_numa_migrate(struct task_struct *p) 2330 { 2331 } 2332 #endif /* CONFIG_NUMA_BALANCING */ 2333 2334 /** 2335 * mpol_misplaced - check whether current page node is valid in policy 2336 * 2337 * @page - page to be checked 2338 * @vma - vm area where page mapped 2339 * @addr - virtual address where page mapped 2340 * 2341 * Lookup current policy node id for vma,addr and "compare to" page's 2342 * node id. 2343 * 2344 * Returns: 2345 * -1 - not misplaced, page is in the right node 2346 * node - node id where the page should be 2347 * 2348 * Policy determination "mimics" alloc_page_vma(). 2349 * Called from fault path where we know the vma and faulting address. 2350 */ 2351 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2352 { 2353 struct mempolicy *pol; 2354 struct zone *zone; 2355 int curnid = page_to_nid(page); 2356 unsigned long pgoff; 2357 int thiscpu = raw_smp_processor_id(); 2358 int thisnid = cpu_to_node(thiscpu); 2359 int polnid = -1; 2360 int ret = -1; 2361 2362 BUG_ON(!vma); 2363 2364 pol = get_vma_policy(current, vma, addr); 2365 if (!(pol->flags & MPOL_F_MOF)) 2366 goto out; 2367 2368 switch (pol->mode) { 2369 case MPOL_INTERLEAVE: 2370 BUG_ON(addr >= vma->vm_end); 2371 BUG_ON(addr < vma->vm_start); 2372 2373 pgoff = vma->vm_pgoff; 2374 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2375 polnid = offset_il_node(pol, vma, pgoff); 2376 break; 2377 2378 case MPOL_PREFERRED: 2379 if (pol->flags & MPOL_F_LOCAL) 2380 polnid = numa_node_id(); 2381 else 2382 polnid = pol->v.preferred_node; 2383 break; 2384 2385 case MPOL_BIND: 2386 /* 2387 * allows binding to multiple nodes. 2388 * use current page if in policy nodemask, 2389 * else select nearest allowed node, if any. 2390 * If no allowed nodes, use current [!misplaced]. 2391 */ 2392 if (node_isset(curnid, pol->v.nodes)) 2393 goto out; 2394 (void)first_zones_zonelist( 2395 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2396 gfp_zone(GFP_HIGHUSER), 2397 &pol->v.nodes, &zone); 2398 polnid = zone->node; 2399 break; 2400 2401 default: 2402 BUG(); 2403 } 2404 2405 /* Migrate the page towards the node whose CPU is referencing it */ 2406 if (pol->flags & MPOL_F_MORON) { 2407 int last_cpupid; 2408 int this_cpupid; 2409 2410 polnid = thisnid; 2411 this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid); 2412 2413 /* 2414 * Multi-stage node selection is used in conjunction 2415 * with a periodic migration fault to build a temporal 2416 * task<->page relation. By using a two-stage filter we 2417 * remove short/unlikely relations. 2418 * 2419 * Using P(p) ~ n_p / n_t as per frequentist 2420 * probability, we can equate a task's usage of a 2421 * particular page (n_p) per total usage of this 2422 * page (n_t) (in a given time-span) to a probability. 2423 * 2424 * Our periodic faults will sample this probability and 2425 * getting the same result twice in a row, given these 2426 * samples are fully independent, is then given by 2427 * P(n)^2, provided our sample period is sufficiently 2428 * short compared to the usage pattern. 2429 * 2430 * This quadric squishes small probabilities, making 2431 * it less likely we act on an unlikely task<->page 2432 * relation. 2433 */ 2434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 2435 if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) { 2436 2437 /* See sysctl_numa_balancing_migrate_deferred comment */ 2438 if (!cpupid_match_pid(current, last_cpupid)) 2439 defer_numa_migrate(current); 2440 2441 goto out; 2442 } 2443 2444 /* 2445 * The quadratic filter above reduces extraneous migration 2446 * of shared pages somewhat. This code reduces it even more, 2447 * reducing the overhead of page migrations of shared pages. 2448 * This makes workloads with shared pages rely more on 2449 * "move task near its memory", and less on "move memory 2450 * towards its task", which is exactly what we want. 2451 */ 2452 if (numa_migrate_deferred(current, last_cpupid)) 2453 goto out; 2454 } 2455 2456 if (curnid != polnid) 2457 ret = polnid; 2458 out: 2459 mpol_cond_put(pol); 2460 2461 return ret; 2462 } 2463 2464 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2465 { 2466 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2467 rb_erase(&n->nd, &sp->root); 2468 sp_free(n); 2469 } 2470 2471 static void sp_node_init(struct sp_node *node, unsigned long start, 2472 unsigned long end, struct mempolicy *pol) 2473 { 2474 node->start = start; 2475 node->end = end; 2476 node->policy = pol; 2477 } 2478 2479 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2480 struct mempolicy *pol) 2481 { 2482 struct sp_node *n; 2483 struct mempolicy *newpol; 2484 2485 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2486 if (!n) 2487 return NULL; 2488 2489 newpol = mpol_dup(pol); 2490 if (IS_ERR(newpol)) { 2491 kmem_cache_free(sn_cache, n); 2492 return NULL; 2493 } 2494 newpol->flags |= MPOL_F_SHARED; 2495 sp_node_init(n, start, end, newpol); 2496 2497 return n; 2498 } 2499 2500 /* Replace a policy range. */ 2501 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2502 unsigned long end, struct sp_node *new) 2503 { 2504 struct sp_node *n; 2505 struct sp_node *n_new = NULL; 2506 struct mempolicy *mpol_new = NULL; 2507 int ret = 0; 2508 2509 restart: 2510 spin_lock(&sp->lock); 2511 n = sp_lookup(sp, start, end); 2512 /* Take care of old policies in the same range. */ 2513 while (n && n->start < end) { 2514 struct rb_node *next = rb_next(&n->nd); 2515 if (n->start >= start) { 2516 if (n->end <= end) 2517 sp_delete(sp, n); 2518 else 2519 n->start = end; 2520 } else { 2521 /* Old policy spanning whole new range. */ 2522 if (n->end > end) { 2523 if (!n_new) 2524 goto alloc_new; 2525 2526 *mpol_new = *n->policy; 2527 atomic_set(&mpol_new->refcnt, 1); 2528 sp_node_init(n_new, end, n->end, mpol_new); 2529 n->end = start; 2530 sp_insert(sp, n_new); 2531 n_new = NULL; 2532 mpol_new = NULL; 2533 break; 2534 } else 2535 n->end = start; 2536 } 2537 if (!next) 2538 break; 2539 n = rb_entry(next, struct sp_node, nd); 2540 } 2541 if (new) 2542 sp_insert(sp, new); 2543 spin_unlock(&sp->lock); 2544 ret = 0; 2545 2546 err_out: 2547 if (mpol_new) 2548 mpol_put(mpol_new); 2549 if (n_new) 2550 kmem_cache_free(sn_cache, n_new); 2551 2552 return ret; 2553 2554 alloc_new: 2555 spin_unlock(&sp->lock); 2556 ret = -ENOMEM; 2557 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2558 if (!n_new) 2559 goto err_out; 2560 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2561 if (!mpol_new) 2562 goto err_out; 2563 goto restart; 2564 } 2565 2566 /** 2567 * mpol_shared_policy_init - initialize shared policy for inode 2568 * @sp: pointer to inode shared policy 2569 * @mpol: struct mempolicy to install 2570 * 2571 * Install non-NULL @mpol in inode's shared policy rb-tree. 2572 * On entry, the current task has a reference on a non-NULL @mpol. 2573 * This must be released on exit. 2574 * This is called at get_inode() calls and we can use GFP_KERNEL. 2575 */ 2576 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2577 { 2578 int ret; 2579 2580 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2581 spin_lock_init(&sp->lock); 2582 2583 if (mpol) { 2584 struct vm_area_struct pvma; 2585 struct mempolicy *new; 2586 NODEMASK_SCRATCH(scratch); 2587 2588 if (!scratch) 2589 goto put_mpol; 2590 /* contextualize the tmpfs mount point mempolicy */ 2591 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2592 if (IS_ERR(new)) 2593 goto free_scratch; /* no valid nodemask intersection */ 2594 2595 task_lock(current); 2596 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2597 task_unlock(current); 2598 if (ret) 2599 goto put_new; 2600 2601 /* Create pseudo-vma that contains just the policy */ 2602 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2603 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2604 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2605 2606 put_new: 2607 mpol_put(new); /* drop initial ref */ 2608 free_scratch: 2609 NODEMASK_SCRATCH_FREE(scratch); 2610 put_mpol: 2611 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2612 } 2613 } 2614 2615 int mpol_set_shared_policy(struct shared_policy *info, 2616 struct vm_area_struct *vma, struct mempolicy *npol) 2617 { 2618 int err; 2619 struct sp_node *new = NULL; 2620 unsigned long sz = vma_pages(vma); 2621 2622 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2623 vma->vm_pgoff, 2624 sz, npol ? npol->mode : -1, 2625 npol ? npol->flags : -1, 2626 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2627 2628 if (npol) { 2629 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2630 if (!new) 2631 return -ENOMEM; 2632 } 2633 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2634 if (err && new) 2635 sp_free(new); 2636 return err; 2637 } 2638 2639 /* Free a backing policy store on inode delete. */ 2640 void mpol_free_shared_policy(struct shared_policy *p) 2641 { 2642 struct sp_node *n; 2643 struct rb_node *next; 2644 2645 if (!p->root.rb_node) 2646 return; 2647 spin_lock(&p->lock); 2648 next = rb_first(&p->root); 2649 while (next) { 2650 n = rb_entry(next, struct sp_node, nd); 2651 next = rb_next(&n->nd); 2652 sp_delete(p, n); 2653 } 2654 spin_unlock(&p->lock); 2655 } 2656 2657 #ifdef CONFIG_NUMA_BALANCING 2658 static bool __initdata numabalancing_override; 2659 2660 static void __init check_numabalancing_enable(void) 2661 { 2662 bool numabalancing_default = false; 2663 2664 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2665 numabalancing_default = true; 2666 2667 if (nr_node_ids > 1 && !numabalancing_override) { 2668 printk(KERN_INFO "Enabling automatic NUMA balancing. " 2669 "Configure with numa_balancing= or sysctl"); 2670 set_numabalancing_state(numabalancing_default); 2671 } 2672 } 2673 2674 static int __init setup_numabalancing(char *str) 2675 { 2676 int ret = 0; 2677 if (!str) 2678 goto out; 2679 numabalancing_override = true; 2680 2681 if (!strcmp(str, "enable")) { 2682 set_numabalancing_state(true); 2683 ret = 1; 2684 } else if (!strcmp(str, "disable")) { 2685 set_numabalancing_state(false); 2686 ret = 1; 2687 } 2688 out: 2689 if (!ret) 2690 printk(KERN_WARNING "Unable to parse numa_balancing=\n"); 2691 2692 return ret; 2693 } 2694 __setup("numa_balancing=", setup_numabalancing); 2695 #else 2696 static inline void __init check_numabalancing_enable(void) 2697 { 2698 } 2699 #endif /* CONFIG_NUMA_BALANCING */ 2700 2701 /* assumes fs == KERNEL_DS */ 2702 void __init numa_policy_init(void) 2703 { 2704 nodemask_t interleave_nodes; 2705 unsigned long largest = 0; 2706 int nid, prefer = 0; 2707 2708 policy_cache = kmem_cache_create("numa_policy", 2709 sizeof(struct mempolicy), 2710 0, SLAB_PANIC, NULL); 2711 2712 sn_cache = kmem_cache_create("shared_policy_node", 2713 sizeof(struct sp_node), 2714 0, SLAB_PANIC, NULL); 2715 2716 for_each_node(nid) { 2717 preferred_node_policy[nid] = (struct mempolicy) { 2718 .refcnt = ATOMIC_INIT(1), 2719 .mode = MPOL_PREFERRED, 2720 .flags = MPOL_F_MOF | MPOL_F_MORON, 2721 .v = { .preferred_node = nid, }, 2722 }; 2723 } 2724 2725 /* 2726 * Set interleaving policy for system init. Interleaving is only 2727 * enabled across suitably sized nodes (default is >= 16MB), or 2728 * fall back to the largest node if they're all smaller. 2729 */ 2730 nodes_clear(interleave_nodes); 2731 for_each_node_state(nid, N_MEMORY) { 2732 unsigned long total_pages = node_present_pages(nid); 2733 2734 /* Preserve the largest node */ 2735 if (largest < total_pages) { 2736 largest = total_pages; 2737 prefer = nid; 2738 } 2739 2740 /* Interleave this node? */ 2741 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2742 node_set(nid, interleave_nodes); 2743 } 2744 2745 /* All too small, use the largest */ 2746 if (unlikely(nodes_empty(interleave_nodes))) 2747 node_set(prefer, interleave_nodes); 2748 2749 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2750 printk("numa_policy_init: interleaving failed\n"); 2751 2752 check_numabalancing_enable(); 2753 } 2754 2755 /* Reset policy of current process to default */ 2756 void numa_default_policy(void) 2757 { 2758 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2759 } 2760 2761 /* 2762 * Parse and format mempolicy from/to strings 2763 */ 2764 2765 /* 2766 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2767 */ 2768 static const char * const policy_modes[] = 2769 { 2770 [MPOL_DEFAULT] = "default", 2771 [MPOL_PREFERRED] = "prefer", 2772 [MPOL_BIND] = "bind", 2773 [MPOL_INTERLEAVE] = "interleave", 2774 [MPOL_LOCAL] = "local", 2775 }; 2776 2777 2778 #ifdef CONFIG_TMPFS 2779 /** 2780 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2781 * @str: string containing mempolicy to parse 2782 * @mpol: pointer to struct mempolicy pointer, returned on success. 2783 * 2784 * Format of input: 2785 * <mode>[=<flags>][:<nodelist>] 2786 * 2787 * On success, returns 0, else 1 2788 */ 2789 int mpol_parse_str(char *str, struct mempolicy **mpol) 2790 { 2791 struct mempolicy *new = NULL; 2792 unsigned short mode; 2793 unsigned short mode_flags; 2794 nodemask_t nodes; 2795 char *nodelist = strchr(str, ':'); 2796 char *flags = strchr(str, '='); 2797 int err = 1; 2798 2799 if (nodelist) { 2800 /* NUL-terminate mode or flags string */ 2801 *nodelist++ = '\0'; 2802 if (nodelist_parse(nodelist, nodes)) 2803 goto out; 2804 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2805 goto out; 2806 } else 2807 nodes_clear(nodes); 2808 2809 if (flags) 2810 *flags++ = '\0'; /* terminate mode string */ 2811 2812 for (mode = 0; mode < MPOL_MAX; mode++) { 2813 if (!strcmp(str, policy_modes[mode])) { 2814 break; 2815 } 2816 } 2817 if (mode >= MPOL_MAX) 2818 goto out; 2819 2820 switch (mode) { 2821 case MPOL_PREFERRED: 2822 /* 2823 * Insist on a nodelist of one node only 2824 */ 2825 if (nodelist) { 2826 char *rest = nodelist; 2827 while (isdigit(*rest)) 2828 rest++; 2829 if (*rest) 2830 goto out; 2831 } 2832 break; 2833 case MPOL_INTERLEAVE: 2834 /* 2835 * Default to online nodes with memory if no nodelist 2836 */ 2837 if (!nodelist) 2838 nodes = node_states[N_MEMORY]; 2839 break; 2840 case MPOL_LOCAL: 2841 /* 2842 * Don't allow a nodelist; mpol_new() checks flags 2843 */ 2844 if (nodelist) 2845 goto out; 2846 mode = MPOL_PREFERRED; 2847 break; 2848 case MPOL_DEFAULT: 2849 /* 2850 * Insist on a empty nodelist 2851 */ 2852 if (!nodelist) 2853 err = 0; 2854 goto out; 2855 case MPOL_BIND: 2856 /* 2857 * Insist on a nodelist 2858 */ 2859 if (!nodelist) 2860 goto out; 2861 } 2862 2863 mode_flags = 0; 2864 if (flags) { 2865 /* 2866 * Currently, we only support two mutually exclusive 2867 * mode flags. 2868 */ 2869 if (!strcmp(flags, "static")) 2870 mode_flags |= MPOL_F_STATIC_NODES; 2871 else if (!strcmp(flags, "relative")) 2872 mode_flags |= MPOL_F_RELATIVE_NODES; 2873 else 2874 goto out; 2875 } 2876 2877 new = mpol_new(mode, mode_flags, &nodes); 2878 if (IS_ERR(new)) 2879 goto out; 2880 2881 /* 2882 * Save nodes for mpol_to_str() to show the tmpfs mount options 2883 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2884 */ 2885 if (mode != MPOL_PREFERRED) 2886 new->v.nodes = nodes; 2887 else if (nodelist) 2888 new->v.preferred_node = first_node(nodes); 2889 else 2890 new->flags |= MPOL_F_LOCAL; 2891 2892 /* 2893 * Save nodes for contextualization: this will be used to "clone" 2894 * the mempolicy in a specific context [cpuset] at a later time. 2895 */ 2896 new->w.user_nodemask = nodes; 2897 2898 err = 0; 2899 2900 out: 2901 /* Restore string for error message */ 2902 if (nodelist) 2903 *--nodelist = ':'; 2904 if (flags) 2905 *--flags = '='; 2906 if (!err) 2907 *mpol = new; 2908 return err; 2909 } 2910 #endif /* CONFIG_TMPFS */ 2911 2912 /** 2913 * mpol_to_str - format a mempolicy structure for printing 2914 * @buffer: to contain formatted mempolicy string 2915 * @maxlen: length of @buffer 2916 * @pol: pointer to mempolicy to be formatted 2917 * 2918 * Convert @pol into a string. If @buffer is too short, truncate the string. 2919 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2920 * longest flag, "relative", and to display at least a few node ids. 2921 */ 2922 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2923 { 2924 char *p = buffer; 2925 nodemask_t nodes = NODE_MASK_NONE; 2926 unsigned short mode = MPOL_DEFAULT; 2927 unsigned short flags = 0; 2928 2929 if (pol && pol != &default_policy) { 2930 mode = pol->mode; 2931 flags = pol->flags; 2932 } 2933 2934 switch (mode) { 2935 case MPOL_DEFAULT: 2936 break; 2937 case MPOL_PREFERRED: 2938 if (flags & MPOL_F_LOCAL) 2939 mode = MPOL_LOCAL; 2940 else 2941 node_set(pol->v.preferred_node, nodes); 2942 break; 2943 case MPOL_BIND: 2944 case MPOL_INTERLEAVE: 2945 nodes = pol->v.nodes; 2946 break; 2947 default: 2948 WARN_ON_ONCE(1); 2949 snprintf(p, maxlen, "unknown"); 2950 return; 2951 } 2952 2953 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2954 2955 if (flags & MPOL_MODE_FLAGS) { 2956 p += snprintf(p, buffer + maxlen - p, "="); 2957 2958 /* 2959 * Currently, the only defined flags are mutually exclusive 2960 */ 2961 if (flags & MPOL_F_STATIC_NODES) 2962 p += snprintf(p, buffer + maxlen - p, "static"); 2963 else if (flags & MPOL_F_RELATIVE_NODES) 2964 p += snprintf(p, buffer + maxlen - p, "relative"); 2965 } 2966 2967 if (!nodes_empty(nodes)) { 2968 p += snprintf(p, buffer + maxlen - p, ":"); 2969 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2970 } 2971 } 2972