xref: /openbmc/linux/mm/mempolicy.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(pte - 1, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	ret = mpol_set_nodemask(new, nodes, scratch);
879 	if (ret) {
880 		mpol_put(new);
881 		goto out;
882 	}
883 	task_lock(current);
884 	old = current->mempolicy;
885 	current->mempolicy = new;
886 	if (new && new->mode == MPOL_INTERLEAVE)
887 		current->il_prev = MAX_NUMNODES-1;
888 	task_unlock(current);
889 	mpol_put(old);
890 	ret = 0;
891 out:
892 	NODEMASK_SCRATCH_FREE(scratch);
893 	return ret;
894 }
895 
896 /*
897  * Return nodemask for policy for get_mempolicy() query
898  *
899  * Called with task's alloc_lock held
900  */
901 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
902 {
903 	nodes_clear(*nodes);
904 	if (p == &default_policy)
905 		return;
906 
907 	switch (p->mode) {
908 	case MPOL_BIND:
909 	case MPOL_INTERLEAVE:
910 		*nodes = p->v.nodes;
911 		break;
912 	case MPOL_PREFERRED:
913 		if (!(p->flags & MPOL_F_LOCAL))
914 			node_set(p->v.preferred_node, *nodes);
915 		/* else return empty node mask for local allocation */
916 		break;
917 	default:
918 		BUG();
919 	}
920 }
921 
922 static int lookup_node(struct mm_struct *mm, unsigned long addr)
923 {
924 	struct page *p = NULL;
925 	int err;
926 
927 	int locked = 1;
928 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
929 	if (err > 0) {
930 		err = page_to_nid(p);
931 		put_page(p);
932 	}
933 	if (locked)
934 		mmap_read_unlock(mm);
935 	return err;
936 }
937 
938 /* Retrieve NUMA policy */
939 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
940 			     unsigned long addr, unsigned long flags)
941 {
942 	int err;
943 	struct mm_struct *mm = current->mm;
944 	struct vm_area_struct *vma = NULL;
945 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
946 
947 	if (flags &
948 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
949 		return -EINVAL;
950 
951 	if (flags & MPOL_F_MEMS_ALLOWED) {
952 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
953 			return -EINVAL;
954 		*policy = 0;	/* just so it's initialized */
955 		task_lock(current);
956 		*nmask  = cpuset_current_mems_allowed;
957 		task_unlock(current);
958 		return 0;
959 	}
960 
961 	if (flags & MPOL_F_ADDR) {
962 		/*
963 		 * Do NOT fall back to task policy if the
964 		 * vma/shared policy at addr is NULL.  We
965 		 * want to return MPOL_DEFAULT in this case.
966 		 */
967 		mmap_read_lock(mm);
968 		vma = find_vma_intersection(mm, addr, addr+1);
969 		if (!vma) {
970 			mmap_read_unlock(mm);
971 			return -EFAULT;
972 		}
973 		if (vma->vm_ops && vma->vm_ops->get_policy)
974 			pol = vma->vm_ops->get_policy(vma, addr);
975 		else
976 			pol = vma->vm_policy;
977 	} else if (addr)
978 		return -EINVAL;
979 
980 	if (!pol)
981 		pol = &default_policy;	/* indicates default behavior */
982 
983 	if (flags & MPOL_F_NODE) {
984 		if (flags & MPOL_F_ADDR) {
985 			/*
986 			 * Take a refcount on the mpol, lookup_node()
987 			 * wil drop the mmap_lock, so after calling
988 			 * lookup_node() only "pol" remains valid, "vma"
989 			 * is stale.
990 			 */
991 			pol_refcount = pol;
992 			vma = NULL;
993 			mpol_get(pol);
994 			err = lookup_node(mm, addr);
995 			if (err < 0)
996 				goto out;
997 			*policy = err;
998 		} else if (pol == current->mempolicy &&
999 				pol->mode == MPOL_INTERLEAVE) {
1000 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1001 		} else {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 	} else {
1006 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1007 						pol->mode;
1008 		/*
1009 		 * Internal mempolicy flags must be masked off before exposing
1010 		 * the policy to userspace.
1011 		 */
1012 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1013 	}
1014 
1015 	err = 0;
1016 	if (nmask) {
1017 		if (mpol_store_user_nodemask(pol)) {
1018 			*nmask = pol->w.user_nodemask;
1019 		} else {
1020 			task_lock(current);
1021 			get_policy_nodemask(pol, nmask);
1022 			task_unlock(current);
1023 		}
1024 	}
1025 
1026  out:
1027 	mpol_cond_put(pol);
1028 	if (vma)
1029 		mmap_read_unlock(mm);
1030 	if (pol_refcount)
1031 		mpol_put(pol_refcount);
1032 	return err;
1033 }
1034 
1035 #ifdef CONFIG_MIGRATION
1036 /*
1037  * page migration, thp tail pages can be passed.
1038  */
1039 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1040 				unsigned long flags)
1041 {
1042 	struct page *head = compound_head(page);
1043 	/*
1044 	 * Avoid migrating a page that is shared with others.
1045 	 */
1046 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1047 		if (!isolate_lru_page(head)) {
1048 			list_add_tail(&head->lru, pagelist);
1049 			mod_node_page_state(page_pgdat(head),
1050 				NR_ISOLATED_ANON + page_is_file_lru(head),
1051 				thp_nr_pages(head));
1052 		} else if (flags & MPOL_MF_STRICT) {
1053 			/*
1054 			 * Non-movable page may reach here.  And, there may be
1055 			 * temporary off LRU pages or non-LRU movable pages.
1056 			 * Treat them as unmovable pages since they can't be
1057 			 * isolated, so they can't be moved at the moment.  It
1058 			 * should return -EIO for this case too.
1059 			 */
1060 			return -EIO;
1061 		}
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Migrate pages from one node to a target node.
1069  * Returns error or the number of pages not migrated.
1070  */
1071 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 			   int flags)
1073 {
1074 	nodemask_t nmask;
1075 	LIST_HEAD(pagelist);
1076 	int err = 0;
1077 	struct migration_target_control mtc = {
1078 		.nid = dest,
1079 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1080 	};
1081 
1082 	nodes_clear(nmask);
1083 	node_set(source, nmask);
1084 
1085 	/*
1086 	 * This does not "check" the range but isolates all pages that
1087 	 * need migration.  Between passing in the full user address
1088 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1089 	 */
1090 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1091 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1092 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1093 
1094 	if (!list_empty(&pagelist)) {
1095 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1097 		if (err)
1098 			putback_movable_pages(&pagelist);
1099 	}
1100 
1101 	return err;
1102 }
1103 
1104 /*
1105  * Move pages between the two nodesets so as to preserve the physical
1106  * layout as much as possible.
1107  *
1108  * Returns the number of page that could not be moved.
1109  */
1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 		     const nodemask_t *to, int flags)
1112 {
1113 	int busy = 0;
1114 	int err;
1115 	nodemask_t tmp;
1116 
1117 	err = migrate_prep();
1118 	if (err)
1119 		return err;
1120 
1121 	mmap_read_lock(mm);
1122 
1123 	/*
1124 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1125 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1126 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1127 	 * The pair of nodemasks 'to' and 'from' define the map.
1128 	 *
1129 	 * If no pair of bits is found that way, fallback to picking some
1130 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1131 	 * 'source' and 'dest' bits are the same, this represents a node
1132 	 * that will be migrating to itself, so no pages need move.
1133 	 *
1134 	 * If no bits are left in 'tmp', or if all remaining bits left
1135 	 * in 'tmp' correspond to the same bit in 'to', return false
1136 	 * (nothing left to migrate).
1137 	 *
1138 	 * This lets us pick a pair of nodes to migrate between, such that
1139 	 * if possible the dest node is not already occupied by some other
1140 	 * source node, minimizing the risk of overloading the memory on a
1141 	 * node that would happen if we migrated incoming memory to a node
1142 	 * before migrating outgoing memory source that same node.
1143 	 *
1144 	 * A single scan of tmp is sufficient.  As we go, we remember the
1145 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1146 	 * that not only moved, but what's better, moved to an empty slot
1147 	 * (d is not set in tmp), then we break out then, with that pair.
1148 	 * Otherwise when we finish scanning from_tmp, we at least have the
1149 	 * most recent <s, d> pair that moved.  If we get all the way through
1150 	 * the scan of tmp without finding any node that moved, much less
1151 	 * moved to an empty node, then there is nothing left worth migrating.
1152 	 */
1153 
1154 	tmp = *from;
1155 	while (!nodes_empty(tmp)) {
1156 		int s,d;
1157 		int source = NUMA_NO_NODE;
1158 		int dest = 0;
1159 
1160 		for_each_node_mask(s, tmp) {
1161 
1162 			/*
1163 			 * do_migrate_pages() tries to maintain the relative
1164 			 * node relationship of the pages established between
1165 			 * threads and memory areas.
1166                          *
1167 			 * However if the number of source nodes is not equal to
1168 			 * the number of destination nodes we can not preserve
1169 			 * this node relative relationship.  In that case, skip
1170 			 * copying memory from a node that is in the destination
1171 			 * mask.
1172 			 *
1173 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1174 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1175 			 */
1176 
1177 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1178 						(node_isset(s, *to)))
1179 				continue;
1180 
1181 			d = node_remap(s, *from, *to);
1182 			if (s == d)
1183 				continue;
1184 
1185 			source = s;	/* Node moved. Memorize */
1186 			dest = d;
1187 
1188 			/* dest not in remaining from nodes? */
1189 			if (!node_isset(dest, tmp))
1190 				break;
1191 		}
1192 		if (source == NUMA_NO_NODE)
1193 			break;
1194 
1195 		node_clear(source, tmp);
1196 		err = migrate_to_node(mm, source, dest, flags);
1197 		if (err > 0)
1198 			busy += err;
1199 		if (err < 0)
1200 			break;
1201 	}
1202 	mmap_read_unlock(mm);
1203 	if (err < 0)
1204 		return err;
1205 	return busy;
1206 
1207 }
1208 
1209 /*
1210  * Allocate a new page for page migration based on vma policy.
1211  * Start by assuming the page is mapped by the same vma as contains @start.
1212  * Search forward from there, if not.  N.B., this assumes that the
1213  * list of pages handed to migrate_pages()--which is how we get here--
1214  * is in virtual address order.
1215  */
1216 static struct page *new_page(struct page *page, unsigned long start)
1217 {
1218 	struct vm_area_struct *vma;
1219 	unsigned long address;
1220 
1221 	vma = find_vma(current->mm, start);
1222 	while (vma) {
1223 		address = page_address_in_vma(page, vma);
1224 		if (address != -EFAULT)
1225 			break;
1226 		vma = vma->vm_next;
1227 	}
1228 
1229 	if (PageHuge(page)) {
1230 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1231 				vma, address);
1232 	} else if (PageTransHuge(page)) {
1233 		struct page *thp;
1234 
1235 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1236 					 HPAGE_PMD_ORDER);
1237 		if (!thp)
1238 			return NULL;
1239 		prep_transhuge_page(thp);
1240 		return thp;
1241 	}
1242 	/*
1243 	 * if !vma, alloc_page_vma() will use task or system default policy
1244 	 */
1245 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1246 			vma, address);
1247 }
1248 #else
1249 
1250 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1251 				unsigned long flags)
1252 {
1253 	return -EIO;
1254 }
1255 
1256 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1257 		     const nodemask_t *to, int flags)
1258 {
1259 	return -ENOSYS;
1260 }
1261 
1262 static struct page *new_page(struct page *page, unsigned long start)
1263 {
1264 	return NULL;
1265 }
1266 #endif
1267 
1268 static long do_mbind(unsigned long start, unsigned long len,
1269 		     unsigned short mode, unsigned short mode_flags,
1270 		     nodemask_t *nmask, unsigned long flags)
1271 {
1272 	struct mm_struct *mm = current->mm;
1273 	struct mempolicy *new;
1274 	unsigned long end;
1275 	int err;
1276 	int ret;
1277 	LIST_HEAD(pagelist);
1278 
1279 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1280 		return -EINVAL;
1281 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1282 		return -EPERM;
1283 
1284 	if (start & ~PAGE_MASK)
1285 		return -EINVAL;
1286 
1287 	if (mode == MPOL_DEFAULT)
1288 		flags &= ~MPOL_MF_STRICT;
1289 
1290 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1291 	end = start + len;
1292 
1293 	if (end < start)
1294 		return -EINVAL;
1295 	if (end == start)
1296 		return 0;
1297 
1298 	new = mpol_new(mode, mode_flags, nmask);
1299 	if (IS_ERR(new))
1300 		return PTR_ERR(new);
1301 
1302 	if (flags & MPOL_MF_LAZY)
1303 		new->flags |= MPOL_F_MOF;
1304 
1305 	/*
1306 	 * If we are using the default policy then operation
1307 	 * on discontinuous address spaces is okay after all
1308 	 */
1309 	if (!new)
1310 		flags |= MPOL_MF_DISCONTIG_OK;
1311 
1312 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1313 		 start, start + len, mode, mode_flags,
1314 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1315 
1316 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1317 
1318 		err = migrate_prep();
1319 		if (err)
1320 			goto mpol_out;
1321 	}
1322 	{
1323 		NODEMASK_SCRATCH(scratch);
1324 		if (scratch) {
1325 			mmap_write_lock(mm);
1326 			err = mpol_set_nodemask(new, nmask, scratch);
1327 			if (err)
1328 				mmap_write_unlock(mm);
1329 		} else
1330 			err = -ENOMEM;
1331 		NODEMASK_SCRATCH_FREE(scratch);
1332 	}
1333 	if (err)
1334 		goto mpol_out;
1335 
1336 	ret = queue_pages_range(mm, start, end, nmask,
1337 			  flags | MPOL_MF_INVERT, &pagelist);
1338 
1339 	if (ret < 0) {
1340 		err = ret;
1341 		goto up_out;
1342 	}
1343 
1344 	err = mbind_range(mm, start, end, new);
1345 
1346 	if (!err) {
1347 		int nr_failed = 0;
1348 
1349 		if (!list_empty(&pagelist)) {
1350 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1351 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1352 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1353 			if (nr_failed)
1354 				putback_movable_pages(&pagelist);
1355 		}
1356 
1357 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1358 			err = -EIO;
1359 	} else {
1360 up_out:
1361 		if (!list_empty(&pagelist))
1362 			putback_movable_pages(&pagelist);
1363 	}
1364 
1365 	mmap_write_unlock(mm);
1366 mpol_out:
1367 	mpol_put(new);
1368 	return err;
1369 }
1370 
1371 /*
1372  * User space interface with variable sized bitmaps for nodelists.
1373  */
1374 
1375 /* Copy a node mask from user space. */
1376 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1377 		     unsigned long maxnode)
1378 {
1379 	unsigned long k;
1380 	unsigned long t;
1381 	unsigned long nlongs;
1382 	unsigned long endmask;
1383 
1384 	--maxnode;
1385 	nodes_clear(*nodes);
1386 	if (maxnode == 0 || !nmask)
1387 		return 0;
1388 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1389 		return -EINVAL;
1390 
1391 	nlongs = BITS_TO_LONGS(maxnode);
1392 	if ((maxnode % BITS_PER_LONG) == 0)
1393 		endmask = ~0UL;
1394 	else
1395 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1396 
1397 	/*
1398 	 * When the user specified more nodes than supported just check
1399 	 * if the non supported part is all zero.
1400 	 *
1401 	 * If maxnode have more longs than MAX_NUMNODES, check
1402 	 * the bits in that area first. And then go through to
1403 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1404 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1405 	 */
1406 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1407 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1408 			if (get_user(t, nmask + k))
1409 				return -EFAULT;
1410 			if (k == nlongs - 1) {
1411 				if (t & endmask)
1412 					return -EINVAL;
1413 			} else if (t)
1414 				return -EINVAL;
1415 		}
1416 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1417 		endmask = ~0UL;
1418 	}
1419 
1420 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1421 		unsigned long valid_mask = endmask;
1422 
1423 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1424 		if (get_user(t, nmask + nlongs - 1))
1425 			return -EFAULT;
1426 		if (t & valid_mask)
1427 			return -EINVAL;
1428 	}
1429 
1430 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1431 		return -EFAULT;
1432 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1433 	return 0;
1434 }
1435 
1436 /* Copy a kernel node mask to user space */
1437 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1438 			      nodemask_t *nodes)
1439 {
1440 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1441 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1442 
1443 	if (copy > nbytes) {
1444 		if (copy > PAGE_SIZE)
1445 			return -EINVAL;
1446 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1447 			return -EFAULT;
1448 		copy = nbytes;
1449 	}
1450 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1451 }
1452 
1453 static long kernel_mbind(unsigned long start, unsigned long len,
1454 			 unsigned long mode, const unsigned long __user *nmask,
1455 			 unsigned long maxnode, unsigned int flags)
1456 {
1457 	nodemask_t nodes;
1458 	int err;
1459 	unsigned short mode_flags;
1460 
1461 	start = untagged_addr(start);
1462 	mode_flags = mode & MPOL_MODE_FLAGS;
1463 	mode &= ~MPOL_MODE_FLAGS;
1464 	if (mode >= MPOL_MAX)
1465 		return -EINVAL;
1466 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1467 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1468 		return -EINVAL;
1469 	err = get_nodes(&nodes, nmask, maxnode);
1470 	if (err)
1471 		return err;
1472 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1473 }
1474 
1475 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1476 		unsigned long, mode, const unsigned long __user *, nmask,
1477 		unsigned long, maxnode, unsigned int, flags)
1478 {
1479 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1480 }
1481 
1482 /* Set the process memory policy */
1483 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1484 				 unsigned long maxnode)
1485 {
1486 	int err;
1487 	nodemask_t nodes;
1488 	unsigned short flags;
1489 
1490 	flags = mode & MPOL_MODE_FLAGS;
1491 	mode &= ~MPOL_MODE_FLAGS;
1492 	if ((unsigned int)mode >= MPOL_MAX)
1493 		return -EINVAL;
1494 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1495 		return -EINVAL;
1496 	err = get_nodes(&nodes, nmask, maxnode);
1497 	if (err)
1498 		return err;
1499 	return do_set_mempolicy(mode, flags, &nodes);
1500 }
1501 
1502 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1503 		unsigned long, maxnode)
1504 {
1505 	return kernel_set_mempolicy(mode, nmask, maxnode);
1506 }
1507 
1508 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1509 				const unsigned long __user *old_nodes,
1510 				const unsigned long __user *new_nodes)
1511 {
1512 	struct mm_struct *mm = NULL;
1513 	struct task_struct *task;
1514 	nodemask_t task_nodes;
1515 	int err;
1516 	nodemask_t *old;
1517 	nodemask_t *new;
1518 	NODEMASK_SCRATCH(scratch);
1519 
1520 	if (!scratch)
1521 		return -ENOMEM;
1522 
1523 	old = &scratch->mask1;
1524 	new = &scratch->mask2;
1525 
1526 	err = get_nodes(old, old_nodes, maxnode);
1527 	if (err)
1528 		goto out;
1529 
1530 	err = get_nodes(new, new_nodes, maxnode);
1531 	if (err)
1532 		goto out;
1533 
1534 	/* Find the mm_struct */
1535 	rcu_read_lock();
1536 	task = pid ? find_task_by_vpid(pid) : current;
1537 	if (!task) {
1538 		rcu_read_unlock();
1539 		err = -ESRCH;
1540 		goto out;
1541 	}
1542 	get_task_struct(task);
1543 
1544 	err = -EINVAL;
1545 
1546 	/*
1547 	 * Check if this process has the right to modify the specified process.
1548 	 * Use the regular "ptrace_may_access()" checks.
1549 	 */
1550 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1551 		rcu_read_unlock();
1552 		err = -EPERM;
1553 		goto out_put;
1554 	}
1555 	rcu_read_unlock();
1556 
1557 	task_nodes = cpuset_mems_allowed(task);
1558 	/* Is the user allowed to access the target nodes? */
1559 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1560 		err = -EPERM;
1561 		goto out_put;
1562 	}
1563 
1564 	task_nodes = cpuset_mems_allowed(current);
1565 	nodes_and(*new, *new, task_nodes);
1566 	if (nodes_empty(*new))
1567 		goto out_put;
1568 
1569 	err = security_task_movememory(task);
1570 	if (err)
1571 		goto out_put;
1572 
1573 	mm = get_task_mm(task);
1574 	put_task_struct(task);
1575 
1576 	if (!mm) {
1577 		err = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	err = do_migrate_pages(mm, old, new,
1582 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1583 
1584 	mmput(mm);
1585 out:
1586 	NODEMASK_SCRATCH_FREE(scratch);
1587 
1588 	return err;
1589 
1590 out_put:
1591 	put_task_struct(task);
1592 	goto out;
1593 
1594 }
1595 
1596 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1597 		const unsigned long __user *, old_nodes,
1598 		const unsigned long __user *, new_nodes)
1599 {
1600 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1601 }
1602 
1603 
1604 /* Retrieve NUMA policy */
1605 static int kernel_get_mempolicy(int __user *policy,
1606 				unsigned long __user *nmask,
1607 				unsigned long maxnode,
1608 				unsigned long addr,
1609 				unsigned long flags)
1610 {
1611 	int err;
1612 	int pval;
1613 	nodemask_t nodes;
1614 
1615 	if (nmask != NULL && maxnode < nr_node_ids)
1616 		return -EINVAL;
1617 
1618 	addr = untagged_addr(addr);
1619 
1620 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1621 
1622 	if (err)
1623 		return err;
1624 
1625 	if (policy && put_user(pval, policy))
1626 		return -EFAULT;
1627 
1628 	if (nmask)
1629 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1630 
1631 	return err;
1632 }
1633 
1634 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1635 		unsigned long __user *, nmask, unsigned long, maxnode,
1636 		unsigned long, addr, unsigned long, flags)
1637 {
1638 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1639 }
1640 
1641 #ifdef CONFIG_COMPAT
1642 
1643 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1644 		       compat_ulong_t __user *, nmask,
1645 		       compat_ulong_t, maxnode,
1646 		       compat_ulong_t, addr, compat_ulong_t, flags)
1647 {
1648 	long err;
1649 	unsigned long __user *nm = NULL;
1650 	unsigned long nr_bits, alloc_size;
1651 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1652 
1653 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1654 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655 
1656 	if (nmask)
1657 		nm = compat_alloc_user_space(alloc_size);
1658 
1659 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1660 
1661 	if (!err && nmask) {
1662 		unsigned long copy_size;
1663 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1664 		err = copy_from_user(bm, nm, copy_size);
1665 		/* ensure entire bitmap is zeroed */
1666 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1667 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1668 	}
1669 
1670 	return err;
1671 }
1672 
1673 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1674 		       compat_ulong_t, maxnode)
1675 {
1676 	unsigned long __user *nm = NULL;
1677 	unsigned long nr_bits, alloc_size;
1678 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1679 
1680 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1681 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1682 
1683 	if (nmask) {
1684 		if (compat_get_bitmap(bm, nmask, nr_bits))
1685 			return -EFAULT;
1686 		nm = compat_alloc_user_space(alloc_size);
1687 		if (copy_to_user(nm, bm, alloc_size))
1688 			return -EFAULT;
1689 	}
1690 
1691 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1692 }
1693 
1694 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1695 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1696 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1697 {
1698 	unsigned long __user *nm = NULL;
1699 	unsigned long nr_bits, alloc_size;
1700 	nodemask_t bm;
1701 
1702 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1703 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1704 
1705 	if (nmask) {
1706 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1707 			return -EFAULT;
1708 		nm = compat_alloc_user_space(alloc_size);
1709 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1710 			return -EFAULT;
1711 	}
1712 
1713 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1714 }
1715 
1716 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1717 		       compat_ulong_t, maxnode,
1718 		       const compat_ulong_t __user *, old_nodes,
1719 		       const compat_ulong_t __user *, new_nodes)
1720 {
1721 	unsigned long __user *old = NULL;
1722 	unsigned long __user *new = NULL;
1723 	nodemask_t tmp_mask;
1724 	unsigned long nr_bits;
1725 	unsigned long size;
1726 
1727 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1728 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1729 	if (old_nodes) {
1730 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1731 			return -EFAULT;
1732 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1733 		if (new_nodes)
1734 			new = old + size / sizeof(unsigned long);
1735 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1736 			return -EFAULT;
1737 	}
1738 	if (new_nodes) {
1739 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1740 			return -EFAULT;
1741 		if (new == NULL)
1742 			new = compat_alloc_user_space(size);
1743 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1744 			return -EFAULT;
1745 	}
1746 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1747 }
1748 
1749 #endif /* CONFIG_COMPAT */
1750 
1751 bool vma_migratable(struct vm_area_struct *vma)
1752 {
1753 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1754 		return false;
1755 
1756 	/*
1757 	 * DAX device mappings require predictable access latency, so avoid
1758 	 * incurring periodic faults.
1759 	 */
1760 	if (vma_is_dax(vma))
1761 		return false;
1762 
1763 	if (is_vm_hugetlb_page(vma) &&
1764 		!hugepage_migration_supported(hstate_vma(vma)))
1765 		return false;
1766 
1767 	/*
1768 	 * Migration allocates pages in the highest zone. If we cannot
1769 	 * do so then migration (at least from node to node) is not
1770 	 * possible.
1771 	 */
1772 	if (vma->vm_file &&
1773 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1774 			< policy_zone)
1775 		return false;
1776 	return true;
1777 }
1778 
1779 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1780 						unsigned long addr)
1781 {
1782 	struct mempolicy *pol = NULL;
1783 
1784 	if (vma) {
1785 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1786 			pol = vma->vm_ops->get_policy(vma, addr);
1787 		} else if (vma->vm_policy) {
1788 			pol = vma->vm_policy;
1789 
1790 			/*
1791 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1792 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1793 			 * count on these policies which will be dropped by
1794 			 * mpol_cond_put() later
1795 			 */
1796 			if (mpol_needs_cond_ref(pol))
1797 				mpol_get(pol);
1798 		}
1799 	}
1800 
1801 	return pol;
1802 }
1803 
1804 /*
1805  * get_vma_policy(@vma, @addr)
1806  * @vma: virtual memory area whose policy is sought
1807  * @addr: address in @vma for shared policy lookup
1808  *
1809  * Returns effective policy for a VMA at specified address.
1810  * Falls back to current->mempolicy or system default policy, as necessary.
1811  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1812  * count--added by the get_policy() vm_op, as appropriate--to protect against
1813  * freeing by another task.  It is the caller's responsibility to free the
1814  * extra reference for shared policies.
1815  */
1816 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1817 						unsigned long addr)
1818 {
1819 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1820 
1821 	if (!pol)
1822 		pol = get_task_policy(current);
1823 
1824 	return pol;
1825 }
1826 
1827 bool vma_policy_mof(struct vm_area_struct *vma)
1828 {
1829 	struct mempolicy *pol;
1830 
1831 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1832 		bool ret = false;
1833 
1834 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1835 		if (pol && (pol->flags & MPOL_F_MOF))
1836 			ret = true;
1837 		mpol_cond_put(pol);
1838 
1839 		return ret;
1840 	}
1841 
1842 	pol = vma->vm_policy;
1843 	if (!pol)
1844 		pol = get_task_policy(current);
1845 
1846 	return pol->flags & MPOL_F_MOF;
1847 }
1848 
1849 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1850 {
1851 	enum zone_type dynamic_policy_zone = policy_zone;
1852 
1853 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1854 
1855 	/*
1856 	 * if policy->v.nodes has movable memory only,
1857 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1858 	 *
1859 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1860 	 * so if the following test faile, it implies
1861 	 * policy->v.nodes has movable memory only.
1862 	 */
1863 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1864 		dynamic_policy_zone = ZONE_MOVABLE;
1865 
1866 	return zone >= dynamic_policy_zone;
1867 }
1868 
1869 /*
1870  * Return a nodemask representing a mempolicy for filtering nodes for
1871  * page allocation
1872  */
1873 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1874 {
1875 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1876 	if (unlikely(policy->mode == MPOL_BIND) &&
1877 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1878 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1879 		return &policy->v.nodes;
1880 
1881 	return NULL;
1882 }
1883 
1884 /* Return the node id preferred by the given mempolicy, or the given id */
1885 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1886 {
1887 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1888 		nd = policy->v.preferred_node;
1889 	else {
1890 		/*
1891 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1892 		 * because we might easily break the expectation to stay on the
1893 		 * requested node and not break the policy.
1894 		 */
1895 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1896 	}
1897 
1898 	return nd;
1899 }
1900 
1901 /* Do dynamic interleaving for a process */
1902 static unsigned interleave_nodes(struct mempolicy *policy)
1903 {
1904 	unsigned next;
1905 	struct task_struct *me = current;
1906 
1907 	next = next_node_in(me->il_prev, policy->v.nodes);
1908 	if (next < MAX_NUMNODES)
1909 		me->il_prev = next;
1910 	return next;
1911 }
1912 
1913 /*
1914  * Depending on the memory policy provide a node from which to allocate the
1915  * next slab entry.
1916  */
1917 unsigned int mempolicy_slab_node(void)
1918 {
1919 	struct mempolicy *policy;
1920 	int node = numa_mem_id();
1921 
1922 	if (in_interrupt())
1923 		return node;
1924 
1925 	policy = current->mempolicy;
1926 	if (!policy || policy->flags & MPOL_F_LOCAL)
1927 		return node;
1928 
1929 	switch (policy->mode) {
1930 	case MPOL_PREFERRED:
1931 		/*
1932 		 * handled MPOL_F_LOCAL above
1933 		 */
1934 		return policy->v.preferred_node;
1935 
1936 	case MPOL_INTERLEAVE:
1937 		return interleave_nodes(policy);
1938 
1939 	case MPOL_BIND: {
1940 		struct zoneref *z;
1941 
1942 		/*
1943 		 * Follow bind policy behavior and start allocation at the
1944 		 * first node.
1945 		 */
1946 		struct zonelist *zonelist;
1947 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1948 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1949 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1950 							&policy->v.nodes);
1951 		return z->zone ? zone_to_nid(z->zone) : node;
1952 	}
1953 
1954 	default:
1955 		BUG();
1956 	}
1957 }
1958 
1959 /*
1960  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1961  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1962  * number of present nodes.
1963  */
1964 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1965 {
1966 	unsigned nnodes = nodes_weight(pol->v.nodes);
1967 	unsigned target;
1968 	int i;
1969 	int nid;
1970 
1971 	if (!nnodes)
1972 		return numa_node_id();
1973 	target = (unsigned int)n % nnodes;
1974 	nid = first_node(pol->v.nodes);
1975 	for (i = 0; i < target; i++)
1976 		nid = next_node(nid, pol->v.nodes);
1977 	return nid;
1978 }
1979 
1980 /* Determine a node number for interleave */
1981 static inline unsigned interleave_nid(struct mempolicy *pol,
1982 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983 {
1984 	if (vma) {
1985 		unsigned long off;
1986 
1987 		/*
1988 		 * for small pages, there is no difference between
1989 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990 		 * for huge pages, since vm_pgoff is in units of small
1991 		 * pages, we need to shift off the always 0 bits to get
1992 		 * a useful offset.
1993 		 */
1994 		BUG_ON(shift < PAGE_SHIFT);
1995 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996 		off += (addr - vma->vm_start) >> shift;
1997 		return offset_il_node(pol, off);
1998 	} else
1999 		return interleave_nodes(pol);
2000 }
2001 
2002 #ifdef CONFIG_HUGETLBFS
2003 /*
2004  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005  * @vma: virtual memory area whose policy is sought
2006  * @addr: address in @vma for shared policy lookup and interleave policy
2007  * @gfp_flags: for requested zone
2008  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2010  *
2011  * Returns a nid suitable for a huge page allocation and a pointer
2012  * to the struct mempolicy for conditional unref after allocation.
2013  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2014  * @nodemask for filtering the zonelist.
2015  *
2016  * Must be protected by read_mems_allowed_begin()
2017  */
2018 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019 				struct mempolicy **mpol, nodemask_t **nodemask)
2020 {
2021 	int nid;
2022 
2023 	*mpol = get_vma_policy(vma, addr);
2024 	*nodemask = NULL;	/* assume !MPOL_BIND */
2025 
2026 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2027 		nid = interleave_nid(*mpol, vma, addr,
2028 					huge_page_shift(hstate_vma(vma)));
2029 	} else {
2030 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2031 		if ((*mpol)->mode == MPOL_BIND)
2032 			*nodemask = &(*mpol)->v.nodes;
2033 	}
2034 	return nid;
2035 }
2036 
2037 /*
2038  * init_nodemask_of_mempolicy
2039  *
2040  * If the current task's mempolicy is "default" [NULL], return 'false'
2041  * to indicate default policy.  Otherwise, extract the policy nodemask
2042  * for 'bind' or 'interleave' policy into the argument nodemask, or
2043  * initialize the argument nodemask to contain the single node for
2044  * 'preferred' or 'local' policy and return 'true' to indicate presence
2045  * of non-default mempolicy.
2046  *
2047  * We don't bother with reference counting the mempolicy [mpol_get/put]
2048  * because the current task is examining it's own mempolicy and a task's
2049  * mempolicy is only ever changed by the task itself.
2050  *
2051  * N.B., it is the caller's responsibility to free a returned nodemask.
2052  */
2053 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2054 {
2055 	struct mempolicy *mempolicy;
2056 	int nid;
2057 
2058 	if (!(mask && current->mempolicy))
2059 		return false;
2060 
2061 	task_lock(current);
2062 	mempolicy = current->mempolicy;
2063 	switch (mempolicy->mode) {
2064 	case MPOL_PREFERRED:
2065 		if (mempolicy->flags & MPOL_F_LOCAL)
2066 			nid = numa_node_id();
2067 		else
2068 			nid = mempolicy->v.preferred_node;
2069 		init_nodemask_of_node(mask, nid);
2070 		break;
2071 
2072 	case MPOL_BIND:
2073 	case MPOL_INTERLEAVE:
2074 		*mask =  mempolicy->v.nodes;
2075 		break;
2076 
2077 	default:
2078 		BUG();
2079 	}
2080 	task_unlock(current);
2081 
2082 	return true;
2083 }
2084 #endif
2085 
2086 /*
2087  * mempolicy_nodemask_intersects
2088  *
2089  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2090  * policy.  Otherwise, check for intersection between mask and the policy
2091  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2092  * policy, always return true since it may allocate elsewhere on fallback.
2093  *
2094  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2095  */
2096 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2097 					const nodemask_t *mask)
2098 {
2099 	struct mempolicy *mempolicy;
2100 	bool ret = true;
2101 
2102 	if (!mask)
2103 		return ret;
2104 	task_lock(tsk);
2105 	mempolicy = tsk->mempolicy;
2106 	if (!mempolicy)
2107 		goto out;
2108 
2109 	switch (mempolicy->mode) {
2110 	case MPOL_PREFERRED:
2111 		/*
2112 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2113 		 * allocate from, they may fallback to other nodes when oom.
2114 		 * Thus, it's possible for tsk to have allocated memory from
2115 		 * nodes in mask.
2116 		 */
2117 		break;
2118 	case MPOL_BIND:
2119 	case MPOL_INTERLEAVE:
2120 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2121 		break;
2122 	default:
2123 		BUG();
2124 	}
2125 out:
2126 	task_unlock(tsk);
2127 	return ret;
2128 }
2129 
2130 /* Allocate a page in interleaved policy.
2131    Own path because it needs to do special accounting. */
2132 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2133 					unsigned nid)
2134 {
2135 	struct page *page;
2136 
2137 	page = __alloc_pages(gfp, order, nid);
2138 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2139 	if (!static_branch_likely(&vm_numa_stat_key))
2140 		return page;
2141 	if (page && page_to_nid(page) == nid) {
2142 		preempt_disable();
2143 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2144 		preempt_enable();
2145 	}
2146 	return page;
2147 }
2148 
2149 /**
2150  * 	alloc_pages_vma	- Allocate a page for a VMA.
2151  *
2152  * 	@gfp:
2153  *      %GFP_USER    user allocation.
2154  *      %GFP_KERNEL  kernel allocations,
2155  *      %GFP_HIGHMEM highmem/user allocations,
2156  *      %GFP_FS      allocation should not call back into a file system.
2157  *      %GFP_ATOMIC  don't sleep.
2158  *
2159  *	@order:Order of the GFP allocation.
2160  * 	@vma:  Pointer to VMA or NULL if not available.
2161  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2162  *	@node: Which node to prefer for allocation (modulo policy).
2163  *	@hugepage: for hugepages try only the preferred node if possible
2164  *
2165  * 	This function allocates a page from the kernel page pool and applies
2166  *	a NUMA policy associated with the VMA or the current process.
2167  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2168  *	mm_struct of the VMA to prevent it from going away. Should be used for
2169  *	all allocations for pages that will be mapped into user space. Returns
2170  *	NULL when no page can be allocated.
2171  */
2172 struct page *
2173 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2174 		unsigned long addr, int node, bool hugepage)
2175 {
2176 	struct mempolicy *pol;
2177 	struct page *page;
2178 	int preferred_nid;
2179 	nodemask_t *nmask;
2180 
2181 	pol = get_vma_policy(vma, addr);
2182 
2183 	if (pol->mode == MPOL_INTERLEAVE) {
2184 		unsigned nid;
2185 
2186 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2187 		mpol_cond_put(pol);
2188 		page = alloc_page_interleave(gfp, order, nid);
2189 		goto out;
2190 	}
2191 
2192 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2193 		int hpage_node = node;
2194 
2195 		/*
2196 		 * For hugepage allocation and non-interleave policy which
2197 		 * allows the current node (or other explicitly preferred
2198 		 * node) we only try to allocate from the current/preferred
2199 		 * node and don't fall back to other nodes, as the cost of
2200 		 * remote accesses would likely offset THP benefits.
2201 		 *
2202 		 * If the policy is interleave, or does not allow the current
2203 		 * node in its nodemask, we allocate the standard way.
2204 		 */
2205 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2206 			hpage_node = pol->v.preferred_node;
2207 
2208 		nmask = policy_nodemask(gfp, pol);
2209 		if (!nmask || node_isset(hpage_node, *nmask)) {
2210 			mpol_cond_put(pol);
2211 			/*
2212 			 * First, try to allocate THP only on local node, but
2213 			 * don't reclaim unnecessarily, just compact.
2214 			 */
2215 			page = __alloc_pages_node(hpage_node,
2216 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2217 
2218 			/*
2219 			 * If hugepage allocations are configured to always
2220 			 * synchronous compact or the vma has been madvised
2221 			 * to prefer hugepage backing, retry allowing remote
2222 			 * memory with both reclaim and compact as well.
2223 			 */
2224 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2225 				page = __alloc_pages_node(hpage_node,
2226 								gfp, order);
2227 
2228 			goto out;
2229 		}
2230 	}
2231 
2232 	nmask = policy_nodemask(gfp, pol);
2233 	preferred_nid = policy_node(gfp, pol, node);
2234 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2235 	mpol_cond_put(pol);
2236 out:
2237 	return page;
2238 }
2239 EXPORT_SYMBOL(alloc_pages_vma);
2240 
2241 /**
2242  * 	alloc_pages_current - Allocate pages.
2243  *
2244  *	@gfp:
2245  *		%GFP_USER   user allocation,
2246  *      	%GFP_KERNEL kernel allocation,
2247  *      	%GFP_HIGHMEM highmem allocation,
2248  *      	%GFP_FS     don't call back into a file system.
2249  *      	%GFP_ATOMIC don't sleep.
2250  *	@order: Power of two of allocation size in pages. 0 is a single page.
2251  *
2252  *	Allocate a page from the kernel page pool.  When not in
2253  *	interrupt context and apply the current process NUMA policy.
2254  *	Returns NULL when no page can be allocated.
2255  */
2256 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2257 {
2258 	struct mempolicy *pol = &default_policy;
2259 	struct page *page;
2260 
2261 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2262 		pol = get_task_policy(current);
2263 
2264 	/*
2265 	 * No reference counting needed for current->mempolicy
2266 	 * nor system default_policy
2267 	 */
2268 	if (pol->mode == MPOL_INTERLEAVE)
2269 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2270 	else
2271 		page = __alloc_pages_nodemask(gfp, order,
2272 				policy_node(gfp, pol, numa_node_id()),
2273 				policy_nodemask(gfp, pol));
2274 
2275 	return page;
2276 }
2277 EXPORT_SYMBOL(alloc_pages_current);
2278 
2279 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2280 {
2281 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2282 
2283 	if (IS_ERR(pol))
2284 		return PTR_ERR(pol);
2285 	dst->vm_policy = pol;
2286 	return 0;
2287 }
2288 
2289 /*
2290  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2291  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2292  * with the mems_allowed returned by cpuset_mems_allowed().  This
2293  * keeps mempolicies cpuset relative after its cpuset moves.  See
2294  * further kernel/cpuset.c update_nodemask().
2295  *
2296  * current's mempolicy may be rebinded by the other task(the task that changes
2297  * cpuset's mems), so we needn't do rebind work for current task.
2298  */
2299 
2300 /* Slow path of a mempolicy duplicate */
2301 struct mempolicy *__mpol_dup(struct mempolicy *old)
2302 {
2303 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2304 
2305 	if (!new)
2306 		return ERR_PTR(-ENOMEM);
2307 
2308 	/* task's mempolicy is protected by alloc_lock */
2309 	if (old == current->mempolicy) {
2310 		task_lock(current);
2311 		*new = *old;
2312 		task_unlock(current);
2313 	} else
2314 		*new = *old;
2315 
2316 	if (current_cpuset_is_being_rebound()) {
2317 		nodemask_t mems = cpuset_mems_allowed(current);
2318 		mpol_rebind_policy(new, &mems);
2319 	}
2320 	atomic_set(&new->refcnt, 1);
2321 	return new;
2322 }
2323 
2324 /* Slow path of a mempolicy comparison */
2325 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2326 {
2327 	if (!a || !b)
2328 		return false;
2329 	if (a->mode != b->mode)
2330 		return false;
2331 	if (a->flags != b->flags)
2332 		return false;
2333 	if (mpol_store_user_nodemask(a))
2334 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2335 			return false;
2336 
2337 	switch (a->mode) {
2338 	case MPOL_BIND:
2339 	case MPOL_INTERLEAVE:
2340 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2341 	case MPOL_PREFERRED:
2342 		/* a's ->flags is the same as b's */
2343 		if (a->flags & MPOL_F_LOCAL)
2344 			return true;
2345 		return a->v.preferred_node == b->v.preferred_node;
2346 	default:
2347 		BUG();
2348 		return false;
2349 	}
2350 }
2351 
2352 /*
2353  * Shared memory backing store policy support.
2354  *
2355  * Remember policies even when nobody has shared memory mapped.
2356  * The policies are kept in Red-Black tree linked from the inode.
2357  * They are protected by the sp->lock rwlock, which should be held
2358  * for any accesses to the tree.
2359  */
2360 
2361 /*
2362  * lookup first element intersecting start-end.  Caller holds sp->lock for
2363  * reading or for writing
2364  */
2365 static struct sp_node *
2366 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2367 {
2368 	struct rb_node *n = sp->root.rb_node;
2369 
2370 	while (n) {
2371 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2372 
2373 		if (start >= p->end)
2374 			n = n->rb_right;
2375 		else if (end <= p->start)
2376 			n = n->rb_left;
2377 		else
2378 			break;
2379 	}
2380 	if (!n)
2381 		return NULL;
2382 	for (;;) {
2383 		struct sp_node *w = NULL;
2384 		struct rb_node *prev = rb_prev(n);
2385 		if (!prev)
2386 			break;
2387 		w = rb_entry(prev, struct sp_node, nd);
2388 		if (w->end <= start)
2389 			break;
2390 		n = prev;
2391 	}
2392 	return rb_entry(n, struct sp_node, nd);
2393 }
2394 
2395 /*
2396  * Insert a new shared policy into the list.  Caller holds sp->lock for
2397  * writing.
2398  */
2399 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2400 {
2401 	struct rb_node **p = &sp->root.rb_node;
2402 	struct rb_node *parent = NULL;
2403 	struct sp_node *nd;
2404 
2405 	while (*p) {
2406 		parent = *p;
2407 		nd = rb_entry(parent, struct sp_node, nd);
2408 		if (new->start < nd->start)
2409 			p = &(*p)->rb_left;
2410 		else if (new->end > nd->end)
2411 			p = &(*p)->rb_right;
2412 		else
2413 			BUG();
2414 	}
2415 	rb_link_node(&new->nd, parent, p);
2416 	rb_insert_color(&new->nd, &sp->root);
2417 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2418 		 new->policy ? new->policy->mode : 0);
2419 }
2420 
2421 /* Find shared policy intersecting idx */
2422 struct mempolicy *
2423 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2424 {
2425 	struct mempolicy *pol = NULL;
2426 	struct sp_node *sn;
2427 
2428 	if (!sp->root.rb_node)
2429 		return NULL;
2430 	read_lock(&sp->lock);
2431 	sn = sp_lookup(sp, idx, idx+1);
2432 	if (sn) {
2433 		mpol_get(sn->policy);
2434 		pol = sn->policy;
2435 	}
2436 	read_unlock(&sp->lock);
2437 	return pol;
2438 }
2439 
2440 static void sp_free(struct sp_node *n)
2441 {
2442 	mpol_put(n->policy);
2443 	kmem_cache_free(sn_cache, n);
2444 }
2445 
2446 /**
2447  * mpol_misplaced - check whether current page node is valid in policy
2448  *
2449  * @page: page to be checked
2450  * @vma: vm area where page mapped
2451  * @addr: virtual address where page mapped
2452  *
2453  * Lookup current policy node id for vma,addr and "compare to" page's
2454  * node id.
2455  *
2456  * Returns:
2457  *	-1	- not misplaced, page is in the right node
2458  *	node	- node id where the page should be
2459  *
2460  * Policy determination "mimics" alloc_page_vma().
2461  * Called from fault path where we know the vma and faulting address.
2462  */
2463 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2464 {
2465 	struct mempolicy *pol;
2466 	struct zoneref *z;
2467 	int curnid = page_to_nid(page);
2468 	unsigned long pgoff;
2469 	int thiscpu = raw_smp_processor_id();
2470 	int thisnid = cpu_to_node(thiscpu);
2471 	int polnid = NUMA_NO_NODE;
2472 	int ret = -1;
2473 
2474 	pol = get_vma_policy(vma, addr);
2475 	if (!(pol->flags & MPOL_F_MOF))
2476 		goto out;
2477 
2478 	switch (pol->mode) {
2479 	case MPOL_INTERLEAVE:
2480 		pgoff = vma->vm_pgoff;
2481 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2482 		polnid = offset_il_node(pol, pgoff);
2483 		break;
2484 
2485 	case MPOL_PREFERRED:
2486 		if (pol->flags & MPOL_F_LOCAL)
2487 			polnid = numa_node_id();
2488 		else
2489 			polnid = pol->v.preferred_node;
2490 		break;
2491 
2492 	case MPOL_BIND:
2493 
2494 		/*
2495 		 * allows binding to multiple nodes.
2496 		 * use current page if in policy nodemask,
2497 		 * else select nearest allowed node, if any.
2498 		 * If no allowed nodes, use current [!misplaced].
2499 		 */
2500 		if (node_isset(curnid, pol->v.nodes))
2501 			goto out;
2502 		z = first_zones_zonelist(
2503 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2504 				gfp_zone(GFP_HIGHUSER),
2505 				&pol->v.nodes);
2506 		polnid = zone_to_nid(z->zone);
2507 		break;
2508 
2509 	default:
2510 		BUG();
2511 	}
2512 
2513 	/* Migrate the page towards the node whose CPU is referencing it */
2514 	if (pol->flags & MPOL_F_MORON) {
2515 		polnid = thisnid;
2516 
2517 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2518 			goto out;
2519 	}
2520 
2521 	if (curnid != polnid)
2522 		ret = polnid;
2523 out:
2524 	mpol_cond_put(pol);
2525 
2526 	return ret;
2527 }
2528 
2529 /*
2530  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2531  * dropped after task->mempolicy is set to NULL so that any allocation done as
2532  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2533  * policy.
2534  */
2535 void mpol_put_task_policy(struct task_struct *task)
2536 {
2537 	struct mempolicy *pol;
2538 
2539 	task_lock(task);
2540 	pol = task->mempolicy;
2541 	task->mempolicy = NULL;
2542 	task_unlock(task);
2543 	mpol_put(pol);
2544 }
2545 
2546 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2547 {
2548 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2549 	rb_erase(&n->nd, &sp->root);
2550 	sp_free(n);
2551 }
2552 
2553 static void sp_node_init(struct sp_node *node, unsigned long start,
2554 			unsigned long end, struct mempolicy *pol)
2555 {
2556 	node->start = start;
2557 	node->end = end;
2558 	node->policy = pol;
2559 }
2560 
2561 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2562 				struct mempolicy *pol)
2563 {
2564 	struct sp_node *n;
2565 	struct mempolicy *newpol;
2566 
2567 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2568 	if (!n)
2569 		return NULL;
2570 
2571 	newpol = mpol_dup(pol);
2572 	if (IS_ERR(newpol)) {
2573 		kmem_cache_free(sn_cache, n);
2574 		return NULL;
2575 	}
2576 	newpol->flags |= MPOL_F_SHARED;
2577 	sp_node_init(n, start, end, newpol);
2578 
2579 	return n;
2580 }
2581 
2582 /* Replace a policy range. */
2583 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2584 				 unsigned long end, struct sp_node *new)
2585 {
2586 	struct sp_node *n;
2587 	struct sp_node *n_new = NULL;
2588 	struct mempolicy *mpol_new = NULL;
2589 	int ret = 0;
2590 
2591 restart:
2592 	write_lock(&sp->lock);
2593 	n = sp_lookup(sp, start, end);
2594 	/* Take care of old policies in the same range. */
2595 	while (n && n->start < end) {
2596 		struct rb_node *next = rb_next(&n->nd);
2597 		if (n->start >= start) {
2598 			if (n->end <= end)
2599 				sp_delete(sp, n);
2600 			else
2601 				n->start = end;
2602 		} else {
2603 			/* Old policy spanning whole new range. */
2604 			if (n->end > end) {
2605 				if (!n_new)
2606 					goto alloc_new;
2607 
2608 				*mpol_new = *n->policy;
2609 				atomic_set(&mpol_new->refcnt, 1);
2610 				sp_node_init(n_new, end, n->end, mpol_new);
2611 				n->end = start;
2612 				sp_insert(sp, n_new);
2613 				n_new = NULL;
2614 				mpol_new = NULL;
2615 				break;
2616 			} else
2617 				n->end = start;
2618 		}
2619 		if (!next)
2620 			break;
2621 		n = rb_entry(next, struct sp_node, nd);
2622 	}
2623 	if (new)
2624 		sp_insert(sp, new);
2625 	write_unlock(&sp->lock);
2626 	ret = 0;
2627 
2628 err_out:
2629 	if (mpol_new)
2630 		mpol_put(mpol_new);
2631 	if (n_new)
2632 		kmem_cache_free(sn_cache, n_new);
2633 
2634 	return ret;
2635 
2636 alloc_new:
2637 	write_unlock(&sp->lock);
2638 	ret = -ENOMEM;
2639 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2640 	if (!n_new)
2641 		goto err_out;
2642 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2643 	if (!mpol_new)
2644 		goto err_out;
2645 	goto restart;
2646 }
2647 
2648 /**
2649  * mpol_shared_policy_init - initialize shared policy for inode
2650  * @sp: pointer to inode shared policy
2651  * @mpol:  struct mempolicy to install
2652  *
2653  * Install non-NULL @mpol in inode's shared policy rb-tree.
2654  * On entry, the current task has a reference on a non-NULL @mpol.
2655  * This must be released on exit.
2656  * This is called at get_inode() calls and we can use GFP_KERNEL.
2657  */
2658 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2659 {
2660 	int ret;
2661 
2662 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2663 	rwlock_init(&sp->lock);
2664 
2665 	if (mpol) {
2666 		struct vm_area_struct pvma;
2667 		struct mempolicy *new;
2668 		NODEMASK_SCRATCH(scratch);
2669 
2670 		if (!scratch)
2671 			goto put_mpol;
2672 		/* contextualize the tmpfs mount point mempolicy */
2673 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2674 		if (IS_ERR(new))
2675 			goto free_scratch; /* no valid nodemask intersection */
2676 
2677 		task_lock(current);
2678 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2679 		task_unlock(current);
2680 		if (ret)
2681 			goto put_new;
2682 
2683 		/* Create pseudo-vma that contains just the policy */
2684 		vma_init(&pvma, NULL);
2685 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2686 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2687 
2688 put_new:
2689 		mpol_put(new);			/* drop initial ref */
2690 free_scratch:
2691 		NODEMASK_SCRATCH_FREE(scratch);
2692 put_mpol:
2693 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2694 	}
2695 }
2696 
2697 int mpol_set_shared_policy(struct shared_policy *info,
2698 			struct vm_area_struct *vma, struct mempolicy *npol)
2699 {
2700 	int err;
2701 	struct sp_node *new = NULL;
2702 	unsigned long sz = vma_pages(vma);
2703 
2704 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2705 		 vma->vm_pgoff,
2706 		 sz, npol ? npol->mode : -1,
2707 		 npol ? npol->flags : -1,
2708 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2709 
2710 	if (npol) {
2711 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2712 		if (!new)
2713 			return -ENOMEM;
2714 	}
2715 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2716 	if (err && new)
2717 		sp_free(new);
2718 	return err;
2719 }
2720 
2721 /* Free a backing policy store on inode delete. */
2722 void mpol_free_shared_policy(struct shared_policy *p)
2723 {
2724 	struct sp_node *n;
2725 	struct rb_node *next;
2726 
2727 	if (!p->root.rb_node)
2728 		return;
2729 	write_lock(&p->lock);
2730 	next = rb_first(&p->root);
2731 	while (next) {
2732 		n = rb_entry(next, struct sp_node, nd);
2733 		next = rb_next(&n->nd);
2734 		sp_delete(p, n);
2735 	}
2736 	write_unlock(&p->lock);
2737 }
2738 
2739 #ifdef CONFIG_NUMA_BALANCING
2740 static int __initdata numabalancing_override;
2741 
2742 static void __init check_numabalancing_enable(void)
2743 {
2744 	bool numabalancing_default = false;
2745 
2746 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2747 		numabalancing_default = true;
2748 
2749 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2750 	if (numabalancing_override)
2751 		set_numabalancing_state(numabalancing_override == 1);
2752 
2753 	if (num_online_nodes() > 1 && !numabalancing_override) {
2754 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2755 			numabalancing_default ? "Enabling" : "Disabling");
2756 		set_numabalancing_state(numabalancing_default);
2757 	}
2758 }
2759 
2760 static int __init setup_numabalancing(char *str)
2761 {
2762 	int ret = 0;
2763 	if (!str)
2764 		goto out;
2765 
2766 	if (!strcmp(str, "enable")) {
2767 		numabalancing_override = 1;
2768 		ret = 1;
2769 	} else if (!strcmp(str, "disable")) {
2770 		numabalancing_override = -1;
2771 		ret = 1;
2772 	}
2773 out:
2774 	if (!ret)
2775 		pr_warn("Unable to parse numa_balancing=\n");
2776 
2777 	return ret;
2778 }
2779 __setup("numa_balancing=", setup_numabalancing);
2780 #else
2781 static inline void __init check_numabalancing_enable(void)
2782 {
2783 }
2784 #endif /* CONFIG_NUMA_BALANCING */
2785 
2786 /* assumes fs == KERNEL_DS */
2787 void __init numa_policy_init(void)
2788 {
2789 	nodemask_t interleave_nodes;
2790 	unsigned long largest = 0;
2791 	int nid, prefer = 0;
2792 
2793 	policy_cache = kmem_cache_create("numa_policy",
2794 					 sizeof(struct mempolicy),
2795 					 0, SLAB_PANIC, NULL);
2796 
2797 	sn_cache = kmem_cache_create("shared_policy_node",
2798 				     sizeof(struct sp_node),
2799 				     0, SLAB_PANIC, NULL);
2800 
2801 	for_each_node(nid) {
2802 		preferred_node_policy[nid] = (struct mempolicy) {
2803 			.refcnt = ATOMIC_INIT(1),
2804 			.mode = MPOL_PREFERRED,
2805 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2806 			.v = { .preferred_node = nid, },
2807 		};
2808 	}
2809 
2810 	/*
2811 	 * Set interleaving policy for system init. Interleaving is only
2812 	 * enabled across suitably sized nodes (default is >= 16MB), or
2813 	 * fall back to the largest node if they're all smaller.
2814 	 */
2815 	nodes_clear(interleave_nodes);
2816 	for_each_node_state(nid, N_MEMORY) {
2817 		unsigned long total_pages = node_present_pages(nid);
2818 
2819 		/* Preserve the largest node */
2820 		if (largest < total_pages) {
2821 			largest = total_pages;
2822 			prefer = nid;
2823 		}
2824 
2825 		/* Interleave this node? */
2826 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2827 			node_set(nid, interleave_nodes);
2828 	}
2829 
2830 	/* All too small, use the largest */
2831 	if (unlikely(nodes_empty(interleave_nodes)))
2832 		node_set(prefer, interleave_nodes);
2833 
2834 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2835 		pr_err("%s: interleaving failed\n", __func__);
2836 
2837 	check_numabalancing_enable();
2838 }
2839 
2840 /* Reset policy of current process to default */
2841 void numa_default_policy(void)
2842 {
2843 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2844 }
2845 
2846 /*
2847  * Parse and format mempolicy from/to strings
2848  */
2849 
2850 /*
2851  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2852  */
2853 static const char * const policy_modes[] =
2854 {
2855 	[MPOL_DEFAULT]    = "default",
2856 	[MPOL_PREFERRED]  = "prefer",
2857 	[MPOL_BIND]       = "bind",
2858 	[MPOL_INTERLEAVE] = "interleave",
2859 	[MPOL_LOCAL]      = "local",
2860 };
2861 
2862 
2863 #ifdef CONFIG_TMPFS
2864 /**
2865  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2866  * @str:  string containing mempolicy to parse
2867  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2868  *
2869  * Format of input:
2870  *	<mode>[=<flags>][:<nodelist>]
2871  *
2872  * On success, returns 0, else 1
2873  */
2874 int mpol_parse_str(char *str, struct mempolicy **mpol)
2875 {
2876 	struct mempolicy *new = NULL;
2877 	unsigned short mode_flags;
2878 	nodemask_t nodes;
2879 	char *nodelist = strchr(str, ':');
2880 	char *flags = strchr(str, '=');
2881 	int err = 1, mode;
2882 
2883 	if (flags)
2884 		*flags++ = '\0';	/* terminate mode string */
2885 
2886 	if (nodelist) {
2887 		/* NUL-terminate mode or flags string */
2888 		*nodelist++ = '\0';
2889 		if (nodelist_parse(nodelist, nodes))
2890 			goto out;
2891 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2892 			goto out;
2893 	} else
2894 		nodes_clear(nodes);
2895 
2896 	mode = match_string(policy_modes, MPOL_MAX, str);
2897 	if (mode < 0)
2898 		goto out;
2899 
2900 	switch (mode) {
2901 	case MPOL_PREFERRED:
2902 		/*
2903 		 * Insist on a nodelist of one node only, although later
2904 		 * we use first_node(nodes) to grab a single node, so here
2905 		 * nodelist (or nodes) cannot be empty.
2906 		 */
2907 		if (nodelist) {
2908 			char *rest = nodelist;
2909 			while (isdigit(*rest))
2910 				rest++;
2911 			if (*rest)
2912 				goto out;
2913 			if (nodes_empty(nodes))
2914 				goto out;
2915 		}
2916 		break;
2917 	case MPOL_INTERLEAVE:
2918 		/*
2919 		 * Default to online nodes with memory if no nodelist
2920 		 */
2921 		if (!nodelist)
2922 			nodes = node_states[N_MEMORY];
2923 		break;
2924 	case MPOL_LOCAL:
2925 		/*
2926 		 * Don't allow a nodelist;  mpol_new() checks flags
2927 		 */
2928 		if (nodelist)
2929 			goto out;
2930 		mode = MPOL_PREFERRED;
2931 		break;
2932 	case MPOL_DEFAULT:
2933 		/*
2934 		 * Insist on a empty nodelist
2935 		 */
2936 		if (!nodelist)
2937 			err = 0;
2938 		goto out;
2939 	case MPOL_BIND:
2940 		/*
2941 		 * Insist on a nodelist
2942 		 */
2943 		if (!nodelist)
2944 			goto out;
2945 	}
2946 
2947 	mode_flags = 0;
2948 	if (flags) {
2949 		/*
2950 		 * Currently, we only support two mutually exclusive
2951 		 * mode flags.
2952 		 */
2953 		if (!strcmp(flags, "static"))
2954 			mode_flags |= MPOL_F_STATIC_NODES;
2955 		else if (!strcmp(flags, "relative"))
2956 			mode_flags |= MPOL_F_RELATIVE_NODES;
2957 		else
2958 			goto out;
2959 	}
2960 
2961 	new = mpol_new(mode, mode_flags, &nodes);
2962 	if (IS_ERR(new))
2963 		goto out;
2964 
2965 	/*
2966 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2967 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2968 	 */
2969 	if (mode != MPOL_PREFERRED)
2970 		new->v.nodes = nodes;
2971 	else if (nodelist)
2972 		new->v.preferred_node = first_node(nodes);
2973 	else
2974 		new->flags |= MPOL_F_LOCAL;
2975 
2976 	/*
2977 	 * Save nodes for contextualization: this will be used to "clone"
2978 	 * the mempolicy in a specific context [cpuset] at a later time.
2979 	 */
2980 	new->w.user_nodemask = nodes;
2981 
2982 	err = 0;
2983 
2984 out:
2985 	/* Restore string for error message */
2986 	if (nodelist)
2987 		*--nodelist = ':';
2988 	if (flags)
2989 		*--flags = '=';
2990 	if (!err)
2991 		*mpol = new;
2992 	return err;
2993 }
2994 #endif /* CONFIG_TMPFS */
2995 
2996 /**
2997  * mpol_to_str - format a mempolicy structure for printing
2998  * @buffer:  to contain formatted mempolicy string
2999  * @maxlen:  length of @buffer
3000  * @pol:  pointer to mempolicy to be formatted
3001  *
3002  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3003  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3004  * longest flag, "relative", and to display at least a few node ids.
3005  */
3006 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3007 {
3008 	char *p = buffer;
3009 	nodemask_t nodes = NODE_MASK_NONE;
3010 	unsigned short mode = MPOL_DEFAULT;
3011 	unsigned short flags = 0;
3012 
3013 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3014 		mode = pol->mode;
3015 		flags = pol->flags;
3016 	}
3017 
3018 	switch (mode) {
3019 	case MPOL_DEFAULT:
3020 		break;
3021 	case MPOL_PREFERRED:
3022 		if (flags & MPOL_F_LOCAL)
3023 			mode = MPOL_LOCAL;
3024 		else
3025 			node_set(pol->v.preferred_node, nodes);
3026 		break;
3027 	case MPOL_BIND:
3028 	case MPOL_INTERLEAVE:
3029 		nodes = pol->v.nodes;
3030 		break;
3031 	default:
3032 		WARN_ON_ONCE(1);
3033 		snprintf(p, maxlen, "unknown");
3034 		return;
3035 	}
3036 
3037 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3038 
3039 	if (flags & MPOL_MODE_FLAGS) {
3040 		p += snprintf(p, buffer + maxlen - p, "=");
3041 
3042 		/*
3043 		 * Currently, the only defined flags are mutually exclusive
3044 		 */
3045 		if (flags & MPOL_F_STATIC_NODES)
3046 			p += snprintf(p, buffer + maxlen - p, "static");
3047 		else if (flags & MPOL_F_RELATIVE_NODES)
3048 			p += snprintf(p, buffer + maxlen - p, "relative");
3049 	}
3050 
3051 	if (!nodes_empty(nodes))
3052 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3053 			       nodemask_pr_args(&nodes));
3054 }
3055