1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/gfp.h> 77 #include <linux/slab.h> 78 #include <linux/string.h> 79 #include <linux/module.h> 80 #include <linux/nsproxy.h> 81 #include <linux/interrupt.h> 82 #include <linux/init.h> 83 #include <linux/compat.h> 84 #include <linux/swap.h> 85 #include <linux/seq_file.h> 86 #include <linux/proc_fs.h> 87 #include <linux/migrate.h> 88 #include <linux/rmap.h> 89 #include <linux/security.h> 90 #include <linux/syscalls.h> 91 #include <linux/ctype.h> 92 93 #include <asm/tlbflush.h> 94 #include <asm/uaccess.h> 95 96 #include "internal.h" 97 98 /* Internal flags */ 99 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 100 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 101 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 102 103 static struct kmem_cache *policy_cache; 104 static struct kmem_cache *sn_cache; 105 106 /* Highest zone. An specific allocation for a zone below that is not 107 policied. */ 108 enum zone_type policy_zone = 0; 109 110 /* 111 * run-time system-wide default policy => local allocation 112 */ 113 struct mempolicy default_policy = { 114 .refcnt = ATOMIC_INIT(1), /* never free it */ 115 .mode = MPOL_PREFERRED, 116 .flags = MPOL_F_LOCAL, 117 }; 118 119 static const struct mempolicy_operations { 120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 121 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 122 } mpol_ops[MPOL_MAX]; 123 124 /* Check that the nodemask contains at least one populated zone */ 125 static int is_valid_nodemask(const nodemask_t *nodemask) 126 { 127 int nd, k; 128 129 /* Check that there is something useful in this mask */ 130 k = policy_zone; 131 132 for_each_node_mask(nd, *nodemask) { 133 struct zone *z; 134 135 for (k = 0; k <= policy_zone; k++) { 136 z = &NODE_DATA(nd)->node_zones[k]; 137 if (z->present_pages > 0) 138 return 1; 139 } 140 } 141 142 return 0; 143 } 144 145 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 146 { 147 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES); 148 } 149 150 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 151 const nodemask_t *rel) 152 { 153 nodemask_t tmp; 154 nodes_fold(tmp, *orig, nodes_weight(*rel)); 155 nodes_onto(*ret, tmp, *rel); 156 } 157 158 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 159 { 160 if (nodes_empty(*nodes)) 161 return -EINVAL; 162 pol->v.nodes = *nodes; 163 return 0; 164 } 165 166 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 167 { 168 if (!nodes) 169 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 170 else if (nodes_empty(*nodes)) 171 return -EINVAL; /* no allowed nodes */ 172 else 173 pol->v.preferred_node = first_node(*nodes); 174 return 0; 175 } 176 177 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 178 { 179 if (!is_valid_nodemask(nodes)) 180 return -EINVAL; 181 pol->v.nodes = *nodes; 182 return 0; 183 } 184 185 /* Create a new policy */ 186 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 187 nodemask_t *nodes) 188 { 189 struct mempolicy *policy; 190 nodemask_t cpuset_context_nmask; 191 int ret; 192 193 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 194 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 195 196 if (mode == MPOL_DEFAULT) { 197 if (nodes && !nodes_empty(*nodes)) 198 return ERR_PTR(-EINVAL); 199 return NULL; /* simply delete any existing policy */ 200 } 201 VM_BUG_ON(!nodes); 202 203 /* 204 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 205 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 206 * All other modes require a valid pointer to a non-empty nodemask. 207 */ 208 if (mode == MPOL_PREFERRED) { 209 if (nodes_empty(*nodes)) { 210 if (((flags & MPOL_F_STATIC_NODES) || 211 (flags & MPOL_F_RELATIVE_NODES))) 212 return ERR_PTR(-EINVAL); 213 nodes = NULL; /* flag local alloc */ 214 } 215 } else if (nodes_empty(*nodes)) 216 return ERR_PTR(-EINVAL); 217 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 218 if (!policy) 219 return ERR_PTR(-ENOMEM); 220 atomic_set(&policy->refcnt, 1); 221 policy->mode = mode; 222 policy->flags = flags; 223 224 if (nodes) { 225 /* 226 * cpuset related setup doesn't apply to local allocation 227 */ 228 cpuset_update_task_memory_state(); 229 if (flags & MPOL_F_RELATIVE_NODES) 230 mpol_relative_nodemask(&cpuset_context_nmask, nodes, 231 &cpuset_current_mems_allowed); 232 else 233 nodes_and(cpuset_context_nmask, *nodes, 234 cpuset_current_mems_allowed); 235 if (mpol_store_user_nodemask(policy)) 236 policy->w.user_nodemask = *nodes; 237 else 238 policy->w.cpuset_mems_allowed = 239 cpuset_mems_allowed(current); 240 } 241 242 ret = mpol_ops[mode].create(policy, 243 nodes ? &cpuset_context_nmask : NULL); 244 if (ret < 0) { 245 kmem_cache_free(policy_cache, policy); 246 return ERR_PTR(ret); 247 } 248 return policy; 249 } 250 251 /* Slow path of a mpol destructor. */ 252 void __mpol_put(struct mempolicy *p) 253 { 254 if (!atomic_dec_and_test(&p->refcnt)) 255 return; 256 kmem_cache_free(policy_cache, p); 257 } 258 259 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 260 { 261 } 262 263 static void mpol_rebind_nodemask(struct mempolicy *pol, 264 const nodemask_t *nodes) 265 { 266 nodemask_t tmp; 267 268 if (pol->flags & MPOL_F_STATIC_NODES) 269 nodes_and(tmp, pol->w.user_nodemask, *nodes); 270 else if (pol->flags & MPOL_F_RELATIVE_NODES) 271 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 272 else { 273 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed, 274 *nodes); 275 pol->w.cpuset_mems_allowed = *nodes; 276 } 277 278 pol->v.nodes = tmp; 279 if (!node_isset(current->il_next, tmp)) { 280 current->il_next = next_node(current->il_next, tmp); 281 if (current->il_next >= MAX_NUMNODES) 282 current->il_next = first_node(tmp); 283 if (current->il_next >= MAX_NUMNODES) 284 current->il_next = numa_node_id(); 285 } 286 } 287 288 static void mpol_rebind_preferred(struct mempolicy *pol, 289 const nodemask_t *nodes) 290 { 291 nodemask_t tmp; 292 293 if (pol->flags & MPOL_F_STATIC_NODES) { 294 int node = first_node(pol->w.user_nodemask); 295 296 if (node_isset(node, *nodes)) { 297 pol->v.preferred_node = node; 298 pol->flags &= ~MPOL_F_LOCAL; 299 } else 300 pol->flags |= MPOL_F_LOCAL; 301 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 302 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 303 pol->v.preferred_node = first_node(tmp); 304 } else if (!(pol->flags & MPOL_F_LOCAL)) { 305 pol->v.preferred_node = node_remap(pol->v.preferred_node, 306 pol->w.cpuset_mems_allowed, 307 *nodes); 308 pol->w.cpuset_mems_allowed = *nodes; 309 } 310 } 311 312 /* Migrate a policy to a different set of nodes */ 313 static void mpol_rebind_policy(struct mempolicy *pol, 314 const nodemask_t *newmask) 315 { 316 if (!pol) 317 return; 318 if (!mpol_store_user_nodemask(pol) && 319 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 320 return; 321 mpol_ops[pol->mode].rebind(pol, newmask); 322 } 323 324 /* 325 * Wrapper for mpol_rebind_policy() that just requires task 326 * pointer, and updates task mempolicy. 327 */ 328 329 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 330 { 331 mpol_rebind_policy(tsk->mempolicy, new); 332 } 333 334 /* 335 * Rebind each vma in mm to new nodemask. 336 * 337 * Call holding a reference to mm. Takes mm->mmap_sem during call. 338 */ 339 340 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 341 { 342 struct vm_area_struct *vma; 343 344 down_write(&mm->mmap_sem); 345 for (vma = mm->mmap; vma; vma = vma->vm_next) 346 mpol_rebind_policy(vma->vm_policy, new); 347 up_write(&mm->mmap_sem); 348 } 349 350 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 351 [MPOL_DEFAULT] = { 352 .rebind = mpol_rebind_default, 353 }, 354 [MPOL_INTERLEAVE] = { 355 .create = mpol_new_interleave, 356 .rebind = mpol_rebind_nodemask, 357 }, 358 [MPOL_PREFERRED] = { 359 .create = mpol_new_preferred, 360 .rebind = mpol_rebind_preferred, 361 }, 362 [MPOL_BIND] = { 363 .create = mpol_new_bind, 364 .rebind = mpol_rebind_nodemask, 365 }, 366 }; 367 368 static void gather_stats(struct page *, void *, int pte_dirty); 369 static void migrate_page_add(struct page *page, struct list_head *pagelist, 370 unsigned long flags); 371 372 /* Scan through pages checking if pages follow certain conditions. */ 373 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 374 unsigned long addr, unsigned long end, 375 const nodemask_t *nodes, unsigned long flags, 376 void *private) 377 { 378 pte_t *orig_pte; 379 pte_t *pte; 380 spinlock_t *ptl; 381 382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 383 do { 384 struct page *page; 385 int nid; 386 387 if (!pte_present(*pte)) 388 continue; 389 page = vm_normal_page(vma, addr, *pte); 390 if (!page) 391 continue; 392 /* 393 * The check for PageReserved here is important to avoid 394 * handling zero pages and other pages that may have been 395 * marked special by the system. 396 * 397 * If the PageReserved would not be checked here then f.e. 398 * the location of the zero page could have an influence 399 * on MPOL_MF_STRICT, zero pages would be counted for 400 * the per node stats, and there would be useless attempts 401 * to put zero pages on the migration list. 402 */ 403 if (PageReserved(page)) 404 continue; 405 nid = page_to_nid(page); 406 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 407 continue; 408 409 if (flags & MPOL_MF_STATS) 410 gather_stats(page, private, pte_dirty(*pte)); 411 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 412 migrate_page_add(page, private, flags); 413 else 414 break; 415 } while (pte++, addr += PAGE_SIZE, addr != end); 416 pte_unmap_unlock(orig_pte, ptl); 417 return addr != end; 418 } 419 420 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 421 unsigned long addr, unsigned long end, 422 const nodemask_t *nodes, unsigned long flags, 423 void *private) 424 { 425 pmd_t *pmd; 426 unsigned long next; 427 428 pmd = pmd_offset(pud, addr); 429 do { 430 next = pmd_addr_end(addr, end); 431 if (pmd_none_or_clear_bad(pmd)) 432 continue; 433 if (check_pte_range(vma, pmd, addr, next, nodes, 434 flags, private)) 435 return -EIO; 436 } while (pmd++, addr = next, addr != end); 437 return 0; 438 } 439 440 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 441 unsigned long addr, unsigned long end, 442 const nodemask_t *nodes, unsigned long flags, 443 void *private) 444 { 445 pud_t *pud; 446 unsigned long next; 447 448 pud = pud_offset(pgd, addr); 449 do { 450 next = pud_addr_end(addr, end); 451 if (pud_none_or_clear_bad(pud)) 452 continue; 453 if (check_pmd_range(vma, pud, addr, next, nodes, 454 flags, private)) 455 return -EIO; 456 } while (pud++, addr = next, addr != end); 457 return 0; 458 } 459 460 static inline int check_pgd_range(struct vm_area_struct *vma, 461 unsigned long addr, unsigned long end, 462 const nodemask_t *nodes, unsigned long flags, 463 void *private) 464 { 465 pgd_t *pgd; 466 unsigned long next; 467 468 pgd = pgd_offset(vma->vm_mm, addr); 469 do { 470 next = pgd_addr_end(addr, end); 471 if (pgd_none_or_clear_bad(pgd)) 472 continue; 473 if (check_pud_range(vma, pgd, addr, next, nodes, 474 flags, private)) 475 return -EIO; 476 } while (pgd++, addr = next, addr != end); 477 return 0; 478 } 479 480 /* 481 * Check if all pages in a range are on a set of nodes. 482 * If pagelist != NULL then isolate pages from the LRU and 483 * put them on the pagelist. 484 */ 485 static struct vm_area_struct * 486 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 487 const nodemask_t *nodes, unsigned long flags, void *private) 488 { 489 int err; 490 struct vm_area_struct *first, *vma, *prev; 491 492 493 first = find_vma(mm, start); 494 if (!first) 495 return ERR_PTR(-EFAULT); 496 prev = NULL; 497 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 498 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 499 if (!vma->vm_next && vma->vm_end < end) 500 return ERR_PTR(-EFAULT); 501 if (prev && prev->vm_end < vma->vm_start) 502 return ERR_PTR(-EFAULT); 503 } 504 if (!is_vm_hugetlb_page(vma) && 505 ((flags & MPOL_MF_STRICT) || 506 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 507 vma_migratable(vma)))) { 508 unsigned long endvma = vma->vm_end; 509 510 if (endvma > end) 511 endvma = end; 512 if (vma->vm_start > start) 513 start = vma->vm_start; 514 err = check_pgd_range(vma, start, endvma, nodes, 515 flags, private); 516 if (err) { 517 first = ERR_PTR(err); 518 break; 519 } 520 } 521 prev = vma; 522 } 523 return first; 524 } 525 526 /* Apply policy to a single VMA */ 527 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 528 { 529 int err = 0; 530 struct mempolicy *old = vma->vm_policy; 531 532 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 533 vma->vm_start, vma->vm_end, vma->vm_pgoff, 534 vma->vm_ops, vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 536 537 if (vma->vm_ops && vma->vm_ops->set_policy) 538 err = vma->vm_ops->set_policy(vma, new); 539 if (!err) { 540 mpol_get(new); 541 vma->vm_policy = new; 542 mpol_put(old); 543 } 544 return err; 545 } 546 547 /* Step 2: apply policy to a range and do splits. */ 548 static int mbind_range(struct vm_area_struct *vma, unsigned long start, 549 unsigned long end, struct mempolicy *new) 550 { 551 struct vm_area_struct *next; 552 int err; 553 554 err = 0; 555 for (; vma && vma->vm_start < end; vma = next) { 556 next = vma->vm_next; 557 if (vma->vm_start < start) 558 err = split_vma(vma->vm_mm, vma, start, 1); 559 if (!err && vma->vm_end > end) 560 err = split_vma(vma->vm_mm, vma, end, 0); 561 if (!err) 562 err = policy_vma(vma, new); 563 if (err) 564 break; 565 } 566 return err; 567 } 568 569 /* 570 * Update task->flags PF_MEMPOLICY bit: set iff non-default 571 * mempolicy. Allows more rapid checking of this (combined perhaps 572 * with other PF_* flag bits) on memory allocation hot code paths. 573 * 574 * If called from outside this file, the task 'p' should -only- be 575 * a newly forked child not yet visible on the task list, because 576 * manipulating the task flags of a visible task is not safe. 577 * 578 * The above limitation is why this routine has the funny name 579 * mpol_fix_fork_child_flag(). 580 * 581 * It is also safe to call this with a task pointer of current, 582 * which the static wrapper mpol_set_task_struct_flag() does, 583 * for use within this file. 584 */ 585 586 void mpol_fix_fork_child_flag(struct task_struct *p) 587 { 588 if (p->mempolicy) 589 p->flags |= PF_MEMPOLICY; 590 else 591 p->flags &= ~PF_MEMPOLICY; 592 } 593 594 static void mpol_set_task_struct_flag(void) 595 { 596 mpol_fix_fork_child_flag(current); 597 } 598 599 /* Set the process memory policy */ 600 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 601 nodemask_t *nodes) 602 { 603 struct mempolicy *new; 604 struct mm_struct *mm = current->mm; 605 606 new = mpol_new(mode, flags, nodes); 607 if (IS_ERR(new)) 608 return PTR_ERR(new); 609 610 /* 611 * prevent changing our mempolicy while show_numa_maps() 612 * is using it. 613 * Note: do_set_mempolicy() can be called at init time 614 * with no 'mm'. 615 */ 616 if (mm) 617 down_write(&mm->mmap_sem); 618 mpol_put(current->mempolicy); 619 current->mempolicy = new; 620 mpol_set_task_struct_flag(); 621 if (new && new->mode == MPOL_INTERLEAVE && 622 nodes_weight(new->v.nodes)) 623 current->il_next = first_node(new->v.nodes); 624 if (mm) 625 up_write(&mm->mmap_sem); 626 627 return 0; 628 } 629 630 /* 631 * Return nodemask for policy for get_mempolicy() query 632 */ 633 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 634 { 635 nodes_clear(*nodes); 636 if (p == &default_policy) 637 return; 638 639 switch (p->mode) { 640 case MPOL_BIND: 641 /* Fall through */ 642 case MPOL_INTERLEAVE: 643 *nodes = p->v.nodes; 644 break; 645 case MPOL_PREFERRED: 646 if (!(p->flags & MPOL_F_LOCAL)) 647 node_set(p->v.preferred_node, *nodes); 648 /* else return empty node mask for local allocation */ 649 break; 650 default: 651 BUG(); 652 } 653 } 654 655 static int lookup_node(struct mm_struct *mm, unsigned long addr) 656 { 657 struct page *p; 658 int err; 659 660 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 661 if (err >= 0) { 662 err = page_to_nid(p); 663 put_page(p); 664 } 665 return err; 666 } 667 668 /* Retrieve NUMA policy */ 669 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 670 unsigned long addr, unsigned long flags) 671 { 672 int err; 673 struct mm_struct *mm = current->mm; 674 struct vm_area_struct *vma = NULL; 675 struct mempolicy *pol = current->mempolicy; 676 677 cpuset_update_task_memory_state(); 678 if (flags & 679 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 680 return -EINVAL; 681 682 if (flags & MPOL_F_MEMS_ALLOWED) { 683 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 684 return -EINVAL; 685 *policy = 0; /* just so it's initialized */ 686 *nmask = cpuset_current_mems_allowed; 687 return 0; 688 } 689 690 if (flags & MPOL_F_ADDR) { 691 /* 692 * Do NOT fall back to task policy if the 693 * vma/shared policy at addr is NULL. We 694 * want to return MPOL_DEFAULT in this case. 695 */ 696 down_read(&mm->mmap_sem); 697 vma = find_vma_intersection(mm, addr, addr+1); 698 if (!vma) { 699 up_read(&mm->mmap_sem); 700 return -EFAULT; 701 } 702 if (vma->vm_ops && vma->vm_ops->get_policy) 703 pol = vma->vm_ops->get_policy(vma, addr); 704 else 705 pol = vma->vm_policy; 706 } else if (addr) 707 return -EINVAL; 708 709 if (!pol) 710 pol = &default_policy; /* indicates default behavior */ 711 712 if (flags & MPOL_F_NODE) { 713 if (flags & MPOL_F_ADDR) { 714 err = lookup_node(mm, addr); 715 if (err < 0) 716 goto out; 717 *policy = err; 718 } else if (pol == current->mempolicy && 719 pol->mode == MPOL_INTERLEAVE) { 720 *policy = current->il_next; 721 } else { 722 err = -EINVAL; 723 goto out; 724 } 725 } else { 726 *policy = pol == &default_policy ? MPOL_DEFAULT : 727 pol->mode; 728 /* 729 * Internal mempolicy flags must be masked off before exposing 730 * the policy to userspace. 731 */ 732 *policy |= (pol->flags & MPOL_MODE_FLAGS); 733 } 734 735 if (vma) { 736 up_read(¤t->mm->mmap_sem); 737 vma = NULL; 738 } 739 740 err = 0; 741 if (nmask) 742 get_policy_nodemask(pol, nmask); 743 744 out: 745 mpol_cond_put(pol); 746 if (vma) 747 up_read(¤t->mm->mmap_sem); 748 return err; 749 } 750 751 #ifdef CONFIG_MIGRATION 752 /* 753 * page migration 754 */ 755 static void migrate_page_add(struct page *page, struct list_head *pagelist, 756 unsigned long flags) 757 { 758 /* 759 * Avoid migrating a page that is shared with others. 760 */ 761 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 762 if (!isolate_lru_page(page)) { 763 list_add_tail(&page->lru, pagelist); 764 } 765 } 766 } 767 768 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 769 { 770 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0); 771 } 772 773 /* 774 * Migrate pages from one node to a target node. 775 * Returns error or the number of pages not migrated. 776 */ 777 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 778 int flags) 779 { 780 nodemask_t nmask; 781 LIST_HEAD(pagelist); 782 int err = 0; 783 784 nodes_clear(nmask); 785 node_set(source, nmask); 786 787 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, 788 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 789 790 if (!list_empty(&pagelist)) 791 err = migrate_pages(&pagelist, new_node_page, dest); 792 793 return err; 794 } 795 796 /* 797 * Move pages between the two nodesets so as to preserve the physical 798 * layout as much as possible. 799 * 800 * Returns the number of page that could not be moved. 801 */ 802 int do_migrate_pages(struct mm_struct *mm, 803 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 804 { 805 int busy = 0; 806 int err; 807 nodemask_t tmp; 808 809 err = migrate_prep(); 810 if (err) 811 return err; 812 813 down_read(&mm->mmap_sem); 814 815 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 816 if (err) 817 goto out; 818 819 /* 820 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 821 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 822 * bit in 'tmp', and return that <source, dest> pair for migration. 823 * The pair of nodemasks 'to' and 'from' define the map. 824 * 825 * If no pair of bits is found that way, fallback to picking some 826 * pair of 'source' and 'dest' bits that are not the same. If the 827 * 'source' and 'dest' bits are the same, this represents a node 828 * that will be migrating to itself, so no pages need move. 829 * 830 * If no bits are left in 'tmp', or if all remaining bits left 831 * in 'tmp' correspond to the same bit in 'to', return false 832 * (nothing left to migrate). 833 * 834 * This lets us pick a pair of nodes to migrate between, such that 835 * if possible the dest node is not already occupied by some other 836 * source node, minimizing the risk of overloading the memory on a 837 * node that would happen if we migrated incoming memory to a node 838 * before migrating outgoing memory source that same node. 839 * 840 * A single scan of tmp is sufficient. As we go, we remember the 841 * most recent <s, d> pair that moved (s != d). If we find a pair 842 * that not only moved, but what's better, moved to an empty slot 843 * (d is not set in tmp), then we break out then, with that pair. 844 * Otherwise when we finish scannng from_tmp, we at least have the 845 * most recent <s, d> pair that moved. If we get all the way through 846 * the scan of tmp without finding any node that moved, much less 847 * moved to an empty node, then there is nothing left worth migrating. 848 */ 849 850 tmp = *from_nodes; 851 while (!nodes_empty(tmp)) { 852 int s,d; 853 int source = -1; 854 int dest = 0; 855 856 for_each_node_mask(s, tmp) { 857 d = node_remap(s, *from_nodes, *to_nodes); 858 if (s == d) 859 continue; 860 861 source = s; /* Node moved. Memorize */ 862 dest = d; 863 864 /* dest not in remaining from nodes? */ 865 if (!node_isset(dest, tmp)) 866 break; 867 } 868 if (source == -1) 869 break; 870 871 node_clear(source, tmp); 872 err = migrate_to_node(mm, source, dest, flags); 873 if (err > 0) 874 busy += err; 875 if (err < 0) 876 break; 877 } 878 out: 879 up_read(&mm->mmap_sem); 880 if (err < 0) 881 return err; 882 return busy; 883 884 } 885 886 /* 887 * Allocate a new page for page migration based on vma policy. 888 * Start assuming that page is mapped by vma pointed to by @private. 889 * Search forward from there, if not. N.B., this assumes that the 890 * list of pages handed to migrate_pages()--which is how we get here-- 891 * is in virtual address order. 892 */ 893 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 894 { 895 struct vm_area_struct *vma = (struct vm_area_struct *)private; 896 unsigned long uninitialized_var(address); 897 898 while (vma) { 899 address = page_address_in_vma(page, vma); 900 if (address != -EFAULT) 901 break; 902 vma = vma->vm_next; 903 } 904 905 /* 906 * if !vma, alloc_page_vma() will use task or system default policy 907 */ 908 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 909 } 910 #else 911 912 static void migrate_page_add(struct page *page, struct list_head *pagelist, 913 unsigned long flags) 914 { 915 } 916 917 int do_migrate_pages(struct mm_struct *mm, 918 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 919 { 920 return -ENOSYS; 921 } 922 923 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 924 { 925 return NULL; 926 } 927 #endif 928 929 static long do_mbind(unsigned long start, unsigned long len, 930 unsigned short mode, unsigned short mode_flags, 931 nodemask_t *nmask, unsigned long flags) 932 { 933 struct vm_area_struct *vma; 934 struct mm_struct *mm = current->mm; 935 struct mempolicy *new; 936 unsigned long end; 937 int err; 938 LIST_HEAD(pagelist); 939 940 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 941 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 942 return -EINVAL; 943 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 944 return -EPERM; 945 946 if (start & ~PAGE_MASK) 947 return -EINVAL; 948 949 if (mode == MPOL_DEFAULT) 950 flags &= ~MPOL_MF_STRICT; 951 952 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 953 end = start + len; 954 955 if (end < start) 956 return -EINVAL; 957 if (end == start) 958 return 0; 959 960 new = mpol_new(mode, mode_flags, nmask); 961 if (IS_ERR(new)) 962 return PTR_ERR(new); 963 964 /* 965 * If we are using the default policy then operation 966 * on discontinuous address spaces is okay after all 967 */ 968 if (!new) 969 flags |= MPOL_MF_DISCONTIG_OK; 970 971 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 972 start, start + len, mode, mode_flags, 973 nmask ? nodes_addr(*nmask)[0] : -1); 974 975 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 976 977 err = migrate_prep(); 978 if (err) 979 return err; 980 } 981 down_write(&mm->mmap_sem); 982 vma = check_range(mm, start, end, nmask, 983 flags | MPOL_MF_INVERT, &pagelist); 984 985 err = PTR_ERR(vma); 986 if (!IS_ERR(vma)) { 987 int nr_failed = 0; 988 989 err = mbind_range(vma, start, end, new); 990 991 if (!list_empty(&pagelist)) 992 nr_failed = migrate_pages(&pagelist, new_vma_page, 993 (unsigned long)vma); 994 995 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 996 err = -EIO; 997 } 998 999 up_write(&mm->mmap_sem); 1000 mpol_put(new); 1001 return err; 1002 } 1003 1004 /* 1005 * User space interface with variable sized bitmaps for nodelists. 1006 */ 1007 1008 /* Copy a node mask from user space. */ 1009 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1010 unsigned long maxnode) 1011 { 1012 unsigned long k; 1013 unsigned long nlongs; 1014 unsigned long endmask; 1015 1016 --maxnode; 1017 nodes_clear(*nodes); 1018 if (maxnode == 0 || !nmask) 1019 return 0; 1020 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1021 return -EINVAL; 1022 1023 nlongs = BITS_TO_LONGS(maxnode); 1024 if ((maxnode % BITS_PER_LONG) == 0) 1025 endmask = ~0UL; 1026 else 1027 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1028 1029 /* When the user specified more nodes than supported just check 1030 if the non supported part is all zero. */ 1031 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1032 if (nlongs > PAGE_SIZE/sizeof(long)) 1033 return -EINVAL; 1034 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1035 unsigned long t; 1036 if (get_user(t, nmask + k)) 1037 return -EFAULT; 1038 if (k == nlongs - 1) { 1039 if (t & endmask) 1040 return -EINVAL; 1041 } else if (t) 1042 return -EINVAL; 1043 } 1044 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1045 endmask = ~0UL; 1046 } 1047 1048 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1049 return -EFAULT; 1050 nodes_addr(*nodes)[nlongs-1] &= endmask; 1051 return 0; 1052 } 1053 1054 /* Copy a kernel node mask to user space */ 1055 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1056 nodemask_t *nodes) 1057 { 1058 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1059 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1060 1061 if (copy > nbytes) { 1062 if (copy > PAGE_SIZE) 1063 return -EINVAL; 1064 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1065 return -EFAULT; 1066 copy = nbytes; 1067 } 1068 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1069 } 1070 1071 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1072 unsigned long, mode, unsigned long __user *, nmask, 1073 unsigned long, maxnode, unsigned, flags) 1074 { 1075 nodemask_t nodes; 1076 int err; 1077 unsigned short mode_flags; 1078 1079 mode_flags = mode & MPOL_MODE_FLAGS; 1080 mode &= ~MPOL_MODE_FLAGS; 1081 if (mode >= MPOL_MAX) 1082 return -EINVAL; 1083 if ((mode_flags & MPOL_F_STATIC_NODES) && 1084 (mode_flags & MPOL_F_RELATIVE_NODES)) 1085 return -EINVAL; 1086 err = get_nodes(&nodes, nmask, maxnode); 1087 if (err) 1088 return err; 1089 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1090 } 1091 1092 /* Set the process memory policy */ 1093 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1094 unsigned long, maxnode) 1095 { 1096 int err; 1097 nodemask_t nodes; 1098 unsigned short flags; 1099 1100 flags = mode & MPOL_MODE_FLAGS; 1101 mode &= ~MPOL_MODE_FLAGS; 1102 if ((unsigned int)mode >= MPOL_MAX) 1103 return -EINVAL; 1104 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1105 return -EINVAL; 1106 err = get_nodes(&nodes, nmask, maxnode); 1107 if (err) 1108 return err; 1109 return do_set_mempolicy(mode, flags, &nodes); 1110 } 1111 1112 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1113 const unsigned long __user *, old_nodes, 1114 const unsigned long __user *, new_nodes) 1115 { 1116 const struct cred *cred = current_cred(), *tcred; 1117 struct mm_struct *mm; 1118 struct task_struct *task; 1119 nodemask_t old; 1120 nodemask_t new; 1121 nodemask_t task_nodes; 1122 int err; 1123 1124 err = get_nodes(&old, old_nodes, maxnode); 1125 if (err) 1126 return err; 1127 1128 err = get_nodes(&new, new_nodes, maxnode); 1129 if (err) 1130 return err; 1131 1132 /* Find the mm_struct */ 1133 read_lock(&tasklist_lock); 1134 task = pid ? find_task_by_vpid(pid) : current; 1135 if (!task) { 1136 read_unlock(&tasklist_lock); 1137 return -ESRCH; 1138 } 1139 mm = get_task_mm(task); 1140 read_unlock(&tasklist_lock); 1141 1142 if (!mm) 1143 return -EINVAL; 1144 1145 /* 1146 * Check if this process has the right to modify the specified 1147 * process. The right exists if the process has administrative 1148 * capabilities, superuser privileges or the same 1149 * userid as the target process. 1150 */ 1151 rcu_read_lock(); 1152 tcred = __task_cred(task); 1153 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1154 cred->uid != tcred->suid && cred->uid != tcred->uid && 1155 !capable(CAP_SYS_NICE)) { 1156 rcu_read_unlock(); 1157 err = -EPERM; 1158 goto out; 1159 } 1160 rcu_read_unlock(); 1161 1162 task_nodes = cpuset_mems_allowed(task); 1163 /* Is the user allowed to access the target nodes? */ 1164 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 1165 err = -EPERM; 1166 goto out; 1167 } 1168 1169 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { 1170 err = -EINVAL; 1171 goto out; 1172 } 1173 1174 err = security_task_movememory(task); 1175 if (err) 1176 goto out; 1177 1178 err = do_migrate_pages(mm, &old, &new, 1179 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1180 out: 1181 mmput(mm); 1182 return err; 1183 } 1184 1185 1186 /* Retrieve NUMA policy */ 1187 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1188 unsigned long __user *, nmask, unsigned long, maxnode, 1189 unsigned long, addr, unsigned long, flags) 1190 { 1191 int err; 1192 int uninitialized_var(pval); 1193 nodemask_t nodes; 1194 1195 if (nmask != NULL && maxnode < MAX_NUMNODES) 1196 return -EINVAL; 1197 1198 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1199 1200 if (err) 1201 return err; 1202 1203 if (policy && put_user(pval, policy)) 1204 return -EFAULT; 1205 1206 if (nmask) 1207 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1208 1209 return err; 1210 } 1211 1212 #ifdef CONFIG_COMPAT 1213 1214 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1215 compat_ulong_t __user *nmask, 1216 compat_ulong_t maxnode, 1217 compat_ulong_t addr, compat_ulong_t flags) 1218 { 1219 long err; 1220 unsigned long __user *nm = NULL; 1221 unsigned long nr_bits, alloc_size; 1222 DECLARE_BITMAP(bm, MAX_NUMNODES); 1223 1224 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1225 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1226 1227 if (nmask) 1228 nm = compat_alloc_user_space(alloc_size); 1229 1230 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1231 1232 if (!err && nmask) { 1233 err = copy_from_user(bm, nm, alloc_size); 1234 /* ensure entire bitmap is zeroed */ 1235 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1236 err |= compat_put_bitmap(nmask, bm, nr_bits); 1237 } 1238 1239 return err; 1240 } 1241 1242 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1243 compat_ulong_t maxnode) 1244 { 1245 long err = 0; 1246 unsigned long __user *nm = NULL; 1247 unsigned long nr_bits, alloc_size; 1248 DECLARE_BITMAP(bm, MAX_NUMNODES); 1249 1250 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1251 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1252 1253 if (nmask) { 1254 err = compat_get_bitmap(bm, nmask, nr_bits); 1255 nm = compat_alloc_user_space(alloc_size); 1256 err |= copy_to_user(nm, bm, alloc_size); 1257 } 1258 1259 if (err) 1260 return -EFAULT; 1261 1262 return sys_set_mempolicy(mode, nm, nr_bits+1); 1263 } 1264 1265 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1266 compat_ulong_t mode, compat_ulong_t __user *nmask, 1267 compat_ulong_t maxnode, compat_ulong_t flags) 1268 { 1269 long err = 0; 1270 unsigned long __user *nm = NULL; 1271 unsigned long nr_bits, alloc_size; 1272 nodemask_t bm; 1273 1274 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1275 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1276 1277 if (nmask) { 1278 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1279 nm = compat_alloc_user_space(alloc_size); 1280 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1281 } 1282 1283 if (err) 1284 return -EFAULT; 1285 1286 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1287 } 1288 1289 #endif 1290 1291 /* 1292 * get_vma_policy(@task, @vma, @addr) 1293 * @task - task for fallback if vma policy == default 1294 * @vma - virtual memory area whose policy is sought 1295 * @addr - address in @vma for shared policy lookup 1296 * 1297 * Returns effective policy for a VMA at specified address. 1298 * Falls back to @task or system default policy, as necessary. 1299 * Current or other task's task mempolicy and non-shared vma policies 1300 * are protected by the task's mmap_sem, which must be held for read by 1301 * the caller. 1302 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1303 * count--added by the get_policy() vm_op, as appropriate--to protect against 1304 * freeing by another task. It is the caller's responsibility to free the 1305 * extra reference for shared policies. 1306 */ 1307 static struct mempolicy *get_vma_policy(struct task_struct *task, 1308 struct vm_area_struct *vma, unsigned long addr) 1309 { 1310 struct mempolicy *pol = task->mempolicy; 1311 1312 if (vma) { 1313 if (vma->vm_ops && vma->vm_ops->get_policy) { 1314 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1315 addr); 1316 if (vpol) 1317 pol = vpol; 1318 } else if (vma->vm_policy) 1319 pol = vma->vm_policy; 1320 } 1321 if (!pol) 1322 pol = &default_policy; 1323 return pol; 1324 } 1325 1326 /* 1327 * Return a nodemask representing a mempolicy for filtering nodes for 1328 * page allocation 1329 */ 1330 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1331 { 1332 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1333 if (unlikely(policy->mode == MPOL_BIND) && 1334 gfp_zone(gfp) >= policy_zone && 1335 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1336 return &policy->v.nodes; 1337 1338 return NULL; 1339 } 1340 1341 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1342 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy) 1343 { 1344 int nd = numa_node_id(); 1345 1346 switch (policy->mode) { 1347 case MPOL_PREFERRED: 1348 if (!(policy->flags & MPOL_F_LOCAL)) 1349 nd = policy->v.preferred_node; 1350 break; 1351 case MPOL_BIND: 1352 /* 1353 * Normally, MPOL_BIND allocations are node-local within the 1354 * allowed nodemask. However, if __GFP_THISNODE is set and the 1355 * current node is part of the mask, we use the zonelist for 1356 * the first node in the mask instead. 1357 */ 1358 if (unlikely(gfp & __GFP_THISNODE) && 1359 unlikely(!node_isset(nd, policy->v.nodes))) 1360 nd = first_node(policy->v.nodes); 1361 break; 1362 case MPOL_INTERLEAVE: /* should not happen */ 1363 break; 1364 default: 1365 BUG(); 1366 } 1367 return node_zonelist(nd, gfp); 1368 } 1369 1370 /* Do dynamic interleaving for a process */ 1371 static unsigned interleave_nodes(struct mempolicy *policy) 1372 { 1373 unsigned nid, next; 1374 struct task_struct *me = current; 1375 1376 nid = me->il_next; 1377 next = next_node(nid, policy->v.nodes); 1378 if (next >= MAX_NUMNODES) 1379 next = first_node(policy->v.nodes); 1380 if (next < MAX_NUMNODES) 1381 me->il_next = next; 1382 return nid; 1383 } 1384 1385 /* 1386 * Depending on the memory policy provide a node from which to allocate the 1387 * next slab entry. 1388 * @policy must be protected by freeing by the caller. If @policy is 1389 * the current task's mempolicy, this protection is implicit, as only the 1390 * task can change it's policy. The system default policy requires no 1391 * such protection. 1392 */ 1393 unsigned slab_node(struct mempolicy *policy) 1394 { 1395 if (!policy || policy->flags & MPOL_F_LOCAL) 1396 return numa_node_id(); 1397 1398 switch (policy->mode) { 1399 case MPOL_PREFERRED: 1400 /* 1401 * handled MPOL_F_LOCAL above 1402 */ 1403 return policy->v.preferred_node; 1404 1405 case MPOL_INTERLEAVE: 1406 return interleave_nodes(policy); 1407 1408 case MPOL_BIND: { 1409 /* 1410 * Follow bind policy behavior and start allocation at the 1411 * first node. 1412 */ 1413 struct zonelist *zonelist; 1414 struct zone *zone; 1415 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1416 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1417 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1418 &policy->v.nodes, 1419 &zone); 1420 return zone->node; 1421 } 1422 1423 default: 1424 BUG(); 1425 } 1426 } 1427 1428 /* Do static interleaving for a VMA with known offset. */ 1429 static unsigned offset_il_node(struct mempolicy *pol, 1430 struct vm_area_struct *vma, unsigned long off) 1431 { 1432 unsigned nnodes = nodes_weight(pol->v.nodes); 1433 unsigned target; 1434 int c; 1435 int nid = -1; 1436 1437 if (!nnodes) 1438 return numa_node_id(); 1439 target = (unsigned int)off % nnodes; 1440 c = 0; 1441 do { 1442 nid = next_node(nid, pol->v.nodes); 1443 c++; 1444 } while (c <= target); 1445 return nid; 1446 } 1447 1448 /* Determine a node number for interleave */ 1449 static inline unsigned interleave_nid(struct mempolicy *pol, 1450 struct vm_area_struct *vma, unsigned long addr, int shift) 1451 { 1452 if (vma) { 1453 unsigned long off; 1454 1455 /* 1456 * for small pages, there is no difference between 1457 * shift and PAGE_SHIFT, so the bit-shift is safe. 1458 * for huge pages, since vm_pgoff is in units of small 1459 * pages, we need to shift off the always 0 bits to get 1460 * a useful offset. 1461 */ 1462 BUG_ON(shift < PAGE_SHIFT); 1463 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1464 off += (addr - vma->vm_start) >> shift; 1465 return offset_il_node(pol, vma, off); 1466 } else 1467 return interleave_nodes(pol); 1468 } 1469 1470 #ifdef CONFIG_HUGETLBFS 1471 /* 1472 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1473 * @vma = virtual memory area whose policy is sought 1474 * @addr = address in @vma for shared policy lookup and interleave policy 1475 * @gfp_flags = for requested zone 1476 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1477 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1478 * 1479 * Returns a zonelist suitable for a huge page allocation and a pointer 1480 * to the struct mempolicy for conditional unref after allocation. 1481 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1482 * @nodemask for filtering the zonelist. 1483 */ 1484 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1485 gfp_t gfp_flags, struct mempolicy **mpol, 1486 nodemask_t **nodemask) 1487 { 1488 struct zonelist *zl; 1489 1490 *mpol = get_vma_policy(current, vma, addr); 1491 *nodemask = NULL; /* assume !MPOL_BIND */ 1492 1493 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1494 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1495 huge_page_shift(hstate_vma(vma))), gfp_flags); 1496 } else { 1497 zl = policy_zonelist(gfp_flags, *mpol); 1498 if ((*mpol)->mode == MPOL_BIND) 1499 *nodemask = &(*mpol)->v.nodes; 1500 } 1501 return zl; 1502 } 1503 #endif 1504 1505 /* Allocate a page in interleaved policy. 1506 Own path because it needs to do special accounting. */ 1507 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1508 unsigned nid) 1509 { 1510 struct zonelist *zl; 1511 struct page *page; 1512 1513 zl = node_zonelist(nid, gfp); 1514 page = __alloc_pages(gfp, order, zl); 1515 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1516 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1517 return page; 1518 } 1519 1520 /** 1521 * alloc_page_vma - Allocate a page for a VMA. 1522 * 1523 * @gfp: 1524 * %GFP_USER user allocation. 1525 * %GFP_KERNEL kernel allocations, 1526 * %GFP_HIGHMEM highmem/user allocations, 1527 * %GFP_FS allocation should not call back into a file system. 1528 * %GFP_ATOMIC don't sleep. 1529 * 1530 * @vma: Pointer to VMA or NULL if not available. 1531 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1532 * 1533 * This function allocates a page from the kernel page pool and applies 1534 * a NUMA policy associated with the VMA or the current process. 1535 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1536 * mm_struct of the VMA to prevent it from going away. Should be used for 1537 * all allocations for pages that will be mapped into 1538 * user space. Returns NULL when no page can be allocated. 1539 * 1540 * Should be called with the mm_sem of the vma hold. 1541 */ 1542 struct page * 1543 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1544 { 1545 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1546 struct zonelist *zl; 1547 1548 cpuset_update_task_memory_state(); 1549 1550 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1551 unsigned nid; 1552 1553 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1554 mpol_cond_put(pol); 1555 return alloc_page_interleave(gfp, 0, nid); 1556 } 1557 zl = policy_zonelist(gfp, pol); 1558 if (unlikely(mpol_needs_cond_ref(pol))) { 1559 /* 1560 * slow path: ref counted shared policy 1561 */ 1562 struct page *page = __alloc_pages_nodemask(gfp, 0, 1563 zl, policy_nodemask(gfp, pol)); 1564 __mpol_put(pol); 1565 return page; 1566 } 1567 /* 1568 * fast path: default or task policy 1569 */ 1570 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol)); 1571 } 1572 1573 /** 1574 * alloc_pages_current - Allocate pages. 1575 * 1576 * @gfp: 1577 * %GFP_USER user allocation, 1578 * %GFP_KERNEL kernel allocation, 1579 * %GFP_HIGHMEM highmem allocation, 1580 * %GFP_FS don't call back into a file system. 1581 * %GFP_ATOMIC don't sleep. 1582 * @order: Power of two of allocation size in pages. 0 is a single page. 1583 * 1584 * Allocate a page from the kernel page pool. When not in 1585 * interrupt context and apply the current process NUMA policy. 1586 * Returns NULL when no page can be allocated. 1587 * 1588 * Don't call cpuset_update_task_memory_state() unless 1589 * 1) it's ok to take cpuset_sem (can WAIT), and 1590 * 2) allocating for current task (not interrupt). 1591 */ 1592 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1593 { 1594 struct mempolicy *pol = current->mempolicy; 1595 1596 if ((gfp & __GFP_WAIT) && !in_interrupt()) 1597 cpuset_update_task_memory_state(); 1598 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1599 pol = &default_policy; 1600 1601 /* 1602 * No reference counting needed for current->mempolicy 1603 * nor system default_policy 1604 */ 1605 if (pol->mode == MPOL_INTERLEAVE) 1606 return alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1607 return __alloc_pages_nodemask(gfp, order, 1608 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol)); 1609 } 1610 EXPORT_SYMBOL(alloc_pages_current); 1611 1612 /* 1613 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 1614 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1615 * with the mems_allowed returned by cpuset_mems_allowed(). This 1616 * keeps mempolicies cpuset relative after its cpuset moves. See 1617 * further kernel/cpuset.c update_nodemask(). 1618 */ 1619 1620 /* Slow path of a mempolicy duplicate */ 1621 struct mempolicy *__mpol_dup(struct mempolicy *old) 1622 { 1623 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1624 1625 if (!new) 1626 return ERR_PTR(-ENOMEM); 1627 if (current_cpuset_is_being_rebound()) { 1628 nodemask_t mems = cpuset_mems_allowed(current); 1629 mpol_rebind_policy(old, &mems); 1630 } 1631 *new = *old; 1632 atomic_set(&new->refcnt, 1); 1633 return new; 1634 } 1635 1636 /* 1637 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 1638 * eliminate the * MPOL_F_* flags that require conditional ref and 1639 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 1640 * after return. Use the returned value. 1641 * 1642 * Allows use of a mempolicy for, e.g., multiple allocations with a single 1643 * policy lookup, even if the policy needs/has extra ref on lookup. 1644 * shmem_readahead needs this. 1645 */ 1646 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 1647 struct mempolicy *frompol) 1648 { 1649 if (!mpol_needs_cond_ref(frompol)) 1650 return frompol; 1651 1652 *tompol = *frompol; 1653 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 1654 __mpol_put(frompol); 1655 return tompol; 1656 } 1657 1658 static int mpol_match_intent(const struct mempolicy *a, 1659 const struct mempolicy *b) 1660 { 1661 if (a->flags != b->flags) 1662 return 0; 1663 if (!mpol_store_user_nodemask(a)) 1664 return 1; 1665 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask); 1666 } 1667 1668 /* Slow path of a mempolicy comparison */ 1669 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1670 { 1671 if (!a || !b) 1672 return 0; 1673 if (a->mode != b->mode) 1674 return 0; 1675 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b)) 1676 return 0; 1677 switch (a->mode) { 1678 case MPOL_BIND: 1679 /* Fall through */ 1680 case MPOL_INTERLEAVE: 1681 return nodes_equal(a->v.nodes, b->v.nodes); 1682 case MPOL_PREFERRED: 1683 return a->v.preferred_node == b->v.preferred_node && 1684 a->flags == b->flags; 1685 default: 1686 BUG(); 1687 return 0; 1688 } 1689 } 1690 1691 /* 1692 * Shared memory backing store policy support. 1693 * 1694 * Remember policies even when nobody has shared memory mapped. 1695 * The policies are kept in Red-Black tree linked from the inode. 1696 * They are protected by the sp->lock spinlock, which should be held 1697 * for any accesses to the tree. 1698 */ 1699 1700 /* lookup first element intersecting start-end */ 1701 /* Caller holds sp->lock */ 1702 static struct sp_node * 1703 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1704 { 1705 struct rb_node *n = sp->root.rb_node; 1706 1707 while (n) { 1708 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1709 1710 if (start >= p->end) 1711 n = n->rb_right; 1712 else if (end <= p->start) 1713 n = n->rb_left; 1714 else 1715 break; 1716 } 1717 if (!n) 1718 return NULL; 1719 for (;;) { 1720 struct sp_node *w = NULL; 1721 struct rb_node *prev = rb_prev(n); 1722 if (!prev) 1723 break; 1724 w = rb_entry(prev, struct sp_node, nd); 1725 if (w->end <= start) 1726 break; 1727 n = prev; 1728 } 1729 return rb_entry(n, struct sp_node, nd); 1730 } 1731 1732 /* Insert a new shared policy into the list. */ 1733 /* Caller holds sp->lock */ 1734 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1735 { 1736 struct rb_node **p = &sp->root.rb_node; 1737 struct rb_node *parent = NULL; 1738 struct sp_node *nd; 1739 1740 while (*p) { 1741 parent = *p; 1742 nd = rb_entry(parent, struct sp_node, nd); 1743 if (new->start < nd->start) 1744 p = &(*p)->rb_left; 1745 else if (new->end > nd->end) 1746 p = &(*p)->rb_right; 1747 else 1748 BUG(); 1749 } 1750 rb_link_node(&new->nd, parent, p); 1751 rb_insert_color(&new->nd, &sp->root); 1752 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 1753 new->policy ? new->policy->mode : 0); 1754 } 1755 1756 /* Find shared policy intersecting idx */ 1757 struct mempolicy * 1758 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1759 { 1760 struct mempolicy *pol = NULL; 1761 struct sp_node *sn; 1762 1763 if (!sp->root.rb_node) 1764 return NULL; 1765 spin_lock(&sp->lock); 1766 sn = sp_lookup(sp, idx, idx+1); 1767 if (sn) { 1768 mpol_get(sn->policy); 1769 pol = sn->policy; 1770 } 1771 spin_unlock(&sp->lock); 1772 return pol; 1773 } 1774 1775 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 1776 { 1777 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 1778 rb_erase(&n->nd, &sp->root); 1779 mpol_put(n->policy); 1780 kmem_cache_free(sn_cache, n); 1781 } 1782 1783 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 1784 struct mempolicy *pol) 1785 { 1786 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 1787 1788 if (!n) 1789 return NULL; 1790 n->start = start; 1791 n->end = end; 1792 mpol_get(pol); 1793 pol->flags |= MPOL_F_SHARED; /* for unref */ 1794 n->policy = pol; 1795 return n; 1796 } 1797 1798 /* Replace a policy range. */ 1799 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 1800 unsigned long end, struct sp_node *new) 1801 { 1802 struct sp_node *n, *new2 = NULL; 1803 1804 restart: 1805 spin_lock(&sp->lock); 1806 n = sp_lookup(sp, start, end); 1807 /* Take care of old policies in the same range. */ 1808 while (n && n->start < end) { 1809 struct rb_node *next = rb_next(&n->nd); 1810 if (n->start >= start) { 1811 if (n->end <= end) 1812 sp_delete(sp, n); 1813 else 1814 n->start = end; 1815 } else { 1816 /* Old policy spanning whole new range. */ 1817 if (n->end > end) { 1818 if (!new2) { 1819 spin_unlock(&sp->lock); 1820 new2 = sp_alloc(end, n->end, n->policy); 1821 if (!new2) 1822 return -ENOMEM; 1823 goto restart; 1824 } 1825 n->end = start; 1826 sp_insert(sp, new2); 1827 new2 = NULL; 1828 break; 1829 } else 1830 n->end = start; 1831 } 1832 if (!next) 1833 break; 1834 n = rb_entry(next, struct sp_node, nd); 1835 } 1836 if (new) 1837 sp_insert(sp, new); 1838 spin_unlock(&sp->lock); 1839 if (new2) { 1840 mpol_put(new2->policy); 1841 kmem_cache_free(sn_cache, new2); 1842 } 1843 return 0; 1844 } 1845 1846 /** 1847 * mpol_shared_policy_init - initialize shared policy for inode 1848 * @sp: pointer to inode shared policy 1849 * @mpol: struct mempolicy to install 1850 * 1851 * Install non-NULL @mpol in inode's shared policy rb-tree. 1852 * On entry, the current task has a reference on a non-NULL @mpol. 1853 * This must be released on exit. 1854 */ 1855 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 1856 { 1857 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 1858 spin_lock_init(&sp->lock); 1859 1860 if (mpol) { 1861 struct vm_area_struct pvma; 1862 struct mempolicy *new; 1863 1864 /* contextualize the tmpfs mount point mempolicy */ 1865 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 1866 mpol_put(mpol); /* drop our ref on sb mpol */ 1867 if (IS_ERR(new)) 1868 return; /* no valid nodemask intersection */ 1869 1870 /* Create pseudo-vma that contains just the policy */ 1871 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1872 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 1873 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 1874 mpol_put(new); /* drop initial ref */ 1875 } 1876 } 1877 1878 int mpol_set_shared_policy(struct shared_policy *info, 1879 struct vm_area_struct *vma, struct mempolicy *npol) 1880 { 1881 int err; 1882 struct sp_node *new = NULL; 1883 unsigned long sz = vma_pages(vma); 1884 1885 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 1886 vma->vm_pgoff, 1887 sz, npol ? npol->mode : -1, 1888 npol ? npol->flags : -1, 1889 npol ? nodes_addr(npol->v.nodes)[0] : -1); 1890 1891 if (npol) { 1892 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 1893 if (!new) 1894 return -ENOMEM; 1895 } 1896 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 1897 if (err && new) 1898 kmem_cache_free(sn_cache, new); 1899 return err; 1900 } 1901 1902 /* Free a backing policy store on inode delete. */ 1903 void mpol_free_shared_policy(struct shared_policy *p) 1904 { 1905 struct sp_node *n; 1906 struct rb_node *next; 1907 1908 if (!p->root.rb_node) 1909 return; 1910 spin_lock(&p->lock); 1911 next = rb_first(&p->root); 1912 while (next) { 1913 n = rb_entry(next, struct sp_node, nd); 1914 next = rb_next(&n->nd); 1915 rb_erase(&n->nd, &p->root); 1916 mpol_put(n->policy); 1917 kmem_cache_free(sn_cache, n); 1918 } 1919 spin_unlock(&p->lock); 1920 } 1921 1922 /* assumes fs == KERNEL_DS */ 1923 void __init numa_policy_init(void) 1924 { 1925 nodemask_t interleave_nodes; 1926 unsigned long largest = 0; 1927 int nid, prefer = 0; 1928 1929 policy_cache = kmem_cache_create("numa_policy", 1930 sizeof(struct mempolicy), 1931 0, SLAB_PANIC, NULL); 1932 1933 sn_cache = kmem_cache_create("shared_policy_node", 1934 sizeof(struct sp_node), 1935 0, SLAB_PANIC, NULL); 1936 1937 /* 1938 * Set interleaving policy for system init. Interleaving is only 1939 * enabled across suitably sized nodes (default is >= 16MB), or 1940 * fall back to the largest node if they're all smaller. 1941 */ 1942 nodes_clear(interleave_nodes); 1943 for_each_node_state(nid, N_HIGH_MEMORY) { 1944 unsigned long total_pages = node_present_pages(nid); 1945 1946 /* Preserve the largest node */ 1947 if (largest < total_pages) { 1948 largest = total_pages; 1949 prefer = nid; 1950 } 1951 1952 /* Interleave this node? */ 1953 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 1954 node_set(nid, interleave_nodes); 1955 } 1956 1957 /* All too small, use the largest */ 1958 if (unlikely(nodes_empty(interleave_nodes))) 1959 node_set(prefer, interleave_nodes); 1960 1961 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 1962 printk("numa_policy_init: interleaving failed\n"); 1963 } 1964 1965 /* Reset policy of current process to default */ 1966 void numa_default_policy(void) 1967 { 1968 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 1969 } 1970 1971 /* 1972 * Parse and format mempolicy from/to strings 1973 */ 1974 1975 /* 1976 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 1977 * Used only for mpol_parse_str() and mpol_to_str() 1978 */ 1979 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1) 1980 static const char * const policy_types[] = 1981 { "default", "prefer", "bind", "interleave", "local" }; 1982 1983 1984 #ifdef CONFIG_TMPFS 1985 /** 1986 * mpol_parse_str - parse string to mempolicy 1987 * @str: string containing mempolicy to parse 1988 * @mpol: pointer to struct mempolicy pointer, returned on success. 1989 * @no_context: flag whether to "contextualize" the mempolicy 1990 * 1991 * Format of input: 1992 * <mode>[=<flags>][:<nodelist>] 1993 * 1994 * if @no_context is true, save the input nodemask in w.user_nodemask in 1995 * the returned mempolicy. This will be used to "clone" the mempolicy in 1996 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 1997 * mount option. Note that if 'static' or 'relative' mode flags were 1998 * specified, the input nodemask will already have been saved. Saving 1999 * it again is redundant, but safe. 2000 * 2001 * On success, returns 0, else 1 2002 */ 2003 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2004 { 2005 struct mempolicy *new = NULL; 2006 unsigned short uninitialized_var(mode); 2007 unsigned short uninitialized_var(mode_flags); 2008 nodemask_t nodes; 2009 char *nodelist = strchr(str, ':'); 2010 char *flags = strchr(str, '='); 2011 int i; 2012 int err = 1; 2013 2014 if (nodelist) { 2015 /* NUL-terminate mode or flags string */ 2016 *nodelist++ = '\0'; 2017 if (nodelist_parse(nodelist, nodes)) 2018 goto out; 2019 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2020 goto out; 2021 } else 2022 nodes_clear(nodes); 2023 2024 if (flags) 2025 *flags++ = '\0'; /* terminate mode string */ 2026 2027 for (i = 0; i <= MPOL_LOCAL; i++) { 2028 if (!strcmp(str, policy_types[i])) { 2029 mode = i; 2030 break; 2031 } 2032 } 2033 if (i > MPOL_LOCAL) 2034 goto out; 2035 2036 switch (mode) { 2037 case MPOL_PREFERRED: 2038 /* 2039 * Insist on a nodelist of one node only 2040 */ 2041 if (nodelist) { 2042 char *rest = nodelist; 2043 while (isdigit(*rest)) 2044 rest++; 2045 if (!*rest) 2046 err = 0; 2047 } 2048 break; 2049 case MPOL_INTERLEAVE: 2050 /* 2051 * Default to online nodes with memory if no nodelist 2052 */ 2053 if (!nodelist) 2054 nodes = node_states[N_HIGH_MEMORY]; 2055 err = 0; 2056 break; 2057 case MPOL_LOCAL: 2058 /* 2059 * Don't allow a nodelist; mpol_new() checks flags 2060 */ 2061 if (nodelist) 2062 goto out; 2063 mode = MPOL_PREFERRED; 2064 break; 2065 2066 /* 2067 * case MPOL_BIND: mpol_new() enforces non-empty nodemask. 2068 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags. 2069 */ 2070 } 2071 2072 mode_flags = 0; 2073 if (flags) { 2074 /* 2075 * Currently, we only support two mutually exclusive 2076 * mode flags. 2077 */ 2078 if (!strcmp(flags, "static")) 2079 mode_flags |= MPOL_F_STATIC_NODES; 2080 else if (!strcmp(flags, "relative")) 2081 mode_flags |= MPOL_F_RELATIVE_NODES; 2082 else 2083 err = 1; 2084 } 2085 2086 new = mpol_new(mode, mode_flags, &nodes); 2087 if (IS_ERR(new)) 2088 err = 1; 2089 else if (no_context) 2090 new->w.user_nodemask = nodes; /* save for contextualization */ 2091 2092 out: 2093 /* Restore string for error message */ 2094 if (nodelist) 2095 *--nodelist = ':'; 2096 if (flags) 2097 *--flags = '='; 2098 if (!err) 2099 *mpol = new; 2100 return err; 2101 } 2102 #endif /* CONFIG_TMPFS */ 2103 2104 /** 2105 * mpol_to_str - format a mempolicy structure for printing 2106 * @buffer: to contain formatted mempolicy string 2107 * @maxlen: length of @buffer 2108 * @pol: pointer to mempolicy to be formatted 2109 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2110 * 2111 * Convert a mempolicy into a string. 2112 * Returns the number of characters in buffer (if positive) 2113 * or an error (negative) 2114 */ 2115 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2116 { 2117 char *p = buffer; 2118 int l; 2119 nodemask_t nodes; 2120 unsigned short mode; 2121 unsigned short flags = pol ? pol->flags : 0; 2122 2123 /* 2124 * Sanity check: room for longest mode, flag and some nodes 2125 */ 2126 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2127 2128 if (!pol || pol == &default_policy) 2129 mode = MPOL_DEFAULT; 2130 else 2131 mode = pol->mode; 2132 2133 switch (mode) { 2134 case MPOL_DEFAULT: 2135 nodes_clear(nodes); 2136 break; 2137 2138 case MPOL_PREFERRED: 2139 nodes_clear(nodes); 2140 if (flags & MPOL_F_LOCAL) 2141 mode = MPOL_LOCAL; /* pseudo-policy */ 2142 else 2143 node_set(pol->v.preferred_node, nodes); 2144 break; 2145 2146 case MPOL_BIND: 2147 /* Fall through */ 2148 case MPOL_INTERLEAVE: 2149 if (no_context) 2150 nodes = pol->w.user_nodemask; 2151 else 2152 nodes = pol->v.nodes; 2153 break; 2154 2155 default: 2156 BUG(); 2157 } 2158 2159 l = strlen(policy_types[mode]); 2160 if (buffer + maxlen < p + l + 1) 2161 return -ENOSPC; 2162 2163 strcpy(p, policy_types[mode]); 2164 p += l; 2165 2166 if (flags & MPOL_MODE_FLAGS) { 2167 if (buffer + maxlen < p + 2) 2168 return -ENOSPC; 2169 *p++ = '='; 2170 2171 /* 2172 * Currently, the only defined flags are mutually exclusive 2173 */ 2174 if (flags & MPOL_F_STATIC_NODES) 2175 p += snprintf(p, buffer + maxlen - p, "static"); 2176 else if (flags & MPOL_F_RELATIVE_NODES) 2177 p += snprintf(p, buffer + maxlen - p, "relative"); 2178 } 2179 2180 if (!nodes_empty(nodes)) { 2181 if (buffer + maxlen < p + 2) 2182 return -ENOSPC; 2183 *p++ = ':'; 2184 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2185 } 2186 return p - buffer; 2187 } 2188 2189 struct numa_maps { 2190 unsigned long pages; 2191 unsigned long anon; 2192 unsigned long active; 2193 unsigned long writeback; 2194 unsigned long mapcount_max; 2195 unsigned long dirty; 2196 unsigned long swapcache; 2197 unsigned long node[MAX_NUMNODES]; 2198 }; 2199 2200 static void gather_stats(struct page *page, void *private, int pte_dirty) 2201 { 2202 struct numa_maps *md = private; 2203 int count = page_mapcount(page); 2204 2205 md->pages++; 2206 if (pte_dirty || PageDirty(page)) 2207 md->dirty++; 2208 2209 if (PageSwapCache(page)) 2210 md->swapcache++; 2211 2212 if (PageActive(page) || PageUnevictable(page)) 2213 md->active++; 2214 2215 if (PageWriteback(page)) 2216 md->writeback++; 2217 2218 if (PageAnon(page)) 2219 md->anon++; 2220 2221 if (count > md->mapcount_max) 2222 md->mapcount_max = count; 2223 2224 md->node[page_to_nid(page)]++; 2225 } 2226 2227 #ifdef CONFIG_HUGETLB_PAGE 2228 static void check_huge_range(struct vm_area_struct *vma, 2229 unsigned long start, unsigned long end, 2230 struct numa_maps *md) 2231 { 2232 unsigned long addr; 2233 struct page *page; 2234 struct hstate *h = hstate_vma(vma); 2235 unsigned long sz = huge_page_size(h); 2236 2237 for (addr = start; addr < end; addr += sz) { 2238 pte_t *ptep = huge_pte_offset(vma->vm_mm, 2239 addr & huge_page_mask(h)); 2240 pte_t pte; 2241 2242 if (!ptep) 2243 continue; 2244 2245 pte = *ptep; 2246 if (pte_none(pte)) 2247 continue; 2248 2249 page = pte_page(pte); 2250 if (!page) 2251 continue; 2252 2253 gather_stats(page, md, pte_dirty(*ptep)); 2254 } 2255 } 2256 #else 2257 static inline void check_huge_range(struct vm_area_struct *vma, 2258 unsigned long start, unsigned long end, 2259 struct numa_maps *md) 2260 { 2261 } 2262 #endif 2263 2264 /* 2265 * Display pages allocated per node and memory policy via /proc. 2266 */ 2267 int show_numa_map(struct seq_file *m, void *v) 2268 { 2269 struct proc_maps_private *priv = m->private; 2270 struct vm_area_struct *vma = v; 2271 struct numa_maps *md; 2272 struct file *file = vma->vm_file; 2273 struct mm_struct *mm = vma->vm_mm; 2274 struct mempolicy *pol; 2275 int n; 2276 char buffer[50]; 2277 2278 if (!mm) 2279 return 0; 2280 2281 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 2282 if (!md) 2283 return 0; 2284 2285 pol = get_vma_policy(priv->task, vma, vma->vm_start); 2286 mpol_to_str(buffer, sizeof(buffer), pol, 0); 2287 mpol_cond_put(pol); 2288 2289 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 2290 2291 if (file) { 2292 seq_printf(m, " file="); 2293 seq_path(m, &file->f_path, "\n\t= "); 2294 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 2295 seq_printf(m, " heap"); 2296 } else if (vma->vm_start <= mm->start_stack && 2297 vma->vm_end >= mm->start_stack) { 2298 seq_printf(m, " stack"); 2299 } 2300 2301 if (is_vm_hugetlb_page(vma)) { 2302 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 2303 seq_printf(m, " huge"); 2304 } else { 2305 check_pgd_range(vma, vma->vm_start, vma->vm_end, 2306 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md); 2307 } 2308 2309 if (!md->pages) 2310 goto out; 2311 2312 if (md->anon) 2313 seq_printf(m," anon=%lu",md->anon); 2314 2315 if (md->dirty) 2316 seq_printf(m," dirty=%lu",md->dirty); 2317 2318 if (md->pages != md->anon && md->pages != md->dirty) 2319 seq_printf(m, " mapped=%lu", md->pages); 2320 2321 if (md->mapcount_max > 1) 2322 seq_printf(m, " mapmax=%lu", md->mapcount_max); 2323 2324 if (md->swapcache) 2325 seq_printf(m," swapcache=%lu", md->swapcache); 2326 2327 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2328 seq_printf(m," active=%lu", md->active); 2329 2330 if (md->writeback) 2331 seq_printf(m," writeback=%lu", md->writeback); 2332 2333 for_each_node_state(n, N_HIGH_MEMORY) 2334 if (md->node[n]) 2335 seq_printf(m, " N%d=%lu", n, md->node[n]); 2336 out: 2337 seq_putc(m, '\n'); 2338 kfree(md); 2339 2340 if (m->count < m->size) 2341 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 2342 return 0; 2343 } 2344