1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = *nodes; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static int migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 unsigned long start; 414 unsigned long end; 415 struct vm_area_struct *first; 416 }; 417 418 /* 419 * Check if the page's nid is in qp->nmask. 420 * 421 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 422 * in the invert of qp->nmask. 423 */ 424 static inline bool queue_pages_required(struct page *page, 425 struct queue_pages *qp) 426 { 427 int nid = page_to_nid(page); 428 unsigned long flags = qp->flags; 429 430 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 431 } 432 433 /* 434 * queue_pages_pmd() has four possible return values: 435 * 0 - pages are placed on the right node or queued successfully. 436 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 437 * specified. 438 * 2 - THP was split. 439 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 440 * existing page was already on a node that does not follow the 441 * policy. 442 */ 443 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 444 unsigned long end, struct mm_walk *walk) 445 { 446 int ret = 0; 447 struct page *page; 448 struct queue_pages *qp = walk->private; 449 unsigned long flags; 450 451 if (unlikely(is_pmd_migration_entry(*pmd))) { 452 ret = -EIO; 453 goto unlock; 454 } 455 page = pmd_page(*pmd); 456 if (is_huge_zero_page(page)) { 457 spin_unlock(ptl); 458 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 459 ret = 2; 460 goto out; 461 } 462 if (!queue_pages_required(page, qp)) 463 goto unlock; 464 465 flags = qp->flags; 466 /* go to thp migration */ 467 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 468 if (!vma_migratable(walk->vma) || 469 migrate_page_add(page, qp->pagelist, flags)) { 470 ret = 1; 471 goto unlock; 472 } 473 } else 474 ret = -EIO; 475 unlock: 476 spin_unlock(ptl); 477 out: 478 return ret; 479 } 480 481 /* 482 * Scan through pages checking if pages follow certain conditions, 483 * and move them to the pagelist if they do. 484 * 485 * queue_pages_pte_range() has three possible return values: 486 * 0 - pages are placed on the right node or queued successfully. 487 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 488 * specified. 489 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 490 * on a node that does not follow the policy. 491 */ 492 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 493 unsigned long end, struct mm_walk *walk) 494 { 495 struct vm_area_struct *vma = walk->vma; 496 struct page *page; 497 struct queue_pages *qp = walk->private; 498 unsigned long flags = qp->flags; 499 int ret; 500 bool has_unmovable = false; 501 pte_t *pte; 502 spinlock_t *ptl; 503 504 ptl = pmd_trans_huge_lock(pmd, vma); 505 if (ptl) { 506 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 507 if (ret != 2) 508 return ret; 509 } 510 /* THP was split, fall through to pte walk */ 511 512 if (pmd_trans_unstable(pmd)) 513 return 0; 514 515 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 516 for (; addr != end; pte++, addr += PAGE_SIZE) { 517 if (!pte_present(*pte)) 518 continue; 519 page = vm_normal_page(vma, addr, *pte); 520 if (!page) 521 continue; 522 /* 523 * vm_normal_page() filters out zero pages, but there might 524 * still be PageReserved pages to skip, perhaps in a VDSO. 525 */ 526 if (PageReserved(page)) 527 continue; 528 if (!queue_pages_required(page, qp)) 529 continue; 530 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 531 /* MPOL_MF_STRICT must be specified if we get here */ 532 if (!vma_migratable(vma)) { 533 has_unmovable = true; 534 break; 535 } 536 537 /* 538 * Do not abort immediately since there may be 539 * temporary off LRU pages in the range. Still 540 * need migrate other LRU pages. 541 */ 542 if (migrate_page_add(page, qp->pagelist, flags)) 543 has_unmovable = true; 544 } else 545 break; 546 } 547 pte_unmap_unlock(pte - 1, ptl); 548 cond_resched(); 549 550 if (has_unmovable) 551 return 1; 552 553 return addr != end ? -EIO : 0; 554 } 555 556 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 557 unsigned long addr, unsigned long end, 558 struct mm_walk *walk) 559 { 560 #ifdef CONFIG_HUGETLB_PAGE 561 struct queue_pages *qp = walk->private; 562 unsigned long flags = qp->flags; 563 struct page *page; 564 spinlock_t *ptl; 565 pte_t entry; 566 567 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 568 entry = huge_ptep_get(pte); 569 if (!pte_present(entry)) 570 goto unlock; 571 page = pte_page(entry); 572 if (!queue_pages_required(page, qp)) 573 goto unlock; 574 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 575 if (flags & (MPOL_MF_MOVE_ALL) || 576 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 577 isolate_huge_page(page, qp->pagelist); 578 unlock: 579 spin_unlock(ptl); 580 #else 581 BUG(); 582 #endif 583 return 0; 584 } 585 586 #ifdef CONFIG_NUMA_BALANCING 587 /* 588 * This is used to mark a range of virtual addresses to be inaccessible. 589 * These are later cleared by a NUMA hinting fault. Depending on these 590 * faults, pages may be migrated for better NUMA placement. 591 * 592 * This is assuming that NUMA faults are handled using PROT_NONE. If 593 * an architecture makes a different choice, it will need further 594 * changes to the core. 595 */ 596 unsigned long change_prot_numa(struct vm_area_struct *vma, 597 unsigned long addr, unsigned long end) 598 { 599 int nr_updated; 600 601 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 602 if (nr_updated) 603 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 604 605 return nr_updated; 606 } 607 #else 608 static unsigned long change_prot_numa(struct vm_area_struct *vma, 609 unsigned long addr, unsigned long end) 610 { 611 return 0; 612 } 613 #endif /* CONFIG_NUMA_BALANCING */ 614 615 static int queue_pages_test_walk(unsigned long start, unsigned long end, 616 struct mm_walk *walk) 617 { 618 struct vm_area_struct *vma = walk->vma; 619 struct queue_pages *qp = walk->private; 620 unsigned long endvma = vma->vm_end; 621 unsigned long flags = qp->flags; 622 623 /* range check first */ 624 VM_BUG_ON((vma->vm_start > start) || (vma->vm_end < end)); 625 626 if (!qp->first) { 627 qp->first = vma; 628 if (!(flags & MPOL_MF_DISCONTIG_OK) && 629 (qp->start < vma->vm_start)) 630 /* hole at head side of range */ 631 return -EFAULT; 632 } 633 if (!(flags & MPOL_MF_DISCONTIG_OK) && 634 ((vma->vm_end < qp->end) && 635 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 636 /* hole at middle or tail of range */ 637 return -EFAULT; 638 639 /* 640 * Need check MPOL_MF_STRICT to return -EIO if possible 641 * regardless of vma_migratable 642 */ 643 if (!vma_migratable(vma) && 644 !(flags & MPOL_MF_STRICT)) 645 return 1; 646 647 if (endvma > end) 648 endvma = end; 649 650 if (flags & MPOL_MF_LAZY) { 651 /* Similar to task_numa_work, skip inaccessible VMAs */ 652 if (!is_vm_hugetlb_page(vma) && 653 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 654 !(vma->vm_flags & VM_MIXEDMAP)) 655 change_prot_numa(vma, start, endvma); 656 return 1; 657 } 658 659 /* queue pages from current vma */ 660 if (flags & MPOL_MF_VALID) 661 return 0; 662 return 1; 663 } 664 665 static const struct mm_walk_ops queue_pages_walk_ops = { 666 .hugetlb_entry = queue_pages_hugetlb, 667 .pmd_entry = queue_pages_pte_range, 668 .test_walk = queue_pages_test_walk, 669 }; 670 671 /* 672 * Walk through page tables and collect pages to be migrated. 673 * 674 * If pages found in a given range are on a set of nodes (determined by 675 * @nodes and @flags,) it's isolated and queued to the pagelist which is 676 * passed via @private. 677 * 678 * queue_pages_range() has three possible return values: 679 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 680 * specified. 681 * 0 - queue pages successfully or no misplaced page. 682 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 683 * memory range specified by nodemask and maxnode points outside 684 * your accessible address space (-EFAULT) 685 */ 686 static int 687 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 688 nodemask_t *nodes, unsigned long flags, 689 struct list_head *pagelist) 690 { 691 int err; 692 struct queue_pages qp = { 693 .pagelist = pagelist, 694 .flags = flags, 695 .nmask = nodes, 696 .start = start, 697 .end = end, 698 .first = NULL, 699 }; 700 701 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 702 703 if (!qp.first) 704 /* whole range in hole */ 705 err = -EFAULT; 706 707 return err; 708 } 709 710 /* 711 * Apply policy to a single VMA 712 * This must be called with the mmap_sem held for writing. 713 */ 714 static int vma_replace_policy(struct vm_area_struct *vma, 715 struct mempolicy *pol) 716 { 717 int err; 718 struct mempolicy *old; 719 struct mempolicy *new; 720 721 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 722 vma->vm_start, vma->vm_end, vma->vm_pgoff, 723 vma->vm_ops, vma->vm_file, 724 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 725 726 new = mpol_dup(pol); 727 if (IS_ERR(new)) 728 return PTR_ERR(new); 729 730 if (vma->vm_ops && vma->vm_ops->set_policy) { 731 err = vma->vm_ops->set_policy(vma, new); 732 if (err) 733 goto err_out; 734 } 735 736 old = vma->vm_policy; 737 vma->vm_policy = new; /* protected by mmap_sem */ 738 mpol_put(old); 739 740 return 0; 741 err_out: 742 mpol_put(new); 743 return err; 744 } 745 746 /* Step 2: apply policy to a range and do splits. */ 747 static int mbind_range(struct mm_struct *mm, unsigned long start, 748 unsigned long end, struct mempolicy *new_pol) 749 { 750 struct vm_area_struct *next; 751 struct vm_area_struct *prev; 752 struct vm_area_struct *vma; 753 int err = 0; 754 pgoff_t pgoff; 755 unsigned long vmstart; 756 unsigned long vmend; 757 758 vma = find_vma(mm, start); 759 VM_BUG_ON(!vma); 760 761 prev = vma->vm_prev; 762 if (start > vma->vm_start) 763 prev = vma; 764 765 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 766 next = vma->vm_next; 767 vmstart = max(start, vma->vm_start); 768 vmend = min(end, vma->vm_end); 769 770 if (mpol_equal(vma_policy(vma), new_pol)) 771 continue; 772 773 pgoff = vma->vm_pgoff + 774 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 775 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 776 vma->anon_vma, vma->vm_file, pgoff, 777 new_pol, vma->vm_userfaultfd_ctx); 778 if (prev) { 779 vma = prev; 780 next = vma->vm_next; 781 if (mpol_equal(vma_policy(vma), new_pol)) 782 continue; 783 /* vma_merge() joined vma && vma->next, case 8 */ 784 goto replace; 785 } 786 if (vma->vm_start != vmstart) { 787 err = split_vma(vma->vm_mm, vma, vmstart, 1); 788 if (err) 789 goto out; 790 } 791 if (vma->vm_end != vmend) { 792 err = split_vma(vma->vm_mm, vma, vmend, 0); 793 if (err) 794 goto out; 795 } 796 replace: 797 err = vma_replace_policy(vma, new_pol); 798 if (err) 799 goto out; 800 } 801 802 out: 803 return err; 804 } 805 806 /* Set the process memory policy */ 807 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 808 nodemask_t *nodes) 809 { 810 struct mempolicy *new, *old; 811 NODEMASK_SCRATCH(scratch); 812 int ret; 813 814 if (!scratch) 815 return -ENOMEM; 816 817 new = mpol_new(mode, flags, nodes); 818 if (IS_ERR(new)) { 819 ret = PTR_ERR(new); 820 goto out; 821 } 822 823 task_lock(current); 824 ret = mpol_set_nodemask(new, nodes, scratch); 825 if (ret) { 826 task_unlock(current); 827 mpol_put(new); 828 goto out; 829 } 830 old = current->mempolicy; 831 current->mempolicy = new; 832 if (new && new->mode == MPOL_INTERLEAVE) 833 current->il_prev = MAX_NUMNODES-1; 834 task_unlock(current); 835 mpol_put(old); 836 ret = 0; 837 out: 838 NODEMASK_SCRATCH_FREE(scratch); 839 return ret; 840 } 841 842 /* 843 * Return nodemask for policy for get_mempolicy() query 844 * 845 * Called with task's alloc_lock held 846 */ 847 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 848 { 849 nodes_clear(*nodes); 850 if (p == &default_policy) 851 return; 852 853 switch (p->mode) { 854 case MPOL_BIND: 855 /* Fall through */ 856 case MPOL_INTERLEAVE: 857 *nodes = p->v.nodes; 858 break; 859 case MPOL_PREFERRED: 860 if (!(p->flags & MPOL_F_LOCAL)) 861 node_set(p->v.preferred_node, *nodes); 862 /* else return empty node mask for local allocation */ 863 break; 864 default: 865 BUG(); 866 } 867 } 868 869 static int lookup_node(struct mm_struct *mm, unsigned long addr) 870 { 871 struct page *p; 872 int err; 873 874 int locked = 1; 875 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 876 if (err >= 0) { 877 err = page_to_nid(p); 878 put_page(p); 879 } 880 if (locked) 881 up_read(&mm->mmap_sem); 882 return err; 883 } 884 885 /* Retrieve NUMA policy */ 886 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 887 unsigned long addr, unsigned long flags) 888 { 889 int err; 890 struct mm_struct *mm = current->mm; 891 struct vm_area_struct *vma = NULL; 892 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 893 894 if (flags & 895 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 896 return -EINVAL; 897 898 if (flags & MPOL_F_MEMS_ALLOWED) { 899 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 900 return -EINVAL; 901 *policy = 0; /* just so it's initialized */ 902 task_lock(current); 903 *nmask = cpuset_current_mems_allowed; 904 task_unlock(current); 905 return 0; 906 } 907 908 if (flags & MPOL_F_ADDR) { 909 /* 910 * Do NOT fall back to task policy if the 911 * vma/shared policy at addr is NULL. We 912 * want to return MPOL_DEFAULT in this case. 913 */ 914 down_read(&mm->mmap_sem); 915 vma = find_vma_intersection(mm, addr, addr+1); 916 if (!vma) { 917 up_read(&mm->mmap_sem); 918 return -EFAULT; 919 } 920 if (vma->vm_ops && vma->vm_ops->get_policy) 921 pol = vma->vm_ops->get_policy(vma, addr); 922 else 923 pol = vma->vm_policy; 924 } else if (addr) 925 return -EINVAL; 926 927 if (!pol) 928 pol = &default_policy; /* indicates default behavior */ 929 930 if (flags & MPOL_F_NODE) { 931 if (flags & MPOL_F_ADDR) { 932 /* 933 * Take a refcount on the mpol, lookup_node() 934 * wil drop the mmap_sem, so after calling 935 * lookup_node() only "pol" remains valid, "vma" 936 * is stale. 937 */ 938 pol_refcount = pol; 939 vma = NULL; 940 mpol_get(pol); 941 err = lookup_node(mm, addr); 942 if (err < 0) 943 goto out; 944 *policy = err; 945 } else if (pol == current->mempolicy && 946 pol->mode == MPOL_INTERLEAVE) { 947 *policy = next_node_in(current->il_prev, pol->v.nodes); 948 } else { 949 err = -EINVAL; 950 goto out; 951 } 952 } else { 953 *policy = pol == &default_policy ? MPOL_DEFAULT : 954 pol->mode; 955 /* 956 * Internal mempolicy flags must be masked off before exposing 957 * the policy to userspace. 958 */ 959 *policy |= (pol->flags & MPOL_MODE_FLAGS); 960 } 961 962 err = 0; 963 if (nmask) { 964 if (mpol_store_user_nodemask(pol)) { 965 *nmask = pol->w.user_nodemask; 966 } else { 967 task_lock(current); 968 get_policy_nodemask(pol, nmask); 969 task_unlock(current); 970 } 971 } 972 973 out: 974 mpol_cond_put(pol); 975 if (vma) 976 up_read(&mm->mmap_sem); 977 if (pol_refcount) 978 mpol_put(pol_refcount); 979 return err; 980 } 981 982 #ifdef CONFIG_MIGRATION 983 /* 984 * page migration, thp tail pages can be passed. 985 */ 986 static int migrate_page_add(struct page *page, struct list_head *pagelist, 987 unsigned long flags) 988 { 989 struct page *head = compound_head(page); 990 /* 991 * Avoid migrating a page that is shared with others. 992 */ 993 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 994 if (!isolate_lru_page(head)) { 995 list_add_tail(&head->lru, pagelist); 996 mod_node_page_state(page_pgdat(head), 997 NR_ISOLATED_ANON + page_is_file_cache(head), 998 hpage_nr_pages(head)); 999 } else if (flags & MPOL_MF_STRICT) { 1000 /* 1001 * Non-movable page may reach here. And, there may be 1002 * temporary off LRU pages or non-LRU movable pages. 1003 * Treat them as unmovable pages since they can't be 1004 * isolated, so they can't be moved at the moment. It 1005 * should return -EIO for this case too. 1006 */ 1007 return -EIO; 1008 } 1009 } 1010 1011 return 0; 1012 } 1013 1014 /* page allocation callback for NUMA node migration */ 1015 struct page *alloc_new_node_page(struct page *page, unsigned long node) 1016 { 1017 if (PageHuge(page)) 1018 return alloc_huge_page_node(page_hstate(compound_head(page)), 1019 node); 1020 else if (PageTransHuge(page)) { 1021 struct page *thp; 1022 1023 thp = alloc_pages_node(node, 1024 (GFP_TRANSHUGE | __GFP_THISNODE), 1025 HPAGE_PMD_ORDER); 1026 if (!thp) 1027 return NULL; 1028 prep_transhuge_page(thp); 1029 return thp; 1030 } else 1031 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1032 __GFP_THISNODE, 0); 1033 } 1034 1035 /* 1036 * Migrate pages from one node to a target node. 1037 * Returns error or the number of pages not migrated. 1038 */ 1039 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1040 int flags) 1041 { 1042 nodemask_t nmask; 1043 LIST_HEAD(pagelist); 1044 int err = 0; 1045 1046 nodes_clear(nmask); 1047 node_set(source, nmask); 1048 1049 /* 1050 * This does not "check" the range but isolates all pages that 1051 * need migration. Between passing in the full user address 1052 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1053 */ 1054 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1055 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1056 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1057 1058 if (!list_empty(&pagelist)) { 1059 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1060 MIGRATE_SYNC, MR_SYSCALL); 1061 if (err) 1062 putback_movable_pages(&pagelist); 1063 } 1064 1065 return err; 1066 } 1067 1068 /* 1069 * Move pages between the two nodesets so as to preserve the physical 1070 * layout as much as possible. 1071 * 1072 * Returns the number of page that could not be moved. 1073 */ 1074 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1075 const nodemask_t *to, int flags) 1076 { 1077 int busy = 0; 1078 int err; 1079 nodemask_t tmp; 1080 1081 err = migrate_prep(); 1082 if (err) 1083 return err; 1084 1085 down_read(&mm->mmap_sem); 1086 1087 /* 1088 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1089 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1090 * bit in 'tmp', and return that <source, dest> pair for migration. 1091 * The pair of nodemasks 'to' and 'from' define the map. 1092 * 1093 * If no pair of bits is found that way, fallback to picking some 1094 * pair of 'source' and 'dest' bits that are not the same. If the 1095 * 'source' and 'dest' bits are the same, this represents a node 1096 * that will be migrating to itself, so no pages need move. 1097 * 1098 * If no bits are left in 'tmp', or if all remaining bits left 1099 * in 'tmp' correspond to the same bit in 'to', return false 1100 * (nothing left to migrate). 1101 * 1102 * This lets us pick a pair of nodes to migrate between, such that 1103 * if possible the dest node is not already occupied by some other 1104 * source node, minimizing the risk of overloading the memory on a 1105 * node that would happen if we migrated incoming memory to a node 1106 * before migrating outgoing memory source that same node. 1107 * 1108 * A single scan of tmp is sufficient. As we go, we remember the 1109 * most recent <s, d> pair that moved (s != d). If we find a pair 1110 * that not only moved, but what's better, moved to an empty slot 1111 * (d is not set in tmp), then we break out then, with that pair. 1112 * Otherwise when we finish scanning from_tmp, we at least have the 1113 * most recent <s, d> pair that moved. If we get all the way through 1114 * the scan of tmp without finding any node that moved, much less 1115 * moved to an empty node, then there is nothing left worth migrating. 1116 */ 1117 1118 tmp = *from; 1119 while (!nodes_empty(tmp)) { 1120 int s,d; 1121 int source = NUMA_NO_NODE; 1122 int dest = 0; 1123 1124 for_each_node_mask(s, tmp) { 1125 1126 /* 1127 * do_migrate_pages() tries to maintain the relative 1128 * node relationship of the pages established between 1129 * threads and memory areas. 1130 * 1131 * However if the number of source nodes is not equal to 1132 * the number of destination nodes we can not preserve 1133 * this node relative relationship. In that case, skip 1134 * copying memory from a node that is in the destination 1135 * mask. 1136 * 1137 * Example: [2,3,4] -> [3,4,5] moves everything. 1138 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1139 */ 1140 1141 if ((nodes_weight(*from) != nodes_weight(*to)) && 1142 (node_isset(s, *to))) 1143 continue; 1144 1145 d = node_remap(s, *from, *to); 1146 if (s == d) 1147 continue; 1148 1149 source = s; /* Node moved. Memorize */ 1150 dest = d; 1151 1152 /* dest not in remaining from nodes? */ 1153 if (!node_isset(dest, tmp)) 1154 break; 1155 } 1156 if (source == NUMA_NO_NODE) 1157 break; 1158 1159 node_clear(source, tmp); 1160 err = migrate_to_node(mm, source, dest, flags); 1161 if (err > 0) 1162 busy += err; 1163 if (err < 0) 1164 break; 1165 } 1166 up_read(&mm->mmap_sem); 1167 if (err < 0) 1168 return err; 1169 return busy; 1170 1171 } 1172 1173 /* 1174 * Allocate a new page for page migration based on vma policy. 1175 * Start by assuming the page is mapped by the same vma as contains @start. 1176 * Search forward from there, if not. N.B., this assumes that the 1177 * list of pages handed to migrate_pages()--which is how we get here-- 1178 * is in virtual address order. 1179 */ 1180 static struct page *new_page(struct page *page, unsigned long start) 1181 { 1182 struct vm_area_struct *vma; 1183 unsigned long uninitialized_var(address); 1184 1185 vma = find_vma(current->mm, start); 1186 while (vma) { 1187 address = page_address_in_vma(page, vma); 1188 if (address != -EFAULT) 1189 break; 1190 vma = vma->vm_next; 1191 } 1192 1193 if (PageHuge(page)) { 1194 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1195 vma, address); 1196 } else if (PageTransHuge(page)) { 1197 struct page *thp; 1198 1199 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1200 HPAGE_PMD_ORDER); 1201 if (!thp) 1202 return NULL; 1203 prep_transhuge_page(thp); 1204 return thp; 1205 } 1206 /* 1207 * if !vma, alloc_page_vma() will use task or system default policy 1208 */ 1209 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1210 vma, address); 1211 } 1212 #else 1213 1214 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1215 unsigned long flags) 1216 { 1217 return -EIO; 1218 } 1219 1220 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1221 const nodemask_t *to, int flags) 1222 { 1223 return -ENOSYS; 1224 } 1225 1226 static struct page *new_page(struct page *page, unsigned long start) 1227 { 1228 return NULL; 1229 } 1230 #endif 1231 1232 static long do_mbind(unsigned long start, unsigned long len, 1233 unsigned short mode, unsigned short mode_flags, 1234 nodemask_t *nmask, unsigned long flags) 1235 { 1236 struct mm_struct *mm = current->mm; 1237 struct mempolicy *new; 1238 unsigned long end; 1239 int err; 1240 int ret; 1241 LIST_HEAD(pagelist); 1242 1243 if (flags & ~(unsigned long)MPOL_MF_VALID) 1244 return -EINVAL; 1245 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1246 return -EPERM; 1247 1248 if (start & ~PAGE_MASK) 1249 return -EINVAL; 1250 1251 if (mode == MPOL_DEFAULT) 1252 flags &= ~MPOL_MF_STRICT; 1253 1254 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1255 end = start + len; 1256 1257 if (end < start) 1258 return -EINVAL; 1259 if (end == start) 1260 return 0; 1261 1262 new = mpol_new(mode, mode_flags, nmask); 1263 if (IS_ERR(new)) 1264 return PTR_ERR(new); 1265 1266 if (flags & MPOL_MF_LAZY) 1267 new->flags |= MPOL_F_MOF; 1268 1269 /* 1270 * If we are using the default policy then operation 1271 * on discontinuous address spaces is okay after all 1272 */ 1273 if (!new) 1274 flags |= MPOL_MF_DISCONTIG_OK; 1275 1276 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1277 start, start + len, mode, mode_flags, 1278 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1279 1280 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1281 1282 err = migrate_prep(); 1283 if (err) 1284 goto mpol_out; 1285 } 1286 { 1287 NODEMASK_SCRATCH(scratch); 1288 if (scratch) { 1289 down_write(&mm->mmap_sem); 1290 task_lock(current); 1291 err = mpol_set_nodemask(new, nmask, scratch); 1292 task_unlock(current); 1293 if (err) 1294 up_write(&mm->mmap_sem); 1295 } else 1296 err = -ENOMEM; 1297 NODEMASK_SCRATCH_FREE(scratch); 1298 } 1299 if (err) 1300 goto mpol_out; 1301 1302 ret = queue_pages_range(mm, start, end, nmask, 1303 flags | MPOL_MF_INVERT, &pagelist); 1304 1305 if (ret < 0) { 1306 err = ret; 1307 goto up_out; 1308 } 1309 1310 err = mbind_range(mm, start, end, new); 1311 1312 if (!err) { 1313 int nr_failed = 0; 1314 1315 if (!list_empty(&pagelist)) { 1316 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1317 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1318 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1319 if (nr_failed) 1320 putback_movable_pages(&pagelist); 1321 } 1322 1323 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1324 err = -EIO; 1325 } else { 1326 up_out: 1327 if (!list_empty(&pagelist)) 1328 putback_movable_pages(&pagelist); 1329 } 1330 1331 up_write(&mm->mmap_sem); 1332 mpol_out: 1333 mpol_put(new); 1334 return err; 1335 } 1336 1337 /* 1338 * User space interface with variable sized bitmaps for nodelists. 1339 */ 1340 1341 /* Copy a node mask from user space. */ 1342 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1343 unsigned long maxnode) 1344 { 1345 unsigned long k; 1346 unsigned long t; 1347 unsigned long nlongs; 1348 unsigned long endmask; 1349 1350 --maxnode; 1351 nodes_clear(*nodes); 1352 if (maxnode == 0 || !nmask) 1353 return 0; 1354 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1355 return -EINVAL; 1356 1357 nlongs = BITS_TO_LONGS(maxnode); 1358 if ((maxnode % BITS_PER_LONG) == 0) 1359 endmask = ~0UL; 1360 else 1361 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1362 1363 /* 1364 * When the user specified more nodes than supported just check 1365 * if the non supported part is all zero. 1366 * 1367 * If maxnode have more longs than MAX_NUMNODES, check 1368 * the bits in that area first. And then go through to 1369 * check the rest bits which equal or bigger than MAX_NUMNODES. 1370 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1371 */ 1372 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1373 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1374 if (get_user(t, nmask + k)) 1375 return -EFAULT; 1376 if (k == nlongs - 1) { 1377 if (t & endmask) 1378 return -EINVAL; 1379 } else if (t) 1380 return -EINVAL; 1381 } 1382 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1383 endmask = ~0UL; 1384 } 1385 1386 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1387 unsigned long valid_mask = endmask; 1388 1389 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1390 if (get_user(t, nmask + nlongs - 1)) 1391 return -EFAULT; 1392 if (t & valid_mask) 1393 return -EINVAL; 1394 } 1395 1396 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1397 return -EFAULT; 1398 nodes_addr(*nodes)[nlongs-1] &= endmask; 1399 return 0; 1400 } 1401 1402 /* Copy a kernel node mask to user space */ 1403 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1404 nodemask_t *nodes) 1405 { 1406 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1407 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1408 1409 if (copy > nbytes) { 1410 if (copy > PAGE_SIZE) 1411 return -EINVAL; 1412 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1413 return -EFAULT; 1414 copy = nbytes; 1415 } 1416 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1417 } 1418 1419 static long kernel_mbind(unsigned long start, unsigned long len, 1420 unsigned long mode, const unsigned long __user *nmask, 1421 unsigned long maxnode, unsigned int flags) 1422 { 1423 nodemask_t nodes; 1424 int err; 1425 unsigned short mode_flags; 1426 1427 start = untagged_addr(start); 1428 mode_flags = mode & MPOL_MODE_FLAGS; 1429 mode &= ~MPOL_MODE_FLAGS; 1430 if (mode >= MPOL_MAX) 1431 return -EINVAL; 1432 if ((mode_flags & MPOL_F_STATIC_NODES) && 1433 (mode_flags & MPOL_F_RELATIVE_NODES)) 1434 return -EINVAL; 1435 err = get_nodes(&nodes, nmask, maxnode); 1436 if (err) 1437 return err; 1438 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1439 } 1440 1441 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1442 unsigned long, mode, const unsigned long __user *, nmask, 1443 unsigned long, maxnode, unsigned int, flags) 1444 { 1445 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1446 } 1447 1448 /* Set the process memory policy */ 1449 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1450 unsigned long maxnode) 1451 { 1452 int err; 1453 nodemask_t nodes; 1454 unsigned short flags; 1455 1456 flags = mode & MPOL_MODE_FLAGS; 1457 mode &= ~MPOL_MODE_FLAGS; 1458 if ((unsigned int)mode >= MPOL_MAX) 1459 return -EINVAL; 1460 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1461 return -EINVAL; 1462 err = get_nodes(&nodes, nmask, maxnode); 1463 if (err) 1464 return err; 1465 return do_set_mempolicy(mode, flags, &nodes); 1466 } 1467 1468 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1469 unsigned long, maxnode) 1470 { 1471 return kernel_set_mempolicy(mode, nmask, maxnode); 1472 } 1473 1474 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1475 const unsigned long __user *old_nodes, 1476 const unsigned long __user *new_nodes) 1477 { 1478 struct mm_struct *mm = NULL; 1479 struct task_struct *task; 1480 nodemask_t task_nodes; 1481 int err; 1482 nodemask_t *old; 1483 nodemask_t *new; 1484 NODEMASK_SCRATCH(scratch); 1485 1486 if (!scratch) 1487 return -ENOMEM; 1488 1489 old = &scratch->mask1; 1490 new = &scratch->mask2; 1491 1492 err = get_nodes(old, old_nodes, maxnode); 1493 if (err) 1494 goto out; 1495 1496 err = get_nodes(new, new_nodes, maxnode); 1497 if (err) 1498 goto out; 1499 1500 /* Find the mm_struct */ 1501 rcu_read_lock(); 1502 task = pid ? find_task_by_vpid(pid) : current; 1503 if (!task) { 1504 rcu_read_unlock(); 1505 err = -ESRCH; 1506 goto out; 1507 } 1508 get_task_struct(task); 1509 1510 err = -EINVAL; 1511 1512 /* 1513 * Check if this process has the right to modify the specified process. 1514 * Use the regular "ptrace_may_access()" checks. 1515 */ 1516 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1517 rcu_read_unlock(); 1518 err = -EPERM; 1519 goto out_put; 1520 } 1521 rcu_read_unlock(); 1522 1523 task_nodes = cpuset_mems_allowed(task); 1524 /* Is the user allowed to access the target nodes? */ 1525 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1526 err = -EPERM; 1527 goto out_put; 1528 } 1529 1530 task_nodes = cpuset_mems_allowed(current); 1531 nodes_and(*new, *new, task_nodes); 1532 if (nodes_empty(*new)) 1533 goto out_put; 1534 1535 err = security_task_movememory(task); 1536 if (err) 1537 goto out_put; 1538 1539 mm = get_task_mm(task); 1540 put_task_struct(task); 1541 1542 if (!mm) { 1543 err = -EINVAL; 1544 goto out; 1545 } 1546 1547 err = do_migrate_pages(mm, old, new, 1548 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1549 1550 mmput(mm); 1551 out: 1552 NODEMASK_SCRATCH_FREE(scratch); 1553 1554 return err; 1555 1556 out_put: 1557 put_task_struct(task); 1558 goto out; 1559 1560 } 1561 1562 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1563 const unsigned long __user *, old_nodes, 1564 const unsigned long __user *, new_nodes) 1565 { 1566 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1567 } 1568 1569 1570 /* Retrieve NUMA policy */ 1571 static int kernel_get_mempolicy(int __user *policy, 1572 unsigned long __user *nmask, 1573 unsigned long maxnode, 1574 unsigned long addr, 1575 unsigned long flags) 1576 { 1577 int err; 1578 int uninitialized_var(pval); 1579 nodemask_t nodes; 1580 1581 addr = untagged_addr(addr); 1582 1583 if (nmask != NULL && maxnode < nr_node_ids) 1584 return -EINVAL; 1585 1586 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1587 1588 if (err) 1589 return err; 1590 1591 if (policy && put_user(pval, policy)) 1592 return -EFAULT; 1593 1594 if (nmask) 1595 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1596 1597 return err; 1598 } 1599 1600 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1601 unsigned long __user *, nmask, unsigned long, maxnode, 1602 unsigned long, addr, unsigned long, flags) 1603 { 1604 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1605 } 1606 1607 #ifdef CONFIG_COMPAT 1608 1609 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1610 compat_ulong_t __user *, nmask, 1611 compat_ulong_t, maxnode, 1612 compat_ulong_t, addr, compat_ulong_t, flags) 1613 { 1614 long err; 1615 unsigned long __user *nm = NULL; 1616 unsigned long nr_bits, alloc_size; 1617 DECLARE_BITMAP(bm, MAX_NUMNODES); 1618 1619 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1620 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1621 1622 if (nmask) 1623 nm = compat_alloc_user_space(alloc_size); 1624 1625 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1626 1627 if (!err && nmask) { 1628 unsigned long copy_size; 1629 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1630 err = copy_from_user(bm, nm, copy_size); 1631 /* ensure entire bitmap is zeroed */ 1632 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1633 err |= compat_put_bitmap(nmask, bm, nr_bits); 1634 } 1635 1636 return err; 1637 } 1638 1639 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1640 compat_ulong_t, maxnode) 1641 { 1642 unsigned long __user *nm = NULL; 1643 unsigned long nr_bits, alloc_size; 1644 DECLARE_BITMAP(bm, MAX_NUMNODES); 1645 1646 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1647 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1648 1649 if (nmask) { 1650 if (compat_get_bitmap(bm, nmask, nr_bits)) 1651 return -EFAULT; 1652 nm = compat_alloc_user_space(alloc_size); 1653 if (copy_to_user(nm, bm, alloc_size)) 1654 return -EFAULT; 1655 } 1656 1657 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1658 } 1659 1660 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1661 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1662 compat_ulong_t, maxnode, compat_ulong_t, flags) 1663 { 1664 unsigned long __user *nm = NULL; 1665 unsigned long nr_bits, alloc_size; 1666 nodemask_t bm; 1667 1668 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1669 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1670 1671 if (nmask) { 1672 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1673 return -EFAULT; 1674 nm = compat_alloc_user_space(alloc_size); 1675 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1676 return -EFAULT; 1677 } 1678 1679 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1680 } 1681 1682 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1683 compat_ulong_t, maxnode, 1684 const compat_ulong_t __user *, old_nodes, 1685 const compat_ulong_t __user *, new_nodes) 1686 { 1687 unsigned long __user *old = NULL; 1688 unsigned long __user *new = NULL; 1689 nodemask_t tmp_mask; 1690 unsigned long nr_bits; 1691 unsigned long size; 1692 1693 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1694 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1695 if (old_nodes) { 1696 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1697 return -EFAULT; 1698 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1699 if (new_nodes) 1700 new = old + size / sizeof(unsigned long); 1701 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1702 return -EFAULT; 1703 } 1704 if (new_nodes) { 1705 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1706 return -EFAULT; 1707 if (new == NULL) 1708 new = compat_alloc_user_space(size); 1709 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1710 return -EFAULT; 1711 } 1712 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1713 } 1714 1715 #endif /* CONFIG_COMPAT */ 1716 1717 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1718 unsigned long addr) 1719 { 1720 struct mempolicy *pol = NULL; 1721 1722 if (vma) { 1723 if (vma->vm_ops && vma->vm_ops->get_policy) { 1724 pol = vma->vm_ops->get_policy(vma, addr); 1725 } else if (vma->vm_policy) { 1726 pol = vma->vm_policy; 1727 1728 /* 1729 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1730 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1731 * count on these policies which will be dropped by 1732 * mpol_cond_put() later 1733 */ 1734 if (mpol_needs_cond_ref(pol)) 1735 mpol_get(pol); 1736 } 1737 } 1738 1739 return pol; 1740 } 1741 1742 /* 1743 * get_vma_policy(@vma, @addr) 1744 * @vma: virtual memory area whose policy is sought 1745 * @addr: address in @vma for shared policy lookup 1746 * 1747 * Returns effective policy for a VMA at specified address. 1748 * Falls back to current->mempolicy or system default policy, as necessary. 1749 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1750 * count--added by the get_policy() vm_op, as appropriate--to protect against 1751 * freeing by another task. It is the caller's responsibility to free the 1752 * extra reference for shared policies. 1753 */ 1754 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1755 unsigned long addr) 1756 { 1757 struct mempolicy *pol = __get_vma_policy(vma, addr); 1758 1759 if (!pol) 1760 pol = get_task_policy(current); 1761 1762 return pol; 1763 } 1764 1765 bool vma_policy_mof(struct vm_area_struct *vma) 1766 { 1767 struct mempolicy *pol; 1768 1769 if (vma->vm_ops && vma->vm_ops->get_policy) { 1770 bool ret = false; 1771 1772 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1773 if (pol && (pol->flags & MPOL_F_MOF)) 1774 ret = true; 1775 mpol_cond_put(pol); 1776 1777 return ret; 1778 } 1779 1780 pol = vma->vm_policy; 1781 if (!pol) 1782 pol = get_task_policy(current); 1783 1784 return pol->flags & MPOL_F_MOF; 1785 } 1786 1787 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1788 { 1789 enum zone_type dynamic_policy_zone = policy_zone; 1790 1791 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1792 1793 /* 1794 * if policy->v.nodes has movable memory only, 1795 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1796 * 1797 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1798 * so if the following test faile, it implies 1799 * policy->v.nodes has movable memory only. 1800 */ 1801 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1802 dynamic_policy_zone = ZONE_MOVABLE; 1803 1804 return zone >= dynamic_policy_zone; 1805 } 1806 1807 /* 1808 * Return a nodemask representing a mempolicy for filtering nodes for 1809 * page allocation 1810 */ 1811 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1812 { 1813 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1814 if (unlikely(policy->mode == MPOL_BIND) && 1815 apply_policy_zone(policy, gfp_zone(gfp)) && 1816 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1817 return &policy->v.nodes; 1818 1819 return NULL; 1820 } 1821 1822 /* Return the node id preferred by the given mempolicy, or the given id */ 1823 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1824 int nd) 1825 { 1826 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1827 nd = policy->v.preferred_node; 1828 else { 1829 /* 1830 * __GFP_THISNODE shouldn't even be used with the bind policy 1831 * because we might easily break the expectation to stay on the 1832 * requested node and not break the policy. 1833 */ 1834 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1835 } 1836 1837 return nd; 1838 } 1839 1840 /* Do dynamic interleaving for a process */ 1841 static unsigned interleave_nodes(struct mempolicy *policy) 1842 { 1843 unsigned next; 1844 struct task_struct *me = current; 1845 1846 next = next_node_in(me->il_prev, policy->v.nodes); 1847 if (next < MAX_NUMNODES) 1848 me->il_prev = next; 1849 return next; 1850 } 1851 1852 /* 1853 * Depending on the memory policy provide a node from which to allocate the 1854 * next slab entry. 1855 */ 1856 unsigned int mempolicy_slab_node(void) 1857 { 1858 struct mempolicy *policy; 1859 int node = numa_mem_id(); 1860 1861 if (in_interrupt()) 1862 return node; 1863 1864 policy = current->mempolicy; 1865 if (!policy || policy->flags & MPOL_F_LOCAL) 1866 return node; 1867 1868 switch (policy->mode) { 1869 case MPOL_PREFERRED: 1870 /* 1871 * handled MPOL_F_LOCAL above 1872 */ 1873 return policy->v.preferred_node; 1874 1875 case MPOL_INTERLEAVE: 1876 return interleave_nodes(policy); 1877 1878 case MPOL_BIND: { 1879 struct zoneref *z; 1880 1881 /* 1882 * Follow bind policy behavior and start allocation at the 1883 * first node. 1884 */ 1885 struct zonelist *zonelist; 1886 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1887 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1888 z = first_zones_zonelist(zonelist, highest_zoneidx, 1889 &policy->v.nodes); 1890 return z->zone ? zone_to_nid(z->zone) : node; 1891 } 1892 1893 default: 1894 BUG(); 1895 } 1896 } 1897 1898 /* 1899 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1900 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1901 * number of present nodes. 1902 */ 1903 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1904 { 1905 unsigned nnodes = nodes_weight(pol->v.nodes); 1906 unsigned target; 1907 int i; 1908 int nid; 1909 1910 if (!nnodes) 1911 return numa_node_id(); 1912 target = (unsigned int)n % nnodes; 1913 nid = first_node(pol->v.nodes); 1914 for (i = 0; i < target; i++) 1915 nid = next_node(nid, pol->v.nodes); 1916 return nid; 1917 } 1918 1919 /* Determine a node number for interleave */ 1920 static inline unsigned interleave_nid(struct mempolicy *pol, 1921 struct vm_area_struct *vma, unsigned long addr, int shift) 1922 { 1923 if (vma) { 1924 unsigned long off; 1925 1926 /* 1927 * for small pages, there is no difference between 1928 * shift and PAGE_SHIFT, so the bit-shift is safe. 1929 * for huge pages, since vm_pgoff is in units of small 1930 * pages, we need to shift off the always 0 bits to get 1931 * a useful offset. 1932 */ 1933 BUG_ON(shift < PAGE_SHIFT); 1934 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1935 off += (addr - vma->vm_start) >> shift; 1936 return offset_il_node(pol, off); 1937 } else 1938 return interleave_nodes(pol); 1939 } 1940 1941 #ifdef CONFIG_HUGETLBFS 1942 /* 1943 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1944 * @vma: virtual memory area whose policy is sought 1945 * @addr: address in @vma for shared policy lookup and interleave policy 1946 * @gfp_flags: for requested zone 1947 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1948 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1949 * 1950 * Returns a nid suitable for a huge page allocation and a pointer 1951 * to the struct mempolicy for conditional unref after allocation. 1952 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1953 * @nodemask for filtering the zonelist. 1954 * 1955 * Must be protected by read_mems_allowed_begin() 1956 */ 1957 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1958 struct mempolicy **mpol, nodemask_t **nodemask) 1959 { 1960 int nid; 1961 1962 *mpol = get_vma_policy(vma, addr); 1963 *nodemask = NULL; /* assume !MPOL_BIND */ 1964 1965 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1966 nid = interleave_nid(*mpol, vma, addr, 1967 huge_page_shift(hstate_vma(vma))); 1968 } else { 1969 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1970 if ((*mpol)->mode == MPOL_BIND) 1971 *nodemask = &(*mpol)->v.nodes; 1972 } 1973 return nid; 1974 } 1975 1976 /* 1977 * init_nodemask_of_mempolicy 1978 * 1979 * If the current task's mempolicy is "default" [NULL], return 'false' 1980 * to indicate default policy. Otherwise, extract the policy nodemask 1981 * for 'bind' or 'interleave' policy into the argument nodemask, or 1982 * initialize the argument nodemask to contain the single node for 1983 * 'preferred' or 'local' policy and return 'true' to indicate presence 1984 * of non-default mempolicy. 1985 * 1986 * We don't bother with reference counting the mempolicy [mpol_get/put] 1987 * because the current task is examining it's own mempolicy and a task's 1988 * mempolicy is only ever changed by the task itself. 1989 * 1990 * N.B., it is the caller's responsibility to free a returned nodemask. 1991 */ 1992 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1993 { 1994 struct mempolicy *mempolicy; 1995 int nid; 1996 1997 if (!(mask && current->mempolicy)) 1998 return false; 1999 2000 task_lock(current); 2001 mempolicy = current->mempolicy; 2002 switch (mempolicy->mode) { 2003 case MPOL_PREFERRED: 2004 if (mempolicy->flags & MPOL_F_LOCAL) 2005 nid = numa_node_id(); 2006 else 2007 nid = mempolicy->v.preferred_node; 2008 init_nodemask_of_node(mask, nid); 2009 break; 2010 2011 case MPOL_BIND: 2012 /* Fall through */ 2013 case MPOL_INTERLEAVE: 2014 *mask = mempolicy->v.nodes; 2015 break; 2016 2017 default: 2018 BUG(); 2019 } 2020 task_unlock(current); 2021 2022 return true; 2023 } 2024 #endif 2025 2026 /* 2027 * mempolicy_nodemask_intersects 2028 * 2029 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2030 * policy. Otherwise, check for intersection between mask and the policy 2031 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2032 * policy, always return true since it may allocate elsewhere on fallback. 2033 * 2034 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2035 */ 2036 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2037 const nodemask_t *mask) 2038 { 2039 struct mempolicy *mempolicy; 2040 bool ret = true; 2041 2042 if (!mask) 2043 return ret; 2044 task_lock(tsk); 2045 mempolicy = tsk->mempolicy; 2046 if (!mempolicy) 2047 goto out; 2048 2049 switch (mempolicy->mode) { 2050 case MPOL_PREFERRED: 2051 /* 2052 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2053 * allocate from, they may fallback to other nodes when oom. 2054 * Thus, it's possible for tsk to have allocated memory from 2055 * nodes in mask. 2056 */ 2057 break; 2058 case MPOL_BIND: 2059 case MPOL_INTERLEAVE: 2060 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2061 break; 2062 default: 2063 BUG(); 2064 } 2065 out: 2066 task_unlock(tsk); 2067 return ret; 2068 } 2069 2070 /* Allocate a page in interleaved policy. 2071 Own path because it needs to do special accounting. */ 2072 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2073 unsigned nid) 2074 { 2075 struct page *page; 2076 2077 page = __alloc_pages(gfp, order, nid); 2078 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2079 if (!static_branch_likely(&vm_numa_stat_key)) 2080 return page; 2081 if (page && page_to_nid(page) == nid) { 2082 preempt_disable(); 2083 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2084 preempt_enable(); 2085 } 2086 return page; 2087 } 2088 2089 /** 2090 * alloc_pages_vma - Allocate a page for a VMA. 2091 * 2092 * @gfp: 2093 * %GFP_USER user allocation. 2094 * %GFP_KERNEL kernel allocations, 2095 * %GFP_HIGHMEM highmem/user allocations, 2096 * %GFP_FS allocation should not call back into a file system. 2097 * %GFP_ATOMIC don't sleep. 2098 * 2099 * @order:Order of the GFP allocation. 2100 * @vma: Pointer to VMA or NULL if not available. 2101 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2102 * @node: Which node to prefer for allocation (modulo policy). 2103 * @hugepage: for hugepages try only the preferred node if possible 2104 * 2105 * This function allocates a page from the kernel page pool and applies 2106 * a NUMA policy associated with the VMA or the current process. 2107 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2108 * mm_struct of the VMA to prevent it from going away. Should be used for 2109 * all allocations for pages that will be mapped into user space. Returns 2110 * NULL when no page can be allocated. 2111 */ 2112 struct page * 2113 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2114 unsigned long addr, int node, bool hugepage) 2115 { 2116 struct mempolicy *pol; 2117 struct page *page; 2118 int preferred_nid; 2119 nodemask_t *nmask; 2120 2121 pol = get_vma_policy(vma, addr); 2122 2123 if (pol->mode == MPOL_INTERLEAVE) { 2124 unsigned nid; 2125 2126 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2127 mpol_cond_put(pol); 2128 page = alloc_page_interleave(gfp, order, nid); 2129 goto out; 2130 } 2131 2132 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2133 int hpage_node = node; 2134 2135 /* 2136 * For hugepage allocation and non-interleave policy which 2137 * allows the current node (or other explicitly preferred 2138 * node) we only try to allocate from the current/preferred 2139 * node and don't fall back to other nodes, as the cost of 2140 * remote accesses would likely offset THP benefits. 2141 * 2142 * If the policy is interleave, or does not allow the current 2143 * node in its nodemask, we allocate the standard way. 2144 */ 2145 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2146 hpage_node = pol->v.preferred_node; 2147 2148 nmask = policy_nodemask(gfp, pol); 2149 if (!nmask || node_isset(hpage_node, *nmask)) { 2150 mpol_cond_put(pol); 2151 /* 2152 * First, try to allocate THP only on local node, but 2153 * don't reclaim unnecessarily, just compact. 2154 */ 2155 page = __alloc_pages_node(hpage_node, 2156 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2157 2158 /* 2159 * If hugepage allocations are configured to always 2160 * synchronous compact or the vma has been madvised 2161 * to prefer hugepage backing, retry allowing remote 2162 * memory with both reclaim and compact as well. 2163 */ 2164 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2165 page = __alloc_pages_node(hpage_node, 2166 gfp, order); 2167 2168 goto out; 2169 } 2170 } 2171 2172 nmask = policy_nodemask(gfp, pol); 2173 preferred_nid = policy_node(gfp, pol, node); 2174 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2175 mpol_cond_put(pol); 2176 out: 2177 return page; 2178 } 2179 EXPORT_SYMBOL(alloc_pages_vma); 2180 2181 /** 2182 * alloc_pages_current - Allocate pages. 2183 * 2184 * @gfp: 2185 * %GFP_USER user allocation, 2186 * %GFP_KERNEL kernel allocation, 2187 * %GFP_HIGHMEM highmem allocation, 2188 * %GFP_FS don't call back into a file system. 2189 * %GFP_ATOMIC don't sleep. 2190 * @order: Power of two of allocation size in pages. 0 is a single page. 2191 * 2192 * Allocate a page from the kernel page pool. When not in 2193 * interrupt context and apply the current process NUMA policy. 2194 * Returns NULL when no page can be allocated. 2195 */ 2196 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2197 { 2198 struct mempolicy *pol = &default_policy; 2199 struct page *page; 2200 2201 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2202 pol = get_task_policy(current); 2203 2204 /* 2205 * No reference counting needed for current->mempolicy 2206 * nor system default_policy 2207 */ 2208 if (pol->mode == MPOL_INTERLEAVE) 2209 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2210 else 2211 page = __alloc_pages_nodemask(gfp, order, 2212 policy_node(gfp, pol, numa_node_id()), 2213 policy_nodemask(gfp, pol)); 2214 2215 return page; 2216 } 2217 EXPORT_SYMBOL(alloc_pages_current); 2218 2219 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2220 { 2221 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2222 2223 if (IS_ERR(pol)) 2224 return PTR_ERR(pol); 2225 dst->vm_policy = pol; 2226 return 0; 2227 } 2228 2229 /* 2230 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2231 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2232 * with the mems_allowed returned by cpuset_mems_allowed(). This 2233 * keeps mempolicies cpuset relative after its cpuset moves. See 2234 * further kernel/cpuset.c update_nodemask(). 2235 * 2236 * current's mempolicy may be rebinded by the other task(the task that changes 2237 * cpuset's mems), so we needn't do rebind work for current task. 2238 */ 2239 2240 /* Slow path of a mempolicy duplicate */ 2241 struct mempolicy *__mpol_dup(struct mempolicy *old) 2242 { 2243 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2244 2245 if (!new) 2246 return ERR_PTR(-ENOMEM); 2247 2248 /* task's mempolicy is protected by alloc_lock */ 2249 if (old == current->mempolicy) { 2250 task_lock(current); 2251 *new = *old; 2252 task_unlock(current); 2253 } else 2254 *new = *old; 2255 2256 if (current_cpuset_is_being_rebound()) { 2257 nodemask_t mems = cpuset_mems_allowed(current); 2258 mpol_rebind_policy(new, &mems); 2259 } 2260 atomic_set(&new->refcnt, 1); 2261 return new; 2262 } 2263 2264 /* Slow path of a mempolicy comparison */ 2265 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2266 { 2267 if (!a || !b) 2268 return false; 2269 if (a->mode != b->mode) 2270 return false; 2271 if (a->flags != b->flags) 2272 return false; 2273 if (mpol_store_user_nodemask(a)) 2274 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2275 return false; 2276 2277 switch (a->mode) { 2278 case MPOL_BIND: 2279 /* Fall through */ 2280 case MPOL_INTERLEAVE: 2281 return !!nodes_equal(a->v.nodes, b->v.nodes); 2282 case MPOL_PREFERRED: 2283 /* a's ->flags is the same as b's */ 2284 if (a->flags & MPOL_F_LOCAL) 2285 return true; 2286 return a->v.preferred_node == b->v.preferred_node; 2287 default: 2288 BUG(); 2289 return false; 2290 } 2291 } 2292 2293 /* 2294 * Shared memory backing store policy support. 2295 * 2296 * Remember policies even when nobody has shared memory mapped. 2297 * The policies are kept in Red-Black tree linked from the inode. 2298 * They are protected by the sp->lock rwlock, which should be held 2299 * for any accesses to the tree. 2300 */ 2301 2302 /* 2303 * lookup first element intersecting start-end. Caller holds sp->lock for 2304 * reading or for writing 2305 */ 2306 static struct sp_node * 2307 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2308 { 2309 struct rb_node *n = sp->root.rb_node; 2310 2311 while (n) { 2312 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2313 2314 if (start >= p->end) 2315 n = n->rb_right; 2316 else if (end <= p->start) 2317 n = n->rb_left; 2318 else 2319 break; 2320 } 2321 if (!n) 2322 return NULL; 2323 for (;;) { 2324 struct sp_node *w = NULL; 2325 struct rb_node *prev = rb_prev(n); 2326 if (!prev) 2327 break; 2328 w = rb_entry(prev, struct sp_node, nd); 2329 if (w->end <= start) 2330 break; 2331 n = prev; 2332 } 2333 return rb_entry(n, struct sp_node, nd); 2334 } 2335 2336 /* 2337 * Insert a new shared policy into the list. Caller holds sp->lock for 2338 * writing. 2339 */ 2340 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2341 { 2342 struct rb_node **p = &sp->root.rb_node; 2343 struct rb_node *parent = NULL; 2344 struct sp_node *nd; 2345 2346 while (*p) { 2347 parent = *p; 2348 nd = rb_entry(parent, struct sp_node, nd); 2349 if (new->start < nd->start) 2350 p = &(*p)->rb_left; 2351 else if (new->end > nd->end) 2352 p = &(*p)->rb_right; 2353 else 2354 BUG(); 2355 } 2356 rb_link_node(&new->nd, parent, p); 2357 rb_insert_color(&new->nd, &sp->root); 2358 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2359 new->policy ? new->policy->mode : 0); 2360 } 2361 2362 /* Find shared policy intersecting idx */ 2363 struct mempolicy * 2364 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2365 { 2366 struct mempolicy *pol = NULL; 2367 struct sp_node *sn; 2368 2369 if (!sp->root.rb_node) 2370 return NULL; 2371 read_lock(&sp->lock); 2372 sn = sp_lookup(sp, idx, idx+1); 2373 if (sn) { 2374 mpol_get(sn->policy); 2375 pol = sn->policy; 2376 } 2377 read_unlock(&sp->lock); 2378 return pol; 2379 } 2380 2381 static void sp_free(struct sp_node *n) 2382 { 2383 mpol_put(n->policy); 2384 kmem_cache_free(sn_cache, n); 2385 } 2386 2387 /** 2388 * mpol_misplaced - check whether current page node is valid in policy 2389 * 2390 * @page: page to be checked 2391 * @vma: vm area where page mapped 2392 * @addr: virtual address where page mapped 2393 * 2394 * Lookup current policy node id for vma,addr and "compare to" page's 2395 * node id. 2396 * 2397 * Returns: 2398 * -1 - not misplaced, page is in the right node 2399 * node - node id where the page should be 2400 * 2401 * Policy determination "mimics" alloc_page_vma(). 2402 * Called from fault path where we know the vma and faulting address. 2403 */ 2404 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2405 { 2406 struct mempolicy *pol; 2407 struct zoneref *z; 2408 int curnid = page_to_nid(page); 2409 unsigned long pgoff; 2410 int thiscpu = raw_smp_processor_id(); 2411 int thisnid = cpu_to_node(thiscpu); 2412 int polnid = NUMA_NO_NODE; 2413 int ret = -1; 2414 2415 pol = get_vma_policy(vma, addr); 2416 if (!(pol->flags & MPOL_F_MOF)) 2417 goto out; 2418 2419 switch (pol->mode) { 2420 case MPOL_INTERLEAVE: 2421 pgoff = vma->vm_pgoff; 2422 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2423 polnid = offset_il_node(pol, pgoff); 2424 break; 2425 2426 case MPOL_PREFERRED: 2427 if (pol->flags & MPOL_F_LOCAL) 2428 polnid = numa_node_id(); 2429 else 2430 polnid = pol->v.preferred_node; 2431 break; 2432 2433 case MPOL_BIND: 2434 2435 /* 2436 * allows binding to multiple nodes. 2437 * use current page if in policy nodemask, 2438 * else select nearest allowed node, if any. 2439 * If no allowed nodes, use current [!misplaced]. 2440 */ 2441 if (node_isset(curnid, pol->v.nodes)) 2442 goto out; 2443 z = first_zones_zonelist( 2444 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2445 gfp_zone(GFP_HIGHUSER), 2446 &pol->v.nodes); 2447 polnid = zone_to_nid(z->zone); 2448 break; 2449 2450 default: 2451 BUG(); 2452 } 2453 2454 /* Migrate the page towards the node whose CPU is referencing it */ 2455 if (pol->flags & MPOL_F_MORON) { 2456 polnid = thisnid; 2457 2458 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2459 goto out; 2460 } 2461 2462 if (curnid != polnid) 2463 ret = polnid; 2464 out: 2465 mpol_cond_put(pol); 2466 2467 return ret; 2468 } 2469 2470 /* 2471 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2472 * dropped after task->mempolicy is set to NULL so that any allocation done as 2473 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2474 * policy. 2475 */ 2476 void mpol_put_task_policy(struct task_struct *task) 2477 { 2478 struct mempolicy *pol; 2479 2480 task_lock(task); 2481 pol = task->mempolicy; 2482 task->mempolicy = NULL; 2483 task_unlock(task); 2484 mpol_put(pol); 2485 } 2486 2487 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2488 { 2489 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2490 rb_erase(&n->nd, &sp->root); 2491 sp_free(n); 2492 } 2493 2494 static void sp_node_init(struct sp_node *node, unsigned long start, 2495 unsigned long end, struct mempolicy *pol) 2496 { 2497 node->start = start; 2498 node->end = end; 2499 node->policy = pol; 2500 } 2501 2502 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2503 struct mempolicy *pol) 2504 { 2505 struct sp_node *n; 2506 struct mempolicy *newpol; 2507 2508 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2509 if (!n) 2510 return NULL; 2511 2512 newpol = mpol_dup(pol); 2513 if (IS_ERR(newpol)) { 2514 kmem_cache_free(sn_cache, n); 2515 return NULL; 2516 } 2517 newpol->flags |= MPOL_F_SHARED; 2518 sp_node_init(n, start, end, newpol); 2519 2520 return n; 2521 } 2522 2523 /* Replace a policy range. */ 2524 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2525 unsigned long end, struct sp_node *new) 2526 { 2527 struct sp_node *n; 2528 struct sp_node *n_new = NULL; 2529 struct mempolicy *mpol_new = NULL; 2530 int ret = 0; 2531 2532 restart: 2533 write_lock(&sp->lock); 2534 n = sp_lookup(sp, start, end); 2535 /* Take care of old policies in the same range. */ 2536 while (n && n->start < end) { 2537 struct rb_node *next = rb_next(&n->nd); 2538 if (n->start >= start) { 2539 if (n->end <= end) 2540 sp_delete(sp, n); 2541 else 2542 n->start = end; 2543 } else { 2544 /* Old policy spanning whole new range. */ 2545 if (n->end > end) { 2546 if (!n_new) 2547 goto alloc_new; 2548 2549 *mpol_new = *n->policy; 2550 atomic_set(&mpol_new->refcnt, 1); 2551 sp_node_init(n_new, end, n->end, mpol_new); 2552 n->end = start; 2553 sp_insert(sp, n_new); 2554 n_new = NULL; 2555 mpol_new = NULL; 2556 break; 2557 } else 2558 n->end = start; 2559 } 2560 if (!next) 2561 break; 2562 n = rb_entry(next, struct sp_node, nd); 2563 } 2564 if (new) 2565 sp_insert(sp, new); 2566 write_unlock(&sp->lock); 2567 ret = 0; 2568 2569 err_out: 2570 if (mpol_new) 2571 mpol_put(mpol_new); 2572 if (n_new) 2573 kmem_cache_free(sn_cache, n_new); 2574 2575 return ret; 2576 2577 alloc_new: 2578 write_unlock(&sp->lock); 2579 ret = -ENOMEM; 2580 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2581 if (!n_new) 2582 goto err_out; 2583 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2584 if (!mpol_new) 2585 goto err_out; 2586 goto restart; 2587 } 2588 2589 /** 2590 * mpol_shared_policy_init - initialize shared policy for inode 2591 * @sp: pointer to inode shared policy 2592 * @mpol: struct mempolicy to install 2593 * 2594 * Install non-NULL @mpol in inode's shared policy rb-tree. 2595 * On entry, the current task has a reference on a non-NULL @mpol. 2596 * This must be released on exit. 2597 * This is called at get_inode() calls and we can use GFP_KERNEL. 2598 */ 2599 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2600 { 2601 int ret; 2602 2603 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2604 rwlock_init(&sp->lock); 2605 2606 if (mpol) { 2607 struct vm_area_struct pvma; 2608 struct mempolicy *new; 2609 NODEMASK_SCRATCH(scratch); 2610 2611 if (!scratch) 2612 goto put_mpol; 2613 /* contextualize the tmpfs mount point mempolicy */ 2614 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2615 if (IS_ERR(new)) 2616 goto free_scratch; /* no valid nodemask intersection */ 2617 2618 task_lock(current); 2619 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2620 task_unlock(current); 2621 if (ret) 2622 goto put_new; 2623 2624 /* Create pseudo-vma that contains just the policy */ 2625 vma_init(&pvma, NULL); 2626 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2627 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2628 2629 put_new: 2630 mpol_put(new); /* drop initial ref */ 2631 free_scratch: 2632 NODEMASK_SCRATCH_FREE(scratch); 2633 put_mpol: 2634 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2635 } 2636 } 2637 2638 int mpol_set_shared_policy(struct shared_policy *info, 2639 struct vm_area_struct *vma, struct mempolicy *npol) 2640 { 2641 int err; 2642 struct sp_node *new = NULL; 2643 unsigned long sz = vma_pages(vma); 2644 2645 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2646 vma->vm_pgoff, 2647 sz, npol ? npol->mode : -1, 2648 npol ? npol->flags : -1, 2649 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2650 2651 if (npol) { 2652 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2653 if (!new) 2654 return -ENOMEM; 2655 } 2656 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2657 if (err && new) 2658 sp_free(new); 2659 return err; 2660 } 2661 2662 /* Free a backing policy store on inode delete. */ 2663 void mpol_free_shared_policy(struct shared_policy *p) 2664 { 2665 struct sp_node *n; 2666 struct rb_node *next; 2667 2668 if (!p->root.rb_node) 2669 return; 2670 write_lock(&p->lock); 2671 next = rb_first(&p->root); 2672 while (next) { 2673 n = rb_entry(next, struct sp_node, nd); 2674 next = rb_next(&n->nd); 2675 sp_delete(p, n); 2676 } 2677 write_unlock(&p->lock); 2678 } 2679 2680 #ifdef CONFIG_NUMA_BALANCING 2681 static int __initdata numabalancing_override; 2682 2683 static void __init check_numabalancing_enable(void) 2684 { 2685 bool numabalancing_default = false; 2686 2687 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2688 numabalancing_default = true; 2689 2690 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2691 if (numabalancing_override) 2692 set_numabalancing_state(numabalancing_override == 1); 2693 2694 if (num_online_nodes() > 1 && !numabalancing_override) { 2695 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2696 numabalancing_default ? "Enabling" : "Disabling"); 2697 set_numabalancing_state(numabalancing_default); 2698 } 2699 } 2700 2701 static int __init setup_numabalancing(char *str) 2702 { 2703 int ret = 0; 2704 if (!str) 2705 goto out; 2706 2707 if (!strcmp(str, "enable")) { 2708 numabalancing_override = 1; 2709 ret = 1; 2710 } else if (!strcmp(str, "disable")) { 2711 numabalancing_override = -1; 2712 ret = 1; 2713 } 2714 out: 2715 if (!ret) 2716 pr_warn("Unable to parse numa_balancing=\n"); 2717 2718 return ret; 2719 } 2720 __setup("numa_balancing=", setup_numabalancing); 2721 #else 2722 static inline void __init check_numabalancing_enable(void) 2723 { 2724 } 2725 #endif /* CONFIG_NUMA_BALANCING */ 2726 2727 /* assumes fs == KERNEL_DS */ 2728 void __init numa_policy_init(void) 2729 { 2730 nodemask_t interleave_nodes; 2731 unsigned long largest = 0; 2732 int nid, prefer = 0; 2733 2734 policy_cache = kmem_cache_create("numa_policy", 2735 sizeof(struct mempolicy), 2736 0, SLAB_PANIC, NULL); 2737 2738 sn_cache = kmem_cache_create("shared_policy_node", 2739 sizeof(struct sp_node), 2740 0, SLAB_PANIC, NULL); 2741 2742 for_each_node(nid) { 2743 preferred_node_policy[nid] = (struct mempolicy) { 2744 .refcnt = ATOMIC_INIT(1), 2745 .mode = MPOL_PREFERRED, 2746 .flags = MPOL_F_MOF | MPOL_F_MORON, 2747 .v = { .preferred_node = nid, }, 2748 }; 2749 } 2750 2751 /* 2752 * Set interleaving policy for system init. Interleaving is only 2753 * enabled across suitably sized nodes (default is >= 16MB), or 2754 * fall back to the largest node if they're all smaller. 2755 */ 2756 nodes_clear(interleave_nodes); 2757 for_each_node_state(nid, N_MEMORY) { 2758 unsigned long total_pages = node_present_pages(nid); 2759 2760 /* Preserve the largest node */ 2761 if (largest < total_pages) { 2762 largest = total_pages; 2763 prefer = nid; 2764 } 2765 2766 /* Interleave this node? */ 2767 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2768 node_set(nid, interleave_nodes); 2769 } 2770 2771 /* All too small, use the largest */ 2772 if (unlikely(nodes_empty(interleave_nodes))) 2773 node_set(prefer, interleave_nodes); 2774 2775 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2776 pr_err("%s: interleaving failed\n", __func__); 2777 2778 check_numabalancing_enable(); 2779 } 2780 2781 /* Reset policy of current process to default */ 2782 void numa_default_policy(void) 2783 { 2784 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2785 } 2786 2787 /* 2788 * Parse and format mempolicy from/to strings 2789 */ 2790 2791 /* 2792 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2793 */ 2794 static const char * const policy_modes[] = 2795 { 2796 [MPOL_DEFAULT] = "default", 2797 [MPOL_PREFERRED] = "prefer", 2798 [MPOL_BIND] = "bind", 2799 [MPOL_INTERLEAVE] = "interleave", 2800 [MPOL_LOCAL] = "local", 2801 }; 2802 2803 2804 #ifdef CONFIG_TMPFS 2805 /** 2806 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2807 * @str: string containing mempolicy to parse 2808 * @mpol: pointer to struct mempolicy pointer, returned on success. 2809 * 2810 * Format of input: 2811 * <mode>[=<flags>][:<nodelist>] 2812 * 2813 * On success, returns 0, else 1 2814 */ 2815 int mpol_parse_str(char *str, struct mempolicy **mpol) 2816 { 2817 struct mempolicy *new = NULL; 2818 unsigned short mode_flags; 2819 nodemask_t nodes; 2820 char *nodelist = strchr(str, ':'); 2821 char *flags = strchr(str, '='); 2822 int err = 1, mode; 2823 2824 if (flags) 2825 *flags++ = '\0'; /* terminate mode string */ 2826 2827 if (nodelist) { 2828 /* NUL-terminate mode or flags string */ 2829 *nodelist++ = '\0'; 2830 if (nodelist_parse(nodelist, nodes)) 2831 goto out; 2832 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2833 goto out; 2834 } else 2835 nodes_clear(nodes); 2836 2837 mode = match_string(policy_modes, MPOL_MAX, str); 2838 if (mode < 0) 2839 goto out; 2840 2841 switch (mode) { 2842 case MPOL_PREFERRED: 2843 /* 2844 * Insist on a nodelist of one node only 2845 */ 2846 if (nodelist) { 2847 char *rest = nodelist; 2848 while (isdigit(*rest)) 2849 rest++; 2850 if (*rest) 2851 goto out; 2852 } 2853 break; 2854 case MPOL_INTERLEAVE: 2855 /* 2856 * Default to online nodes with memory if no nodelist 2857 */ 2858 if (!nodelist) 2859 nodes = node_states[N_MEMORY]; 2860 break; 2861 case MPOL_LOCAL: 2862 /* 2863 * Don't allow a nodelist; mpol_new() checks flags 2864 */ 2865 if (nodelist) 2866 goto out; 2867 mode = MPOL_PREFERRED; 2868 break; 2869 case MPOL_DEFAULT: 2870 /* 2871 * Insist on a empty nodelist 2872 */ 2873 if (!nodelist) 2874 err = 0; 2875 goto out; 2876 case MPOL_BIND: 2877 /* 2878 * Insist on a nodelist 2879 */ 2880 if (!nodelist) 2881 goto out; 2882 } 2883 2884 mode_flags = 0; 2885 if (flags) { 2886 /* 2887 * Currently, we only support two mutually exclusive 2888 * mode flags. 2889 */ 2890 if (!strcmp(flags, "static")) 2891 mode_flags |= MPOL_F_STATIC_NODES; 2892 else if (!strcmp(flags, "relative")) 2893 mode_flags |= MPOL_F_RELATIVE_NODES; 2894 else 2895 goto out; 2896 } 2897 2898 new = mpol_new(mode, mode_flags, &nodes); 2899 if (IS_ERR(new)) 2900 goto out; 2901 2902 /* 2903 * Save nodes for mpol_to_str() to show the tmpfs mount options 2904 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2905 */ 2906 if (mode != MPOL_PREFERRED) 2907 new->v.nodes = nodes; 2908 else if (nodelist) 2909 new->v.preferred_node = first_node(nodes); 2910 else 2911 new->flags |= MPOL_F_LOCAL; 2912 2913 /* 2914 * Save nodes for contextualization: this will be used to "clone" 2915 * the mempolicy in a specific context [cpuset] at a later time. 2916 */ 2917 new->w.user_nodemask = nodes; 2918 2919 err = 0; 2920 2921 out: 2922 /* Restore string for error message */ 2923 if (nodelist) 2924 *--nodelist = ':'; 2925 if (flags) 2926 *--flags = '='; 2927 if (!err) 2928 *mpol = new; 2929 return err; 2930 } 2931 #endif /* CONFIG_TMPFS */ 2932 2933 /** 2934 * mpol_to_str - format a mempolicy structure for printing 2935 * @buffer: to contain formatted mempolicy string 2936 * @maxlen: length of @buffer 2937 * @pol: pointer to mempolicy to be formatted 2938 * 2939 * Convert @pol into a string. If @buffer is too short, truncate the string. 2940 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2941 * longest flag, "relative", and to display at least a few node ids. 2942 */ 2943 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2944 { 2945 char *p = buffer; 2946 nodemask_t nodes = NODE_MASK_NONE; 2947 unsigned short mode = MPOL_DEFAULT; 2948 unsigned short flags = 0; 2949 2950 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2951 mode = pol->mode; 2952 flags = pol->flags; 2953 } 2954 2955 switch (mode) { 2956 case MPOL_DEFAULT: 2957 break; 2958 case MPOL_PREFERRED: 2959 if (flags & MPOL_F_LOCAL) 2960 mode = MPOL_LOCAL; 2961 else 2962 node_set(pol->v.preferred_node, nodes); 2963 break; 2964 case MPOL_BIND: 2965 case MPOL_INTERLEAVE: 2966 nodes = pol->v.nodes; 2967 break; 2968 default: 2969 WARN_ON_ONCE(1); 2970 snprintf(p, maxlen, "unknown"); 2971 return; 2972 } 2973 2974 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2975 2976 if (flags & MPOL_MODE_FLAGS) { 2977 p += snprintf(p, buffer + maxlen - p, "="); 2978 2979 /* 2980 * Currently, the only defined flags are mutually exclusive 2981 */ 2982 if (flags & MPOL_F_STATIC_NODES) 2983 p += snprintf(p, buffer + maxlen - p, "static"); 2984 else if (flags & MPOL_F_RELATIVE_NODES) 2985 p += snprintf(p, buffer + maxlen - p, "relative"); 2986 } 2987 2988 if (!nodes_empty(nodes)) 2989 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2990 nodemask_pr_args(&nodes)); 2991 } 2992