1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = tmp; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static void migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 432 unsigned long end, struct mm_walk *walk) 433 { 434 int ret = 0; 435 struct page *page; 436 struct queue_pages *qp = walk->private; 437 unsigned long flags; 438 439 if (unlikely(is_pmd_migration_entry(*pmd))) { 440 ret = 1; 441 goto unlock; 442 } 443 page = pmd_page(*pmd); 444 if (is_huge_zero_page(page)) { 445 spin_unlock(ptl); 446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 447 goto out; 448 } 449 if (!thp_migration_supported()) { 450 get_page(page); 451 spin_unlock(ptl); 452 lock_page(page); 453 ret = split_huge_page(page); 454 unlock_page(page); 455 put_page(page); 456 goto out; 457 } 458 if (!queue_pages_required(page, qp)) { 459 ret = 1; 460 goto unlock; 461 } 462 463 ret = 1; 464 flags = qp->flags; 465 /* go to thp migration */ 466 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 467 migrate_page_add(page, qp->pagelist, flags); 468 unlock: 469 spin_unlock(ptl); 470 out: 471 return ret; 472 } 473 474 /* 475 * Scan through pages checking if pages follow certain conditions, 476 * and move them to the pagelist if they do. 477 */ 478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 479 unsigned long end, struct mm_walk *walk) 480 { 481 struct vm_area_struct *vma = walk->vma; 482 struct page *page; 483 struct queue_pages *qp = walk->private; 484 unsigned long flags = qp->flags; 485 int ret; 486 pte_t *pte; 487 spinlock_t *ptl; 488 489 ptl = pmd_trans_huge_lock(pmd, vma); 490 if (ptl) { 491 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 492 if (ret) 493 return 0; 494 } 495 496 if (pmd_trans_unstable(pmd)) 497 return 0; 498 retry: 499 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 500 for (; addr != end; pte++, addr += PAGE_SIZE) { 501 if (!pte_present(*pte)) 502 continue; 503 page = vm_normal_page(vma, addr, *pte); 504 if (!page) 505 continue; 506 /* 507 * vm_normal_page() filters out zero pages, but there might 508 * still be PageReserved pages to skip, perhaps in a VDSO. 509 */ 510 if (PageReserved(page)) 511 continue; 512 if (!queue_pages_required(page, qp)) 513 continue; 514 if (PageTransCompound(page) && !thp_migration_supported()) { 515 get_page(page); 516 pte_unmap_unlock(pte, ptl); 517 lock_page(page); 518 ret = split_huge_page(page); 519 unlock_page(page); 520 put_page(page); 521 /* Failed to split -- skip. */ 522 if (ret) { 523 pte = pte_offset_map_lock(walk->mm, pmd, 524 addr, &ptl); 525 continue; 526 } 527 goto retry; 528 } 529 530 migrate_page_add(page, qp->pagelist, flags); 531 } 532 pte_unmap_unlock(pte - 1, ptl); 533 cond_resched(); 534 return 0; 535 } 536 537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 538 unsigned long addr, unsigned long end, 539 struct mm_walk *walk) 540 { 541 #ifdef CONFIG_HUGETLB_PAGE 542 struct queue_pages *qp = walk->private; 543 unsigned long flags = qp->flags; 544 struct page *page; 545 spinlock_t *ptl; 546 pte_t entry; 547 548 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 549 entry = huge_ptep_get(pte); 550 if (!pte_present(entry)) 551 goto unlock; 552 page = pte_page(entry); 553 if (!queue_pages_required(page, qp)) 554 goto unlock; 555 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 556 if (flags & (MPOL_MF_MOVE_ALL) || 557 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 558 isolate_huge_page(page, qp->pagelist); 559 unlock: 560 spin_unlock(ptl); 561 #else 562 BUG(); 563 #endif 564 return 0; 565 } 566 567 #ifdef CONFIG_NUMA_BALANCING 568 /* 569 * This is used to mark a range of virtual addresses to be inaccessible. 570 * These are later cleared by a NUMA hinting fault. Depending on these 571 * faults, pages may be migrated for better NUMA placement. 572 * 573 * This is assuming that NUMA faults are handled using PROT_NONE. If 574 * an architecture makes a different choice, it will need further 575 * changes to the core. 576 */ 577 unsigned long change_prot_numa(struct vm_area_struct *vma, 578 unsigned long addr, unsigned long end) 579 { 580 int nr_updated; 581 582 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 583 if (nr_updated) 584 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 585 586 return nr_updated; 587 } 588 #else 589 static unsigned long change_prot_numa(struct vm_area_struct *vma, 590 unsigned long addr, unsigned long end) 591 { 592 return 0; 593 } 594 #endif /* CONFIG_NUMA_BALANCING */ 595 596 static int queue_pages_test_walk(unsigned long start, unsigned long end, 597 struct mm_walk *walk) 598 { 599 struct vm_area_struct *vma = walk->vma; 600 struct queue_pages *qp = walk->private; 601 unsigned long endvma = vma->vm_end; 602 unsigned long flags = qp->flags; 603 604 if (!vma_migratable(vma)) 605 return 1; 606 607 if (endvma > end) 608 endvma = end; 609 if (vma->vm_start > start) 610 start = vma->vm_start; 611 612 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 613 if (!vma->vm_next && vma->vm_end < end) 614 return -EFAULT; 615 if (qp->prev && qp->prev->vm_end < vma->vm_start) 616 return -EFAULT; 617 } 618 619 qp->prev = vma; 620 621 if (flags & MPOL_MF_LAZY) { 622 /* Similar to task_numa_work, skip inaccessible VMAs */ 623 if (!is_vm_hugetlb_page(vma) && 624 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 625 !(vma->vm_flags & VM_MIXEDMAP)) 626 change_prot_numa(vma, start, endvma); 627 return 1; 628 } 629 630 /* queue pages from current vma */ 631 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 632 return 0; 633 return 1; 634 } 635 636 /* 637 * Walk through page tables and collect pages to be migrated. 638 * 639 * If pages found in a given range are on a set of nodes (determined by 640 * @nodes and @flags,) it's isolated and queued to the pagelist which is 641 * passed via @private.) 642 */ 643 static int 644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 645 nodemask_t *nodes, unsigned long flags, 646 struct list_head *pagelist) 647 { 648 struct queue_pages qp = { 649 .pagelist = pagelist, 650 .flags = flags, 651 .nmask = nodes, 652 .prev = NULL, 653 }; 654 struct mm_walk queue_pages_walk = { 655 .hugetlb_entry = queue_pages_hugetlb, 656 .pmd_entry = queue_pages_pte_range, 657 .test_walk = queue_pages_test_walk, 658 .mm = mm, 659 .private = &qp, 660 }; 661 662 return walk_page_range(start, end, &queue_pages_walk); 663 } 664 665 /* 666 * Apply policy to a single VMA 667 * This must be called with the mmap_sem held for writing. 668 */ 669 static int vma_replace_policy(struct vm_area_struct *vma, 670 struct mempolicy *pol) 671 { 672 int err; 673 struct mempolicy *old; 674 struct mempolicy *new; 675 676 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 677 vma->vm_start, vma->vm_end, vma->vm_pgoff, 678 vma->vm_ops, vma->vm_file, 679 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 680 681 new = mpol_dup(pol); 682 if (IS_ERR(new)) 683 return PTR_ERR(new); 684 685 if (vma->vm_ops && vma->vm_ops->set_policy) { 686 err = vma->vm_ops->set_policy(vma, new); 687 if (err) 688 goto err_out; 689 } 690 691 old = vma->vm_policy; 692 vma->vm_policy = new; /* protected by mmap_sem */ 693 mpol_put(old); 694 695 return 0; 696 err_out: 697 mpol_put(new); 698 return err; 699 } 700 701 /* Step 2: apply policy to a range and do splits. */ 702 static int mbind_range(struct mm_struct *mm, unsigned long start, 703 unsigned long end, struct mempolicy *new_pol) 704 { 705 struct vm_area_struct *next; 706 struct vm_area_struct *prev; 707 struct vm_area_struct *vma; 708 int err = 0; 709 pgoff_t pgoff; 710 unsigned long vmstart; 711 unsigned long vmend; 712 713 vma = find_vma(mm, start); 714 if (!vma || vma->vm_start > start) 715 return -EFAULT; 716 717 prev = vma->vm_prev; 718 if (start > vma->vm_start) 719 prev = vma; 720 721 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 722 next = vma->vm_next; 723 vmstart = max(start, vma->vm_start); 724 vmend = min(end, vma->vm_end); 725 726 if (mpol_equal(vma_policy(vma), new_pol)) 727 continue; 728 729 pgoff = vma->vm_pgoff + 730 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 731 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 732 vma->anon_vma, vma->vm_file, pgoff, 733 new_pol, vma->vm_userfaultfd_ctx); 734 if (prev) { 735 vma = prev; 736 next = vma->vm_next; 737 if (mpol_equal(vma_policy(vma), new_pol)) 738 continue; 739 /* vma_merge() joined vma && vma->next, case 8 */ 740 goto replace; 741 } 742 if (vma->vm_start != vmstart) { 743 err = split_vma(vma->vm_mm, vma, vmstart, 1); 744 if (err) 745 goto out; 746 } 747 if (vma->vm_end != vmend) { 748 err = split_vma(vma->vm_mm, vma, vmend, 0); 749 if (err) 750 goto out; 751 } 752 replace: 753 err = vma_replace_policy(vma, new_pol); 754 if (err) 755 goto out; 756 } 757 758 out: 759 return err; 760 } 761 762 /* Set the process memory policy */ 763 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 764 nodemask_t *nodes) 765 { 766 struct mempolicy *new, *old; 767 NODEMASK_SCRATCH(scratch); 768 int ret; 769 770 if (!scratch) 771 return -ENOMEM; 772 773 new = mpol_new(mode, flags, nodes); 774 if (IS_ERR(new)) { 775 ret = PTR_ERR(new); 776 goto out; 777 } 778 779 task_lock(current); 780 ret = mpol_set_nodemask(new, nodes, scratch); 781 if (ret) { 782 task_unlock(current); 783 mpol_put(new); 784 goto out; 785 } 786 old = current->mempolicy; 787 current->mempolicy = new; 788 if (new && new->mode == MPOL_INTERLEAVE) 789 current->il_prev = MAX_NUMNODES-1; 790 task_unlock(current); 791 mpol_put(old); 792 ret = 0; 793 out: 794 NODEMASK_SCRATCH_FREE(scratch); 795 return ret; 796 } 797 798 /* 799 * Return nodemask for policy for get_mempolicy() query 800 * 801 * Called with task's alloc_lock held 802 */ 803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 804 { 805 nodes_clear(*nodes); 806 if (p == &default_policy) 807 return; 808 809 switch (p->mode) { 810 case MPOL_BIND: 811 /* Fall through */ 812 case MPOL_INTERLEAVE: 813 *nodes = p->v.nodes; 814 break; 815 case MPOL_PREFERRED: 816 if (!(p->flags & MPOL_F_LOCAL)) 817 node_set(p->v.preferred_node, *nodes); 818 /* else return empty node mask for local allocation */ 819 break; 820 default: 821 BUG(); 822 } 823 } 824 825 static int lookup_node(unsigned long addr) 826 { 827 struct page *p; 828 int err; 829 830 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 831 if (err >= 0) { 832 err = page_to_nid(p); 833 put_page(p); 834 } 835 return err; 836 } 837 838 /* Retrieve NUMA policy */ 839 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 840 unsigned long addr, unsigned long flags) 841 { 842 int err; 843 struct mm_struct *mm = current->mm; 844 struct vm_area_struct *vma = NULL; 845 struct mempolicy *pol = current->mempolicy; 846 847 if (flags & 848 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 849 return -EINVAL; 850 851 if (flags & MPOL_F_MEMS_ALLOWED) { 852 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 853 return -EINVAL; 854 *policy = 0; /* just so it's initialized */ 855 task_lock(current); 856 *nmask = cpuset_current_mems_allowed; 857 task_unlock(current); 858 return 0; 859 } 860 861 if (flags & MPOL_F_ADDR) { 862 /* 863 * Do NOT fall back to task policy if the 864 * vma/shared policy at addr is NULL. We 865 * want to return MPOL_DEFAULT in this case. 866 */ 867 down_read(&mm->mmap_sem); 868 vma = find_vma_intersection(mm, addr, addr+1); 869 if (!vma) { 870 up_read(&mm->mmap_sem); 871 return -EFAULT; 872 } 873 if (vma->vm_ops && vma->vm_ops->get_policy) 874 pol = vma->vm_ops->get_policy(vma, addr); 875 else 876 pol = vma->vm_policy; 877 } else if (addr) 878 return -EINVAL; 879 880 if (!pol) 881 pol = &default_policy; /* indicates default behavior */ 882 883 if (flags & MPOL_F_NODE) { 884 if (flags & MPOL_F_ADDR) { 885 err = lookup_node(addr); 886 if (err < 0) 887 goto out; 888 *policy = err; 889 } else if (pol == current->mempolicy && 890 pol->mode == MPOL_INTERLEAVE) { 891 *policy = next_node_in(current->il_prev, pol->v.nodes); 892 } else { 893 err = -EINVAL; 894 goto out; 895 } 896 } else { 897 *policy = pol == &default_policy ? MPOL_DEFAULT : 898 pol->mode; 899 /* 900 * Internal mempolicy flags must be masked off before exposing 901 * the policy to userspace. 902 */ 903 *policy |= (pol->flags & MPOL_MODE_FLAGS); 904 } 905 906 err = 0; 907 if (nmask) { 908 if (mpol_store_user_nodemask(pol)) { 909 *nmask = pol->w.user_nodemask; 910 } else { 911 task_lock(current); 912 get_policy_nodemask(pol, nmask); 913 task_unlock(current); 914 } 915 } 916 917 out: 918 mpol_cond_put(pol); 919 if (vma) 920 up_read(¤t->mm->mmap_sem); 921 return err; 922 } 923 924 #ifdef CONFIG_MIGRATION 925 /* 926 * page migration, thp tail pages can be passed. 927 */ 928 static void migrate_page_add(struct page *page, struct list_head *pagelist, 929 unsigned long flags) 930 { 931 struct page *head = compound_head(page); 932 /* 933 * Avoid migrating a page that is shared with others. 934 */ 935 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 936 if (!isolate_lru_page(head)) { 937 list_add_tail(&head->lru, pagelist); 938 mod_node_page_state(page_pgdat(head), 939 NR_ISOLATED_ANON + page_is_file_cache(head), 940 hpage_nr_pages(head)); 941 } 942 } 943 } 944 945 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 946 { 947 if (PageHuge(page)) 948 return alloc_huge_page_node(page_hstate(compound_head(page)), 949 node); 950 else if (thp_migration_supported() && PageTransHuge(page)) { 951 struct page *thp; 952 953 thp = alloc_pages_node(node, 954 (GFP_TRANSHUGE | __GFP_THISNODE), 955 HPAGE_PMD_ORDER); 956 if (!thp) 957 return NULL; 958 prep_transhuge_page(thp); 959 return thp; 960 } else 961 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 962 __GFP_THISNODE, 0); 963 } 964 965 /* 966 * Migrate pages from one node to a target node. 967 * Returns error or the number of pages not migrated. 968 */ 969 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 970 int flags) 971 { 972 nodemask_t nmask; 973 LIST_HEAD(pagelist); 974 int err = 0; 975 976 nodes_clear(nmask); 977 node_set(source, nmask); 978 979 /* 980 * This does not "check" the range but isolates all pages that 981 * need migration. Between passing in the full user address 982 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 983 */ 984 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 985 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 986 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 987 988 if (!list_empty(&pagelist)) { 989 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 990 MIGRATE_SYNC, MR_SYSCALL); 991 if (err) 992 putback_movable_pages(&pagelist); 993 } 994 995 return err; 996 } 997 998 /* 999 * Move pages between the two nodesets so as to preserve the physical 1000 * layout as much as possible. 1001 * 1002 * Returns the number of page that could not be moved. 1003 */ 1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1005 const nodemask_t *to, int flags) 1006 { 1007 int busy = 0; 1008 int err; 1009 nodemask_t tmp; 1010 1011 err = migrate_prep(); 1012 if (err) 1013 return err; 1014 1015 down_read(&mm->mmap_sem); 1016 1017 /* 1018 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1019 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1020 * bit in 'tmp', and return that <source, dest> pair for migration. 1021 * The pair of nodemasks 'to' and 'from' define the map. 1022 * 1023 * If no pair of bits is found that way, fallback to picking some 1024 * pair of 'source' and 'dest' bits that are not the same. If the 1025 * 'source' and 'dest' bits are the same, this represents a node 1026 * that will be migrating to itself, so no pages need move. 1027 * 1028 * If no bits are left in 'tmp', or if all remaining bits left 1029 * in 'tmp' correspond to the same bit in 'to', return false 1030 * (nothing left to migrate). 1031 * 1032 * This lets us pick a pair of nodes to migrate between, such that 1033 * if possible the dest node is not already occupied by some other 1034 * source node, minimizing the risk of overloading the memory on a 1035 * node that would happen if we migrated incoming memory to a node 1036 * before migrating outgoing memory source that same node. 1037 * 1038 * A single scan of tmp is sufficient. As we go, we remember the 1039 * most recent <s, d> pair that moved (s != d). If we find a pair 1040 * that not only moved, but what's better, moved to an empty slot 1041 * (d is not set in tmp), then we break out then, with that pair. 1042 * Otherwise when we finish scanning from_tmp, we at least have the 1043 * most recent <s, d> pair that moved. If we get all the way through 1044 * the scan of tmp without finding any node that moved, much less 1045 * moved to an empty node, then there is nothing left worth migrating. 1046 */ 1047 1048 tmp = *from; 1049 while (!nodes_empty(tmp)) { 1050 int s,d; 1051 int source = NUMA_NO_NODE; 1052 int dest = 0; 1053 1054 for_each_node_mask(s, tmp) { 1055 1056 /* 1057 * do_migrate_pages() tries to maintain the relative 1058 * node relationship of the pages established between 1059 * threads and memory areas. 1060 * 1061 * However if the number of source nodes is not equal to 1062 * the number of destination nodes we can not preserve 1063 * this node relative relationship. In that case, skip 1064 * copying memory from a node that is in the destination 1065 * mask. 1066 * 1067 * Example: [2,3,4] -> [3,4,5] moves everything. 1068 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1069 */ 1070 1071 if ((nodes_weight(*from) != nodes_weight(*to)) && 1072 (node_isset(s, *to))) 1073 continue; 1074 1075 d = node_remap(s, *from, *to); 1076 if (s == d) 1077 continue; 1078 1079 source = s; /* Node moved. Memorize */ 1080 dest = d; 1081 1082 /* dest not in remaining from nodes? */ 1083 if (!node_isset(dest, tmp)) 1084 break; 1085 } 1086 if (source == NUMA_NO_NODE) 1087 break; 1088 1089 node_clear(source, tmp); 1090 err = migrate_to_node(mm, source, dest, flags); 1091 if (err > 0) 1092 busy += err; 1093 if (err < 0) 1094 break; 1095 } 1096 up_read(&mm->mmap_sem); 1097 if (err < 0) 1098 return err; 1099 return busy; 1100 1101 } 1102 1103 /* 1104 * Allocate a new page for page migration based on vma policy. 1105 * Start by assuming the page is mapped by the same vma as contains @start. 1106 * Search forward from there, if not. N.B., this assumes that the 1107 * list of pages handed to migrate_pages()--which is how we get here-- 1108 * is in virtual address order. 1109 */ 1110 static struct page *new_page(struct page *page, unsigned long start, int **x) 1111 { 1112 struct vm_area_struct *vma; 1113 unsigned long uninitialized_var(address); 1114 1115 vma = find_vma(current->mm, start); 1116 while (vma) { 1117 address = page_address_in_vma(page, vma); 1118 if (address != -EFAULT) 1119 break; 1120 vma = vma->vm_next; 1121 } 1122 1123 if (PageHuge(page)) { 1124 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1125 vma, address); 1126 } else if (thp_migration_supported() && PageTransHuge(page)) { 1127 struct page *thp; 1128 1129 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1130 HPAGE_PMD_ORDER); 1131 if (!thp) 1132 return NULL; 1133 prep_transhuge_page(thp); 1134 return thp; 1135 } 1136 /* 1137 * if !vma, alloc_page_vma() will use task or system default policy 1138 */ 1139 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1140 vma, address); 1141 } 1142 #else 1143 1144 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1145 unsigned long flags) 1146 { 1147 } 1148 1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1150 const nodemask_t *to, int flags) 1151 { 1152 return -ENOSYS; 1153 } 1154 1155 static struct page *new_page(struct page *page, unsigned long start, int **x) 1156 { 1157 return NULL; 1158 } 1159 #endif 1160 1161 static long do_mbind(unsigned long start, unsigned long len, 1162 unsigned short mode, unsigned short mode_flags, 1163 nodemask_t *nmask, unsigned long flags) 1164 { 1165 struct mm_struct *mm = current->mm; 1166 struct mempolicy *new; 1167 unsigned long end; 1168 int err; 1169 LIST_HEAD(pagelist); 1170 1171 if (flags & ~(unsigned long)MPOL_MF_VALID) 1172 return -EINVAL; 1173 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1174 return -EPERM; 1175 1176 if (start & ~PAGE_MASK) 1177 return -EINVAL; 1178 1179 if (mode == MPOL_DEFAULT) 1180 flags &= ~MPOL_MF_STRICT; 1181 1182 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1183 end = start + len; 1184 1185 if (end < start) 1186 return -EINVAL; 1187 if (end == start) 1188 return 0; 1189 1190 new = mpol_new(mode, mode_flags, nmask); 1191 if (IS_ERR(new)) 1192 return PTR_ERR(new); 1193 1194 if (flags & MPOL_MF_LAZY) 1195 new->flags |= MPOL_F_MOF; 1196 1197 /* 1198 * If we are using the default policy then operation 1199 * on discontinuous address spaces is okay after all 1200 */ 1201 if (!new) 1202 flags |= MPOL_MF_DISCONTIG_OK; 1203 1204 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1205 start, start + len, mode, mode_flags, 1206 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1207 1208 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1209 1210 err = migrate_prep(); 1211 if (err) 1212 goto mpol_out; 1213 } 1214 { 1215 NODEMASK_SCRATCH(scratch); 1216 if (scratch) { 1217 down_write(&mm->mmap_sem); 1218 task_lock(current); 1219 err = mpol_set_nodemask(new, nmask, scratch); 1220 task_unlock(current); 1221 if (err) 1222 up_write(&mm->mmap_sem); 1223 } else 1224 err = -ENOMEM; 1225 NODEMASK_SCRATCH_FREE(scratch); 1226 } 1227 if (err) 1228 goto mpol_out; 1229 1230 err = queue_pages_range(mm, start, end, nmask, 1231 flags | MPOL_MF_INVERT, &pagelist); 1232 if (!err) 1233 err = mbind_range(mm, start, end, new); 1234 1235 if (!err) { 1236 int nr_failed = 0; 1237 1238 if (!list_empty(&pagelist)) { 1239 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1240 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1241 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1242 if (nr_failed) 1243 putback_movable_pages(&pagelist); 1244 } 1245 1246 if (nr_failed && (flags & MPOL_MF_STRICT)) 1247 err = -EIO; 1248 } else 1249 putback_movable_pages(&pagelist); 1250 1251 up_write(&mm->mmap_sem); 1252 mpol_out: 1253 mpol_put(new); 1254 return err; 1255 } 1256 1257 /* 1258 * User space interface with variable sized bitmaps for nodelists. 1259 */ 1260 1261 /* Copy a node mask from user space. */ 1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1263 unsigned long maxnode) 1264 { 1265 unsigned long k; 1266 unsigned long t; 1267 unsigned long nlongs; 1268 unsigned long endmask; 1269 1270 --maxnode; 1271 nodes_clear(*nodes); 1272 if (maxnode == 0 || !nmask) 1273 return 0; 1274 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1275 return -EINVAL; 1276 1277 nlongs = BITS_TO_LONGS(maxnode); 1278 if ((maxnode % BITS_PER_LONG) == 0) 1279 endmask = ~0UL; 1280 else 1281 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1282 1283 /* 1284 * When the user specified more nodes than supported just check 1285 * if the non supported part is all zero. 1286 * 1287 * If maxnode have more longs than MAX_NUMNODES, check 1288 * the bits in that area first. And then go through to 1289 * check the rest bits which equal or bigger than MAX_NUMNODES. 1290 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1291 */ 1292 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1293 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1294 if (get_user(t, nmask + k)) 1295 return -EFAULT; 1296 if (k == nlongs - 1) { 1297 if (t & endmask) 1298 return -EINVAL; 1299 } else if (t) 1300 return -EINVAL; 1301 } 1302 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1303 endmask = ~0UL; 1304 } 1305 1306 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1307 unsigned long valid_mask = endmask; 1308 1309 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1310 if (get_user(t, nmask + nlongs - 1)) 1311 return -EFAULT; 1312 if (t & valid_mask) 1313 return -EINVAL; 1314 } 1315 1316 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1317 return -EFAULT; 1318 nodes_addr(*nodes)[nlongs-1] &= endmask; 1319 return 0; 1320 } 1321 1322 /* Copy a kernel node mask to user space */ 1323 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1324 nodemask_t *nodes) 1325 { 1326 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1327 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1328 1329 if (copy > nbytes) { 1330 if (copy > PAGE_SIZE) 1331 return -EINVAL; 1332 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1333 return -EFAULT; 1334 copy = nbytes; 1335 } 1336 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1337 } 1338 1339 static long kernel_mbind(unsigned long start, unsigned long len, 1340 unsigned long mode, const unsigned long __user *nmask, 1341 unsigned long maxnode, unsigned int flags) 1342 { 1343 nodemask_t nodes; 1344 int err; 1345 unsigned short mode_flags; 1346 1347 mode_flags = mode & MPOL_MODE_FLAGS; 1348 mode &= ~MPOL_MODE_FLAGS; 1349 if (mode >= MPOL_MAX) 1350 return -EINVAL; 1351 if ((mode_flags & MPOL_F_STATIC_NODES) && 1352 (mode_flags & MPOL_F_RELATIVE_NODES)) 1353 return -EINVAL; 1354 err = get_nodes(&nodes, nmask, maxnode); 1355 if (err) 1356 return err; 1357 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1358 } 1359 1360 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1361 unsigned long, mode, const unsigned long __user *, nmask, 1362 unsigned long, maxnode, unsigned int, flags) 1363 { 1364 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1365 } 1366 1367 /* Set the process memory policy */ 1368 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1369 unsigned long maxnode) 1370 { 1371 int err; 1372 nodemask_t nodes; 1373 unsigned short flags; 1374 1375 flags = mode & MPOL_MODE_FLAGS; 1376 mode &= ~MPOL_MODE_FLAGS; 1377 if ((unsigned int)mode >= MPOL_MAX) 1378 return -EINVAL; 1379 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1380 return -EINVAL; 1381 err = get_nodes(&nodes, nmask, maxnode); 1382 if (err) 1383 return err; 1384 return do_set_mempolicy(mode, flags, &nodes); 1385 } 1386 1387 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1388 unsigned long, maxnode) 1389 { 1390 return kernel_set_mempolicy(mode, nmask, maxnode); 1391 } 1392 1393 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1394 const unsigned long __user *old_nodes, 1395 const unsigned long __user *new_nodes) 1396 { 1397 struct mm_struct *mm = NULL; 1398 struct task_struct *task; 1399 nodemask_t task_nodes; 1400 int err; 1401 nodemask_t *old; 1402 nodemask_t *new; 1403 NODEMASK_SCRATCH(scratch); 1404 1405 if (!scratch) 1406 return -ENOMEM; 1407 1408 old = &scratch->mask1; 1409 new = &scratch->mask2; 1410 1411 err = get_nodes(old, old_nodes, maxnode); 1412 if (err) 1413 goto out; 1414 1415 err = get_nodes(new, new_nodes, maxnode); 1416 if (err) 1417 goto out; 1418 1419 /* Find the mm_struct */ 1420 rcu_read_lock(); 1421 task = pid ? find_task_by_vpid(pid) : current; 1422 if (!task) { 1423 rcu_read_unlock(); 1424 err = -ESRCH; 1425 goto out; 1426 } 1427 get_task_struct(task); 1428 1429 err = -EINVAL; 1430 1431 /* 1432 * Check if this process has the right to modify the specified process. 1433 * Use the regular "ptrace_may_access()" checks. 1434 */ 1435 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1436 rcu_read_unlock(); 1437 err = -EPERM; 1438 goto out_put; 1439 } 1440 rcu_read_unlock(); 1441 1442 task_nodes = cpuset_mems_allowed(task); 1443 /* Is the user allowed to access the target nodes? */ 1444 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1445 err = -EPERM; 1446 goto out_put; 1447 } 1448 1449 task_nodes = cpuset_mems_allowed(current); 1450 nodes_and(*new, *new, task_nodes); 1451 if (nodes_empty(*new)) 1452 goto out_put; 1453 1454 nodes_and(*new, *new, node_states[N_MEMORY]); 1455 if (nodes_empty(*new)) 1456 goto out_put; 1457 1458 err = security_task_movememory(task); 1459 if (err) 1460 goto out_put; 1461 1462 mm = get_task_mm(task); 1463 put_task_struct(task); 1464 1465 if (!mm) { 1466 err = -EINVAL; 1467 goto out; 1468 } 1469 1470 err = do_migrate_pages(mm, old, new, 1471 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1472 1473 mmput(mm); 1474 out: 1475 NODEMASK_SCRATCH_FREE(scratch); 1476 1477 return err; 1478 1479 out_put: 1480 put_task_struct(task); 1481 goto out; 1482 1483 } 1484 1485 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1486 const unsigned long __user *, old_nodes, 1487 const unsigned long __user *, new_nodes) 1488 { 1489 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1490 } 1491 1492 1493 /* Retrieve NUMA policy */ 1494 static int kernel_get_mempolicy(int __user *policy, 1495 unsigned long __user *nmask, 1496 unsigned long maxnode, 1497 unsigned long addr, 1498 unsigned long flags) 1499 { 1500 int err; 1501 int uninitialized_var(pval); 1502 nodemask_t nodes; 1503 1504 if (nmask != NULL && maxnode < MAX_NUMNODES) 1505 return -EINVAL; 1506 1507 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1508 1509 if (err) 1510 return err; 1511 1512 if (policy && put_user(pval, policy)) 1513 return -EFAULT; 1514 1515 if (nmask) 1516 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1517 1518 return err; 1519 } 1520 1521 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1522 unsigned long __user *, nmask, unsigned long, maxnode, 1523 unsigned long, addr, unsigned long, flags) 1524 { 1525 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1526 } 1527 1528 #ifdef CONFIG_COMPAT 1529 1530 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1531 compat_ulong_t __user *, nmask, 1532 compat_ulong_t, maxnode, 1533 compat_ulong_t, addr, compat_ulong_t, flags) 1534 { 1535 long err; 1536 unsigned long __user *nm = NULL; 1537 unsigned long nr_bits, alloc_size; 1538 DECLARE_BITMAP(bm, MAX_NUMNODES); 1539 1540 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1541 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1542 1543 if (nmask) 1544 nm = compat_alloc_user_space(alloc_size); 1545 1546 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1547 1548 if (!err && nmask) { 1549 unsigned long copy_size; 1550 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1551 err = copy_from_user(bm, nm, copy_size); 1552 /* ensure entire bitmap is zeroed */ 1553 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1554 err |= compat_put_bitmap(nmask, bm, nr_bits); 1555 } 1556 1557 return err; 1558 } 1559 1560 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1561 compat_ulong_t, maxnode) 1562 { 1563 unsigned long __user *nm = NULL; 1564 unsigned long nr_bits, alloc_size; 1565 DECLARE_BITMAP(bm, MAX_NUMNODES); 1566 1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1569 1570 if (nmask) { 1571 if (compat_get_bitmap(bm, nmask, nr_bits)) 1572 return -EFAULT; 1573 nm = compat_alloc_user_space(alloc_size); 1574 if (copy_to_user(nm, bm, alloc_size)) 1575 return -EFAULT; 1576 } 1577 1578 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1579 } 1580 1581 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1582 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1583 compat_ulong_t, maxnode, compat_ulong_t, flags) 1584 { 1585 unsigned long __user *nm = NULL; 1586 unsigned long nr_bits, alloc_size; 1587 nodemask_t bm; 1588 1589 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1590 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1591 1592 if (nmask) { 1593 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1594 return -EFAULT; 1595 nm = compat_alloc_user_space(alloc_size); 1596 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1597 return -EFAULT; 1598 } 1599 1600 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1601 } 1602 1603 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1604 compat_ulong_t, maxnode, 1605 const compat_ulong_t __user *, old_nodes, 1606 const compat_ulong_t __user *, new_nodes) 1607 { 1608 unsigned long __user *old = NULL; 1609 unsigned long __user *new = NULL; 1610 nodemask_t tmp_mask; 1611 unsigned long nr_bits; 1612 unsigned long size; 1613 1614 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1615 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1616 if (old_nodes) { 1617 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1618 return -EFAULT; 1619 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1620 if (new_nodes) 1621 new = old + size / sizeof(unsigned long); 1622 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1623 return -EFAULT; 1624 } 1625 if (new_nodes) { 1626 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1627 return -EFAULT; 1628 if (new == NULL) 1629 new = compat_alloc_user_space(size); 1630 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1631 return -EFAULT; 1632 } 1633 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1634 } 1635 1636 #endif /* CONFIG_COMPAT */ 1637 1638 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1639 unsigned long addr) 1640 { 1641 struct mempolicy *pol = NULL; 1642 1643 if (vma) { 1644 if (vma->vm_ops && vma->vm_ops->get_policy) { 1645 pol = vma->vm_ops->get_policy(vma, addr); 1646 } else if (vma->vm_policy) { 1647 pol = vma->vm_policy; 1648 1649 /* 1650 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1651 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1652 * count on these policies which will be dropped by 1653 * mpol_cond_put() later 1654 */ 1655 if (mpol_needs_cond_ref(pol)) 1656 mpol_get(pol); 1657 } 1658 } 1659 1660 return pol; 1661 } 1662 1663 /* 1664 * get_vma_policy(@vma, @addr) 1665 * @vma: virtual memory area whose policy is sought 1666 * @addr: address in @vma for shared policy lookup 1667 * 1668 * Returns effective policy for a VMA at specified address. 1669 * Falls back to current->mempolicy or system default policy, as necessary. 1670 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1671 * count--added by the get_policy() vm_op, as appropriate--to protect against 1672 * freeing by another task. It is the caller's responsibility to free the 1673 * extra reference for shared policies. 1674 */ 1675 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1676 unsigned long addr) 1677 { 1678 struct mempolicy *pol = __get_vma_policy(vma, addr); 1679 1680 if (!pol) 1681 pol = get_task_policy(current); 1682 1683 return pol; 1684 } 1685 1686 bool vma_policy_mof(struct vm_area_struct *vma) 1687 { 1688 struct mempolicy *pol; 1689 1690 if (vma->vm_ops && vma->vm_ops->get_policy) { 1691 bool ret = false; 1692 1693 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1694 if (pol && (pol->flags & MPOL_F_MOF)) 1695 ret = true; 1696 mpol_cond_put(pol); 1697 1698 return ret; 1699 } 1700 1701 pol = vma->vm_policy; 1702 if (!pol) 1703 pol = get_task_policy(current); 1704 1705 return pol->flags & MPOL_F_MOF; 1706 } 1707 1708 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1709 { 1710 enum zone_type dynamic_policy_zone = policy_zone; 1711 1712 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1713 1714 /* 1715 * if policy->v.nodes has movable memory only, 1716 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1717 * 1718 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1719 * so if the following test faile, it implies 1720 * policy->v.nodes has movable memory only. 1721 */ 1722 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1723 dynamic_policy_zone = ZONE_MOVABLE; 1724 1725 return zone >= dynamic_policy_zone; 1726 } 1727 1728 /* 1729 * Return a nodemask representing a mempolicy for filtering nodes for 1730 * page allocation 1731 */ 1732 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1733 { 1734 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1735 if (unlikely(policy->mode == MPOL_BIND) && 1736 apply_policy_zone(policy, gfp_zone(gfp)) && 1737 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1738 return &policy->v.nodes; 1739 1740 return NULL; 1741 } 1742 1743 /* Return the node id preferred by the given mempolicy, or the given id */ 1744 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1745 int nd) 1746 { 1747 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1748 nd = policy->v.preferred_node; 1749 else { 1750 /* 1751 * __GFP_THISNODE shouldn't even be used with the bind policy 1752 * because we might easily break the expectation to stay on the 1753 * requested node and not break the policy. 1754 */ 1755 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1756 } 1757 1758 return nd; 1759 } 1760 1761 /* Do dynamic interleaving for a process */ 1762 static unsigned interleave_nodes(struct mempolicy *policy) 1763 { 1764 unsigned next; 1765 struct task_struct *me = current; 1766 1767 next = next_node_in(me->il_prev, policy->v.nodes); 1768 if (next < MAX_NUMNODES) 1769 me->il_prev = next; 1770 return next; 1771 } 1772 1773 /* 1774 * Depending on the memory policy provide a node from which to allocate the 1775 * next slab entry. 1776 */ 1777 unsigned int mempolicy_slab_node(void) 1778 { 1779 struct mempolicy *policy; 1780 int node = numa_mem_id(); 1781 1782 if (in_interrupt()) 1783 return node; 1784 1785 policy = current->mempolicy; 1786 if (!policy || policy->flags & MPOL_F_LOCAL) 1787 return node; 1788 1789 switch (policy->mode) { 1790 case MPOL_PREFERRED: 1791 /* 1792 * handled MPOL_F_LOCAL above 1793 */ 1794 return policy->v.preferred_node; 1795 1796 case MPOL_INTERLEAVE: 1797 return interleave_nodes(policy); 1798 1799 case MPOL_BIND: { 1800 struct zoneref *z; 1801 1802 /* 1803 * Follow bind policy behavior and start allocation at the 1804 * first node. 1805 */ 1806 struct zonelist *zonelist; 1807 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1808 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1809 z = first_zones_zonelist(zonelist, highest_zoneidx, 1810 &policy->v.nodes); 1811 return z->zone ? z->zone->node : node; 1812 } 1813 1814 default: 1815 BUG(); 1816 } 1817 } 1818 1819 /* 1820 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1821 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1822 * number of present nodes. 1823 */ 1824 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1825 { 1826 unsigned nnodes = nodes_weight(pol->v.nodes); 1827 unsigned target; 1828 int i; 1829 int nid; 1830 1831 if (!nnodes) 1832 return numa_node_id(); 1833 target = (unsigned int)n % nnodes; 1834 nid = first_node(pol->v.nodes); 1835 for (i = 0; i < target; i++) 1836 nid = next_node(nid, pol->v.nodes); 1837 return nid; 1838 } 1839 1840 /* Determine a node number for interleave */ 1841 static inline unsigned interleave_nid(struct mempolicy *pol, 1842 struct vm_area_struct *vma, unsigned long addr, int shift) 1843 { 1844 if (vma) { 1845 unsigned long off; 1846 1847 /* 1848 * for small pages, there is no difference between 1849 * shift and PAGE_SHIFT, so the bit-shift is safe. 1850 * for huge pages, since vm_pgoff is in units of small 1851 * pages, we need to shift off the always 0 bits to get 1852 * a useful offset. 1853 */ 1854 BUG_ON(shift < PAGE_SHIFT); 1855 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1856 off += (addr - vma->vm_start) >> shift; 1857 return offset_il_node(pol, off); 1858 } else 1859 return interleave_nodes(pol); 1860 } 1861 1862 #ifdef CONFIG_HUGETLBFS 1863 /* 1864 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1865 * @vma: virtual memory area whose policy is sought 1866 * @addr: address in @vma for shared policy lookup and interleave policy 1867 * @gfp_flags: for requested zone 1868 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1869 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1870 * 1871 * Returns a nid suitable for a huge page allocation and a pointer 1872 * to the struct mempolicy for conditional unref after allocation. 1873 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1874 * @nodemask for filtering the zonelist. 1875 * 1876 * Must be protected by read_mems_allowed_begin() 1877 */ 1878 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1879 struct mempolicy **mpol, nodemask_t **nodemask) 1880 { 1881 int nid; 1882 1883 *mpol = get_vma_policy(vma, addr); 1884 *nodemask = NULL; /* assume !MPOL_BIND */ 1885 1886 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1887 nid = interleave_nid(*mpol, vma, addr, 1888 huge_page_shift(hstate_vma(vma))); 1889 } else { 1890 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1891 if ((*mpol)->mode == MPOL_BIND) 1892 *nodemask = &(*mpol)->v.nodes; 1893 } 1894 return nid; 1895 } 1896 1897 /* 1898 * init_nodemask_of_mempolicy 1899 * 1900 * If the current task's mempolicy is "default" [NULL], return 'false' 1901 * to indicate default policy. Otherwise, extract the policy nodemask 1902 * for 'bind' or 'interleave' policy into the argument nodemask, or 1903 * initialize the argument nodemask to contain the single node for 1904 * 'preferred' or 'local' policy and return 'true' to indicate presence 1905 * of non-default mempolicy. 1906 * 1907 * We don't bother with reference counting the mempolicy [mpol_get/put] 1908 * because the current task is examining it's own mempolicy and a task's 1909 * mempolicy is only ever changed by the task itself. 1910 * 1911 * N.B., it is the caller's responsibility to free a returned nodemask. 1912 */ 1913 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1914 { 1915 struct mempolicy *mempolicy; 1916 int nid; 1917 1918 if (!(mask && current->mempolicy)) 1919 return false; 1920 1921 task_lock(current); 1922 mempolicy = current->mempolicy; 1923 switch (mempolicy->mode) { 1924 case MPOL_PREFERRED: 1925 if (mempolicy->flags & MPOL_F_LOCAL) 1926 nid = numa_node_id(); 1927 else 1928 nid = mempolicy->v.preferred_node; 1929 init_nodemask_of_node(mask, nid); 1930 break; 1931 1932 case MPOL_BIND: 1933 /* Fall through */ 1934 case MPOL_INTERLEAVE: 1935 *mask = mempolicy->v.nodes; 1936 break; 1937 1938 default: 1939 BUG(); 1940 } 1941 task_unlock(current); 1942 1943 return true; 1944 } 1945 #endif 1946 1947 /* 1948 * mempolicy_nodemask_intersects 1949 * 1950 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1951 * policy. Otherwise, check for intersection between mask and the policy 1952 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1953 * policy, always return true since it may allocate elsewhere on fallback. 1954 * 1955 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1956 */ 1957 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1958 const nodemask_t *mask) 1959 { 1960 struct mempolicy *mempolicy; 1961 bool ret = true; 1962 1963 if (!mask) 1964 return ret; 1965 task_lock(tsk); 1966 mempolicy = tsk->mempolicy; 1967 if (!mempolicy) 1968 goto out; 1969 1970 switch (mempolicy->mode) { 1971 case MPOL_PREFERRED: 1972 /* 1973 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1974 * allocate from, they may fallback to other nodes when oom. 1975 * Thus, it's possible for tsk to have allocated memory from 1976 * nodes in mask. 1977 */ 1978 break; 1979 case MPOL_BIND: 1980 case MPOL_INTERLEAVE: 1981 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1982 break; 1983 default: 1984 BUG(); 1985 } 1986 out: 1987 task_unlock(tsk); 1988 return ret; 1989 } 1990 1991 /* Allocate a page in interleaved policy. 1992 Own path because it needs to do special accounting. */ 1993 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1994 unsigned nid) 1995 { 1996 struct page *page; 1997 1998 page = __alloc_pages(gfp, order, nid); 1999 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2000 if (!static_branch_likely(&vm_numa_stat_key)) 2001 return page; 2002 if (page && page_to_nid(page) == nid) { 2003 preempt_disable(); 2004 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2005 preempt_enable(); 2006 } 2007 return page; 2008 } 2009 2010 /** 2011 * alloc_pages_vma - Allocate a page for a VMA. 2012 * 2013 * @gfp: 2014 * %GFP_USER user allocation. 2015 * %GFP_KERNEL kernel allocations, 2016 * %GFP_HIGHMEM highmem/user allocations, 2017 * %GFP_FS allocation should not call back into a file system. 2018 * %GFP_ATOMIC don't sleep. 2019 * 2020 * @order:Order of the GFP allocation. 2021 * @vma: Pointer to VMA or NULL if not available. 2022 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2023 * @node: Which node to prefer for allocation (modulo policy). 2024 * @hugepage: for hugepages try only the preferred node if possible 2025 * 2026 * This function allocates a page from the kernel page pool and applies 2027 * a NUMA policy associated with the VMA or the current process. 2028 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2029 * mm_struct of the VMA to prevent it from going away. Should be used for 2030 * all allocations for pages that will be mapped into user space. Returns 2031 * NULL when no page can be allocated. 2032 */ 2033 struct page * 2034 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2035 unsigned long addr, int node, bool hugepage) 2036 { 2037 struct mempolicy *pol; 2038 struct page *page; 2039 int preferred_nid; 2040 nodemask_t *nmask; 2041 2042 pol = get_vma_policy(vma, addr); 2043 2044 if (pol->mode == MPOL_INTERLEAVE) { 2045 unsigned nid; 2046 2047 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2048 mpol_cond_put(pol); 2049 page = alloc_page_interleave(gfp, order, nid); 2050 goto out; 2051 } 2052 2053 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2054 int hpage_node = node; 2055 2056 /* 2057 * For hugepage allocation and non-interleave policy which 2058 * allows the current node (or other explicitly preferred 2059 * node) we only try to allocate from the current/preferred 2060 * node and don't fall back to other nodes, as the cost of 2061 * remote accesses would likely offset THP benefits. 2062 * 2063 * If the policy is interleave, or does not allow the current 2064 * node in its nodemask, we allocate the standard way. 2065 */ 2066 if (pol->mode == MPOL_PREFERRED && 2067 !(pol->flags & MPOL_F_LOCAL)) 2068 hpage_node = pol->v.preferred_node; 2069 2070 nmask = policy_nodemask(gfp, pol); 2071 if (!nmask || node_isset(hpage_node, *nmask)) { 2072 mpol_cond_put(pol); 2073 page = __alloc_pages_node(hpage_node, 2074 gfp | __GFP_THISNODE, order); 2075 goto out; 2076 } 2077 } 2078 2079 nmask = policy_nodemask(gfp, pol); 2080 preferred_nid = policy_node(gfp, pol, node); 2081 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2082 mpol_cond_put(pol); 2083 out: 2084 return page; 2085 } 2086 2087 /** 2088 * alloc_pages_current - Allocate pages. 2089 * 2090 * @gfp: 2091 * %GFP_USER user allocation, 2092 * %GFP_KERNEL kernel allocation, 2093 * %GFP_HIGHMEM highmem allocation, 2094 * %GFP_FS don't call back into a file system. 2095 * %GFP_ATOMIC don't sleep. 2096 * @order: Power of two of allocation size in pages. 0 is a single page. 2097 * 2098 * Allocate a page from the kernel page pool. When not in 2099 * interrupt context and apply the current process NUMA policy. 2100 * Returns NULL when no page can be allocated. 2101 */ 2102 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2103 { 2104 struct mempolicy *pol = &default_policy; 2105 struct page *page; 2106 2107 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2108 pol = get_task_policy(current); 2109 2110 /* 2111 * No reference counting needed for current->mempolicy 2112 * nor system default_policy 2113 */ 2114 if (pol->mode == MPOL_INTERLEAVE) 2115 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2116 else 2117 page = __alloc_pages_nodemask(gfp, order, 2118 policy_node(gfp, pol, numa_node_id()), 2119 policy_nodemask(gfp, pol)); 2120 2121 return page; 2122 } 2123 EXPORT_SYMBOL(alloc_pages_current); 2124 2125 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2126 { 2127 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2128 2129 if (IS_ERR(pol)) 2130 return PTR_ERR(pol); 2131 dst->vm_policy = pol; 2132 return 0; 2133 } 2134 2135 /* 2136 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2137 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2138 * with the mems_allowed returned by cpuset_mems_allowed(). This 2139 * keeps mempolicies cpuset relative after its cpuset moves. See 2140 * further kernel/cpuset.c update_nodemask(). 2141 * 2142 * current's mempolicy may be rebinded by the other task(the task that changes 2143 * cpuset's mems), so we needn't do rebind work for current task. 2144 */ 2145 2146 /* Slow path of a mempolicy duplicate */ 2147 struct mempolicy *__mpol_dup(struct mempolicy *old) 2148 { 2149 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2150 2151 if (!new) 2152 return ERR_PTR(-ENOMEM); 2153 2154 /* task's mempolicy is protected by alloc_lock */ 2155 if (old == current->mempolicy) { 2156 task_lock(current); 2157 *new = *old; 2158 task_unlock(current); 2159 } else 2160 *new = *old; 2161 2162 if (current_cpuset_is_being_rebound()) { 2163 nodemask_t mems = cpuset_mems_allowed(current); 2164 mpol_rebind_policy(new, &mems); 2165 } 2166 atomic_set(&new->refcnt, 1); 2167 return new; 2168 } 2169 2170 /* Slow path of a mempolicy comparison */ 2171 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2172 { 2173 if (!a || !b) 2174 return false; 2175 if (a->mode != b->mode) 2176 return false; 2177 if (a->flags != b->flags) 2178 return false; 2179 if (mpol_store_user_nodemask(a)) 2180 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2181 return false; 2182 2183 switch (a->mode) { 2184 case MPOL_BIND: 2185 /* Fall through */ 2186 case MPOL_INTERLEAVE: 2187 return !!nodes_equal(a->v.nodes, b->v.nodes); 2188 case MPOL_PREFERRED: 2189 /* a's ->flags is the same as b's */ 2190 if (a->flags & MPOL_F_LOCAL) 2191 return true; 2192 return a->v.preferred_node == b->v.preferred_node; 2193 default: 2194 BUG(); 2195 return false; 2196 } 2197 } 2198 2199 /* 2200 * Shared memory backing store policy support. 2201 * 2202 * Remember policies even when nobody has shared memory mapped. 2203 * The policies are kept in Red-Black tree linked from the inode. 2204 * They are protected by the sp->lock rwlock, which should be held 2205 * for any accesses to the tree. 2206 */ 2207 2208 /* 2209 * lookup first element intersecting start-end. Caller holds sp->lock for 2210 * reading or for writing 2211 */ 2212 static struct sp_node * 2213 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2214 { 2215 struct rb_node *n = sp->root.rb_node; 2216 2217 while (n) { 2218 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2219 2220 if (start >= p->end) 2221 n = n->rb_right; 2222 else if (end <= p->start) 2223 n = n->rb_left; 2224 else 2225 break; 2226 } 2227 if (!n) 2228 return NULL; 2229 for (;;) { 2230 struct sp_node *w = NULL; 2231 struct rb_node *prev = rb_prev(n); 2232 if (!prev) 2233 break; 2234 w = rb_entry(prev, struct sp_node, nd); 2235 if (w->end <= start) 2236 break; 2237 n = prev; 2238 } 2239 return rb_entry(n, struct sp_node, nd); 2240 } 2241 2242 /* 2243 * Insert a new shared policy into the list. Caller holds sp->lock for 2244 * writing. 2245 */ 2246 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2247 { 2248 struct rb_node **p = &sp->root.rb_node; 2249 struct rb_node *parent = NULL; 2250 struct sp_node *nd; 2251 2252 while (*p) { 2253 parent = *p; 2254 nd = rb_entry(parent, struct sp_node, nd); 2255 if (new->start < nd->start) 2256 p = &(*p)->rb_left; 2257 else if (new->end > nd->end) 2258 p = &(*p)->rb_right; 2259 else 2260 BUG(); 2261 } 2262 rb_link_node(&new->nd, parent, p); 2263 rb_insert_color(&new->nd, &sp->root); 2264 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2265 new->policy ? new->policy->mode : 0); 2266 } 2267 2268 /* Find shared policy intersecting idx */ 2269 struct mempolicy * 2270 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2271 { 2272 struct mempolicy *pol = NULL; 2273 struct sp_node *sn; 2274 2275 if (!sp->root.rb_node) 2276 return NULL; 2277 read_lock(&sp->lock); 2278 sn = sp_lookup(sp, idx, idx+1); 2279 if (sn) { 2280 mpol_get(sn->policy); 2281 pol = sn->policy; 2282 } 2283 read_unlock(&sp->lock); 2284 return pol; 2285 } 2286 2287 static void sp_free(struct sp_node *n) 2288 { 2289 mpol_put(n->policy); 2290 kmem_cache_free(sn_cache, n); 2291 } 2292 2293 /** 2294 * mpol_misplaced - check whether current page node is valid in policy 2295 * 2296 * @page: page to be checked 2297 * @vma: vm area where page mapped 2298 * @addr: virtual address where page mapped 2299 * 2300 * Lookup current policy node id for vma,addr and "compare to" page's 2301 * node id. 2302 * 2303 * Returns: 2304 * -1 - not misplaced, page is in the right node 2305 * node - node id where the page should be 2306 * 2307 * Policy determination "mimics" alloc_page_vma(). 2308 * Called from fault path where we know the vma and faulting address. 2309 */ 2310 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2311 { 2312 struct mempolicy *pol; 2313 struct zoneref *z; 2314 int curnid = page_to_nid(page); 2315 unsigned long pgoff; 2316 int thiscpu = raw_smp_processor_id(); 2317 int thisnid = cpu_to_node(thiscpu); 2318 int polnid = -1; 2319 int ret = -1; 2320 2321 pol = get_vma_policy(vma, addr); 2322 if (!(pol->flags & MPOL_F_MOF)) 2323 goto out; 2324 2325 switch (pol->mode) { 2326 case MPOL_INTERLEAVE: 2327 pgoff = vma->vm_pgoff; 2328 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2329 polnid = offset_il_node(pol, pgoff); 2330 break; 2331 2332 case MPOL_PREFERRED: 2333 if (pol->flags & MPOL_F_LOCAL) 2334 polnid = numa_node_id(); 2335 else 2336 polnid = pol->v.preferred_node; 2337 break; 2338 2339 case MPOL_BIND: 2340 2341 /* 2342 * allows binding to multiple nodes. 2343 * use current page if in policy nodemask, 2344 * else select nearest allowed node, if any. 2345 * If no allowed nodes, use current [!misplaced]. 2346 */ 2347 if (node_isset(curnid, pol->v.nodes)) 2348 goto out; 2349 z = first_zones_zonelist( 2350 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2351 gfp_zone(GFP_HIGHUSER), 2352 &pol->v.nodes); 2353 polnid = z->zone->node; 2354 break; 2355 2356 default: 2357 BUG(); 2358 } 2359 2360 /* Migrate the page towards the node whose CPU is referencing it */ 2361 if (pol->flags & MPOL_F_MORON) { 2362 polnid = thisnid; 2363 2364 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2365 goto out; 2366 } 2367 2368 if (curnid != polnid) 2369 ret = polnid; 2370 out: 2371 mpol_cond_put(pol); 2372 2373 return ret; 2374 } 2375 2376 /* 2377 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2378 * dropped after task->mempolicy is set to NULL so that any allocation done as 2379 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2380 * policy. 2381 */ 2382 void mpol_put_task_policy(struct task_struct *task) 2383 { 2384 struct mempolicy *pol; 2385 2386 task_lock(task); 2387 pol = task->mempolicy; 2388 task->mempolicy = NULL; 2389 task_unlock(task); 2390 mpol_put(pol); 2391 } 2392 2393 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2394 { 2395 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2396 rb_erase(&n->nd, &sp->root); 2397 sp_free(n); 2398 } 2399 2400 static void sp_node_init(struct sp_node *node, unsigned long start, 2401 unsigned long end, struct mempolicy *pol) 2402 { 2403 node->start = start; 2404 node->end = end; 2405 node->policy = pol; 2406 } 2407 2408 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2409 struct mempolicy *pol) 2410 { 2411 struct sp_node *n; 2412 struct mempolicy *newpol; 2413 2414 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2415 if (!n) 2416 return NULL; 2417 2418 newpol = mpol_dup(pol); 2419 if (IS_ERR(newpol)) { 2420 kmem_cache_free(sn_cache, n); 2421 return NULL; 2422 } 2423 newpol->flags |= MPOL_F_SHARED; 2424 sp_node_init(n, start, end, newpol); 2425 2426 return n; 2427 } 2428 2429 /* Replace a policy range. */ 2430 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2431 unsigned long end, struct sp_node *new) 2432 { 2433 struct sp_node *n; 2434 struct sp_node *n_new = NULL; 2435 struct mempolicy *mpol_new = NULL; 2436 int ret = 0; 2437 2438 restart: 2439 write_lock(&sp->lock); 2440 n = sp_lookup(sp, start, end); 2441 /* Take care of old policies in the same range. */ 2442 while (n && n->start < end) { 2443 struct rb_node *next = rb_next(&n->nd); 2444 if (n->start >= start) { 2445 if (n->end <= end) 2446 sp_delete(sp, n); 2447 else 2448 n->start = end; 2449 } else { 2450 /* Old policy spanning whole new range. */ 2451 if (n->end > end) { 2452 if (!n_new) 2453 goto alloc_new; 2454 2455 *mpol_new = *n->policy; 2456 atomic_set(&mpol_new->refcnt, 1); 2457 sp_node_init(n_new, end, n->end, mpol_new); 2458 n->end = start; 2459 sp_insert(sp, n_new); 2460 n_new = NULL; 2461 mpol_new = NULL; 2462 break; 2463 } else 2464 n->end = start; 2465 } 2466 if (!next) 2467 break; 2468 n = rb_entry(next, struct sp_node, nd); 2469 } 2470 if (new) 2471 sp_insert(sp, new); 2472 write_unlock(&sp->lock); 2473 ret = 0; 2474 2475 err_out: 2476 if (mpol_new) 2477 mpol_put(mpol_new); 2478 if (n_new) 2479 kmem_cache_free(sn_cache, n_new); 2480 2481 return ret; 2482 2483 alloc_new: 2484 write_unlock(&sp->lock); 2485 ret = -ENOMEM; 2486 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2487 if (!n_new) 2488 goto err_out; 2489 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2490 if (!mpol_new) 2491 goto err_out; 2492 goto restart; 2493 } 2494 2495 /** 2496 * mpol_shared_policy_init - initialize shared policy for inode 2497 * @sp: pointer to inode shared policy 2498 * @mpol: struct mempolicy to install 2499 * 2500 * Install non-NULL @mpol in inode's shared policy rb-tree. 2501 * On entry, the current task has a reference on a non-NULL @mpol. 2502 * This must be released on exit. 2503 * This is called at get_inode() calls and we can use GFP_KERNEL. 2504 */ 2505 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2506 { 2507 int ret; 2508 2509 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2510 rwlock_init(&sp->lock); 2511 2512 if (mpol) { 2513 struct vm_area_struct pvma; 2514 struct mempolicy *new; 2515 NODEMASK_SCRATCH(scratch); 2516 2517 if (!scratch) 2518 goto put_mpol; 2519 /* contextualize the tmpfs mount point mempolicy */ 2520 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2521 if (IS_ERR(new)) 2522 goto free_scratch; /* no valid nodemask intersection */ 2523 2524 task_lock(current); 2525 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2526 task_unlock(current); 2527 if (ret) 2528 goto put_new; 2529 2530 /* Create pseudo-vma that contains just the policy */ 2531 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2532 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2533 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2534 2535 put_new: 2536 mpol_put(new); /* drop initial ref */ 2537 free_scratch: 2538 NODEMASK_SCRATCH_FREE(scratch); 2539 put_mpol: 2540 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2541 } 2542 } 2543 2544 int mpol_set_shared_policy(struct shared_policy *info, 2545 struct vm_area_struct *vma, struct mempolicy *npol) 2546 { 2547 int err; 2548 struct sp_node *new = NULL; 2549 unsigned long sz = vma_pages(vma); 2550 2551 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2552 vma->vm_pgoff, 2553 sz, npol ? npol->mode : -1, 2554 npol ? npol->flags : -1, 2555 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2556 2557 if (npol) { 2558 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2559 if (!new) 2560 return -ENOMEM; 2561 } 2562 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2563 if (err && new) 2564 sp_free(new); 2565 return err; 2566 } 2567 2568 /* Free a backing policy store on inode delete. */ 2569 void mpol_free_shared_policy(struct shared_policy *p) 2570 { 2571 struct sp_node *n; 2572 struct rb_node *next; 2573 2574 if (!p->root.rb_node) 2575 return; 2576 write_lock(&p->lock); 2577 next = rb_first(&p->root); 2578 while (next) { 2579 n = rb_entry(next, struct sp_node, nd); 2580 next = rb_next(&n->nd); 2581 sp_delete(p, n); 2582 } 2583 write_unlock(&p->lock); 2584 } 2585 2586 #ifdef CONFIG_NUMA_BALANCING 2587 static int __initdata numabalancing_override; 2588 2589 static void __init check_numabalancing_enable(void) 2590 { 2591 bool numabalancing_default = false; 2592 2593 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2594 numabalancing_default = true; 2595 2596 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2597 if (numabalancing_override) 2598 set_numabalancing_state(numabalancing_override == 1); 2599 2600 if (num_online_nodes() > 1 && !numabalancing_override) { 2601 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2602 numabalancing_default ? "Enabling" : "Disabling"); 2603 set_numabalancing_state(numabalancing_default); 2604 } 2605 } 2606 2607 static int __init setup_numabalancing(char *str) 2608 { 2609 int ret = 0; 2610 if (!str) 2611 goto out; 2612 2613 if (!strcmp(str, "enable")) { 2614 numabalancing_override = 1; 2615 ret = 1; 2616 } else if (!strcmp(str, "disable")) { 2617 numabalancing_override = -1; 2618 ret = 1; 2619 } 2620 out: 2621 if (!ret) 2622 pr_warn("Unable to parse numa_balancing=\n"); 2623 2624 return ret; 2625 } 2626 __setup("numa_balancing=", setup_numabalancing); 2627 #else 2628 static inline void __init check_numabalancing_enable(void) 2629 { 2630 } 2631 #endif /* CONFIG_NUMA_BALANCING */ 2632 2633 /* assumes fs == KERNEL_DS */ 2634 void __init numa_policy_init(void) 2635 { 2636 nodemask_t interleave_nodes; 2637 unsigned long largest = 0; 2638 int nid, prefer = 0; 2639 2640 policy_cache = kmem_cache_create("numa_policy", 2641 sizeof(struct mempolicy), 2642 0, SLAB_PANIC, NULL); 2643 2644 sn_cache = kmem_cache_create("shared_policy_node", 2645 sizeof(struct sp_node), 2646 0, SLAB_PANIC, NULL); 2647 2648 for_each_node(nid) { 2649 preferred_node_policy[nid] = (struct mempolicy) { 2650 .refcnt = ATOMIC_INIT(1), 2651 .mode = MPOL_PREFERRED, 2652 .flags = MPOL_F_MOF | MPOL_F_MORON, 2653 .v = { .preferred_node = nid, }, 2654 }; 2655 } 2656 2657 /* 2658 * Set interleaving policy for system init. Interleaving is only 2659 * enabled across suitably sized nodes (default is >= 16MB), or 2660 * fall back to the largest node if they're all smaller. 2661 */ 2662 nodes_clear(interleave_nodes); 2663 for_each_node_state(nid, N_MEMORY) { 2664 unsigned long total_pages = node_present_pages(nid); 2665 2666 /* Preserve the largest node */ 2667 if (largest < total_pages) { 2668 largest = total_pages; 2669 prefer = nid; 2670 } 2671 2672 /* Interleave this node? */ 2673 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2674 node_set(nid, interleave_nodes); 2675 } 2676 2677 /* All too small, use the largest */ 2678 if (unlikely(nodes_empty(interleave_nodes))) 2679 node_set(prefer, interleave_nodes); 2680 2681 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2682 pr_err("%s: interleaving failed\n", __func__); 2683 2684 check_numabalancing_enable(); 2685 } 2686 2687 /* Reset policy of current process to default */ 2688 void numa_default_policy(void) 2689 { 2690 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2691 } 2692 2693 /* 2694 * Parse and format mempolicy from/to strings 2695 */ 2696 2697 /* 2698 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2699 */ 2700 static const char * const policy_modes[] = 2701 { 2702 [MPOL_DEFAULT] = "default", 2703 [MPOL_PREFERRED] = "prefer", 2704 [MPOL_BIND] = "bind", 2705 [MPOL_INTERLEAVE] = "interleave", 2706 [MPOL_LOCAL] = "local", 2707 }; 2708 2709 2710 #ifdef CONFIG_TMPFS 2711 /** 2712 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2713 * @str: string containing mempolicy to parse 2714 * @mpol: pointer to struct mempolicy pointer, returned on success. 2715 * 2716 * Format of input: 2717 * <mode>[=<flags>][:<nodelist>] 2718 * 2719 * On success, returns 0, else 1 2720 */ 2721 int mpol_parse_str(char *str, struct mempolicy **mpol) 2722 { 2723 struct mempolicy *new = NULL; 2724 unsigned short mode; 2725 unsigned short mode_flags; 2726 nodemask_t nodes; 2727 char *nodelist = strchr(str, ':'); 2728 char *flags = strchr(str, '='); 2729 int err = 1; 2730 2731 if (nodelist) { 2732 /* NUL-terminate mode or flags string */ 2733 *nodelist++ = '\0'; 2734 if (nodelist_parse(nodelist, nodes)) 2735 goto out; 2736 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2737 goto out; 2738 } else 2739 nodes_clear(nodes); 2740 2741 if (flags) 2742 *flags++ = '\0'; /* terminate mode string */ 2743 2744 for (mode = 0; mode < MPOL_MAX; mode++) { 2745 if (!strcmp(str, policy_modes[mode])) { 2746 break; 2747 } 2748 } 2749 if (mode >= MPOL_MAX) 2750 goto out; 2751 2752 switch (mode) { 2753 case MPOL_PREFERRED: 2754 /* 2755 * Insist on a nodelist of one node only 2756 */ 2757 if (nodelist) { 2758 char *rest = nodelist; 2759 while (isdigit(*rest)) 2760 rest++; 2761 if (*rest) 2762 goto out; 2763 } 2764 break; 2765 case MPOL_INTERLEAVE: 2766 /* 2767 * Default to online nodes with memory if no nodelist 2768 */ 2769 if (!nodelist) 2770 nodes = node_states[N_MEMORY]; 2771 break; 2772 case MPOL_LOCAL: 2773 /* 2774 * Don't allow a nodelist; mpol_new() checks flags 2775 */ 2776 if (nodelist) 2777 goto out; 2778 mode = MPOL_PREFERRED; 2779 break; 2780 case MPOL_DEFAULT: 2781 /* 2782 * Insist on a empty nodelist 2783 */ 2784 if (!nodelist) 2785 err = 0; 2786 goto out; 2787 case MPOL_BIND: 2788 /* 2789 * Insist on a nodelist 2790 */ 2791 if (!nodelist) 2792 goto out; 2793 } 2794 2795 mode_flags = 0; 2796 if (flags) { 2797 /* 2798 * Currently, we only support two mutually exclusive 2799 * mode flags. 2800 */ 2801 if (!strcmp(flags, "static")) 2802 mode_flags |= MPOL_F_STATIC_NODES; 2803 else if (!strcmp(flags, "relative")) 2804 mode_flags |= MPOL_F_RELATIVE_NODES; 2805 else 2806 goto out; 2807 } 2808 2809 new = mpol_new(mode, mode_flags, &nodes); 2810 if (IS_ERR(new)) 2811 goto out; 2812 2813 /* 2814 * Save nodes for mpol_to_str() to show the tmpfs mount options 2815 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2816 */ 2817 if (mode != MPOL_PREFERRED) 2818 new->v.nodes = nodes; 2819 else if (nodelist) 2820 new->v.preferred_node = first_node(nodes); 2821 else 2822 new->flags |= MPOL_F_LOCAL; 2823 2824 /* 2825 * Save nodes for contextualization: this will be used to "clone" 2826 * the mempolicy in a specific context [cpuset] at a later time. 2827 */ 2828 new->w.user_nodemask = nodes; 2829 2830 err = 0; 2831 2832 out: 2833 /* Restore string for error message */ 2834 if (nodelist) 2835 *--nodelist = ':'; 2836 if (flags) 2837 *--flags = '='; 2838 if (!err) 2839 *mpol = new; 2840 return err; 2841 } 2842 #endif /* CONFIG_TMPFS */ 2843 2844 /** 2845 * mpol_to_str - format a mempolicy structure for printing 2846 * @buffer: to contain formatted mempolicy string 2847 * @maxlen: length of @buffer 2848 * @pol: pointer to mempolicy to be formatted 2849 * 2850 * Convert @pol into a string. If @buffer is too short, truncate the string. 2851 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2852 * longest flag, "relative", and to display at least a few node ids. 2853 */ 2854 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2855 { 2856 char *p = buffer; 2857 nodemask_t nodes = NODE_MASK_NONE; 2858 unsigned short mode = MPOL_DEFAULT; 2859 unsigned short flags = 0; 2860 2861 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2862 mode = pol->mode; 2863 flags = pol->flags; 2864 } 2865 2866 switch (mode) { 2867 case MPOL_DEFAULT: 2868 break; 2869 case MPOL_PREFERRED: 2870 if (flags & MPOL_F_LOCAL) 2871 mode = MPOL_LOCAL; 2872 else 2873 node_set(pol->v.preferred_node, nodes); 2874 break; 2875 case MPOL_BIND: 2876 case MPOL_INTERLEAVE: 2877 nodes = pol->v.nodes; 2878 break; 2879 default: 2880 WARN_ON_ONCE(1); 2881 snprintf(p, maxlen, "unknown"); 2882 return; 2883 } 2884 2885 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2886 2887 if (flags & MPOL_MODE_FLAGS) { 2888 p += snprintf(p, buffer + maxlen - p, "="); 2889 2890 /* 2891 * Currently, the only defined flags are mutually exclusive 2892 */ 2893 if (flags & MPOL_F_STATIC_NODES) 2894 p += snprintf(p, buffer + maxlen - p, "static"); 2895 else if (flags & MPOL_F_RELATIVE_NODES) 2896 p += snprintf(p, buffer + maxlen - p, "relative"); 2897 } 2898 2899 if (!nodes_empty(nodes)) 2900 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2901 nodemask_pr_args(&nodes)); 2902 } 2903