xref: /openbmc/linux/mm/mempolicy.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = tmp;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 				unsigned long end, struct mm_walk *walk)
433 {
434 	int ret = 0;
435 	struct page *page;
436 	struct queue_pages *qp = walk->private;
437 	unsigned long flags;
438 
439 	if (unlikely(is_pmd_migration_entry(*pmd))) {
440 		ret = 1;
441 		goto unlock;
442 	}
443 	page = pmd_page(*pmd);
444 	if (is_huge_zero_page(page)) {
445 		spin_unlock(ptl);
446 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 		goto out;
448 	}
449 	if (!thp_migration_supported()) {
450 		get_page(page);
451 		spin_unlock(ptl);
452 		lock_page(page);
453 		ret = split_huge_page(page);
454 		unlock_page(page);
455 		put_page(page);
456 		goto out;
457 	}
458 	if (!queue_pages_required(page, qp)) {
459 		ret = 1;
460 		goto unlock;
461 	}
462 
463 	ret = 1;
464 	flags = qp->flags;
465 	/* go to thp migration */
466 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 		migrate_page_add(page, qp->pagelist, flags);
468 unlock:
469 	spin_unlock(ptl);
470 out:
471 	return ret;
472 }
473 
474 /*
475  * Scan through pages checking if pages follow certain conditions,
476  * and move them to the pagelist if they do.
477  */
478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 			unsigned long end, struct mm_walk *walk)
480 {
481 	struct vm_area_struct *vma = walk->vma;
482 	struct page *page;
483 	struct queue_pages *qp = walk->private;
484 	unsigned long flags = qp->flags;
485 	int ret;
486 	pte_t *pte;
487 	spinlock_t *ptl;
488 
489 	ptl = pmd_trans_huge_lock(pmd, vma);
490 	if (ptl) {
491 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 		if (ret)
493 			return 0;
494 	}
495 
496 	if (pmd_trans_unstable(pmd))
497 		return 0;
498 retry:
499 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 	for (; addr != end; pte++, addr += PAGE_SIZE) {
501 		if (!pte_present(*pte))
502 			continue;
503 		page = vm_normal_page(vma, addr, *pte);
504 		if (!page)
505 			continue;
506 		/*
507 		 * vm_normal_page() filters out zero pages, but there might
508 		 * still be PageReserved pages to skip, perhaps in a VDSO.
509 		 */
510 		if (PageReserved(page))
511 			continue;
512 		if (!queue_pages_required(page, qp))
513 			continue;
514 		if (PageTransCompound(page) && !thp_migration_supported()) {
515 			get_page(page);
516 			pte_unmap_unlock(pte, ptl);
517 			lock_page(page);
518 			ret = split_huge_page(page);
519 			unlock_page(page);
520 			put_page(page);
521 			/* Failed to split -- skip. */
522 			if (ret) {
523 				pte = pte_offset_map_lock(walk->mm, pmd,
524 						addr, &ptl);
525 				continue;
526 			}
527 			goto retry;
528 		}
529 
530 		migrate_page_add(page, qp->pagelist, flags);
531 	}
532 	pte_unmap_unlock(pte - 1, ptl);
533 	cond_resched();
534 	return 0;
535 }
536 
537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 			       unsigned long addr, unsigned long end,
539 			       struct mm_walk *walk)
540 {
541 #ifdef CONFIG_HUGETLB_PAGE
542 	struct queue_pages *qp = walk->private;
543 	unsigned long flags = qp->flags;
544 	struct page *page;
545 	spinlock_t *ptl;
546 	pte_t entry;
547 
548 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 	entry = huge_ptep_get(pte);
550 	if (!pte_present(entry))
551 		goto unlock;
552 	page = pte_page(entry);
553 	if (!queue_pages_required(page, qp))
554 		goto unlock;
555 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 	if (flags & (MPOL_MF_MOVE_ALL) ||
557 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 		isolate_huge_page(page, qp->pagelist);
559 unlock:
560 	spin_unlock(ptl);
561 #else
562 	BUG();
563 #endif
564 	return 0;
565 }
566 
567 #ifdef CONFIG_NUMA_BALANCING
568 /*
569  * This is used to mark a range of virtual addresses to be inaccessible.
570  * These are later cleared by a NUMA hinting fault. Depending on these
571  * faults, pages may be migrated for better NUMA placement.
572  *
573  * This is assuming that NUMA faults are handled using PROT_NONE. If
574  * an architecture makes a different choice, it will need further
575  * changes to the core.
576  */
577 unsigned long change_prot_numa(struct vm_area_struct *vma,
578 			unsigned long addr, unsigned long end)
579 {
580 	int nr_updated;
581 
582 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 	if (nr_updated)
584 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585 
586 	return nr_updated;
587 }
588 #else
589 static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 			unsigned long addr, unsigned long end)
591 {
592 	return 0;
593 }
594 #endif /* CONFIG_NUMA_BALANCING */
595 
596 static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 				struct mm_walk *walk)
598 {
599 	struct vm_area_struct *vma = walk->vma;
600 	struct queue_pages *qp = walk->private;
601 	unsigned long endvma = vma->vm_end;
602 	unsigned long flags = qp->flags;
603 
604 	if (!vma_migratable(vma))
605 		return 1;
606 
607 	if (endvma > end)
608 		endvma = end;
609 	if (vma->vm_start > start)
610 		start = vma->vm_start;
611 
612 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 		if (!vma->vm_next && vma->vm_end < end)
614 			return -EFAULT;
615 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 			return -EFAULT;
617 	}
618 
619 	qp->prev = vma;
620 
621 	if (flags & MPOL_MF_LAZY) {
622 		/* Similar to task_numa_work, skip inaccessible VMAs */
623 		if (!is_vm_hugetlb_page(vma) &&
624 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 			!(vma->vm_flags & VM_MIXEDMAP))
626 			change_prot_numa(vma, start, endvma);
627 		return 1;
628 	}
629 
630 	/* queue pages from current vma */
631 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 		return 0;
633 	return 1;
634 }
635 
636 /*
637  * Walk through page tables and collect pages to be migrated.
638  *
639  * If pages found in a given range are on a set of nodes (determined by
640  * @nodes and @flags,) it's isolated and queued to the pagelist which is
641  * passed via @private.)
642  */
643 static int
644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 		nodemask_t *nodes, unsigned long flags,
646 		struct list_head *pagelist)
647 {
648 	struct queue_pages qp = {
649 		.pagelist = pagelist,
650 		.flags = flags,
651 		.nmask = nodes,
652 		.prev = NULL,
653 	};
654 	struct mm_walk queue_pages_walk = {
655 		.hugetlb_entry = queue_pages_hugetlb,
656 		.pmd_entry = queue_pages_pte_range,
657 		.test_walk = queue_pages_test_walk,
658 		.mm = mm,
659 		.private = &qp,
660 	};
661 
662 	return walk_page_range(start, end, &queue_pages_walk);
663 }
664 
665 /*
666  * Apply policy to a single VMA
667  * This must be called with the mmap_sem held for writing.
668  */
669 static int vma_replace_policy(struct vm_area_struct *vma,
670 						struct mempolicy *pol)
671 {
672 	int err;
673 	struct mempolicy *old;
674 	struct mempolicy *new;
675 
676 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 		 vma->vm_ops, vma->vm_file,
679 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680 
681 	new = mpol_dup(pol);
682 	if (IS_ERR(new))
683 		return PTR_ERR(new);
684 
685 	if (vma->vm_ops && vma->vm_ops->set_policy) {
686 		err = vma->vm_ops->set_policy(vma, new);
687 		if (err)
688 			goto err_out;
689 	}
690 
691 	old = vma->vm_policy;
692 	vma->vm_policy = new; /* protected by mmap_sem */
693 	mpol_put(old);
694 
695 	return 0;
696  err_out:
697 	mpol_put(new);
698 	return err;
699 }
700 
701 /* Step 2: apply policy to a range and do splits. */
702 static int mbind_range(struct mm_struct *mm, unsigned long start,
703 		       unsigned long end, struct mempolicy *new_pol)
704 {
705 	struct vm_area_struct *next;
706 	struct vm_area_struct *prev;
707 	struct vm_area_struct *vma;
708 	int err = 0;
709 	pgoff_t pgoff;
710 	unsigned long vmstart;
711 	unsigned long vmend;
712 
713 	vma = find_vma(mm, start);
714 	if (!vma || vma->vm_start > start)
715 		return -EFAULT;
716 
717 	prev = vma->vm_prev;
718 	if (start > vma->vm_start)
719 		prev = vma;
720 
721 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 		next = vma->vm_next;
723 		vmstart = max(start, vma->vm_start);
724 		vmend   = min(end, vma->vm_end);
725 
726 		if (mpol_equal(vma_policy(vma), new_pol))
727 			continue;
728 
729 		pgoff = vma->vm_pgoff +
730 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 				 vma->anon_vma, vma->vm_file, pgoff,
733 				 new_pol, vma->vm_userfaultfd_ctx);
734 		if (prev) {
735 			vma = prev;
736 			next = vma->vm_next;
737 			if (mpol_equal(vma_policy(vma), new_pol))
738 				continue;
739 			/* vma_merge() joined vma && vma->next, case 8 */
740 			goto replace;
741 		}
742 		if (vma->vm_start != vmstart) {
743 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 			if (err)
745 				goto out;
746 		}
747 		if (vma->vm_end != vmend) {
748 			err = split_vma(vma->vm_mm, vma, vmend, 0);
749 			if (err)
750 				goto out;
751 		}
752  replace:
753 		err = vma_replace_policy(vma, new_pol);
754 		if (err)
755 			goto out;
756 	}
757 
758  out:
759 	return err;
760 }
761 
762 /* Set the process memory policy */
763 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 			     nodemask_t *nodes)
765 {
766 	struct mempolicy *new, *old;
767 	NODEMASK_SCRATCH(scratch);
768 	int ret;
769 
770 	if (!scratch)
771 		return -ENOMEM;
772 
773 	new = mpol_new(mode, flags, nodes);
774 	if (IS_ERR(new)) {
775 		ret = PTR_ERR(new);
776 		goto out;
777 	}
778 
779 	task_lock(current);
780 	ret = mpol_set_nodemask(new, nodes, scratch);
781 	if (ret) {
782 		task_unlock(current);
783 		mpol_put(new);
784 		goto out;
785 	}
786 	old = current->mempolicy;
787 	current->mempolicy = new;
788 	if (new && new->mode == MPOL_INTERLEAVE)
789 		current->il_prev = MAX_NUMNODES-1;
790 	task_unlock(current);
791 	mpol_put(old);
792 	ret = 0;
793 out:
794 	NODEMASK_SCRATCH_FREE(scratch);
795 	return ret;
796 }
797 
798 /*
799  * Return nodemask for policy for get_mempolicy() query
800  *
801  * Called with task's alloc_lock held
802  */
803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804 {
805 	nodes_clear(*nodes);
806 	if (p == &default_policy)
807 		return;
808 
809 	switch (p->mode) {
810 	case MPOL_BIND:
811 		/* Fall through */
812 	case MPOL_INTERLEAVE:
813 		*nodes = p->v.nodes;
814 		break;
815 	case MPOL_PREFERRED:
816 		if (!(p->flags & MPOL_F_LOCAL))
817 			node_set(p->v.preferred_node, *nodes);
818 		/* else return empty node mask for local allocation */
819 		break;
820 	default:
821 		BUG();
822 	}
823 }
824 
825 static int lookup_node(unsigned long addr)
826 {
827 	struct page *p;
828 	int err;
829 
830 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 	if (err >= 0) {
832 		err = page_to_nid(p);
833 		put_page(p);
834 	}
835 	return err;
836 }
837 
838 /* Retrieve NUMA policy */
839 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 			     unsigned long addr, unsigned long flags)
841 {
842 	int err;
843 	struct mm_struct *mm = current->mm;
844 	struct vm_area_struct *vma = NULL;
845 	struct mempolicy *pol = current->mempolicy;
846 
847 	if (flags &
848 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 		return -EINVAL;
850 
851 	if (flags & MPOL_F_MEMS_ALLOWED) {
852 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 			return -EINVAL;
854 		*policy = 0;	/* just so it's initialized */
855 		task_lock(current);
856 		*nmask  = cpuset_current_mems_allowed;
857 		task_unlock(current);
858 		return 0;
859 	}
860 
861 	if (flags & MPOL_F_ADDR) {
862 		/*
863 		 * Do NOT fall back to task policy if the
864 		 * vma/shared policy at addr is NULL.  We
865 		 * want to return MPOL_DEFAULT in this case.
866 		 */
867 		down_read(&mm->mmap_sem);
868 		vma = find_vma_intersection(mm, addr, addr+1);
869 		if (!vma) {
870 			up_read(&mm->mmap_sem);
871 			return -EFAULT;
872 		}
873 		if (vma->vm_ops && vma->vm_ops->get_policy)
874 			pol = vma->vm_ops->get_policy(vma, addr);
875 		else
876 			pol = vma->vm_policy;
877 	} else if (addr)
878 		return -EINVAL;
879 
880 	if (!pol)
881 		pol = &default_policy;	/* indicates default behavior */
882 
883 	if (flags & MPOL_F_NODE) {
884 		if (flags & MPOL_F_ADDR) {
885 			err = lookup_node(addr);
886 			if (err < 0)
887 				goto out;
888 			*policy = err;
889 		} else if (pol == current->mempolicy &&
890 				pol->mode == MPOL_INTERLEAVE) {
891 			*policy = next_node_in(current->il_prev, pol->v.nodes);
892 		} else {
893 			err = -EINVAL;
894 			goto out;
895 		}
896 	} else {
897 		*policy = pol == &default_policy ? MPOL_DEFAULT :
898 						pol->mode;
899 		/*
900 		 * Internal mempolicy flags must be masked off before exposing
901 		 * the policy to userspace.
902 		 */
903 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
904 	}
905 
906 	err = 0;
907 	if (nmask) {
908 		if (mpol_store_user_nodemask(pol)) {
909 			*nmask = pol->w.user_nodemask;
910 		} else {
911 			task_lock(current);
912 			get_policy_nodemask(pol, nmask);
913 			task_unlock(current);
914 		}
915 	}
916 
917  out:
918 	mpol_cond_put(pol);
919 	if (vma)
920 		up_read(&current->mm->mmap_sem);
921 	return err;
922 }
923 
924 #ifdef CONFIG_MIGRATION
925 /*
926  * page migration, thp tail pages can be passed.
927  */
928 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 				unsigned long flags)
930 {
931 	struct page *head = compound_head(page);
932 	/*
933 	 * Avoid migrating a page that is shared with others.
934 	 */
935 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 		if (!isolate_lru_page(head)) {
937 			list_add_tail(&head->lru, pagelist);
938 			mod_node_page_state(page_pgdat(head),
939 				NR_ISOLATED_ANON + page_is_file_cache(head),
940 				hpage_nr_pages(head));
941 		}
942 	}
943 }
944 
945 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946 {
947 	if (PageHuge(page))
948 		return alloc_huge_page_node(page_hstate(compound_head(page)),
949 					node);
950 	else if (thp_migration_supported() && PageTransHuge(page)) {
951 		struct page *thp;
952 
953 		thp = alloc_pages_node(node,
954 			(GFP_TRANSHUGE | __GFP_THISNODE),
955 			HPAGE_PMD_ORDER);
956 		if (!thp)
957 			return NULL;
958 		prep_transhuge_page(thp);
959 		return thp;
960 	} else
961 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 						    __GFP_THISNODE, 0);
963 }
964 
965 /*
966  * Migrate pages from one node to a target node.
967  * Returns error or the number of pages not migrated.
968  */
969 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 			   int flags)
971 {
972 	nodemask_t nmask;
973 	LIST_HEAD(pagelist);
974 	int err = 0;
975 
976 	nodes_clear(nmask);
977 	node_set(source, nmask);
978 
979 	/*
980 	 * This does not "check" the range but isolates all pages that
981 	 * need migration.  Between passing in the full user address
982 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 	 */
984 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987 
988 	if (!list_empty(&pagelist)) {
989 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 					MIGRATE_SYNC, MR_SYSCALL);
991 		if (err)
992 			putback_movable_pages(&pagelist);
993 	}
994 
995 	return err;
996 }
997 
998 /*
999  * Move pages between the two nodesets so as to preserve the physical
1000  * layout as much as possible.
1001  *
1002  * Returns the number of page that could not be moved.
1003  */
1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 		     const nodemask_t *to, int flags)
1006 {
1007 	int busy = 0;
1008 	int err;
1009 	nodemask_t tmp;
1010 
1011 	err = migrate_prep();
1012 	if (err)
1013 		return err;
1014 
1015 	down_read(&mm->mmap_sem);
1016 
1017 	/*
1018 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1020 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 	 * The pair of nodemasks 'to' and 'from' define the map.
1022 	 *
1023 	 * If no pair of bits is found that way, fallback to picking some
1024 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1025 	 * 'source' and 'dest' bits are the same, this represents a node
1026 	 * that will be migrating to itself, so no pages need move.
1027 	 *
1028 	 * If no bits are left in 'tmp', or if all remaining bits left
1029 	 * in 'tmp' correspond to the same bit in 'to', return false
1030 	 * (nothing left to migrate).
1031 	 *
1032 	 * This lets us pick a pair of nodes to migrate between, such that
1033 	 * if possible the dest node is not already occupied by some other
1034 	 * source node, minimizing the risk of overloading the memory on a
1035 	 * node that would happen if we migrated incoming memory to a node
1036 	 * before migrating outgoing memory source that same node.
1037 	 *
1038 	 * A single scan of tmp is sufficient.  As we go, we remember the
1039 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1040 	 * that not only moved, but what's better, moved to an empty slot
1041 	 * (d is not set in tmp), then we break out then, with that pair.
1042 	 * Otherwise when we finish scanning from_tmp, we at least have the
1043 	 * most recent <s, d> pair that moved.  If we get all the way through
1044 	 * the scan of tmp without finding any node that moved, much less
1045 	 * moved to an empty node, then there is nothing left worth migrating.
1046 	 */
1047 
1048 	tmp = *from;
1049 	while (!nodes_empty(tmp)) {
1050 		int s,d;
1051 		int source = NUMA_NO_NODE;
1052 		int dest = 0;
1053 
1054 		for_each_node_mask(s, tmp) {
1055 
1056 			/*
1057 			 * do_migrate_pages() tries to maintain the relative
1058 			 * node relationship of the pages established between
1059 			 * threads and memory areas.
1060                          *
1061 			 * However if the number of source nodes is not equal to
1062 			 * the number of destination nodes we can not preserve
1063 			 * this node relative relationship.  In that case, skip
1064 			 * copying memory from a node that is in the destination
1065 			 * mask.
1066 			 *
1067 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 			 */
1070 
1071 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 						(node_isset(s, *to)))
1073 				continue;
1074 
1075 			d = node_remap(s, *from, *to);
1076 			if (s == d)
1077 				continue;
1078 
1079 			source = s;	/* Node moved. Memorize */
1080 			dest = d;
1081 
1082 			/* dest not in remaining from nodes? */
1083 			if (!node_isset(dest, tmp))
1084 				break;
1085 		}
1086 		if (source == NUMA_NO_NODE)
1087 			break;
1088 
1089 		node_clear(source, tmp);
1090 		err = migrate_to_node(mm, source, dest, flags);
1091 		if (err > 0)
1092 			busy += err;
1093 		if (err < 0)
1094 			break;
1095 	}
1096 	up_read(&mm->mmap_sem);
1097 	if (err < 0)
1098 		return err;
1099 	return busy;
1100 
1101 }
1102 
1103 /*
1104  * Allocate a new page for page migration based on vma policy.
1105  * Start by assuming the page is mapped by the same vma as contains @start.
1106  * Search forward from there, if not.  N.B., this assumes that the
1107  * list of pages handed to migrate_pages()--which is how we get here--
1108  * is in virtual address order.
1109  */
1110 static struct page *new_page(struct page *page, unsigned long start, int **x)
1111 {
1112 	struct vm_area_struct *vma;
1113 	unsigned long uninitialized_var(address);
1114 
1115 	vma = find_vma(current->mm, start);
1116 	while (vma) {
1117 		address = page_address_in_vma(page, vma);
1118 		if (address != -EFAULT)
1119 			break;
1120 		vma = vma->vm_next;
1121 	}
1122 
1123 	if (PageHuge(page)) {
1124 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1125 				vma, address);
1126 	} else if (thp_migration_supported() && PageTransHuge(page)) {
1127 		struct page *thp;
1128 
1129 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 					 HPAGE_PMD_ORDER);
1131 		if (!thp)
1132 			return NULL;
1133 		prep_transhuge_page(thp);
1134 		return thp;
1135 	}
1136 	/*
1137 	 * if !vma, alloc_page_vma() will use task or system default policy
1138 	 */
1139 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 			vma, address);
1141 }
1142 #else
1143 
1144 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 				unsigned long flags)
1146 {
1147 }
1148 
1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 		     const nodemask_t *to, int flags)
1151 {
1152 	return -ENOSYS;
1153 }
1154 
1155 static struct page *new_page(struct page *page, unsigned long start, int **x)
1156 {
1157 	return NULL;
1158 }
1159 #endif
1160 
1161 static long do_mbind(unsigned long start, unsigned long len,
1162 		     unsigned short mode, unsigned short mode_flags,
1163 		     nodemask_t *nmask, unsigned long flags)
1164 {
1165 	struct mm_struct *mm = current->mm;
1166 	struct mempolicy *new;
1167 	unsigned long end;
1168 	int err;
1169 	LIST_HEAD(pagelist);
1170 
1171 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 		return -EINVAL;
1173 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 		return -EPERM;
1175 
1176 	if (start & ~PAGE_MASK)
1177 		return -EINVAL;
1178 
1179 	if (mode == MPOL_DEFAULT)
1180 		flags &= ~MPOL_MF_STRICT;
1181 
1182 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 	end = start + len;
1184 
1185 	if (end < start)
1186 		return -EINVAL;
1187 	if (end == start)
1188 		return 0;
1189 
1190 	new = mpol_new(mode, mode_flags, nmask);
1191 	if (IS_ERR(new))
1192 		return PTR_ERR(new);
1193 
1194 	if (flags & MPOL_MF_LAZY)
1195 		new->flags |= MPOL_F_MOF;
1196 
1197 	/*
1198 	 * If we are using the default policy then operation
1199 	 * on discontinuous address spaces is okay after all
1200 	 */
1201 	if (!new)
1202 		flags |= MPOL_MF_DISCONTIG_OK;
1203 
1204 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 		 start, start + len, mode, mode_flags,
1206 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207 
1208 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209 
1210 		err = migrate_prep();
1211 		if (err)
1212 			goto mpol_out;
1213 	}
1214 	{
1215 		NODEMASK_SCRATCH(scratch);
1216 		if (scratch) {
1217 			down_write(&mm->mmap_sem);
1218 			task_lock(current);
1219 			err = mpol_set_nodemask(new, nmask, scratch);
1220 			task_unlock(current);
1221 			if (err)
1222 				up_write(&mm->mmap_sem);
1223 		} else
1224 			err = -ENOMEM;
1225 		NODEMASK_SCRATCH_FREE(scratch);
1226 	}
1227 	if (err)
1228 		goto mpol_out;
1229 
1230 	err = queue_pages_range(mm, start, end, nmask,
1231 			  flags | MPOL_MF_INVERT, &pagelist);
1232 	if (!err)
1233 		err = mbind_range(mm, start, end, new);
1234 
1235 	if (!err) {
1236 		int nr_failed = 0;
1237 
1238 		if (!list_empty(&pagelist)) {
1239 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 			if (nr_failed)
1243 				putback_movable_pages(&pagelist);
1244 		}
1245 
1246 		if (nr_failed && (flags & MPOL_MF_STRICT))
1247 			err = -EIO;
1248 	} else
1249 		putback_movable_pages(&pagelist);
1250 
1251 	up_write(&mm->mmap_sem);
1252  mpol_out:
1253 	mpol_put(new);
1254 	return err;
1255 }
1256 
1257 /*
1258  * User space interface with variable sized bitmaps for nodelists.
1259  */
1260 
1261 /* Copy a node mask from user space. */
1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 		     unsigned long maxnode)
1264 {
1265 	unsigned long k;
1266 	unsigned long t;
1267 	unsigned long nlongs;
1268 	unsigned long endmask;
1269 
1270 	--maxnode;
1271 	nodes_clear(*nodes);
1272 	if (maxnode == 0 || !nmask)
1273 		return 0;
1274 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1275 		return -EINVAL;
1276 
1277 	nlongs = BITS_TO_LONGS(maxnode);
1278 	if ((maxnode % BITS_PER_LONG) == 0)
1279 		endmask = ~0UL;
1280 	else
1281 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1282 
1283 	/*
1284 	 * When the user specified more nodes than supported just check
1285 	 * if the non supported part is all zero.
1286 	 *
1287 	 * If maxnode have more longs than MAX_NUMNODES, check
1288 	 * the bits in that area first. And then go through to
1289 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1290 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1291 	 */
1292 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1294 			if (get_user(t, nmask + k))
1295 				return -EFAULT;
1296 			if (k == nlongs - 1) {
1297 				if (t & endmask)
1298 					return -EINVAL;
1299 			} else if (t)
1300 				return -EINVAL;
1301 		}
1302 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1303 		endmask = ~0UL;
1304 	}
1305 
1306 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1307 		unsigned long valid_mask = endmask;
1308 
1309 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1310 		if (get_user(t, nmask + nlongs - 1))
1311 			return -EFAULT;
1312 		if (t & valid_mask)
1313 			return -EINVAL;
1314 	}
1315 
1316 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1317 		return -EFAULT;
1318 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1319 	return 0;
1320 }
1321 
1322 /* Copy a kernel node mask to user space */
1323 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1324 			      nodemask_t *nodes)
1325 {
1326 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1327 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1328 
1329 	if (copy > nbytes) {
1330 		if (copy > PAGE_SIZE)
1331 			return -EINVAL;
1332 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1333 			return -EFAULT;
1334 		copy = nbytes;
1335 	}
1336 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1337 }
1338 
1339 static long kernel_mbind(unsigned long start, unsigned long len,
1340 			 unsigned long mode, const unsigned long __user *nmask,
1341 			 unsigned long maxnode, unsigned int flags)
1342 {
1343 	nodemask_t nodes;
1344 	int err;
1345 	unsigned short mode_flags;
1346 
1347 	mode_flags = mode & MPOL_MODE_FLAGS;
1348 	mode &= ~MPOL_MODE_FLAGS;
1349 	if (mode >= MPOL_MAX)
1350 		return -EINVAL;
1351 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1352 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1353 		return -EINVAL;
1354 	err = get_nodes(&nodes, nmask, maxnode);
1355 	if (err)
1356 		return err;
1357 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1358 }
1359 
1360 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1361 		unsigned long, mode, const unsigned long __user *, nmask,
1362 		unsigned long, maxnode, unsigned int, flags)
1363 {
1364 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1365 }
1366 
1367 /* Set the process memory policy */
1368 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1369 				 unsigned long maxnode)
1370 {
1371 	int err;
1372 	nodemask_t nodes;
1373 	unsigned short flags;
1374 
1375 	flags = mode & MPOL_MODE_FLAGS;
1376 	mode &= ~MPOL_MODE_FLAGS;
1377 	if ((unsigned int)mode >= MPOL_MAX)
1378 		return -EINVAL;
1379 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1380 		return -EINVAL;
1381 	err = get_nodes(&nodes, nmask, maxnode);
1382 	if (err)
1383 		return err;
1384 	return do_set_mempolicy(mode, flags, &nodes);
1385 }
1386 
1387 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1388 		unsigned long, maxnode)
1389 {
1390 	return kernel_set_mempolicy(mode, nmask, maxnode);
1391 }
1392 
1393 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1394 				const unsigned long __user *old_nodes,
1395 				const unsigned long __user *new_nodes)
1396 {
1397 	struct mm_struct *mm = NULL;
1398 	struct task_struct *task;
1399 	nodemask_t task_nodes;
1400 	int err;
1401 	nodemask_t *old;
1402 	nodemask_t *new;
1403 	NODEMASK_SCRATCH(scratch);
1404 
1405 	if (!scratch)
1406 		return -ENOMEM;
1407 
1408 	old = &scratch->mask1;
1409 	new = &scratch->mask2;
1410 
1411 	err = get_nodes(old, old_nodes, maxnode);
1412 	if (err)
1413 		goto out;
1414 
1415 	err = get_nodes(new, new_nodes, maxnode);
1416 	if (err)
1417 		goto out;
1418 
1419 	/* Find the mm_struct */
1420 	rcu_read_lock();
1421 	task = pid ? find_task_by_vpid(pid) : current;
1422 	if (!task) {
1423 		rcu_read_unlock();
1424 		err = -ESRCH;
1425 		goto out;
1426 	}
1427 	get_task_struct(task);
1428 
1429 	err = -EINVAL;
1430 
1431 	/*
1432 	 * Check if this process has the right to modify the specified process.
1433 	 * Use the regular "ptrace_may_access()" checks.
1434 	 */
1435 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1436 		rcu_read_unlock();
1437 		err = -EPERM;
1438 		goto out_put;
1439 	}
1440 	rcu_read_unlock();
1441 
1442 	task_nodes = cpuset_mems_allowed(task);
1443 	/* Is the user allowed to access the target nodes? */
1444 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1445 		err = -EPERM;
1446 		goto out_put;
1447 	}
1448 
1449 	task_nodes = cpuset_mems_allowed(current);
1450 	nodes_and(*new, *new, task_nodes);
1451 	if (nodes_empty(*new))
1452 		goto out_put;
1453 
1454 	nodes_and(*new, *new, node_states[N_MEMORY]);
1455 	if (nodes_empty(*new))
1456 		goto out_put;
1457 
1458 	err = security_task_movememory(task);
1459 	if (err)
1460 		goto out_put;
1461 
1462 	mm = get_task_mm(task);
1463 	put_task_struct(task);
1464 
1465 	if (!mm) {
1466 		err = -EINVAL;
1467 		goto out;
1468 	}
1469 
1470 	err = do_migrate_pages(mm, old, new,
1471 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1472 
1473 	mmput(mm);
1474 out:
1475 	NODEMASK_SCRATCH_FREE(scratch);
1476 
1477 	return err;
1478 
1479 out_put:
1480 	put_task_struct(task);
1481 	goto out;
1482 
1483 }
1484 
1485 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1486 		const unsigned long __user *, old_nodes,
1487 		const unsigned long __user *, new_nodes)
1488 {
1489 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1490 }
1491 
1492 
1493 /* Retrieve NUMA policy */
1494 static int kernel_get_mempolicy(int __user *policy,
1495 				unsigned long __user *nmask,
1496 				unsigned long maxnode,
1497 				unsigned long addr,
1498 				unsigned long flags)
1499 {
1500 	int err;
1501 	int uninitialized_var(pval);
1502 	nodemask_t nodes;
1503 
1504 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1505 		return -EINVAL;
1506 
1507 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1508 
1509 	if (err)
1510 		return err;
1511 
1512 	if (policy && put_user(pval, policy))
1513 		return -EFAULT;
1514 
1515 	if (nmask)
1516 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1517 
1518 	return err;
1519 }
1520 
1521 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1522 		unsigned long __user *, nmask, unsigned long, maxnode,
1523 		unsigned long, addr, unsigned long, flags)
1524 {
1525 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1526 }
1527 
1528 #ifdef CONFIG_COMPAT
1529 
1530 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1531 		       compat_ulong_t __user *, nmask,
1532 		       compat_ulong_t, maxnode,
1533 		       compat_ulong_t, addr, compat_ulong_t, flags)
1534 {
1535 	long err;
1536 	unsigned long __user *nm = NULL;
1537 	unsigned long nr_bits, alloc_size;
1538 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1539 
1540 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1541 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1542 
1543 	if (nmask)
1544 		nm = compat_alloc_user_space(alloc_size);
1545 
1546 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1547 
1548 	if (!err && nmask) {
1549 		unsigned long copy_size;
1550 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1551 		err = copy_from_user(bm, nm, copy_size);
1552 		/* ensure entire bitmap is zeroed */
1553 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1554 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1555 	}
1556 
1557 	return err;
1558 }
1559 
1560 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1561 		       compat_ulong_t, maxnode)
1562 {
1563 	unsigned long __user *nm = NULL;
1564 	unsigned long nr_bits, alloc_size;
1565 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1566 
1567 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1568 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1569 
1570 	if (nmask) {
1571 		if (compat_get_bitmap(bm, nmask, nr_bits))
1572 			return -EFAULT;
1573 		nm = compat_alloc_user_space(alloc_size);
1574 		if (copy_to_user(nm, bm, alloc_size))
1575 			return -EFAULT;
1576 	}
1577 
1578 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1579 }
1580 
1581 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1582 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1583 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1584 {
1585 	unsigned long __user *nm = NULL;
1586 	unsigned long nr_bits, alloc_size;
1587 	nodemask_t bm;
1588 
1589 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1590 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1591 
1592 	if (nmask) {
1593 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1594 			return -EFAULT;
1595 		nm = compat_alloc_user_space(alloc_size);
1596 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1597 			return -EFAULT;
1598 	}
1599 
1600 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1601 }
1602 
1603 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1604 		       compat_ulong_t, maxnode,
1605 		       const compat_ulong_t __user *, old_nodes,
1606 		       const compat_ulong_t __user *, new_nodes)
1607 {
1608 	unsigned long __user *old = NULL;
1609 	unsigned long __user *new = NULL;
1610 	nodemask_t tmp_mask;
1611 	unsigned long nr_bits;
1612 	unsigned long size;
1613 
1614 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1615 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1616 	if (old_nodes) {
1617 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1618 			return -EFAULT;
1619 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1620 		if (new_nodes)
1621 			new = old + size / sizeof(unsigned long);
1622 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1623 			return -EFAULT;
1624 	}
1625 	if (new_nodes) {
1626 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1627 			return -EFAULT;
1628 		if (new == NULL)
1629 			new = compat_alloc_user_space(size);
1630 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1631 			return -EFAULT;
1632 	}
1633 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1634 }
1635 
1636 #endif /* CONFIG_COMPAT */
1637 
1638 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1639 						unsigned long addr)
1640 {
1641 	struct mempolicy *pol = NULL;
1642 
1643 	if (vma) {
1644 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1645 			pol = vma->vm_ops->get_policy(vma, addr);
1646 		} else if (vma->vm_policy) {
1647 			pol = vma->vm_policy;
1648 
1649 			/*
1650 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1651 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1652 			 * count on these policies which will be dropped by
1653 			 * mpol_cond_put() later
1654 			 */
1655 			if (mpol_needs_cond_ref(pol))
1656 				mpol_get(pol);
1657 		}
1658 	}
1659 
1660 	return pol;
1661 }
1662 
1663 /*
1664  * get_vma_policy(@vma, @addr)
1665  * @vma: virtual memory area whose policy is sought
1666  * @addr: address in @vma for shared policy lookup
1667  *
1668  * Returns effective policy for a VMA at specified address.
1669  * Falls back to current->mempolicy or system default policy, as necessary.
1670  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1671  * count--added by the get_policy() vm_op, as appropriate--to protect against
1672  * freeing by another task.  It is the caller's responsibility to free the
1673  * extra reference for shared policies.
1674  */
1675 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1676 						unsigned long addr)
1677 {
1678 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1679 
1680 	if (!pol)
1681 		pol = get_task_policy(current);
1682 
1683 	return pol;
1684 }
1685 
1686 bool vma_policy_mof(struct vm_area_struct *vma)
1687 {
1688 	struct mempolicy *pol;
1689 
1690 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1691 		bool ret = false;
1692 
1693 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1694 		if (pol && (pol->flags & MPOL_F_MOF))
1695 			ret = true;
1696 		mpol_cond_put(pol);
1697 
1698 		return ret;
1699 	}
1700 
1701 	pol = vma->vm_policy;
1702 	if (!pol)
1703 		pol = get_task_policy(current);
1704 
1705 	return pol->flags & MPOL_F_MOF;
1706 }
1707 
1708 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1709 {
1710 	enum zone_type dynamic_policy_zone = policy_zone;
1711 
1712 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1713 
1714 	/*
1715 	 * if policy->v.nodes has movable memory only,
1716 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1717 	 *
1718 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1719 	 * so if the following test faile, it implies
1720 	 * policy->v.nodes has movable memory only.
1721 	 */
1722 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1723 		dynamic_policy_zone = ZONE_MOVABLE;
1724 
1725 	return zone >= dynamic_policy_zone;
1726 }
1727 
1728 /*
1729  * Return a nodemask representing a mempolicy for filtering nodes for
1730  * page allocation
1731  */
1732 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1733 {
1734 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1735 	if (unlikely(policy->mode == MPOL_BIND) &&
1736 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1737 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1738 		return &policy->v.nodes;
1739 
1740 	return NULL;
1741 }
1742 
1743 /* Return the node id preferred by the given mempolicy, or the given id */
1744 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1745 								int nd)
1746 {
1747 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1748 		nd = policy->v.preferred_node;
1749 	else {
1750 		/*
1751 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1752 		 * because we might easily break the expectation to stay on the
1753 		 * requested node and not break the policy.
1754 		 */
1755 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1756 	}
1757 
1758 	return nd;
1759 }
1760 
1761 /* Do dynamic interleaving for a process */
1762 static unsigned interleave_nodes(struct mempolicy *policy)
1763 {
1764 	unsigned next;
1765 	struct task_struct *me = current;
1766 
1767 	next = next_node_in(me->il_prev, policy->v.nodes);
1768 	if (next < MAX_NUMNODES)
1769 		me->il_prev = next;
1770 	return next;
1771 }
1772 
1773 /*
1774  * Depending on the memory policy provide a node from which to allocate the
1775  * next slab entry.
1776  */
1777 unsigned int mempolicy_slab_node(void)
1778 {
1779 	struct mempolicy *policy;
1780 	int node = numa_mem_id();
1781 
1782 	if (in_interrupt())
1783 		return node;
1784 
1785 	policy = current->mempolicy;
1786 	if (!policy || policy->flags & MPOL_F_LOCAL)
1787 		return node;
1788 
1789 	switch (policy->mode) {
1790 	case MPOL_PREFERRED:
1791 		/*
1792 		 * handled MPOL_F_LOCAL above
1793 		 */
1794 		return policy->v.preferred_node;
1795 
1796 	case MPOL_INTERLEAVE:
1797 		return interleave_nodes(policy);
1798 
1799 	case MPOL_BIND: {
1800 		struct zoneref *z;
1801 
1802 		/*
1803 		 * Follow bind policy behavior and start allocation at the
1804 		 * first node.
1805 		 */
1806 		struct zonelist *zonelist;
1807 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1808 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1809 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1810 							&policy->v.nodes);
1811 		return z->zone ? z->zone->node : node;
1812 	}
1813 
1814 	default:
1815 		BUG();
1816 	}
1817 }
1818 
1819 /*
1820  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1821  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1822  * number of present nodes.
1823  */
1824 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1825 {
1826 	unsigned nnodes = nodes_weight(pol->v.nodes);
1827 	unsigned target;
1828 	int i;
1829 	int nid;
1830 
1831 	if (!nnodes)
1832 		return numa_node_id();
1833 	target = (unsigned int)n % nnodes;
1834 	nid = first_node(pol->v.nodes);
1835 	for (i = 0; i < target; i++)
1836 		nid = next_node(nid, pol->v.nodes);
1837 	return nid;
1838 }
1839 
1840 /* Determine a node number for interleave */
1841 static inline unsigned interleave_nid(struct mempolicy *pol,
1842 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1843 {
1844 	if (vma) {
1845 		unsigned long off;
1846 
1847 		/*
1848 		 * for small pages, there is no difference between
1849 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1850 		 * for huge pages, since vm_pgoff is in units of small
1851 		 * pages, we need to shift off the always 0 bits to get
1852 		 * a useful offset.
1853 		 */
1854 		BUG_ON(shift < PAGE_SHIFT);
1855 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1856 		off += (addr - vma->vm_start) >> shift;
1857 		return offset_il_node(pol, off);
1858 	} else
1859 		return interleave_nodes(pol);
1860 }
1861 
1862 #ifdef CONFIG_HUGETLBFS
1863 /*
1864  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1865  * @vma: virtual memory area whose policy is sought
1866  * @addr: address in @vma for shared policy lookup and interleave policy
1867  * @gfp_flags: for requested zone
1868  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1869  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1870  *
1871  * Returns a nid suitable for a huge page allocation and a pointer
1872  * to the struct mempolicy for conditional unref after allocation.
1873  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1874  * @nodemask for filtering the zonelist.
1875  *
1876  * Must be protected by read_mems_allowed_begin()
1877  */
1878 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1879 				struct mempolicy **mpol, nodemask_t **nodemask)
1880 {
1881 	int nid;
1882 
1883 	*mpol = get_vma_policy(vma, addr);
1884 	*nodemask = NULL;	/* assume !MPOL_BIND */
1885 
1886 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1887 		nid = interleave_nid(*mpol, vma, addr,
1888 					huge_page_shift(hstate_vma(vma)));
1889 	} else {
1890 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1891 		if ((*mpol)->mode == MPOL_BIND)
1892 			*nodemask = &(*mpol)->v.nodes;
1893 	}
1894 	return nid;
1895 }
1896 
1897 /*
1898  * init_nodemask_of_mempolicy
1899  *
1900  * If the current task's mempolicy is "default" [NULL], return 'false'
1901  * to indicate default policy.  Otherwise, extract the policy nodemask
1902  * for 'bind' or 'interleave' policy into the argument nodemask, or
1903  * initialize the argument nodemask to contain the single node for
1904  * 'preferred' or 'local' policy and return 'true' to indicate presence
1905  * of non-default mempolicy.
1906  *
1907  * We don't bother with reference counting the mempolicy [mpol_get/put]
1908  * because the current task is examining it's own mempolicy and a task's
1909  * mempolicy is only ever changed by the task itself.
1910  *
1911  * N.B., it is the caller's responsibility to free a returned nodemask.
1912  */
1913 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1914 {
1915 	struct mempolicy *mempolicy;
1916 	int nid;
1917 
1918 	if (!(mask && current->mempolicy))
1919 		return false;
1920 
1921 	task_lock(current);
1922 	mempolicy = current->mempolicy;
1923 	switch (mempolicy->mode) {
1924 	case MPOL_PREFERRED:
1925 		if (mempolicy->flags & MPOL_F_LOCAL)
1926 			nid = numa_node_id();
1927 		else
1928 			nid = mempolicy->v.preferred_node;
1929 		init_nodemask_of_node(mask, nid);
1930 		break;
1931 
1932 	case MPOL_BIND:
1933 		/* Fall through */
1934 	case MPOL_INTERLEAVE:
1935 		*mask =  mempolicy->v.nodes;
1936 		break;
1937 
1938 	default:
1939 		BUG();
1940 	}
1941 	task_unlock(current);
1942 
1943 	return true;
1944 }
1945 #endif
1946 
1947 /*
1948  * mempolicy_nodemask_intersects
1949  *
1950  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1951  * policy.  Otherwise, check for intersection between mask and the policy
1952  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1953  * policy, always return true since it may allocate elsewhere on fallback.
1954  *
1955  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1956  */
1957 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1958 					const nodemask_t *mask)
1959 {
1960 	struct mempolicy *mempolicy;
1961 	bool ret = true;
1962 
1963 	if (!mask)
1964 		return ret;
1965 	task_lock(tsk);
1966 	mempolicy = tsk->mempolicy;
1967 	if (!mempolicy)
1968 		goto out;
1969 
1970 	switch (mempolicy->mode) {
1971 	case MPOL_PREFERRED:
1972 		/*
1973 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1974 		 * allocate from, they may fallback to other nodes when oom.
1975 		 * Thus, it's possible for tsk to have allocated memory from
1976 		 * nodes in mask.
1977 		 */
1978 		break;
1979 	case MPOL_BIND:
1980 	case MPOL_INTERLEAVE:
1981 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1982 		break;
1983 	default:
1984 		BUG();
1985 	}
1986 out:
1987 	task_unlock(tsk);
1988 	return ret;
1989 }
1990 
1991 /* Allocate a page in interleaved policy.
1992    Own path because it needs to do special accounting. */
1993 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1994 					unsigned nid)
1995 {
1996 	struct page *page;
1997 
1998 	page = __alloc_pages(gfp, order, nid);
1999 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2000 	if (!static_branch_likely(&vm_numa_stat_key))
2001 		return page;
2002 	if (page && page_to_nid(page) == nid) {
2003 		preempt_disable();
2004 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2005 		preempt_enable();
2006 	}
2007 	return page;
2008 }
2009 
2010 /**
2011  * 	alloc_pages_vma	- Allocate a page for a VMA.
2012  *
2013  * 	@gfp:
2014  *      %GFP_USER    user allocation.
2015  *      %GFP_KERNEL  kernel allocations,
2016  *      %GFP_HIGHMEM highmem/user allocations,
2017  *      %GFP_FS      allocation should not call back into a file system.
2018  *      %GFP_ATOMIC  don't sleep.
2019  *
2020  *	@order:Order of the GFP allocation.
2021  * 	@vma:  Pointer to VMA or NULL if not available.
2022  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2023  *	@node: Which node to prefer for allocation (modulo policy).
2024  *	@hugepage: for hugepages try only the preferred node if possible
2025  *
2026  * 	This function allocates a page from the kernel page pool and applies
2027  *	a NUMA policy associated with the VMA or the current process.
2028  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2029  *	mm_struct of the VMA to prevent it from going away. Should be used for
2030  *	all allocations for pages that will be mapped into user space. Returns
2031  *	NULL when no page can be allocated.
2032  */
2033 struct page *
2034 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2035 		unsigned long addr, int node, bool hugepage)
2036 {
2037 	struct mempolicy *pol;
2038 	struct page *page;
2039 	int preferred_nid;
2040 	nodemask_t *nmask;
2041 
2042 	pol = get_vma_policy(vma, addr);
2043 
2044 	if (pol->mode == MPOL_INTERLEAVE) {
2045 		unsigned nid;
2046 
2047 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2048 		mpol_cond_put(pol);
2049 		page = alloc_page_interleave(gfp, order, nid);
2050 		goto out;
2051 	}
2052 
2053 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2054 		int hpage_node = node;
2055 
2056 		/*
2057 		 * For hugepage allocation and non-interleave policy which
2058 		 * allows the current node (or other explicitly preferred
2059 		 * node) we only try to allocate from the current/preferred
2060 		 * node and don't fall back to other nodes, as the cost of
2061 		 * remote accesses would likely offset THP benefits.
2062 		 *
2063 		 * If the policy is interleave, or does not allow the current
2064 		 * node in its nodemask, we allocate the standard way.
2065 		 */
2066 		if (pol->mode == MPOL_PREFERRED &&
2067 						!(pol->flags & MPOL_F_LOCAL))
2068 			hpage_node = pol->v.preferred_node;
2069 
2070 		nmask = policy_nodemask(gfp, pol);
2071 		if (!nmask || node_isset(hpage_node, *nmask)) {
2072 			mpol_cond_put(pol);
2073 			page = __alloc_pages_node(hpage_node,
2074 						gfp | __GFP_THISNODE, order);
2075 			goto out;
2076 		}
2077 	}
2078 
2079 	nmask = policy_nodemask(gfp, pol);
2080 	preferred_nid = policy_node(gfp, pol, node);
2081 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2082 	mpol_cond_put(pol);
2083 out:
2084 	return page;
2085 }
2086 
2087 /**
2088  * 	alloc_pages_current - Allocate pages.
2089  *
2090  *	@gfp:
2091  *		%GFP_USER   user allocation,
2092  *      	%GFP_KERNEL kernel allocation,
2093  *      	%GFP_HIGHMEM highmem allocation,
2094  *      	%GFP_FS     don't call back into a file system.
2095  *      	%GFP_ATOMIC don't sleep.
2096  *	@order: Power of two of allocation size in pages. 0 is a single page.
2097  *
2098  *	Allocate a page from the kernel page pool.  When not in
2099  *	interrupt context and apply the current process NUMA policy.
2100  *	Returns NULL when no page can be allocated.
2101  */
2102 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2103 {
2104 	struct mempolicy *pol = &default_policy;
2105 	struct page *page;
2106 
2107 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2108 		pol = get_task_policy(current);
2109 
2110 	/*
2111 	 * No reference counting needed for current->mempolicy
2112 	 * nor system default_policy
2113 	 */
2114 	if (pol->mode == MPOL_INTERLEAVE)
2115 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2116 	else
2117 		page = __alloc_pages_nodemask(gfp, order,
2118 				policy_node(gfp, pol, numa_node_id()),
2119 				policy_nodemask(gfp, pol));
2120 
2121 	return page;
2122 }
2123 EXPORT_SYMBOL(alloc_pages_current);
2124 
2125 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2126 {
2127 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2128 
2129 	if (IS_ERR(pol))
2130 		return PTR_ERR(pol);
2131 	dst->vm_policy = pol;
2132 	return 0;
2133 }
2134 
2135 /*
2136  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2137  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2138  * with the mems_allowed returned by cpuset_mems_allowed().  This
2139  * keeps mempolicies cpuset relative after its cpuset moves.  See
2140  * further kernel/cpuset.c update_nodemask().
2141  *
2142  * current's mempolicy may be rebinded by the other task(the task that changes
2143  * cpuset's mems), so we needn't do rebind work for current task.
2144  */
2145 
2146 /* Slow path of a mempolicy duplicate */
2147 struct mempolicy *__mpol_dup(struct mempolicy *old)
2148 {
2149 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2150 
2151 	if (!new)
2152 		return ERR_PTR(-ENOMEM);
2153 
2154 	/* task's mempolicy is protected by alloc_lock */
2155 	if (old == current->mempolicy) {
2156 		task_lock(current);
2157 		*new = *old;
2158 		task_unlock(current);
2159 	} else
2160 		*new = *old;
2161 
2162 	if (current_cpuset_is_being_rebound()) {
2163 		nodemask_t mems = cpuset_mems_allowed(current);
2164 		mpol_rebind_policy(new, &mems);
2165 	}
2166 	atomic_set(&new->refcnt, 1);
2167 	return new;
2168 }
2169 
2170 /* Slow path of a mempolicy comparison */
2171 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2172 {
2173 	if (!a || !b)
2174 		return false;
2175 	if (a->mode != b->mode)
2176 		return false;
2177 	if (a->flags != b->flags)
2178 		return false;
2179 	if (mpol_store_user_nodemask(a))
2180 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2181 			return false;
2182 
2183 	switch (a->mode) {
2184 	case MPOL_BIND:
2185 		/* Fall through */
2186 	case MPOL_INTERLEAVE:
2187 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2188 	case MPOL_PREFERRED:
2189 		/* a's ->flags is the same as b's */
2190 		if (a->flags & MPOL_F_LOCAL)
2191 			return true;
2192 		return a->v.preferred_node == b->v.preferred_node;
2193 	default:
2194 		BUG();
2195 		return false;
2196 	}
2197 }
2198 
2199 /*
2200  * Shared memory backing store policy support.
2201  *
2202  * Remember policies even when nobody has shared memory mapped.
2203  * The policies are kept in Red-Black tree linked from the inode.
2204  * They are protected by the sp->lock rwlock, which should be held
2205  * for any accesses to the tree.
2206  */
2207 
2208 /*
2209  * lookup first element intersecting start-end.  Caller holds sp->lock for
2210  * reading or for writing
2211  */
2212 static struct sp_node *
2213 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2214 {
2215 	struct rb_node *n = sp->root.rb_node;
2216 
2217 	while (n) {
2218 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2219 
2220 		if (start >= p->end)
2221 			n = n->rb_right;
2222 		else if (end <= p->start)
2223 			n = n->rb_left;
2224 		else
2225 			break;
2226 	}
2227 	if (!n)
2228 		return NULL;
2229 	for (;;) {
2230 		struct sp_node *w = NULL;
2231 		struct rb_node *prev = rb_prev(n);
2232 		if (!prev)
2233 			break;
2234 		w = rb_entry(prev, struct sp_node, nd);
2235 		if (w->end <= start)
2236 			break;
2237 		n = prev;
2238 	}
2239 	return rb_entry(n, struct sp_node, nd);
2240 }
2241 
2242 /*
2243  * Insert a new shared policy into the list.  Caller holds sp->lock for
2244  * writing.
2245  */
2246 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2247 {
2248 	struct rb_node **p = &sp->root.rb_node;
2249 	struct rb_node *parent = NULL;
2250 	struct sp_node *nd;
2251 
2252 	while (*p) {
2253 		parent = *p;
2254 		nd = rb_entry(parent, struct sp_node, nd);
2255 		if (new->start < nd->start)
2256 			p = &(*p)->rb_left;
2257 		else if (new->end > nd->end)
2258 			p = &(*p)->rb_right;
2259 		else
2260 			BUG();
2261 	}
2262 	rb_link_node(&new->nd, parent, p);
2263 	rb_insert_color(&new->nd, &sp->root);
2264 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2265 		 new->policy ? new->policy->mode : 0);
2266 }
2267 
2268 /* Find shared policy intersecting idx */
2269 struct mempolicy *
2270 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2271 {
2272 	struct mempolicy *pol = NULL;
2273 	struct sp_node *sn;
2274 
2275 	if (!sp->root.rb_node)
2276 		return NULL;
2277 	read_lock(&sp->lock);
2278 	sn = sp_lookup(sp, idx, idx+1);
2279 	if (sn) {
2280 		mpol_get(sn->policy);
2281 		pol = sn->policy;
2282 	}
2283 	read_unlock(&sp->lock);
2284 	return pol;
2285 }
2286 
2287 static void sp_free(struct sp_node *n)
2288 {
2289 	mpol_put(n->policy);
2290 	kmem_cache_free(sn_cache, n);
2291 }
2292 
2293 /**
2294  * mpol_misplaced - check whether current page node is valid in policy
2295  *
2296  * @page: page to be checked
2297  * @vma: vm area where page mapped
2298  * @addr: virtual address where page mapped
2299  *
2300  * Lookup current policy node id for vma,addr and "compare to" page's
2301  * node id.
2302  *
2303  * Returns:
2304  *	-1	- not misplaced, page is in the right node
2305  *	node	- node id where the page should be
2306  *
2307  * Policy determination "mimics" alloc_page_vma().
2308  * Called from fault path where we know the vma and faulting address.
2309  */
2310 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2311 {
2312 	struct mempolicy *pol;
2313 	struct zoneref *z;
2314 	int curnid = page_to_nid(page);
2315 	unsigned long pgoff;
2316 	int thiscpu = raw_smp_processor_id();
2317 	int thisnid = cpu_to_node(thiscpu);
2318 	int polnid = -1;
2319 	int ret = -1;
2320 
2321 	pol = get_vma_policy(vma, addr);
2322 	if (!(pol->flags & MPOL_F_MOF))
2323 		goto out;
2324 
2325 	switch (pol->mode) {
2326 	case MPOL_INTERLEAVE:
2327 		pgoff = vma->vm_pgoff;
2328 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2329 		polnid = offset_il_node(pol, pgoff);
2330 		break;
2331 
2332 	case MPOL_PREFERRED:
2333 		if (pol->flags & MPOL_F_LOCAL)
2334 			polnid = numa_node_id();
2335 		else
2336 			polnid = pol->v.preferred_node;
2337 		break;
2338 
2339 	case MPOL_BIND:
2340 
2341 		/*
2342 		 * allows binding to multiple nodes.
2343 		 * use current page if in policy nodemask,
2344 		 * else select nearest allowed node, if any.
2345 		 * If no allowed nodes, use current [!misplaced].
2346 		 */
2347 		if (node_isset(curnid, pol->v.nodes))
2348 			goto out;
2349 		z = first_zones_zonelist(
2350 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2351 				gfp_zone(GFP_HIGHUSER),
2352 				&pol->v.nodes);
2353 		polnid = z->zone->node;
2354 		break;
2355 
2356 	default:
2357 		BUG();
2358 	}
2359 
2360 	/* Migrate the page towards the node whose CPU is referencing it */
2361 	if (pol->flags & MPOL_F_MORON) {
2362 		polnid = thisnid;
2363 
2364 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2365 			goto out;
2366 	}
2367 
2368 	if (curnid != polnid)
2369 		ret = polnid;
2370 out:
2371 	mpol_cond_put(pol);
2372 
2373 	return ret;
2374 }
2375 
2376 /*
2377  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2378  * dropped after task->mempolicy is set to NULL so that any allocation done as
2379  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2380  * policy.
2381  */
2382 void mpol_put_task_policy(struct task_struct *task)
2383 {
2384 	struct mempolicy *pol;
2385 
2386 	task_lock(task);
2387 	pol = task->mempolicy;
2388 	task->mempolicy = NULL;
2389 	task_unlock(task);
2390 	mpol_put(pol);
2391 }
2392 
2393 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2394 {
2395 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2396 	rb_erase(&n->nd, &sp->root);
2397 	sp_free(n);
2398 }
2399 
2400 static void sp_node_init(struct sp_node *node, unsigned long start,
2401 			unsigned long end, struct mempolicy *pol)
2402 {
2403 	node->start = start;
2404 	node->end = end;
2405 	node->policy = pol;
2406 }
2407 
2408 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2409 				struct mempolicy *pol)
2410 {
2411 	struct sp_node *n;
2412 	struct mempolicy *newpol;
2413 
2414 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2415 	if (!n)
2416 		return NULL;
2417 
2418 	newpol = mpol_dup(pol);
2419 	if (IS_ERR(newpol)) {
2420 		kmem_cache_free(sn_cache, n);
2421 		return NULL;
2422 	}
2423 	newpol->flags |= MPOL_F_SHARED;
2424 	sp_node_init(n, start, end, newpol);
2425 
2426 	return n;
2427 }
2428 
2429 /* Replace a policy range. */
2430 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2431 				 unsigned long end, struct sp_node *new)
2432 {
2433 	struct sp_node *n;
2434 	struct sp_node *n_new = NULL;
2435 	struct mempolicy *mpol_new = NULL;
2436 	int ret = 0;
2437 
2438 restart:
2439 	write_lock(&sp->lock);
2440 	n = sp_lookup(sp, start, end);
2441 	/* Take care of old policies in the same range. */
2442 	while (n && n->start < end) {
2443 		struct rb_node *next = rb_next(&n->nd);
2444 		if (n->start >= start) {
2445 			if (n->end <= end)
2446 				sp_delete(sp, n);
2447 			else
2448 				n->start = end;
2449 		} else {
2450 			/* Old policy spanning whole new range. */
2451 			if (n->end > end) {
2452 				if (!n_new)
2453 					goto alloc_new;
2454 
2455 				*mpol_new = *n->policy;
2456 				atomic_set(&mpol_new->refcnt, 1);
2457 				sp_node_init(n_new, end, n->end, mpol_new);
2458 				n->end = start;
2459 				sp_insert(sp, n_new);
2460 				n_new = NULL;
2461 				mpol_new = NULL;
2462 				break;
2463 			} else
2464 				n->end = start;
2465 		}
2466 		if (!next)
2467 			break;
2468 		n = rb_entry(next, struct sp_node, nd);
2469 	}
2470 	if (new)
2471 		sp_insert(sp, new);
2472 	write_unlock(&sp->lock);
2473 	ret = 0;
2474 
2475 err_out:
2476 	if (mpol_new)
2477 		mpol_put(mpol_new);
2478 	if (n_new)
2479 		kmem_cache_free(sn_cache, n_new);
2480 
2481 	return ret;
2482 
2483 alloc_new:
2484 	write_unlock(&sp->lock);
2485 	ret = -ENOMEM;
2486 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2487 	if (!n_new)
2488 		goto err_out;
2489 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2490 	if (!mpol_new)
2491 		goto err_out;
2492 	goto restart;
2493 }
2494 
2495 /**
2496  * mpol_shared_policy_init - initialize shared policy for inode
2497  * @sp: pointer to inode shared policy
2498  * @mpol:  struct mempolicy to install
2499  *
2500  * Install non-NULL @mpol in inode's shared policy rb-tree.
2501  * On entry, the current task has a reference on a non-NULL @mpol.
2502  * This must be released on exit.
2503  * This is called at get_inode() calls and we can use GFP_KERNEL.
2504  */
2505 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2506 {
2507 	int ret;
2508 
2509 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2510 	rwlock_init(&sp->lock);
2511 
2512 	if (mpol) {
2513 		struct vm_area_struct pvma;
2514 		struct mempolicy *new;
2515 		NODEMASK_SCRATCH(scratch);
2516 
2517 		if (!scratch)
2518 			goto put_mpol;
2519 		/* contextualize the tmpfs mount point mempolicy */
2520 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2521 		if (IS_ERR(new))
2522 			goto free_scratch; /* no valid nodemask intersection */
2523 
2524 		task_lock(current);
2525 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2526 		task_unlock(current);
2527 		if (ret)
2528 			goto put_new;
2529 
2530 		/* Create pseudo-vma that contains just the policy */
2531 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2532 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2533 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2534 
2535 put_new:
2536 		mpol_put(new);			/* drop initial ref */
2537 free_scratch:
2538 		NODEMASK_SCRATCH_FREE(scratch);
2539 put_mpol:
2540 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2541 	}
2542 }
2543 
2544 int mpol_set_shared_policy(struct shared_policy *info,
2545 			struct vm_area_struct *vma, struct mempolicy *npol)
2546 {
2547 	int err;
2548 	struct sp_node *new = NULL;
2549 	unsigned long sz = vma_pages(vma);
2550 
2551 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2552 		 vma->vm_pgoff,
2553 		 sz, npol ? npol->mode : -1,
2554 		 npol ? npol->flags : -1,
2555 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2556 
2557 	if (npol) {
2558 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2559 		if (!new)
2560 			return -ENOMEM;
2561 	}
2562 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2563 	if (err && new)
2564 		sp_free(new);
2565 	return err;
2566 }
2567 
2568 /* Free a backing policy store on inode delete. */
2569 void mpol_free_shared_policy(struct shared_policy *p)
2570 {
2571 	struct sp_node *n;
2572 	struct rb_node *next;
2573 
2574 	if (!p->root.rb_node)
2575 		return;
2576 	write_lock(&p->lock);
2577 	next = rb_first(&p->root);
2578 	while (next) {
2579 		n = rb_entry(next, struct sp_node, nd);
2580 		next = rb_next(&n->nd);
2581 		sp_delete(p, n);
2582 	}
2583 	write_unlock(&p->lock);
2584 }
2585 
2586 #ifdef CONFIG_NUMA_BALANCING
2587 static int __initdata numabalancing_override;
2588 
2589 static void __init check_numabalancing_enable(void)
2590 {
2591 	bool numabalancing_default = false;
2592 
2593 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2594 		numabalancing_default = true;
2595 
2596 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2597 	if (numabalancing_override)
2598 		set_numabalancing_state(numabalancing_override == 1);
2599 
2600 	if (num_online_nodes() > 1 && !numabalancing_override) {
2601 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2602 			numabalancing_default ? "Enabling" : "Disabling");
2603 		set_numabalancing_state(numabalancing_default);
2604 	}
2605 }
2606 
2607 static int __init setup_numabalancing(char *str)
2608 {
2609 	int ret = 0;
2610 	if (!str)
2611 		goto out;
2612 
2613 	if (!strcmp(str, "enable")) {
2614 		numabalancing_override = 1;
2615 		ret = 1;
2616 	} else if (!strcmp(str, "disable")) {
2617 		numabalancing_override = -1;
2618 		ret = 1;
2619 	}
2620 out:
2621 	if (!ret)
2622 		pr_warn("Unable to parse numa_balancing=\n");
2623 
2624 	return ret;
2625 }
2626 __setup("numa_balancing=", setup_numabalancing);
2627 #else
2628 static inline void __init check_numabalancing_enable(void)
2629 {
2630 }
2631 #endif /* CONFIG_NUMA_BALANCING */
2632 
2633 /* assumes fs == KERNEL_DS */
2634 void __init numa_policy_init(void)
2635 {
2636 	nodemask_t interleave_nodes;
2637 	unsigned long largest = 0;
2638 	int nid, prefer = 0;
2639 
2640 	policy_cache = kmem_cache_create("numa_policy",
2641 					 sizeof(struct mempolicy),
2642 					 0, SLAB_PANIC, NULL);
2643 
2644 	sn_cache = kmem_cache_create("shared_policy_node",
2645 				     sizeof(struct sp_node),
2646 				     0, SLAB_PANIC, NULL);
2647 
2648 	for_each_node(nid) {
2649 		preferred_node_policy[nid] = (struct mempolicy) {
2650 			.refcnt = ATOMIC_INIT(1),
2651 			.mode = MPOL_PREFERRED,
2652 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2653 			.v = { .preferred_node = nid, },
2654 		};
2655 	}
2656 
2657 	/*
2658 	 * Set interleaving policy for system init. Interleaving is only
2659 	 * enabled across suitably sized nodes (default is >= 16MB), or
2660 	 * fall back to the largest node if they're all smaller.
2661 	 */
2662 	nodes_clear(interleave_nodes);
2663 	for_each_node_state(nid, N_MEMORY) {
2664 		unsigned long total_pages = node_present_pages(nid);
2665 
2666 		/* Preserve the largest node */
2667 		if (largest < total_pages) {
2668 			largest = total_pages;
2669 			prefer = nid;
2670 		}
2671 
2672 		/* Interleave this node? */
2673 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2674 			node_set(nid, interleave_nodes);
2675 	}
2676 
2677 	/* All too small, use the largest */
2678 	if (unlikely(nodes_empty(interleave_nodes)))
2679 		node_set(prefer, interleave_nodes);
2680 
2681 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2682 		pr_err("%s: interleaving failed\n", __func__);
2683 
2684 	check_numabalancing_enable();
2685 }
2686 
2687 /* Reset policy of current process to default */
2688 void numa_default_policy(void)
2689 {
2690 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2691 }
2692 
2693 /*
2694  * Parse and format mempolicy from/to strings
2695  */
2696 
2697 /*
2698  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2699  */
2700 static const char * const policy_modes[] =
2701 {
2702 	[MPOL_DEFAULT]    = "default",
2703 	[MPOL_PREFERRED]  = "prefer",
2704 	[MPOL_BIND]       = "bind",
2705 	[MPOL_INTERLEAVE] = "interleave",
2706 	[MPOL_LOCAL]      = "local",
2707 };
2708 
2709 
2710 #ifdef CONFIG_TMPFS
2711 /**
2712  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2713  * @str:  string containing mempolicy to parse
2714  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2715  *
2716  * Format of input:
2717  *	<mode>[=<flags>][:<nodelist>]
2718  *
2719  * On success, returns 0, else 1
2720  */
2721 int mpol_parse_str(char *str, struct mempolicy **mpol)
2722 {
2723 	struct mempolicy *new = NULL;
2724 	unsigned short mode;
2725 	unsigned short mode_flags;
2726 	nodemask_t nodes;
2727 	char *nodelist = strchr(str, ':');
2728 	char *flags = strchr(str, '=');
2729 	int err = 1;
2730 
2731 	if (nodelist) {
2732 		/* NUL-terminate mode or flags string */
2733 		*nodelist++ = '\0';
2734 		if (nodelist_parse(nodelist, nodes))
2735 			goto out;
2736 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2737 			goto out;
2738 	} else
2739 		nodes_clear(nodes);
2740 
2741 	if (flags)
2742 		*flags++ = '\0';	/* terminate mode string */
2743 
2744 	for (mode = 0; mode < MPOL_MAX; mode++) {
2745 		if (!strcmp(str, policy_modes[mode])) {
2746 			break;
2747 		}
2748 	}
2749 	if (mode >= MPOL_MAX)
2750 		goto out;
2751 
2752 	switch (mode) {
2753 	case MPOL_PREFERRED:
2754 		/*
2755 		 * Insist on a nodelist of one node only
2756 		 */
2757 		if (nodelist) {
2758 			char *rest = nodelist;
2759 			while (isdigit(*rest))
2760 				rest++;
2761 			if (*rest)
2762 				goto out;
2763 		}
2764 		break;
2765 	case MPOL_INTERLEAVE:
2766 		/*
2767 		 * Default to online nodes with memory if no nodelist
2768 		 */
2769 		if (!nodelist)
2770 			nodes = node_states[N_MEMORY];
2771 		break;
2772 	case MPOL_LOCAL:
2773 		/*
2774 		 * Don't allow a nodelist;  mpol_new() checks flags
2775 		 */
2776 		if (nodelist)
2777 			goto out;
2778 		mode = MPOL_PREFERRED;
2779 		break;
2780 	case MPOL_DEFAULT:
2781 		/*
2782 		 * Insist on a empty nodelist
2783 		 */
2784 		if (!nodelist)
2785 			err = 0;
2786 		goto out;
2787 	case MPOL_BIND:
2788 		/*
2789 		 * Insist on a nodelist
2790 		 */
2791 		if (!nodelist)
2792 			goto out;
2793 	}
2794 
2795 	mode_flags = 0;
2796 	if (flags) {
2797 		/*
2798 		 * Currently, we only support two mutually exclusive
2799 		 * mode flags.
2800 		 */
2801 		if (!strcmp(flags, "static"))
2802 			mode_flags |= MPOL_F_STATIC_NODES;
2803 		else if (!strcmp(flags, "relative"))
2804 			mode_flags |= MPOL_F_RELATIVE_NODES;
2805 		else
2806 			goto out;
2807 	}
2808 
2809 	new = mpol_new(mode, mode_flags, &nodes);
2810 	if (IS_ERR(new))
2811 		goto out;
2812 
2813 	/*
2814 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2815 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2816 	 */
2817 	if (mode != MPOL_PREFERRED)
2818 		new->v.nodes = nodes;
2819 	else if (nodelist)
2820 		new->v.preferred_node = first_node(nodes);
2821 	else
2822 		new->flags |= MPOL_F_LOCAL;
2823 
2824 	/*
2825 	 * Save nodes for contextualization: this will be used to "clone"
2826 	 * the mempolicy in a specific context [cpuset] at a later time.
2827 	 */
2828 	new->w.user_nodemask = nodes;
2829 
2830 	err = 0;
2831 
2832 out:
2833 	/* Restore string for error message */
2834 	if (nodelist)
2835 		*--nodelist = ':';
2836 	if (flags)
2837 		*--flags = '=';
2838 	if (!err)
2839 		*mpol = new;
2840 	return err;
2841 }
2842 #endif /* CONFIG_TMPFS */
2843 
2844 /**
2845  * mpol_to_str - format a mempolicy structure for printing
2846  * @buffer:  to contain formatted mempolicy string
2847  * @maxlen:  length of @buffer
2848  * @pol:  pointer to mempolicy to be formatted
2849  *
2850  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2851  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2852  * longest flag, "relative", and to display at least a few node ids.
2853  */
2854 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2855 {
2856 	char *p = buffer;
2857 	nodemask_t nodes = NODE_MASK_NONE;
2858 	unsigned short mode = MPOL_DEFAULT;
2859 	unsigned short flags = 0;
2860 
2861 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2862 		mode = pol->mode;
2863 		flags = pol->flags;
2864 	}
2865 
2866 	switch (mode) {
2867 	case MPOL_DEFAULT:
2868 		break;
2869 	case MPOL_PREFERRED:
2870 		if (flags & MPOL_F_LOCAL)
2871 			mode = MPOL_LOCAL;
2872 		else
2873 			node_set(pol->v.preferred_node, nodes);
2874 		break;
2875 	case MPOL_BIND:
2876 	case MPOL_INTERLEAVE:
2877 		nodes = pol->v.nodes;
2878 		break;
2879 	default:
2880 		WARN_ON_ONCE(1);
2881 		snprintf(p, maxlen, "unknown");
2882 		return;
2883 	}
2884 
2885 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2886 
2887 	if (flags & MPOL_MODE_FLAGS) {
2888 		p += snprintf(p, buffer + maxlen - p, "=");
2889 
2890 		/*
2891 		 * Currently, the only defined flags are mutually exclusive
2892 		 */
2893 		if (flags & MPOL_F_STATIC_NODES)
2894 			p += snprintf(p, buffer + maxlen - p, "static");
2895 		else if (flags & MPOL_F_RELATIVE_NODES)
2896 			p += snprintf(p, buffer + maxlen - p, "relative");
2897 	}
2898 
2899 	if (!nodes_empty(nodes))
2900 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2901 			       nodemask_pr_args(&nodes));
2902 }
2903