xref: /openbmc/linux/mm/mempolicy.c (revision ac64a9ca)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 	int err = 0;
614 	struct mempolicy *old = vma->vm_policy;
615 
616 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 		 vma->vm_ops, vma->vm_file,
619 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620 
621 	if (vma->vm_ops && vma->vm_ops->set_policy)
622 		err = vma->vm_ops->set_policy(vma, new);
623 	if (!err) {
624 		mpol_get(new);
625 		vma->vm_policy = new;
626 		mpol_put(old);
627 	}
628 	return err;
629 }
630 
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 		       unsigned long end, struct mempolicy *new_pol)
634 {
635 	struct vm_area_struct *next;
636 	struct vm_area_struct *prev;
637 	struct vm_area_struct *vma;
638 	int err = 0;
639 	pgoff_t pgoff;
640 	unsigned long vmstart;
641 	unsigned long vmend;
642 
643 	vma = find_vma(mm, start);
644 	if (!vma || vma->vm_start > start)
645 		return -EFAULT;
646 
647 	prev = vma->vm_prev;
648 	if (start > vma->vm_start)
649 		prev = vma;
650 
651 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 		next = vma->vm_next;
653 		vmstart = max(start, vma->vm_start);
654 		vmend   = min(end, vma->vm_end);
655 
656 		if (mpol_equal(vma_policy(vma), new_pol))
657 			continue;
658 
659 		pgoff = vma->vm_pgoff +
660 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 				  vma->anon_vma, vma->vm_file, pgoff,
663 				  new_pol);
664 		if (prev) {
665 			vma = prev;
666 			next = vma->vm_next;
667 			continue;
668 		}
669 		if (vma->vm_start != vmstart) {
670 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 			if (err)
672 				goto out;
673 		}
674 		if (vma->vm_end != vmend) {
675 			err = split_vma(vma->vm_mm, vma, vmend, 0);
676 			if (err)
677 				goto out;
678 		}
679 		err = policy_vma(vma, new_pol);
680 		if (err)
681 			goto out;
682 	}
683 
684  out:
685 	return err;
686 }
687 
688 /*
689  * Update task->flags PF_MEMPOLICY bit: set iff non-default
690  * mempolicy.  Allows more rapid checking of this (combined perhaps
691  * with other PF_* flag bits) on memory allocation hot code paths.
692  *
693  * If called from outside this file, the task 'p' should -only- be
694  * a newly forked child not yet visible on the task list, because
695  * manipulating the task flags of a visible task is not safe.
696  *
697  * The above limitation is why this routine has the funny name
698  * mpol_fix_fork_child_flag().
699  *
700  * It is also safe to call this with a task pointer of current,
701  * which the static wrapper mpol_set_task_struct_flag() does,
702  * for use within this file.
703  */
704 
705 void mpol_fix_fork_child_flag(struct task_struct *p)
706 {
707 	if (p->mempolicy)
708 		p->flags |= PF_MEMPOLICY;
709 	else
710 		p->flags &= ~PF_MEMPOLICY;
711 }
712 
713 static void mpol_set_task_struct_flag(void)
714 {
715 	mpol_fix_fork_child_flag(current);
716 }
717 
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 			     nodemask_t *nodes)
721 {
722 	struct mempolicy *new, *old;
723 	struct mm_struct *mm = current->mm;
724 	NODEMASK_SCRATCH(scratch);
725 	int ret;
726 
727 	if (!scratch)
728 		return -ENOMEM;
729 
730 	new = mpol_new(mode, flags, nodes);
731 	if (IS_ERR(new)) {
732 		ret = PTR_ERR(new);
733 		goto out;
734 	}
735 	/*
736 	 * prevent changing our mempolicy while show_numa_maps()
737 	 * is using it.
738 	 * Note:  do_set_mempolicy() can be called at init time
739 	 * with no 'mm'.
740 	 */
741 	if (mm)
742 		down_write(&mm->mmap_sem);
743 	task_lock(current);
744 	ret = mpol_set_nodemask(new, nodes, scratch);
745 	if (ret) {
746 		task_unlock(current);
747 		if (mm)
748 			up_write(&mm->mmap_sem);
749 		mpol_put(new);
750 		goto out;
751 	}
752 	old = current->mempolicy;
753 	current->mempolicy = new;
754 	mpol_set_task_struct_flag();
755 	if (new && new->mode == MPOL_INTERLEAVE &&
756 	    nodes_weight(new->v.nodes))
757 		current->il_next = first_node(new->v.nodes);
758 	task_unlock(current);
759 	if (mm)
760 		up_write(&mm->mmap_sem);
761 
762 	mpol_put(old);
763 	ret = 0;
764 out:
765 	NODEMASK_SCRATCH_FREE(scratch);
766 	return ret;
767 }
768 
769 /*
770  * Return nodemask for policy for get_mempolicy() query
771  *
772  * Called with task's alloc_lock held
773  */
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
775 {
776 	nodes_clear(*nodes);
777 	if (p == &default_policy)
778 		return;
779 
780 	switch (p->mode) {
781 	case MPOL_BIND:
782 		/* Fall through */
783 	case MPOL_INTERLEAVE:
784 		*nodes = p->v.nodes;
785 		break;
786 	case MPOL_PREFERRED:
787 		if (!(p->flags & MPOL_F_LOCAL))
788 			node_set(p->v.preferred_node, *nodes);
789 		/* else return empty node mask for local allocation */
790 		break;
791 	default:
792 		BUG();
793 	}
794 }
795 
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
797 {
798 	struct page *p;
799 	int err;
800 
801 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 	if (err >= 0) {
803 		err = page_to_nid(p);
804 		put_page(p);
805 	}
806 	return err;
807 }
808 
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 			     unsigned long addr, unsigned long flags)
812 {
813 	int err;
814 	struct mm_struct *mm = current->mm;
815 	struct vm_area_struct *vma = NULL;
816 	struct mempolicy *pol = current->mempolicy;
817 
818 	if (flags &
819 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 		return -EINVAL;
821 
822 	if (flags & MPOL_F_MEMS_ALLOWED) {
823 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 			return -EINVAL;
825 		*policy = 0;	/* just so it's initialized */
826 		task_lock(current);
827 		*nmask  = cpuset_current_mems_allowed;
828 		task_unlock(current);
829 		return 0;
830 	}
831 
832 	if (flags & MPOL_F_ADDR) {
833 		/*
834 		 * Do NOT fall back to task policy if the
835 		 * vma/shared policy at addr is NULL.  We
836 		 * want to return MPOL_DEFAULT in this case.
837 		 */
838 		down_read(&mm->mmap_sem);
839 		vma = find_vma_intersection(mm, addr, addr+1);
840 		if (!vma) {
841 			up_read(&mm->mmap_sem);
842 			return -EFAULT;
843 		}
844 		if (vma->vm_ops && vma->vm_ops->get_policy)
845 			pol = vma->vm_ops->get_policy(vma, addr);
846 		else
847 			pol = vma->vm_policy;
848 	} else if (addr)
849 		return -EINVAL;
850 
851 	if (!pol)
852 		pol = &default_policy;	/* indicates default behavior */
853 
854 	if (flags & MPOL_F_NODE) {
855 		if (flags & MPOL_F_ADDR) {
856 			err = lookup_node(mm, addr);
857 			if (err < 0)
858 				goto out;
859 			*policy = err;
860 		} else if (pol == current->mempolicy &&
861 				pol->mode == MPOL_INTERLEAVE) {
862 			*policy = current->il_next;
863 		} else {
864 			err = -EINVAL;
865 			goto out;
866 		}
867 	} else {
868 		*policy = pol == &default_policy ? MPOL_DEFAULT :
869 						pol->mode;
870 		/*
871 		 * Internal mempolicy flags must be masked off before exposing
872 		 * the policy to userspace.
873 		 */
874 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
875 	}
876 
877 	if (vma) {
878 		up_read(&current->mm->mmap_sem);
879 		vma = NULL;
880 	}
881 
882 	err = 0;
883 	if (nmask) {
884 		if (mpol_store_user_nodemask(pol)) {
885 			*nmask = pol->w.user_nodemask;
886 		} else {
887 			task_lock(current);
888 			get_policy_nodemask(pol, nmask);
889 			task_unlock(current);
890 		}
891 	}
892 
893  out:
894 	mpol_cond_put(pol);
895 	if (vma)
896 		up_read(&current->mm->mmap_sem);
897 	return err;
898 }
899 
900 #ifdef CONFIG_MIGRATION
901 /*
902  * page migration
903  */
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 				unsigned long flags)
906 {
907 	/*
908 	 * Avoid migrating a page that is shared with others.
909 	 */
910 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 		if (!isolate_lru_page(page)) {
912 			list_add_tail(&page->lru, pagelist);
913 			inc_zone_page_state(page, NR_ISOLATED_ANON +
914 					    page_is_file_cache(page));
915 		}
916 	}
917 }
918 
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
920 {
921 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
922 }
923 
924 /*
925  * Migrate pages from one node to a target node.
926  * Returns error or the number of pages not migrated.
927  */
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 			   int flags)
930 {
931 	nodemask_t nmask;
932 	LIST_HEAD(pagelist);
933 	int err = 0;
934 	struct vm_area_struct *vma;
935 
936 	nodes_clear(nmask);
937 	node_set(source, nmask);
938 
939 	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 	if (IS_ERR(vma))
942 		return PTR_ERR(vma);
943 
944 	if (!list_empty(&pagelist)) {
945 		err = migrate_pages(&pagelist, new_node_page, dest,
946 							false, MIGRATE_SYNC);
947 		if (err)
948 			putback_lru_pages(&pagelist);
949 	}
950 
951 	return err;
952 }
953 
954 /*
955  * Move pages between the two nodesets so as to preserve the physical
956  * layout as much as possible.
957  *
958  * Returns the number of page that could not be moved.
959  */
960 int do_migrate_pages(struct mm_struct *mm,
961 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
962 {
963 	int busy = 0;
964 	int err;
965 	nodemask_t tmp;
966 
967 	err = migrate_prep();
968 	if (err)
969 		return err;
970 
971 	down_read(&mm->mmap_sem);
972 
973 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
974 	if (err)
975 		goto out;
976 
977 	/*
978 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
980 	 * bit in 'tmp', and return that <source, dest> pair for migration.
981 	 * The pair of nodemasks 'to' and 'from' define the map.
982 	 *
983 	 * If no pair of bits is found that way, fallback to picking some
984 	 * pair of 'source' and 'dest' bits that are not the same.  If the
985 	 * 'source' and 'dest' bits are the same, this represents a node
986 	 * that will be migrating to itself, so no pages need move.
987 	 *
988 	 * If no bits are left in 'tmp', or if all remaining bits left
989 	 * in 'tmp' correspond to the same bit in 'to', return false
990 	 * (nothing left to migrate).
991 	 *
992 	 * This lets us pick a pair of nodes to migrate between, such that
993 	 * if possible the dest node is not already occupied by some other
994 	 * source node, minimizing the risk of overloading the memory on a
995 	 * node that would happen if we migrated incoming memory to a node
996 	 * before migrating outgoing memory source that same node.
997 	 *
998 	 * A single scan of tmp is sufficient.  As we go, we remember the
999 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1000 	 * that not only moved, but what's better, moved to an empty slot
1001 	 * (d is not set in tmp), then we break out then, with that pair.
1002 	 * Otherwise when we finish scanning from_tmp, we at least have the
1003 	 * most recent <s, d> pair that moved.  If we get all the way through
1004 	 * the scan of tmp without finding any node that moved, much less
1005 	 * moved to an empty node, then there is nothing left worth migrating.
1006 	 */
1007 
1008 	tmp = *from_nodes;
1009 	while (!nodes_empty(tmp)) {
1010 		int s,d;
1011 		int source = -1;
1012 		int dest = 0;
1013 
1014 		for_each_node_mask(s, tmp) {
1015 			d = node_remap(s, *from_nodes, *to_nodes);
1016 			if (s == d)
1017 				continue;
1018 
1019 			source = s;	/* Node moved. Memorize */
1020 			dest = d;
1021 
1022 			/* dest not in remaining from nodes? */
1023 			if (!node_isset(dest, tmp))
1024 				break;
1025 		}
1026 		if (source == -1)
1027 			break;
1028 
1029 		node_clear(source, tmp);
1030 		err = migrate_to_node(mm, source, dest, flags);
1031 		if (err > 0)
1032 			busy += err;
1033 		if (err < 0)
1034 			break;
1035 	}
1036 out:
1037 	up_read(&mm->mmap_sem);
1038 	if (err < 0)
1039 		return err;
1040 	return busy;
1041 
1042 }
1043 
1044 /*
1045  * Allocate a new page for page migration based on vma policy.
1046  * Start assuming that page is mapped by vma pointed to by @private.
1047  * Search forward from there, if not.  N.B., this assumes that the
1048  * list of pages handed to migrate_pages()--which is how we get here--
1049  * is in virtual address order.
1050  */
1051 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1052 {
1053 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054 	unsigned long uninitialized_var(address);
1055 
1056 	while (vma) {
1057 		address = page_address_in_vma(page, vma);
1058 		if (address != -EFAULT)
1059 			break;
1060 		vma = vma->vm_next;
1061 	}
1062 
1063 	/*
1064 	 * if !vma, alloc_page_vma() will use task or system default policy
1065 	 */
1066 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1067 }
1068 #else
1069 
1070 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071 				unsigned long flags)
1072 {
1073 }
1074 
1075 int do_migrate_pages(struct mm_struct *mm,
1076 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1077 {
1078 	return -ENOSYS;
1079 }
1080 
1081 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1082 {
1083 	return NULL;
1084 }
1085 #endif
1086 
1087 static long do_mbind(unsigned long start, unsigned long len,
1088 		     unsigned short mode, unsigned short mode_flags,
1089 		     nodemask_t *nmask, unsigned long flags)
1090 {
1091 	struct vm_area_struct *vma;
1092 	struct mm_struct *mm = current->mm;
1093 	struct mempolicy *new;
1094 	unsigned long end;
1095 	int err;
1096 	LIST_HEAD(pagelist);
1097 
1098 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100 		return -EINVAL;
1101 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102 		return -EPERM;
1103 
1104 	if (start & ~PAGE_MASK)
1105 		return -EINVAL;
1106 
1107 	if (mode == MPOL_DEFAULT)
1108 		flags &= ~MPOL_MF_STRICT;
1109 
1110 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 	end = start + len;
1112 
1113 	if (end < start)
1114 		return -EINVAL;
1115 	if (end == start)
1116 		return 0;
1117 
1118 	new = mpol_new(mode, mode_flags, nmask);
1119 	if (IS_ERR(new))
1120 		return PTR_ERR(new);
1121 
1122 	/*
1123 	 * If we are using the default policy then operation
1124 	 * on discontinuous address spaces is okay after all
1125 	 */
1126 	if (!new)
1127 		flags |= MPOL_MF_DISCONTIG_OK;
1128 
1129 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130 		 start, start + len, mode, mode_flags,
1131 		 nmask ? nodes_addr(*nmask)[0] : -1);
1132 
1133 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1134 
1135 		err = migrate_prep();
1136 		if (err)
1137 			goto mpol_out;
1138 	}
1139 	{
1140 		NODEMASK_SCRATCH(scratch);
1141 		if (scratch) {
1142 			down_write(&mm->mmap_sem);
1143 			task_lock(current);
1144 			err = mpol_set_nodemask(new, nmask, scratch);
1145 			task_unlock(current);
1146 			if (err)
1147 				up_write(&mm->mmap_sem);
1148 		} else
1149 			err = -ENOMEM;
1150 		NODEMASK_SCRATCH_FREE(scratch);
1151 	}
1152 	if (err)
1153 		goto mpol_out;
1154 
1155 	vma = check_range(mm, start, end, nmask,
1156 			  flags | MPOL_MF_INVERT, &pagelist);
1157 
1158 	err = PTR_ERR(vma);
1159 	if (!IS_ERR(vma)) {
1160 		int nr_failed = 0;
1161 
1162 		err = mbind_range(mm, start, end, new);
1163 
1164 		if (!list_empty(&pagelist)) {
1165 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1166 						(unsigned long)vma,
1167 						false, true);
1168 			if (nr_failed)
1169 				putback_lru_pages(&pagelist);
1170 		}
1171 
1172 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173 			err = -EIO;
1174 	} else
1175 		putback_lru_pages(&pagelist);
1176 
1177 	up_write(&mm->mmap_sem);
1178  mpol_out:
1179 	mpol_put(new);
1180 	return err;
1181 }
1182 
1183 /*
1184  * User space interface with variable sized bitmaps for nodelists.
1185  */
1186 
1187 /* Copy a node mask from user space. */
1188 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189 		     unsigned long maxnode)
1190 {
1191 	unsigned long k;
1192 	unsigned long nlongs;
1193 	unsigned long endmask;
1194 
1195 	--maxnode;
1196 	nodes_clear(*nodes);
1197 	if (maxnode == 0 || !nmask)
1198 		return 0;
1199 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200 		return -EINVAL;
1201 
1202 	nlongs = BITS_TO_LONGS(maxnode);
1203 	if ((maxnode % BITS_PER_LONG) == 0)
1204 		endmask = ~0UL;
1205 	else
1206 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1207 
1208 	/* When the user specified more nodes than supported just check
1209 	   if the non supported part is all zero. */
1210 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211 		if (nlongs > PAGE_SIZE/sizeof(long))
1212 			return -EINVAL;
1213 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214 			unsigned long t;
1215 			if (get_user(t, nmask + k))
1216 				return -EFAULT;
1217 			if (k == nlongs - 1) {
1218 				if (t & endmask)
1219 					return -EINVAL;
1220 			} else if (t)
1221 				return -EINVAL;
1222 		}
1223 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224 		endmask = ~0UL;
1225 	}
1226 
1227 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228 		return -EFAULT;
1229 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1230 	return 0;
1231 }
1232 
1233 /* Copy a kernel node mask to user space */
1234 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235 			      nodemask_t *nodes)
1236 {
1237 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1239 
1240 	if (copy > nbytes) {
1241 		if (copy > PAGE_SIZE)
1242 			return -EINVAL;
1243 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244 			return -EFAULT;
1245 		copy = nbytes;
1246 	}
1247 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1248 }
1249 
1250 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251 		unsigned long, mode, unsigned long __user *, nmask,
1252 		unsigned long, maxnode, unsigned, flags)
1253 {
1254 	nodemask_t nodes;
1255 	int err;
1256 	unsigned short mode_flags;
1257 
1258 	mode_flags = mode & MPOL_MODE_FLAGS;
1259 	mode &= ~MPOL_MODE_FLAGS;
1260 	if (mode >= MPOL_MAX)
1261 		return -EINVAL;
1262 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1264 		return -EINVAL;
1265 	err = get_nodes(&nodes, nmask, maxnode);
1266 	if (err)
1267 		return err;
1268 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1269 }
1270 
1271 /* Set the process memory policy */
1272 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273 		unsigned long, maxnode)
1274 {
1275 	int err;
1276 	nodemask_t nodes;
1277 	unsigned short flags;
1278 
1279 	flags = mode & MPOL_MODE_FLAGS;
1280 	mode &= ~MPOL_MODE_FLAGS;
1281 	if ((unsigned int)mode >= MPOL_MAX)
1282 		return -EINVAL;
1283 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284 		return -EINVAL;
1285 	err = get_nodes(&nodes, nmask, maxnode);
1286 	if (err)
1287 		return err;
1288 	return do_set_mempolicy(mode, flags, &nodes);
1289 }
1290 
1291 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292 		const unsigned long __user *, old_nodes,
1293 		const unsigned long __user *, new_nodes)
1294 {
1295 	const struct cred *cred = current_cred(), *tcred;
1296 	struct mm_struct *mm = NULL;
1297 	struct task_struct *task;
1298 	nodemask_t task_nodes;
1299 	int err;
1300 	nodemask_t *old;
1301 	nodemask_t *new;
1302 	NODEMASK_SCRATCH(scratch);
1303 
1304 	if (!scratch)
1305 		return -ENOMEM;
1306 
1307 	old = &scratch->mask1;
1308 	new = &scratch->mask2;
1309 
1310 	err = get_nodes(old, old_nodes, maxnode);
1311 	if (err)
1312 		goto out;
1313 
1314 	err = get_nodes(new, new_nodes, maxnode);
1315 	if (err)
1316 		goto out;
1317 
1318 	/* Find the mm_struct */
1319 	rcu_read_lock();
1320 	task = pid ? find_task_by_vpid(pid) : current;
1321 	if (!task) {
1322 		rcu_read_unlock();
1323 		err = -ESRCH;
1324 		goto out;
1325 	}
1326 	mm = get_task_mm(task);
1327 	rcu_read_unlock();
1328 
1329 	err = -EINVAL;
1330 	if (!mm)
1331 		goto out;
1332 
1333 	/*
1334 	 * Check if this process has the right to modify the specified
1335 	 * process. The right exists if the process has administrative
1336 	 * capabilities, superuser privileges or the same
1337 	 * userid as the target process.
1338 	 */
1339 	rcu_read_lock();
1340 	tcred = __task_cred(task);
1341 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1342 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1343 	    !capable(CAP_SYS_NICE)) {
1344 		rcu_read_unlock();
1345 		err = -EPERM;
1346 		goto out;
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	task_nodes = cpuset_mems_allowed(task);
1351 	/* Is the user allowed to access the target nodes? */
1352 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1353 		err = -EPERM;
1354 		goto out;
1355 	}
1356 
1357 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1358 		err = -EINVAL;
1359 		goto out;
1360 	}
1361 
1362 	err = security_task_movememory(task);
1363 	if (err)
1364 		goto out;
1365 
1366 	err = do_migrate_pages(mm, old, new,
1367 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1368 out:
1369 	if (mm)
1370 		mmput(mm);
1371 	NODEMASK_SCRATCH_FREE(scratch);
1372 
1373 	return err;
1374 }
1375 
1376 
1377 /* Retrieve NUMA policy */
1378 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1379 		unsigned long __user *, nmask, unsigned long, maxnode,
1380 		unsigned long, addr, unsigned long, flags)
1381 {
1382 	int err;
1383 	int uninitialized_var(pval);
1384 	nodemask_t nodes;
1385 
1386 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1387 		return -EINVAL;
1388 
1389 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1390 
1391 	if (err)
1392 		return err;
1393 
1394 	if (policy && put_user(pval, policy))
1395 		return -EFAULT;
1396 
1397 	if (nmask)
1398 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1399 
1400 	return err;
1401 }
1402 
1403 #ifdef CONFIG_COMPAT
1404 
1405 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1406 				     compat_ulong_t __user *nmask,
1407 				     compat_ulong_t maxnode,
1408 				     compat_ulong_t addr, compat_ulong_t flags)
1409 {
1410 	long err;
1411 	unsigned long __user *nm = NULL;
1412 	unsigned long nr_bits, alloc_size;
1413 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1414 
1415 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1416 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1417 
1418 	if (nmask)
1419 		nm = compat_alloc_user_space(alloc_size);
1420 
1421 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1422 
1423 	if (!err && nmask) {
1424 		unsigned long copy_size;
1425 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1426 		err = copy_from_user(bm, nm, copy_size);
1427 		/* ensure entire bitmap is zeroed */
1428 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1429 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1430 	}
1431 
1432 	return err;
1433 }
1434 
1435 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1436 				     compat_ulong_t maxnode)
1437 {
1438 	long err = 0;
1439 	unsigned long __user *nm = NULL;
1440 	unsigned long nr_bits, alloc_size;
1441 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1442 
1443 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1444 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1445 
1446 	if (nmask) {
1447 		err = compat_get_bitmap(bm, nmask, nr_bits);
1448 		nm = compat_alloc_user_space(alloc_size);
1449 		err |= copy_to_user(nm, bm, alloc_size);
1450 	}
1451 
1452 	if (err)
1453 		return -EFAULT;
1454 
1455 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1456 }
1457 
1458 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1459 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1460 			     compat_ulong_t maxnode, compat_ulong_t flags)
1461 {
1462 	long err = 0;
1463 	unsigned long __user *nm = NULL;
1464 	unsigned long nr_bits, alloc_size;
1465 	nodemask_t bm;
1466 
1467 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1468 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1469 
1470 	if (nmask) {
1471 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1472 		nm = compat_alloc_user_space(alloc_size);
1473 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1474 	}
1475 
1476 	if (err)
1477 		return -EFAULT;
1478 
1479 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1480 }
1481 
1482 #endif
1483 
1484 /*
1485  * get_vma_policy(@task, @vma, @addr)
1486  * @task - task for fallback if vma policy == default
1487  * @vma   - virtual memory area whose policy is sought
1488  * @addr  - address in @vma for shared policy lookup
1489  *
1490  * Returns effective policy for a VMA at specified address.
1491  * Falls back to @task or system default policy, as necessary.
1492  * Current or other task's task mempolicy and non-shared vma policies
1493  * are protected by the task's mmap_sem, which must be held for read by
1494  * the caller.
1495  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1496  * count--added by the get_policy() vm_op, as appropriate--to protect against
1497  * freeing by another task.  It is the caller's responsibility to free the
1498  * extra reference for shared policies.
1499  */
1500 struct mempolicy *get_vma_policy(struct task_struct *task,
1501 		struct vm_area_struct *vma, unsigned long addr)
1502 {
1503 	struct mempolicy *pol = task->mempolicy;
1504 
1505 	if (vma) {
1506 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1507 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1508 									addr);
1509 			if (vpol)
1510 				pol = vpol;
1511 		} else if (vma->vm_policy)
1512 			pol = vma->vm_policy;
1513 	}
1514 	if (!pol)
1515 		pol = &default_policy;
1516 	return pol;
1517 }
1518 
1519 /*
1520  * Return a nodemask representing a mempolicy for filtering nodes for
1521  * page allocation
1522  */
1523 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1524 {
1525 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1526 	if (unlikely(policy->mode == MPOL_BIND) &&
1527 			gfp_zone(gfp) >= policy_zone &&
1528 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1529 		return &policy->v.nodes;
1530 
1531 	return NULL;
1532 }
1533 
1534 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1535 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1536 	int nd)
1537 {
1538 	switch (policy->mode) {
1539 	case MPOL_PREFERRED:
1540 		if (!(policy->flags & MPOL_F_LOCAL))
1541 			nd = policy->v.preferred_node;
1542 		break;
1543 	case MPOL_BIND:
1544 		/*
1545 		 * Normally, MPOL_BIND allocations are node-local within the
1546 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1547 		 * current node isn't part of the mask, we use the zonelist for
1548 		 * the first node in the mask instead.
1549 		 */
1550 		if (unlikely(gfp & __GFP_THISNODE) &&
1551 				unlikely(!node_isset(nd, policy->v.nodes)))
1552 			nd = first_node(policy->v.nodes);
1553 		break;
1554 	default:
1555 		BUG();
1556 	}
1557 	return node_zonelist(nd, gfp);
1558 }
1559 
1560 /* Do dynamic interleaving for a process */
1561 static unsigned interleave_nodes(struct mempolicy *policy)
1562 {
1563 	unsigned nid, next;
1564 	struct task_struct *me = current;
1565 
1566 	nid = me->il_next;
1567 	next = next_node(nid, policy->v.nodes);
1568 	if (next >= MAX_NUMNODES)
1569 		next = first_node(policy->v.nodes);
1570 	if (next < MAX_NUMNODES)
1571 		me->il_next = next;
1572 	return nid;
1573 }
1574 
1575 /*
1576  * Depending on the memory policy provide a node from which to allocate the
1577  * next slab entry.
1578  * @policy must be protected by freeing by the caller.  If @policy is
1579  * the current task's mempolicy, this protection is implicit, as only the
1580  * task can change it's policy.  The system default policy requires no
1581  * such protection.
1582  */
1583 unsigned slab_node(struct mempolicy *policy)
1584 {
1585 	if (!policy || policy->flags & MPOL_F_LOCAL)
1586 		return numa_node_id();
1587 
1588 	switch (policy->mode) {
1589 	case MPOL_PREFERRED:
1590 		/*
1591 		 * handled MPOL_F_LOCAL above
1592 		 */
1593 		return policy->v.preferred_node;
1594 
1595 	case MPOL_INTERLEAVE:
1596 		return interleave_nodes(policy);
1597 
1598 	case MPOL_BIND: {
1599 		/*
1600 		 * Follow bind policy behavior and start allocation at the
1601 		 * first node.
1602 		 */
1603 		struct zonelist *zonelist;
1604 		struct zone *zone;
1605 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1606 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1607 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1608 							&policy->v.nodes,
1609 							&zone);
1610 		return zone ? zone->node : numa_node_id();
1611 	}
1612 
1613 	default:
1614 		BUG();
1615 	}
1616 }
1617 
1618 /* Do static interleaving for a VMA with known offset. */
1619 static unsigned offset_il_node(struct mempolicy *pol,
1620 		struct vm_area_struct *vma, unsigned long off)
1621 {
1622 	unsigned nnodes = nodes_weight(pol->v.nodes);
1623 	unsigned target;
1624 	int c;
1625 	int nid = -1;
1626 
1627 	if (!nnodes)
1628 		return numa_node_id();
1629 	target = (unsigned int)off % nnodes;
1630 	c = 0;
1631 	do {
1632 		nid = next_node(nid, pol->v.nodes);
1633 		c++;
1634 	} while (c <= target);
1635 	return nid;
1636 }
1637 
1638 /* Determine a node number for interleave */
1639 static inline unsigned interleave_nid(struct mempolicy *pol,
1640 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1641 {
1642 	if (vma) {
1643 		unsigned long off;
1644 
1645 		/*
1646 		 * for small pages, there is no difference between
1647 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1648 		 * for huge pages, since vm_pgoff is in units of small
1649 		 * pages, we need to shift off the always 0 bits to get
1650 		 * a useful offset.
1651 		 */
1652 		BUG_ON(shift < PAGE_SHIFT);
1653 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1654 		off += (addr - vma->vm_start) >> shift;
1655 		return offset_il_node(pol, vma, off);
1656 	} else
1657 		return interleave_nodes(pol);
1658 }
1659 
1660 /*
1661  * Return the bit number of a random bit set in the nodemask.
1662  * (returns -1 if nodemask is empty)
1663  */
1664 int node_random(const nodemask_t *maskp)
1665 {
1666 	int w, bit = -1;
1667 
1668 	w = nodes_weight(*maskp);
1669 	if (w)
1670 		bit = bitmap_ord_to_pos(maskp->bits,
1671 			get_random_int() % w, MAX_NUMNODES);
1672 	return bit;
1673 }
1674 
1675 #ifdef CONFIG_HUGETLBFS
1676 /*
1677  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1678  * @vma = virtual memory area whose policy is sought
1679  * @addr = address in @vma for shared policy lookup and interleave policy
1680  * @gfp_flags = for requested zone
1681  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1682  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1683  *
1684  * Returns a zonelist suitable for a huge page allocation and a pointer
1685  * to the struct mempolicy for conditional unref after allocation.
1686  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1687  * @nodemask for filtering the zonelist.
1688  *
1689  * Must be protected by get_mems_allowed()
1690  */
1691 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1692 				gfp_t gfp_flags, struct mempolicy **mpol,
1693 				nodemask_t **nodemask)
1694 {
1695 	struct zonelist *zl;
1696 
1697 	*mpol = get_vma_policy(current, vma, addr);
1698 	*nodemask = NULL;	/* assume !MPOL_BIND */
1699 
1700 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1701 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1702 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1703 	} else {
1704 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1705 		if ((*mpol)->mode == MPOL_BIND)
1706 			*nodemask = &(*mpol)->v.nodes;
1707 	}
1708 	return zl;
1709 }
1710 
1711 /*
1712  * init_nodemask_of_mempolicy
1713  *
1714  * If the current task's mempolicy is "default" [NULL], return 'false'
1715  * to indicate default policy.  Otherwise, extract the policy nodemask
1716  * for 'bind' or 'interleave' policy into the argument nodemask, or
1717  * initialize the argument nodemask to contain the single node for
1718  * 'preferred' or 'local' policy and return 'true' to indicate presence
1719  * of non-default mempolicy.
1720  *
1721  * We don't bother with reference counting the mempolicy [mpol_get/put]
1722  * because the current task is examining it's own mempolicy and a task's
1723  * mempolicy is only ever changed by the task itself.
1724  *
1725  * N.B., it is the caller's responsibility to free a returned nodemask.
1726  */
1727 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1728 {
1729 	struct mempolicy *mempolicy;
1730 	int nid;
1731 
1732 	if (!(mask && current->mempolicy))
1733 		return false;
1734 
1735 	task_lock(current);
1736 	mempolicy = current->mempolicy;
1737 	switch (mempolicy->mode) {
1738 	case MPOL_PREFERRED:
1739 		if (mempolicy->flags & MPOL_F_LOCAL)
1740 			nid = numa_node_id();
1741 		else
1742 			nid = mempolicy->v.preferred_node;
1743 		init_nodemask_of_node(mask, nid);
1744 		break;
1745 
1746 	case MPOL_BIND:
1747 		/* Fall through */
1748 	case MPOL_INTERLEAVE:
1749 		*mask =  mempolicy->v.nodes;
1750 		break;
1751 
1752 	default:
1753 		BUG();
1754 	}
1755 	task_unlock(current);
1756 
1757 	return true;
1758 }
1759 #endif
1760 
1761 /*
1762  * mempolicy_nodemask_intersects
1763  *
1764  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1765  * policy.  Otherwise, check for intersection between mask and the policy
1766  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1767  * policy, always return true since it may allocate elsewhere on fallback.
1768  *
1769  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1770  */
1771 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1772 					const nodemask_t *mask)
1773 {
1774 	struct mempolicy *mempolicy;
1775 	bool ret = true;
1776 
1777 	if (!mask)
1778 		return ret;
1779 	task_lock(tsk);
1780 	mempolicy = tsk->mempolicy;
1781 	if (!mempolicy)
1782 		goto out;
1783 
1784 	switch (mempolicy->mode) {
1785 	case MPOL_PREFERRED:
1786 		/*
1787 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1788 		 * allocate from, they may fallback to other nodes when oom.
1789 		 * Thus, it's possible for tsk to have allocated memory from
1790 		 * nodes in mask.
1791 		 */
1792 		break;
1793 	case MPOL_BIND:
1794 	case MPOL_INTERLEAVE:
1795 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1796 		break;
1797 	default:
1798 		BUG();
1799 	}
1800 out:
1801 	task_unlock(tsk);
1802 	return ret;
1803 }
1804 
1805 /* Allocate a page in interleaved policy.
1806    Own path because it needs to do special accounting. */
1807 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1808 					unsigned nid)
1809 {
1810 	struct zonelist *zl;
1811 	struct page *page;
1812 
1813 	zl = node_zonelist(nid, gfp);
1814 	page = __alloc_pages(gfp, order, zl);
1815 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1816 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1817 	return page;
1818 }
1819 
1820 /**
1821  * 	alloc_pages_vma	- Allocate a page for a VMA.
1822  *
1823  * 	@gfp:
1824  *      %GFP_USER    user allocation.
1825  *      %GFP_KERNEL  kernel allocations,
1826  *      %GFP_HIGHMEM highmem/user allocations,
1827  *      %GFP_FS      allocation should not call back into a file system.
1828  *      %GFP_ATOMIC  don't sleep.
1829  *
1830  *	@order:Order of the GFP allocation.
1831  * 	@vma:  Pointer to VMA or NULL if not available.
1832  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1833  *
1834  * 	This function allocates a page from the kernel page pool and applies
1835  *	a NUMA policy associated with the VMA or the current process.
1836  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1837  *	mm_struct of the VMA to prevent it from going away. Should be used for
1838  *	all allocations for pages that will be mapped into
1839  * 	user space. Returns NULL when no page can be allocated.
1840  *
1841  *	Should be called with the mm_sem of the vma hold.
1842  */
1843 struct page *
1844 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1845 		unsigned long addr, int node)
1846 {
1847 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1848 	struct zonelist *zl;
1849 	struct page *page;
1850 
1851 	get_mems_allowed();
1852 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1853 		unsigned nid;
1854 
1855 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1856 		mpol_cond_put(pol);
1857 		page = alloc_page_interleave(gfp, order, nid);
1858 		put_mems_allowed();
1859 		return page;
1860 	}
1861 	zl = policy_zonelist(gfp, pol, node);
1862 	if (unlikely(mpol_needs_cond_ref(pol))) {
1863 		/*
1864 		 * slow path: ref counted shared policy
1865 		 */
1866 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1867 						zl, policy_nodemask(gfp, pol));
1868 		__mpol_put(pol);
1869 		put_mems_allowed();
1870 		return page;
1871 	}
1872 	/*
1873 	 * fast path:  default or task policy
1874 	 */
1875 	page = __alloc_pages_nodemask(gfp, order, zl,
1876 				      policy_nodemask(gfp, pol));
1877 	put_mems_allowed();
1878 	return page;
1879 }
1880 
1881 /**
1882  * 	alloc_pages_current - Allocate pages.
1883  *
1884  *	@gfp:
1885  *		%GFP_USER   user allocation,
1886  *      	%GFP_KERNEL kernel allocation,
1887  *      	%GFP_HIGHMEM highmem allocation,
1888  *      	%GFP_FS     don't call back into a file system.
1889  *      	%GFP_ATOMIC don't sleep.
1890  *	@order: Power of two of allocation size in pages. 0 is a single page.
1891  *
1892  *	Allocate a page from the kernel page pool.  When not in
1893  *	interrupt context and apply the current process NUMA policy.
1894  *	Returns NULL when no page can be allocated.
1895  *
1896  *	Don't call cpuset_update_task_memory_state() unless
1897  *	1) it's ok to take cpuset_sem (can WAIT), and
1898  *	2) allocating for current task (not interrupt).
1899  */
1900 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1901 {
1902 	struct mempolicy *pol = current->mempolicy;
1903 	struct page *page;
1904 
1905 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1906 		pol = &default_policy;
1907 
1908 	get_mems_allowed();
1909 	/*
1910 	 * No reference counting needed for current->mempolicy
1911 	 * nor system default_policy
1912 	 */
1913 	if (pol->mode == MPOL_INTERLEAVE)
1914 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1915 	else
1916 		page = __alloc_pages_nodemask(gfp, order,
1917 				policy_zonelist(gfp, pol, numa_node_id()),
1918 				policy_nodemask(gfp, pol));
1919 	put_mems_allowed();
1920 	return page;
1921 }
1922 EXPORT_SYMBOL(alloc_pages_current);
1923 
1924 /*
1925  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1926  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1927  * with the mems_allowed returned by cpuset_mems_allowed().  This
1928  * keeps mempolicies cpuset relative after its cpuset moves.  See
1929  * further kernel/cpuset.c update_nodemask().
1930  *
1931  * current's mempolicy may be rebinded by the other task(the task that changes
1932  * cpuset's mems), so we needn't do rebind work for current task.
1933  */
1934 
1935 /* Slow path of a mempolicy duplicate */
1936 struct mempolicy *__mpol_dup(struct mempolicy *old)
1937 {
1938 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1939 
1940 	if (!new)
1941 		return ERR_PTR(-ENOMEM);
1942 
1943 	/* task's mempolicy is protected by alloc_lock */
1944 	if (old == current->mempolicy) {
1945 		task_lock(current);
1946 		*new = *old;
1947 		task_unlock(current);
1948 	} else
1949 		*new = *old;
1950 
1951 	rcu_read_lock();
1952 	if (current_cpuset_is_being_rebound()) {
1953 		nodemask_t mems = cpuset_mems_allowed(current);
1954 		if (new->flags & MPOL_F_REBINDING)
1955 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1956 		else
1957 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1958 	}
1959 	rcu_read_unlock();
1960 	atomic_set(&new->refcnt, 1);
1961 	return new;
1962 }
1963 
1964 /*
1965  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1966  * eliminate the * MPOL_F_* flags that require conditional ref and
1967  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1968  * after return.  Use the returned value.
1969  *
1970  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1971  * policy lookup, even if the policy needs/has extra ref on lookup.
1972  * shmem_readahead needs this.
1973  */
1974 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1975 						struct mempolicy *frompol)
1976 {
1977 	if (!mpol_needs_cond_ref(frompol))
1978 		return frompol;
1979 
1980 	*tompol = *frompol;
1981 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1982 	__mpol_put(frompol);
1983 	return tompol;
1984 }
1985 
1986 /* Slow path of a mempolicy comparison */
1987 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1988 {
1989 	if (!a || !b)
1990 		return false;
1991 	if (a->mode != b->mode)
1992 		return false;
1993 	if (a->flags != b->flags)
1994 		return false;
1995 	if (mpol_store_user_nodemask(a))
1996 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1997 			return false;
1998 
1999 	switch (a->mode) {
2000 	case MPOL_BIND:
2001 		/* Fall through */
2002 	case MPOL_INTERLEAVE:
2003 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2004 	case MPOL_PREFERRED:
2005 		return a->v.preferred_node == b->v.preferred_node;
2006 	default:
2007 		BUG();
2008 		return false;
2009 	}
2010 }
2011 
2012 /*
2013  * Shared memory backing store policy support.
2014  *
2015  * Remember policies even when nobody has shared memory mapped.
2016  * The policies are kept in Red-Black tree linked from the inode.
2017  * They are protected by the sp->lock spinlock, which should be held
2018  * for any accesses to the tree.
2019  */
2020 
2021 /* lookup first element intersecting start-end */
2022 /* Caller holds sp->lock */
2023 static struct sp_node *
2024 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2025 {
2026 	struct rb_node *n = sp->root.rb_node;
2027 
2028 	while (n) {
2029 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2030 
2031 		if (start >= p->end)
2032 			n = n->rb_right;
2033 		else if (end <= p->start)
2034 			n = n->rb_left;
2035 		else
2036 			break;
2037 	}
2038 	if (!n)
2039 		return NULL;
2040 	for (;;) {
2041 		struct sp_node *w = NULL;
2042 		struct rb_node *prev = rb_prev(n);
2043 		if (!prev)
2044 			break;
2045 		w = rb_entry(prev, struct sp_node, nd);
2046 		if (w->end <= start)
2047 			break;
2048 		n = prev;
2049 	}
2050 	return rb_entry(n, struct sp_node, nd);
2051 }
2052 
2053 /* Insert a new shared policy into the list. */
2054 /* Caller holds sp->lock */
2055 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2056 {
2057 	struct rb_node **p = &sp->root.rb_node;
2058 	struct rb_node *parent = NULL;
2059 	struct sp_node *nd;
2060 
2061 	while (*p) {
2062 		parent = *p;
2063 		nd = rb_entry(parent, struct sp_node, nd);
2064 		if (new->start < nd->start)
2065 			p = &(*p)->rb_left;
2066 		else if (new->end > nd->end)
2067 			p = &(*p)->rb_right;
2068 		else
2069 			BUG();
2070 	}
2071 	rb_link_node(&new->nd, parent, p);
2072 	rb_insert_color(&new->nd, &sp->root);
2073 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2074 		 new->policy ? new->policy->mode : 0);
2075 }
2076 
2077 /* Find shared policy intersecting idx */
2078 struct mempolicy *
2079 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2080 {
2081 	struct mempolicy *pol = NULL;
2082 	struct sp_node *sn;
2083 
2084 	if (!sp->root.rb_node)
2085 		return NULL;
2086 	spin_lock(&sp->lock);
2087 	sn = sp_lookup(sp, idx, idx+1);
2088 	if (sn) {
2089 		mpol_get(sn->policy);
2090 		pol = sn->policy;
2091 	}
2092 	spin_unlock(&sp->lock);
2093 	return pol;
2094 }
2095 
2096 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2097 {
2098 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2099 	rb_erase(&n->nd, &sp->root);
2100 	mpol_put(n->policy);
2101 	kmem_cache_free(sn_cache, n);
2102 }
2103 
2104 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2105 				struct mempolicy *pol)
2106 {
2107 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2108 
2109 	if (!n)
2110 		return NULL;
2111 	n->start = start;
2112 	n->end = end;
2113 	mpol_get(pol);
2114 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2115 	n->policy = pol;
2116 	return n;
2117 }
2118 
2119 /* Replace a policy range. */
2120 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2121 				 unsigned long end, struct sp_node *new)
2122 {
2123 	struct sp_node *n, *new2 = NULL;
2124 
2125 restart:
2126 	spin_lock(&sp->lock);
2127 	n = sp_lookup(sp, start, end);
2128 	/* Take care of old policies in the same range. */
2129 	while (n && n->start < end) {
2130 		struct rb_node *next = rb_next(&n->nd);
2131 		if (n->start >= start) {
2132 			if (n->end <= end)
2133 				sp_delete(sp, n);
2134 			else
2135 				n->start = end;
2136 		} else {
2137 			/* Old policy spanning whole new range. */
2138 			if (n->end > end) {
2139 				if (!new2) {
2140 					spin_unlock(&sp->lock);
2141 					new2 = sp_alloc(end, n->end, n->policy);
2142 					if (!new2)
2143 						return -ENOMEM;
2144 					goto restart;
2145 				}
2146 				n->end = start;
2147 				sp_insert(sp, new2);
2148 				new2 = NULL;
2149 				break;
2150 			} else
2151 				n->end = start;
2152 		}
2153 		if (!next)
2154 			break;
2155 		n = rb_entry(next, struct sp_node, nd);
2156 	}
2157 	if (new)
2158 		sp_insert(sp, new);
2159 	spin_unlock(&sp->lock);
2160 	if (new2) {
2161 		mpol_put(new2->policy);
2162 		kmem_cache_free(sn_cache, new2);
2163 	}
2164 	return 0;
2165 }
2166 
2167 /**
2168  * mpol_shared_policy_init - initialize shared policy for inode
2169  * @sp: pointer to inode shared policy
2170  * @mpol:  struct mempolicy to install
2171  *
2172  * Install non-NULL @mpol in inode's shared policy rb-tree.
2173  * On entry, the current task has a reference on a non-NULL @mpol.
2174  * This must be released on exit.
2175  * This is called at get_inode() calls and we can use GFP_KERNEL.
2176  */
2177 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2178 {
2179 	int ret;
2180 
2181 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2182 	spin_lock_init(&sp->lock);
2183 
2184 	if (mpol) {
2185 		struct vm_area_struct pvma;
2186 		struct mempolicy *new;
2187 		NODEMASK_SCRATCH(scratch);
2188 
2189 		if (!scratch)
2190 			goto put_mpol;
2191 		/* contextualize the tmpfs mount point mempolicy */
2192 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2193 		if (IS_ERR(new))
2194 			goto free_scratch; /* no valid nodemask intersection */
2195 
2196 		task_lock(current);
2197 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2198 		task_unlock(current);
2199 		if (ret)
2200 			goto put_new;
2201 
2202 		/* Create pseudo-vma that contains just the policy */
2203 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2204 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2205 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2206 
2207 put_new:
2208 		mpol_put(new);			/* drop initial ref */
2209 free_scratch:
2210 		NODEMASK_SCRATCH_FREE(scratch);
2211 put_mpol:
2212 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2213 	}
2214 }
2215 
2216 int mpol_set_shared_policy(struct shared_policy *info,
2217 			struct vm_area_struct *vma, struct mempolicy *npol)
2218 {
2219 	int err;
2220 	struct sp_node *new = NULL;
2221 	unsigned long sz = vma_pages(vma);
2222 
2223 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2224 		 vma->vm_pgoff,
2225 		 sz, npol ? npol->mode : -1,
2226 		 npol ? npol->flags : -1,
2227 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2228 
2229 	if (npol) {
2230 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2231 		if (!new)
2232 			return -ENOMEM;
2233 	}
2234 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2235 	if (err && new)
2236 		kmem_cache_free(sn_cache, new);
2237 	return err;
2238 }
2239 
2240 /* Free a backing policy store on inode delete. */
2241 void mpol_free_shared_policy(struct shared_policy *p)
2242 {
2243 	struct sp_node *n;
2244 	struct rb_node *next;
2245 
2246 	if (!p->root.rb_node)
2247 		return;
2248 	spin_lock(&p->lock);
2249 	next = rb_first(&p->root);
2250 	while (next) {
2251 		n = rb_entry(next, struct sp_node, nd);
2252 		next = rb_next(&n->nd);
2253 		rb_erase(&n->nd, &p->root);
2254 		mpol_put(n->policy);
2255 		kmem_cache_free(sn_cache, n);
2256 	}
2257 	spin_unlock(&p->lock);
2258 }
2259 
2260 /* assumes fs == KERNEL_DS */
2261 void __init numa_policy_init(void)
2262 {
2263 	nodemask_t interleave_nodes;
2264 	unsigned long largest = 0;
2265 	int nid, prefer = 0;
2266 
2267 	policy_cache = kmem_cache_create("numa_policy",
2268 					 sizeof(struct mempolicy),
2269 					 0, SLAB_PANIC, NULL);
2270 
2271 	sn_cache = kmem_cache_create("shared_policy_node",
2272 				     sizeof(struct sp_node),
2273 				     0, SLAB_PANIC, NULL);
2274 
2275 	/*
2276 	 * Set interleaving policy for system init. Interleaving is only
2277 	 * enabled across suitably sized nodes (default is >= 16MB), or
2278 	 * fall back to the largest node if they're all smaller.
2279 	 */
2280 	nodes_clear(interleave_nodes);
2281 	for_each_node_state(nid, N_HIGH_MEMORY) {
2282 		unsigned long total_pages = node_present_pages(nid);
2283 
2284 		/* Preserve the largest node */
2285 		if (largest < total_pages) {
2286 			largest = total_pages;
2287 			prefer = nid;
2288 		}
2289 
2290 		/* Interleave this node? */
2291 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2292 			node_set(nid, interleave_nodes);
2293 	}
2294 
2295 	/* All too small, use the largest */
2296 	if (unlikely(nodes_empty(interleave_nodes)))
2297 		node_set(prefer, interleave_nodes);
2298 
2299 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2300 		printk("numa_policy_init: interleaving failed\n");
2301 }
2302 
2303 /* Reset policy of current process to default */
2304 void numa_default_policy(void)
2305 {
2306 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2307 }
2308 
2309 /*
2310  * Parse and format mempolicy from/to strings
2311  */
2312 
2313 /*
2314  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2315  * Used only for mpol_parse_str() and mpol_to_str()
2316  */
2317 #define MPOL_LOCAL MPOL_MAX
2318 static const char * const policy_modes[] =
2319 {
2320 	[MPOL_DEFAULT]    = "default",
2321 	[MPOL_PREFERRED]  = "prefer",
2322 	[MPOL_BIND]       = "bind",
2323 	[MPOL_INTERLEAVE] = "interleave",
2324 	[MPOL_LOCAL]      = "local"
2325 };
2326 
2327 
2328 #ifdef CONFIG_TMPFS
2329 /**
2330  * mpol_parse_str - parse string to mempolicy
2331  * @str:  string containing mempolicy to parse
2332  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2333  * @no_context:  flag whether to "contextualize" the mempolicy
2334  *
2335  * Format of input:
2336  *	<mode>[=<flags>][:<nodelist>]
2337  *
2338  * if @no_context is true, save the input nodemask in w.user_nodemask in
2339  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2340  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2341  * mount option.  Note that if 'static' or 'relative' mode flags were
2342  * specified, the input nodemask will already have been saved.  Saving
2343  * it again is redundant, but safe.
2344  *
2345  * On success, returns 0, else 1
2346  */
2347 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2348 {
2349 	struct mempolicy *new = NULL;
2350 	unsigned short mode;
2351 	unsigned short uninitialized_var(mode_flags);
2352 	nodemask_t nodes;
2353 	char *nodelist = strchr(str, ':');
2354 	char *flags = strchr(str, '=');
2355 	int err = 1;
2356 
2357 	if (nodelist) {
2358 		/* NUL-terminate mode or flags string */
2359 		*nodelist++ = '\0';
2360 		if (nodelist_parse(nodelist, nodes))
2361 			goto out;
2362 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2363 			goto out;
2364 	} else
2365 		nodes_clear(nodes);
2366 
2367 	if (flags)
2368 		*flags++ = '\0';	/* terminate mode string */
2369 
2370 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2371 		if (!strcmp(str, policy_modes[mode])) {
2372 			break;
2373 		}
2374 	}
2375 	if (mode > MPOL_LOCAL)
2376 		goto out;
2377 
2378 	switch (mode) {
2379 	case MPOL_PREFERRED:
2380 		/*
2381 		 * Insist on a nodelist of one node only
2382 		 */
2383 		if (nodelist) {
2384 			char *rest = nodelist;
2385 			while (isdigit(*rest))
2386 				rest++;
2387 			if (*rest)
2388 				goto out;
2389 		}
2390 		break;
2391 	case MPOL_INTERLEAVE:
2392 		/*
2393 		 * Default to online nodes with memory if no nodelist
2394 		 */
2395 		if (!nodelist)
2396 			nodes = node_states[N_HIGH_MEMORY];
2397 		break;
2398 	case MPOL_LOCAL:
2399 		/*
2400 		 * Don't allow a nodelist;  mpol_new() checks flags
2401 		 */
2402 		if (nodelist)
2403 			goto out;
2404 		mode = MPOL_PREFERRED;
2405 		break;
2406 	case MPOL_DEFAULT:
2407 		/*
2408 		 * Insist on a empty nodelist
2409 		 */
2410 		if (!nodelist)
2411 			err = 0;
2412 		goto out;
2413 	case MPOL_BIND:
2414 		/*
2415 		 * Insist on a nodelist
2416 		 */
2417 		if (!nodelist)
2418 			goto out;
2419 	}
2420 
2421 	mode_flags = 0;
2422 	if (flags) {
2423 		/*
2424 		 * Currently, we only support two mutually exclusive
2425 		 * mode flags.
2426 		 */
2427 		if (!strcmp(flags, "static"))
2428 			mode_flags |= MPOL_F_STATIC_NODES;
2429 		else if (!strcmp(flags, "relative"))
2430 			mode_flags |= MPOL_F_RELATIVE_NODES;
2431 		else
2432 			goto out;
2433 	}
2434 
2435 	new = mpol_new(mode, mode_flags, &nodes);
2436 	if (IS_ERR(new))
2437 		goto out;
2438 
2439 	if (no_context) {
2440 		/* save for contextualization */
2441 		new->w.user_nodemask = nodes;
2442 	} else {
2443 		int ret;
2444 		NODEMASK_SCRATCH(scratch);
2445 		if (scratch) {
2446 			task_lock(current);
2447 			ret = mpol_set_nodemask(new, &nodes, scratch);
2448 			task_unlock(current);
2449 		} else
2450 			ret = -ENOMEM;
2451 		NODEMASK_SCRATCH_FREE(scratch);
2452 		if (ret) {
2453 			mpol_put(new);
2454 			goto out;
2455 		}
2456 	}
2457 	err = 0;
2458 
2459 out:
2460 	/* Restore string for error message */
2461 	if (nodelist)
2462 		*--nodelist = ':';
2463 	if (flags)
2464 		*--flags = '=';
2465 	if (!err)
2466 		*mpol = new;
2467 	return err;
2468 }
2469 #endif /* CONFIG_TMPFS */
2470 
2471 /**
2472  * mpol_to_str - format a mempolicy structure for printing
2473  * @buffer:  to contain formatted mempolicy string
2474  * @maxlen:  length of @buffer
2475  * @pol:  pointer to mempolicy to be formatted
2476  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2477  *
2478  * Convert a mempolicy into a string.
2479  * Returns the number of characters in buffer (if positive)
2480  * or an error (negative)
2481  */
2482 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2483 {
2484 	char *p = buffer;
2485 	int l;
2486 	nodemask_t nodes;
2487 	unsigned short mode;
2488 	unsigned short flags = pol ? pol->flags : 0;
2489 
2490 	/*
2491 	 * Sanity check:  room for longest mode, flag and some nodes
2492 	 */
2493 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2494 
2495 	if (!pol || pol == &default_policy)
2496 		mode = MPOL_DEFAULT;
2497 	else
2498 		mode = pol->mode;
2499 
2500 	switch (mode) {
2501 	case MPOL_DEFAULT:
2502 		nodes_clear(nodes);
2503 		break;
2504 
2505 	case MPOL_PREFERRED:
2506 		nodes_clear(nodes);
2507 		if (flags & MPOL_F_LOCAL)
2508 			mode = MPOL_LOCAL;	/* pseudo-policy */
2509 		else
2510 			node_set(pol->v.preferred_node, nodes);
2511 		break;
2512 
2513 	case MPOL_BIND:
2514 		/* Fall through */
2515 	case MPOL_INTERLEAVE:
2516 		if (no_context)
2517 			nodes = pol->w.user_nodemask;
2518 		else
2519 			nodes = pol->v.nodes;
2520 		break;
2521 
2522 	default:
2523 		BUG();
2524 	}
2525 
2526 	l = strlen(policy_modes[mode]);
2527 	if (buffer + maxlen < p + l + 1)
2528 		return -ENOSPC;
2529 
2530 	strcpy(p, policy_modes[mode]);
2531 	p += l;
2532 
2533 	if (flags & MPOL_MODE_FLAGS) {
2534 		if (buffer + maxlen < p + 2)
2535 			return -ENOSPC;
2536 		*p++ = '=';
2537 
2538 		/*
2539 		 * Currently, the only defined flags are mutually exclusive
2540 		 */
2541 		if (flags & MPOL_F_STATIC_NODES)
2542 			p += snprintf(p, buffer + maxlen - p, "static");
2543 		else if (flags & MPOL_F_RELATIVE_NODES)
2544 			p += snprintf(p, buffer + maxlen - p, "relative");
2545 	}
2546 
2547 	if (!nodes_empty(nodes)) {
2548 		if (buffer + maxlen < p + 2)
2549 			return -ENOSPC;
2550 		*p++ = ':';
2551 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2552 	}
2553 	return p - buffer;
2554 }
2555