1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 #include <linux/random.h> 101 102 #include "internal.h" 103 104 /* Internal flags */ 105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 107 108 static struct kmem_cache *policy_cache; 109 static struct kmem_cache *sn_cache; 110 111 /* Highest zone. An specific allocation for a zone below that is not 112 policied. */ 113 enum zone_type policy_zone = 0; 114 115 /* 116 * run-time system-wide default policy => local allocation 117 */ 118 static struct mempolicy default_policy = { 119 .refcnt = ATOMIC_INIT(1), /* never free it */ 120 .mode = MPOL_PREFERRED, 121 .flags = MPOL_F_LOCAL, 122 }; 123 124 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 125 126 struct mempolicy *get_task_policy(struct task_struct *p) 127 { 128 struct mempolicy *pol = p->mempolicy; 129 int node; 130 131 if (pol) 132 return pol; 133 134 node = numa_node_id(); 135 if (node != NUMA_NO_NODE) { 136 pol = &preferred_node_policy[node]; 137 /* preferred_node_policy is not initialised early in boot */ 138 if (pol->mode) 139 return pol; 140 } 141 142 return &default_policy; 143 } 144 145 static const struct mempolicy_operations { 146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 147 /* 148 * If read-side task has no lock to protect task->mempolicy, write-side 149 * task will rebind the task->mempolicy by two step. The first step is 150 * setting all the newly nodes, and the second step is cleaning all the 151 * disallowed nodes. In this way, we can avoid finding no node to alloc 152 * page. 153 * If we have a lock to protect task->mempolicy in read-side, we do 154 * rebind directly. 155 * 156 * step: 157 * MPOL_REBIND_ONCE - do rebind work at once 158 * MPOL_REBIND_STEP1 - set all the newly nodes 159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 160 */ 161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 162 enum mpol_rebind_step step); 163 } mpol_ops[MPOL_MAX]; 164 165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 166 { 167 return pol->flags & MPOL_MODE_FLAGS; 168 } 169 170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 171 const nodemask_t *rel) 172 { 173 nodemask_t tmp; 174 nodes_fold(tmp, *orig, nodes_weight(*rel)); 175 nodes_onto(*ret, tmp, *rel); 176 } 177 178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 179 { 180 if (nodes_empty(*nodes)) 181 return -EINVAL; 182 pol->v.nodes = *nodes; 183 return 0; 184 } 185 186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (!nodes) 189 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 190 else if (nodes_empty(*nodes)) 191 return -EINVAL; /* no allowed nodes */ 192 else 193 pol->v.preferred_node = first_node(*nodes); 194 return 0; 195 } 196 197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 198 { 199 if (nodes_empty(*nodes)) 200 return -EINVAL; 201 pol->v.nodes = *nodes; 202 return 0; 203 } 204 205 /* 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 207 * any, for the new policy. mpol_new() has already validated the nodes 208 * parameter with respect to the policy mode and flags. But, we need to 209 * handle an empty nodemask with MPOL_PREFERRED here. 210 * 211 * Must be called holding task's alloc_lock to protect task's mems_allowed 212 * and mempolicy. May also be called holding the mmap_semaphore for write. 213 */ 214 static int mpol_set_nodemask(struct mempolicy *pol, 215 const nodemask_t *nodes, struct nodemask_scratch *nsc) 216 { 217 int ret; 218 219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 220 if (pol == NULL) 221 return 0; 222 /* Check N_MEMORY */ 223 nodes_and(nsc->mask1, 224 cpuset_current_mems_allowed, node_states[N_MEMORY]); 225 226 VM_BUG_ON(!nodes); 227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 228 nodes = NULL; /* explicit local allocation */ 229 else { 230 if (pol->flags & MPOL_F_RELATIVE_NODES) 231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 232 else 233 nodes_and(nsc->mask2, *nodes, nsc->mask1); 234 235 if (mpol_store_user_nodemask(pol)) 236 pol->w.user_nodemask = *nodes; 237 else 238 pol->w.cpuset_mems_allowed = 239 cpuset_current_mems_allowed; 240 } 241 242 if (nodes) 243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 244 else 245 ret = mpol_ops[pol->mode].create(pol, NULL); 246 return ret; 247 } 248 249 /* 250 * This function just creates a new policy, does some check and simple 251 * initialization. You must invoke mpol_set_nodemask() to set nodes. 252 */ 253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 254 nodemask_t *nodes) 255 { 256 struct mempolicy *policy; 257 258 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 260 261 if (mode == MPOL_DEFAULT) { 262 if (nodes && !nodes_empty(*nodes)) 263 return ERR_PTR(-EINVAL); 264 return NULL; 265 } 266 VM_BUG_ON(!nodes); 267 268 /* 269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 271 * All other modes require a valid pointer to a non-empty nodemask. 272 */ 273 if (mode == MPOL_PREFERRED) { 274 if (nodes_empty(*nodes)) { 275 if (((flags & MPOL_F_STATIC_NODES) || 276 (flags & MPOL_F_RELATIVE_NODES))) 277 return ERR_PTR(-EINVAL); 278 } 279 } else if (mode == MPOL_LOCAL) { 280 if (!nodes_empty(*nodes)) 281 return ERR_PTR(-EINVAL); 282 mode = MPOL_PREFERRED; 283 } else if (nodes_empty(*nodes)) 284 return ERR_PTR(-EINVAL); 285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 286 if (!policy) 287 return ERR_PTR(-ENOMEM); 288 atomic_set(&policy->refcnt, 1); 289 policy->mode = mode; 290 policy->flags = flags; 291 292 return policy; 293 } 294 295 /* Slow path of a mpol destructor. */ 296 void __mpol_put(struct mempolicy *p) 297 { 298 if (!atomic_dec_and_test(&p->refcnt)) 299 return; 300 kmem_cache_free(policy_cache, p); 301 } 302 303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 } 307 308 /* 309 * step: 310 * MPOL_REBIND_ONCE - do rebind work at once 311 * MPOL_REBIND_STEP1 - set all the newly nodes 312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 313 */ 314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 315 enum mpol_rebind_step step) 316 { 317 nodemask_t tmp; 318 319 if (pol->flags & MPOL_F_STATIC_NODES) 320 nodes_and(tmp, pol->w.user_nodemask, *nodes); 321 else if (pol->flags & MPOL_F_RELATIVE_NODES) 322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 323 else { 324 /* 325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 326 * result 327 */ 328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 329 nodes_remap(tmp, pol->v.nodes, 330 pol->w.cpuset_mems_allowed, *nodes); 331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 332 } else if (step == MPOL_REBIND_STEP2) { 333 tmp = pol->w.cpuset_mems_allowed; 334 pol->w.cpuset_mems_allowed = *nodes; 335 } else 336 BUG(); 337 } 338 339 if (nodes_empty(tmp)) 340 tmp = *nodes; 341 342 if (step == MPOL_REBIND_STEP1) 343 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 345 pol->v.nodes = tmp; 346 else 347 BUG(); 348 349 if (!node_isset(current->il_next, tmp)) { 350 current->il_next = next_node(current->il_next, tmp); 351 if (current->il_next >= MAX_NUMNODES) 352 current->il_next = first_node(tmp); 353 if (current->il_next >= MAX_NUMNODES) 354 current->il_next = numa_node_id(); 355 } 356 } 357 358 static void mpol_rebind_preferred(struct mempolicy *pol, 359 const nodemask_t *nodes, 360 enum mpol_rebind_step step) 361 { 362 nodemask_t tmp; 363 364 if (pol->flags & MPOL_F_STATIC_NODES) { 365 int node = first_node(pol->w.user_nodemask); 366 367 if (node_isset(node, *nodes)) { 368 pol->v.preferred_node = node; 369 pol->flags &= ~MPOL_F_LOCAL; 370 } else 371 pol->flags |= MPOL_F_LOCAL; 372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 374 pol->v.preferred_node = first_node(tmp); 375 } else if (!(pol->flags & MPOL_F_LOCAL)) { 376 pol->v.preferred_node = node_remap(pol->v.preferred_node, 377 pol->w.cpuset_mems_allowed, 378 *nodes); 379 pol->w.cpuset_mems_allowed = *nodes; 380 } 381 } 382 383 /* 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes 385 * 386 * If read-side task has no lock to protect task->mempolicy, write-side 387 * task will rebind the task->mempolicy by two step. The first step is 388 * setting all the newly nodes, and the second step is cleaning all the 389 * disallowed nodes. In this way, we can avoid finding no node to alloc 390 * page. 391 * If we have a lock to protect task->mempolicy in read-side, we do 392 * rebind directly. 393 * 394 * step: 395 * MPOL_REBIND_ONCE - do rebind work at once 396 * MPOL_REBIND_STEP1 - set all the newly nodes 397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 398 */ 399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 400 enum mpol_rebind_step step) 401 { 402 if (!pol) 403 return; 404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 406 return; 407 408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 409 return; 410 411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 412 BUG(); 413 414 if (step == MPOL_REBIND_STEP1) 415 pol->flags |= MPOL_F_REBINDING; 416 else if (step == MPOL_REBIND_STEP2) 417 pol->flags &= ~MPOL_F_REBINDING; 418 else if (step >= MPOL_REBIND_NSTEP) 419 BUG(); 420 421 mpol_ops[pol->mode].rebind(pol, newmask, step); 422 } 423 424 /* 425 * Wrapper for mpol_rebind_policy() that just requires task 426 * pointer, and updates task mempolicy. 427 * 428 * Called with task's alloc_lock held. 429 */ 430 431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 432 enum mpol_rebind_step step) 433 { 434 mpol_rebind_policy(tsk->mempolicy, new, step); 435 } 436 437 /* 438 * Rebind each vma in mm to new nodemask. 439 * 440 * Call holding a reference to mm. Takes mm->mmap_sem during call. 441 */ 442 443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 444 { 445 struct vm_area_struct *vma; 446 447 down_write(&mm->mmap_sem); 448 for (vma = mm->mmap; vma; vma = vma->vm_next) 449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 450 up_write(&mm->mmap_sem); 451 } 452 453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 454 [MPOL_DEFAULT] = { 455 .rebind = mpol_rebind_default, 456 }, 457 [MPOL_INTERLEAVE] = { 458 .create = mpol_new_interleave, 459 .rebind = mpol_rebind_nodemask, 460 }, 461 [MPOL_PREFERRED] = { 462 .create = mpol_new_preferred, 463 .rebind = mpol_rebind_preferred, 464 }, 465 [MPOL_BIND] = { 466 .create = mpol_new_bind, 467 .rebind = mpol_rebind_nodemask, 468 }, 469 }; 470 471 static void migrate_page_add(struct page *page, struct list_head *pagelist, 472 unsigned long flags); 473 474 struct queue_pages { 475 struct list_head *pagelist; 476 unsigned long flags; 477 nodemask_t *nmask; 478 struct vm_area_struct *prev; 479 }; 480 481 /* 482 * Scan through pages checking if pages follow certain conditions, 483 * and move them to the pagelist if they do. 484 */ 485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 486 unsigned long end, struct mm_walk *walk) 487 { 488 struct vm_area_struct *vma = walk->vma; 489 struct page *page; 490 struct queue_pages *qp = walk->private; 491 unsigned long flags = qp->flags; 492 int nid, ret; 493 pte_t *pte; 494 spinlock_t *ptl; 495 496 if (pmd_trans_huge(*pmd)) { 497 ptl = pmd_lock(walk->mm, pmd); 498 if (pmd_trans_huge(*pmd)) { 499 page = pmd_page(*pmd); 500 if (is_huge_zero_page(page)) { 501 spin_unlock(ptl); 502 split_huge_pmd(vma, pmd, addr); 503 } else { 504 get_page(page); 505 spin_unlock(ptl); 506 lock_page(page); 507 ret = split_huge_page(page); 508 unlock_page(page); 509 put_page(page); 510 if (ret) 511 return 0; 512 } 513 } else { 514 spin_unlock(ptl); 515 } 516 } 517 518 retry: 519 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 520 for (; addr != end; pte++, addr += PAGE_SIZE) { 521 if (!pte_present(*pte)) 522 continue; 523 page = vm_normal_page(vma, addr, *pte); 524 if (!page) 525 continue; 526 /* 527 * vm_normal_page() filters out zero pages, but there might 528 * still be PageReserved pages to skip, perhaps in a VDSO. 529 */ 530 if (PageReserved(page)) 531 continue; 532 nid = page_to_nid(page); 533 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 534 continue; 535 if (PageTail(page) && PageAnon(page)) { 536 get_page(page); 537 pte_unmap_unlock(pte, ptl); 538 lock_page(page); 539 ret = split_huge_page(page); 540 unlock_page(page); 541 put_page(page); 542 /* Failed to split -- skip. */ 543 if (ret) { 544 pte = pte_offset_map_lock(walk->mm, pmd, 545 addr, &ptl); 546 continue; 547 } 548 goto retry; 549 } 550 551 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 552 migrate_page_add(page, qp->pagelist, flags); 553 } 554 pte_unmap_unlock(pte - 1, ptl); 555 cond_resched(); 556 return 0; 557 } 558 559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 560 unsigned long addr, unsigned long end, 561 struct mm_walk *walk) 562 { 563 #ifdef CONFIG_HUGETLB_PAGE 564 struct queue_pages *qp = walk->private; 565 unsigned long flags = qp->flags; 566 int nid; 567 struct page *page; 568 spinlock_t *ptl; 569 pte_t entry; 570 571 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 572 entry = huge_ptep_get(pte); 573 if (!pte_present(entry)) 574 goto unlock; 575 page = pte_page(entry); 576 nid = page_to_nid(page); 577 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 578 goto unlock; 579 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 580 if (flags & (MPOL_MF_MOVE_ALL) || 581 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 582 isolate_huge_page(page, qp->pagelist); 583 unlock: 584 spin_unlock(ptl); 585 #else 586 BUG(); 587 #endif 588 return 0; 589 } 590 591 #ifdef CONFIG_NUMA_BALANCING 592 /* 593 * This is used to mark a range of virtual addresses to be inaccessible. 594 * These are later cleared by a NUMA hinting fault. Depending on these 595 * faults, pages may be migrated for better NUMA placement. 596 * 597 * This is assuming that NUMA faults are handled using PROT_NONE. If 598 * an architecture makes a different choice, it will need further 599 * changes to the core. 600 */ 601 unsigned long change_prot_numa(struct vm_area_struct *vma, 602 unsigned long addr, unsigned long end) 603 { 604 int nr_updated; 605 606 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 607 if (nr_updated) 608 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 609 610 return nr_updated; 611 } 612 #else 613 static unsigned long change_prot_numa(struct vm_area_struct *vma, 614 unsigned long addr, unsigned long end) 615 { 616 return 0; 617 } 618 #endif /* CONFIG_NUMA_BALANCING */ 619 620 static int queue_pages_test_walk(unsigned long start, unsigned long end, 621 struct mm_walk *walk) 622 { 623 struct vm_area_struct *vma = walk->vma; 624 struct queue_pages *qp = walk->private; 625 unsigned long endvma = vma->vm_end; 626 unsigned long flags = qp->flags; 627 628 if (vma->vm_flags & VM_PFNMAP) 629 return 1; 630 631 if (endvma > end) 632 endvma = end; 633 if (vma->vm_start > start) 634 start = vma->vm_start; 635 636 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 637 if (!vma->vm_next && vma->vm_end < end) 638 return -EFAULT; 639 if (qp->prev && qp->prev->vm_end < vma->vm_start) 640 return -EFAULT; 641 } 642 643 qp->prev = vma; 644 645 if (flags & MPOL_MF_LAZY) { 646 /* Similar to task_numa_work, skip inaccessible VMAs */ 647 if (vma_migratable(vma) && 648 vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) 649 change_prot_numa(vma, start, endvma); 650 return 1; 651 } 652 653 if ((flags & MPOL_MF_STRICT) || 654 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 655 vma_migratable(vma))) 656 /* queue pages from current vma */ 657 return 0; 658 return 1; 659 } 660 661 /* 662 * Walk through page tables and collect pages to be migrated. 663 * 664 * If pages found in a given range are on a set of nodes (determined by 665 * @nodes and @flags,) it's isolated and queued to the pagelist which is 666 * passed via @private.) 667 */ 668 static int 669 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 670 nodemask_t *nodes, unsigned long flags, 671 struct list_head *pagelist) 672 { 673 struct queue_pages qp = { 674 .pagelist = pagelist, 675 .flags = flags, 676 .nmask = nodes, 677 .prev = NULL, 678 }; 679 struct mm_walk queue_pages_walk = { 680 .hugetlb_entry = queue_pages_hugetlb, 681 .pmd_entry = queue_pages_pte_range, 682 .test_walk = queue_pages_test_walk, 683 .mm = mm, 684 .private = &qp, 685 }; 686 687 return walk_page_range(start, end, &queue_pages_walk); 688 } 689 690 /* 691 * Apply policy to a single VMA 692 * This must be called with the mmap_sem held for writing. 693 */ 694 static int vma_replace_policy(struct vm_area_struct *vma, 695 struct mempolicy *pol) 696 { 697 int err; 698 struct mempolicy *old; 699 struct mempolicy *new; 700 701 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 702 vma->vm_start, vma->vm_end, vma->vm_pgoff, 703 vma->vm_ops, vma->vm_file, 704 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 705 706 new = mpol_dup(pol); 707 if (IS_ERR(new)) 708 return PTR_ERR(new); 709 710 if (vma->vm_ops && vma->vm_ops->set_policy) { 711 err = vma->vm_ops->set_policy(vma, new); 712 if (err) 713 goto err_out; 714 } 715 716 old = vma->vm_policy; 717 vma->vm_policy = new; /* protected by mmap_sem */ 718 mpol_put(old); 719 720 return 0; 721 err_out: 722 mpol_put(new); 723 return err; 724 } 725 726 /* Step 2: apply policy to a range and do splits. */ 727 static int mbind_range(struct mm_struct *mm, unsigned long start, 728 unsigned long end, struct mempolicy *new_pol) 729 { 730 struct vm_area_struct *next; 731 struct vm_area_struct *prev; 732 struct vm_area_struct *vma; 733 int err = 0; 734 pgoff_t pgoff; 735 unsigned long vmstart; 736 unsigned long vmend; 737 738 vma = find_vma(mm, start); 739 if (!vma || vma->vm_start > start) 740 return -EFAULT; 741 742 prev = vma->vm_prev; 743 if (start > vma->vm_start) 744 prev = vma; 745 746 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 747 next = vma->vm_next; 748 vmstart = max(start, vma->vm_start); 749 vmend = min(end, vma->vm_end); 750 751 if (mpol_equal(vma_policy(vma), new_pol)) 752 continue; 753 754 pgoff = vma->vm_pgoff + 755 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 756 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 757 vma->anon_vma, vma->vm_file, pgoff, 758 new_pol, vma->vm_userfaultfd_ctx); 759 if (prev) { 760 vma = prev; 761 next = vma->vm_next; 762 if (mpol_equal(vma_policy(vma), new_pol)) 763 continue; 764 /* vma_merge() joined vma && vma->next, case 8 */ 765 goto replace; 766 } 767 if (vma->vm_start != vmstart) { 768 err = split_vma(vma->vm_mm, vma, vmstart, 1); 769 if (err) 770 goto out; 771 } 772 if (vma->vm_end != vmend) { 773 err = split_vma(vma->vm_mm, vma, vmend, 0); 774 if (err) 775 goto out; 776 } 777 replace: 778 err = vma_replace_policy(vma, new_pol); 779 if (err) 780 goto out; 781 } 782 783 out: 784 return err; 785 } 786 787 /* Set the process memory policy */ 788 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 789 nodemask_t *nodes) 790 { 791 struct mempolicy *new, *old; 792 NODEMASK_SCRATCH(scratch); 793 int ret; 794 795 if (!scratch) 796 return -ENOMEM; 797 798 new = mpol_new(mode, flags, nodes); 799 if (IS_ERR(new)) { 800 ret = PTR_ERR(new); 801 goto out; 802 } 803 804 task_lock(current); 805 ret = mpol_set_nodemask(new, nodes, scratch); 806 if (ret) { 807 task_unlock(current); 808 mpol_put(new); 809 goto out; 810 } 811 old = current->mempolicy; 812 current->mempolicy = new; 813 if (new && new->mode == MPOL_INTERLEAVE && 814 nodes_weight(new->v.nodes)) 815 current->il_next = first_node(new->v.nodes); 816 task_unlock(current); 817 mpol_put(old); 818 ret = 0; 819 out: 820 NODEMASK_SCRATCH_FREE(scratch); 821 return ret; 822 } 823 824 /* 825 * Return nodemask for policy for get_mempolicy() query 826 * 827 * Called with task's alloc_lock held 828 */ 829 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 830 { 831 nodes_clear(*nodes); 832 if (p == &default_policy) 833 return; 834 835 switch (p->mode) { 836 case MPOL_BIND: 837 /* Fall through */ 838 case MPOL_INTERLEAVE: 839 *nodes = p->v.nodes; 840 break; 841 case MPOL_PREFERRED: 842 if (!(p->flags & MPOL_F_LOCAL)) 843 node_set(p->v.preferred_node, *nodes); 844 /* else return empty node mask for local allocation */ 845 break; 846 default: 847 BUG(); 848 } 849 } 850 851 static int lookup_node(struct mm_struct *mm, unsigned long addr) 852 { 853 struct page *p; 854 int err; 855 856 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 857 if (err >= 0) { 858 err = page_to_nid(p); 859 put_page(p); 860 } 861 return err; 862 } 863 864 /* Retrieve NUMA policy */ 865 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 866 unsigned long addr, unsigned long flags) 867 { 868 int err; 869 struct mm_struct *mm = current->mm; 870 struct vm_area_struct *vma = NULL; 871 struct mempolicy *pol = current->mempolicy; 872 873 if (flags & 874 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 875 return -EINVAL; 876 877 if (flags & MPOL_F_MEMS_ALLOWED) { 878 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 879 return -EINVAL; 880 *policy = 0; /* just so it's initialized */ 881 task_lock(current); 882 *nmask = cpuset_current_mems_allowed; 883 task_unlock(current); 884 return 0; 885 } 886 887 if (flags & MPOL_F_ADDR) { 888 /* 889 * Do NOT fall back to task policy if the 890 * vma/shared policy at addr is NULL. We 891 * want to return MPOL_DEFAULT in this case. 892 */ 893 down_read(&mm->mmap_sem); 894 vma = find_vma_intersection(mm, addr, addr+1); 895 if (!vma) { 896 up_read(&mm->mmap_sem); 897 return -EFAULT; 898 } 899 if (vma->vm_ops && vma->vm_ops->get_policy) 900 pol = vma->vm_ops->get_policy(vma, addr); 901 else 902 pol = vma->vm_policy; 903 } else if (addr) 904 return -EINVAL; 905 906 if (!pol) 907 pol = &default_policy; /* indicates default behavior */ 908 909 if (flags & MPOL_F_NODE) { 910 if (flags & MPOL_F_ADDR) { 911 err = lookup_node(mm, addr); 912 if (err < 0) 913 goto out; 914 *policy = err; 915 } else if (pol == current->mempolicy && 916 pol->mode == MPOL_INTERLEAVE) { 917 *policy = current->il_next; 918 } else { 919 err = -EINVAL; 920 goto out; 921 } 922 } else { 923 *policy = pol == &default_policy ? MPOL_DEFAULT : 924 pol->mode; 925 /* 926 * Internal mempolicy flags must be masked off before exposing 927 * the policy to userspace. 928 */ 929 *policy |= (pol->flags & MPOL_MODE_FLAGS); 930 } 931 932 if (vma) { 933 up_read(¤t->mm->mmap_sem); 934 vma = NULL; 935 } 936 937 err = 0; 938 if (nmask) { 939 if (mpol_store_user_nodemask(pol)) { 940 *nmask = pol->w.user_nodemask; 941 } else { 942 task_lock(current); 943 get_policy_nodemask(pol, nmask); 944 task_unlock(current); 945 } 946 } 947 948 out: 949 mpol_cond_put(pol); 950 if (vma) 951 up_read(¤t->mm->mmap_sem); 952 return err; 953 } 954 955 #ifdef CONFIG_MIGRATION 956 /* 957 * page migration 958 */ 959 static void migrate_page_add(struct page *page, struct list_head *pagelist, 960 unsigned long flags) 961 { 962 /* 963 * Avoid migrating a page that is shared with others. 964 */ 965 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 966 if (!isolate_lru_page(page)) { 967 list_add_tail(&page->lru, pagelist); 968 inc_zone_page_state(page, NR_ISOLATED_ANON + 969 page_is_file_cache(page)); 970 } 971 } 972 } 973 974 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 975 { 976 if (PageHuge(page)) 977 return alloc_huge_page_node(page_hstate(compound_head(page)), 978 node); 979 else 980 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 981 __GFP_THISNODE, 0); 982 } 983 984 /* 985 * Migrate pages from one node to a target node. 986 * Returns error or the number of pages not migrated. 987 */ 988 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 989 int flags) 990 { 991 nodemask_t nmask; 992 LIST_HEAD(pagelist); 993 int err = 0; 994 995 nodes_clear(nmask); 996 node_set(source, nmask); 997 998 /* 999 * This does not "check" the range but isolates all pages that 1000 * need migration. Between passing in the full user address 1001 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1002 */ 1003 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1004 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1005 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1006 1007 if (!list_empty(&pagelist)) { 1008 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1009 MIGRATE_SYNC, MR_SYSCALL); 1010 if (err) 1011 putback_movable_pages(&pagelist); 1012 } 1013 1014 return err; 1015 } 1016 1017 /* 1018 * Move pages between the two nodesets so as to preserve the physical 1019 * layout as much as possible. 1020 * 1021 * Returns the number of page that could not be moved. 1022 */ 1023 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1024 const nodemask_t *to, int flags) 1025 { 1026 int busy = 0; 1027 int err; 1028 nodemask_t tmp; 1029 1030 err = migrate_prep(); 1031 if (err) 1032 return err; 1033 1034 down_read(&mm->mmap_sem); 1035 1036 /* 1037 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1038 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1039 * bit in 'tmp', and return that <source, dest> pair for migration. 1040 * The pair of nodemasks 'to' and 'from' define the map. 1041 * 1042 * If no pair of bits is found that way, fallback to picking some 1043 * pair of 'source' and 'dest' bits that are not the same. If the 1044 * 'source' and 'dest' bits are the same, this represents a node 1045 * that will be migrating to itself, so no pages need move. 1046 * 1047 * If no bits are left in 'tmp', or if all remaining bits left 1048 * in 'tmp' correspond to the same bit in 'to', return false 1049 * (nothing left to migrate). 1050 * 1051 * This lets us pick a pair of nodes to migrate between, such that 1052 * if possible the dest node is not already occupied by some other 1053 * source node, minimizing the risk of overloading the memory on a 1054 * node that would happen if we migrated incoming memory to a node 1055 * before migrating outgoing memory source that same node. 1056 * 1057 * A single scan of tmp is sufficient. As we go, we remember the 1058 * most recent <s, d> pair that moved (s != d). If we find a pair 1059 * that not only moved, but what's better, moved to an empty slot 1060 * (d is not set in tmp), then we break out then, with that pair. 1061 * Otherwise when we finish scanning from_tmp, we at least have the 1062 * most recent <s, d> pair that moved. If we get all the way through 1063 * the scan of tmp without finding any node that moved, much less 1064 * moved to an empty node, then there is nothing left worth migrating. 1065 */ 1066 1067 tmp = *from; 1068 while (!nodes_empty(tmp)) { 1069 int s,d; 1070 int source = NUMA_NO_NODE; 1071 int dest = 0; 1072 1073 for_each_node_mask(s, tmp) { 1074 1075 /* 1076 * do_migrate_pages() tries to maintain the relative 1077 * node relationship of the pages established between 1078 * threads and memory areas. 1079 * 1080 * However if the number of source nodes is not equal to 1081 * the number of destination nodes we can not preserve 1082 * this node relative relationship. In that case, skip 1083 * copying memory from a node that is in the destination 1084 * mask. 1085 * 1086 * Example: [2,3,4] -> [3,4,5] moves everything. 1087 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1088 */ 1089 1090 if ((nodes_weight(*from) != nodes_weight(*to)) && 1091 (node_isset(s, *to))) 1092 continue; 1093 1094 d = node_remap(s, *from, *to); 1095 if (s == d) 1096 continue; 1097 1098 source = s; /* Node moved. Memorize */ 1099 dest = d; 1100 1101 /* dest not in remaining from nodes? */ 1102 if (!node_isset(dest, tmp)) 1103 break; 1104 } 1105 if (source == NUMA_NO_NODE) 1106 break; 1107 1108 node_clear(source, tmp); 1109 err = migrate_to_node(mm, source, dest, flags); 1110 if (err > 0) 1111 busy += err; 1112 if (err < 0) 1113 break; 1114 } 1115 up_read(&mm->mmap_sem); 1116 if (err < 0) 1117 return err; 1118 return busy; 1119 1120 } 1121 1122 /* 1123 * Allocate a new page for page migration based on vma policy. 1124 * Start by assuming the page is mapped by the same vma as contains @start. 1125 * Search forward from there, if not. N.B., this assumes that the 1126 * list of pages handed to migrate_pages()--which is how we get here-- 1127 * is in virtual address order. 1128 */ 1129 static struct page *new_page(struct page *page, unsigned long start, int **x) 1130 { 1131 struct vm_area_struct *vma; 1132 unsigned long uninitialized_var(address); 1133 1134 vma = find_vma(current->mm, start); 1135 while (vma) { 1136 address = page_address_in_vma(page, vma); 1137 if (address != -EFAULT) 1138 break; 1139 vma = vma->vm_next; 1140 } 1141 1142 if (PageHuge(page)) { 1143 BUG_ON(!vma); 1144 return alloc_huge_page_noerr(vma, address, 1); 1145 } 1146 /* 1147 * if !vma, alloc_page_vma() will use task or system default policy 1148 */ 1149 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1150 } 1151 #else 1152 1153 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1154 unsigned long flags) 1155 { 1156 } 1157 1158 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1159 const nodemask_t *to, int flags) 1160 { 1161 return -ENOSYS; 1162 } 1163 1164 static struct page *new_page(struct page *page, unsigned long start, int **x) 1165 { 1166 return NULL; 1167 } 1168 #endif 1169 1170 static long do_mbind(unsigned long start, unsigned long len, 1171 unsigned short mode, unsigned short mode_flags, 1172 nodemask_t *nmask, unsigned long flags) 1173 { 1174 struct mm_struct *mm = current->mm; 1175 struct mempolicy *new; 1176 unsigned long end; 1177 int err; 1178 LIST_HEAD(pagelist); 1179 1180 if (flags & ~(unsigned long)MPOL_MF_VALID) 1181 return -EINVAL; 1182 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1183 return -EPERM; 1184 1185 if (start & ~PAGE_MASK) 1186 return -EINVAL; 1187 1188 if (mode == MPOL_DEFAULT) 1189 flags &= ~MPOL_MF_STRICT; 1190 1191 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1192 end = start + len; 1193 1194 if (end < start) 1195 return -EINVAL; 1196 if (end == start) 1197 return 0; 1198 1199 new = mpol_new(mode, mode_flags, nmask); 1200 if (IS_ERR(new)) 1201 return PTR_ERR(new); 1202 1203 if (flags & MPOL_MF_LAZY) 1204 new->flags |= MPOL_F_MOF; 1205 1206 /* 1207 * If we are using the default policy then operation 1208 * on discontinuous address spaces is okay after all 1209 */ 1210 if (!new) 1211 flags |= MPOL_MF_DISCONTIG_OK; 1212 1213 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1214 start, start + len, mode, mode_flags, 1215 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1216 1217 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1218 1219 err = migrate_prep(); 1220 if (err) 1221 goto mpol_out; 1222 } 1223 { 1224 NODEMASK_SCRATCH(scratch); 1225 if (scratch) { 1226 down_write(&mm->mmap_sem); 1227 task_lock(current); 1228 err = mpol_set_nodemask(new, nmask, scratch); 1229 task_unlock(current); 1230 if (err) 1231 up_write(&mm->mmap_sem); 1232 } else 1233 err = -ENOMEM; 1234 NODEMASK_SCRATCH_FREE(scratch); 1235 } 1236 if (err) 1237 goto mpol_out; 1238 1239 err = queue_pages_range(mm, start, end, nmask, 1240 flags | MPOL_MF_INVERT, &pagelist); 1241 if (!err) 1242 err = mbind_range(mm, start, end, new); 1243 1244 if (!err) { 1245 int nr_failed = 0; 1246 1247 if (!list_empty(&pagelist)) { 1248 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1249 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1250 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1251 if (nr_failed) 1252 putback_movable_pages(&pagelist); 1253 } 1254 1255 if (nr_failed && (flags & MPOL_MF_STRICT)) 1256 err = -EIO; 1257 } else 1258 putback_movable_pages(&pagelist); 1259 1260 up_write(&mm->mmap_sem); 1261 mpol_out: 1262 mpol_put(new); 1263 return err; 1264 } 1265 1266 /* 1267 * User space interface with variable sized bitmaps for nodelists. 1268 */ 1269 1270 /* Copy a node mask from user space. */ 1271 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1272 unsigned long maxnode) 1273 { 1274 unsigned long k; 1275 unsigned long nlongs; 1276 unsigned long endmask; 1277 1278 --maxnode; 1279 nodes_clear(*nodes); 1280 if (maxnode == 0 || !nmask) 1281 return 0; 1282 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1283 return -EINVAL; 1284 1285 nlongs = BITS_TO_LONGS(maxnode); 1286 if ((maxnode % BITS_PER_LONG) == 0) 1287 endmask = ~0UL; 1288 else 1289 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1290 1291 /* When the user specified more nodes than supported just check 1292 if the non supported part is all zero. */ 1293 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1294 if (nlongs > PAGE_SIZE/sizeof(long)) 1295 return -EINVAL; 1296 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1297 unsigned long t; 1298 if (get_user(t, nmask + k)) 1299 return -EFAULT; 1300 if (k == nlongs - 1) { 1301 if (t & endmask) 1302 return -EINVAL; 1303 } else if (t) 1304 return -EINVAL; 1305 } 1306 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1307 endmask = ~0UL; 1308 } 1309 1310 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1311 return -EFAULT; 1312 nodes_addr(*nodes)[nlongs-1] &= endmask; 1313 return 0; 1314 } 1315 1316 /* Copy a kernel node mask to user space */ 1317 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1318 nodemask_t *nodes) 1319 { 1320 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1321 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1322 1323 if (copy > nbytes) { 1324 if (copy > PAGE_SIZE) 1325 return -EINVAL; 1326 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1327 return -EFAULT; 1328 copy = nbytes; 1329 } 1330 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1331 } 1332 1333 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1334 unsigned long, mode, const unsigned long __user *, nmask, 1335 unsigned long, maxnode, unsigned, flags) 1336 { 1337 nodemask_t nodes; 1338 int err; 1339 unsigned short mode_flags; 1340 1341 mode_flags = mode & MPOL_MODE_FLAGS; 1342 mode &= ~MPOL_MODE_FLAGS; 1343 if (mode >= MPOL_MAX) 1344 return -EINVAL; 1345 if ((mode_flags & MPOL_F_STATIC_NODES) && 1346 (mode_flags & MPOL_F_RELATIVE_NODES)) 1347 return -EINVAL; 1348 err = get_nodes(&nodes, nmask, maxnode); 1349 if (err) 1350 return err; 1351 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1352 } 1353 1354 /* Set the process memory policy */ 1355 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1356 unsigned long, maxnode) 1357 { 1358 int err; 1359 nodemask_t nodes; 1360 unsigned short flags; 1361 1362 flags = mode & MPOL_MODE_FLAGS; 1363 mode &= ~MPOL_MODE_FLAGS; 1364 if ((unsigned int)mode >= MPOL_MAX) 1365 return -EINVAL; 1366 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1367 return -EINVAL; 1368 err = get_nodes(&nodes, nmask, maxnode); 1369 if (err) 1370 return err; 1371 return do_set_mempolicy(mode, flags, &nodes); 1372 } 1373 1374 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1375 const unsigned long __user *, old_nodes, 1376 const unsigned long __user *, new_nodes) 1377 { 1378 const struct cred *cred = current_cred(), *tcred; 1379 struct mm_struct *mm = NULL; 1380 struct task_struct *task; 1381 nodemask_t task_nodes; 1382 int err; 1383 nodemask_t *old; 1384 nodemask_t *new; 1385 NODEMASK_SCRATCH(scratch); 1386 1387 if (!scratch) 1388 return -ENOMEM; 1389 1390 old = &scratch->mask1; 1391 new = &scratch->mask2; 1392 1393 err = get_nodes(old, old_nodes, maxnode); 1394 if (err) 1395 goto out; 1396 1397 err = get_nodes(new, new_nodes, maxnode); 1398 if (err) 1399 goto out; 1400 1401 /* Find the mm_struct */ 1402 rcu_read_lock(); 1403 task = pid ? find_task_by_vpid(pid) : current; 1404 if (!task) { 1405 rcu_read_unlock(); 1406 err = -ESRCH; 1407 goto out; 1408 } 1409 get_task_struct(task); 1410 1411 err = -EINVAL; 1412 1413 /* 1414 * Check if this process has the right to modify the specified 1415 * process. The right exists if the process has administrative 1416 * capabilities, superuser privileges or the same 1417 * userid as the target process. 1418 */ 1419 tcred = __task_cred(task); 1420 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1421 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1422 !capable(CAP_SYS_NICE)) { 1423 rcu_read_unlock(); 1424 err = -EPERM; 1425 goto out_put; 1426 } 1427 rcu_read_unlock(); 1428 1429 task_nodes = cpuset_mems_allowed(task); 1430 /* Is the user allowed to access the target nodes? */ 1431 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1432 err = -EPERM; 1433 goto out_put; 1434 } 1435 1436 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1437 err = -EINVAL; 1438 goto out_put; 1439 } 1440 1441 err = security_task_movememory(task); 1442 if (err) 1443 goto out_put; 1444 1445 mm = get_task_mm(task); 1446 put_task_struct(task); 1447 1448 if (!mm) { 1449 err = -EINVAL; 1450 goto out; 1451 } 1452 1453 err = do_migrate_pages(mm, old, new, 1454 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1455 1456 mmput(mm); 1457 out: 1458 NODEMASK_SCRATCH_FREE(scratch); 1459 1460 return err; 1461 1462 out_put: 1463 put_task_struct(task); 1464 goto out; 1465 1466 } 1467 1468 1469 /* Retrieve NUMA policy */ 1470 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1471 unsigned long __user *, nmask, unsigned long, maxnode, 1472 unsigned long, addr, unsigned long, flags) 1473 { 1474 int err; 1475 int uninitialized_var(pval); 1476 nodemask_t nodes; 1477 1478 if (nmask != NULL && maxnode < MAX_NUMNODES) 1479 return -EINVAL; 1480 1481 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1482 1483 if (err) 1484 return err; 1485 1486 if (policy && put_user(pval, policy)) 1487 return -EFAULT; 1488 1489 if (nmask) 1490 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1491 1492 return err; 1493 } 1494 1495 #ifdef CONFIG_COMPAT 1496 1497 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1498 compat_ulong_t __user *, nmask, 1499 compat_ulong_t, maxnode, 1500 compat_ulong_t, addr, compat_ulong_t, flags) 1501 { 1502 long err; 1503 unsigned long __user *nm = NULL; 1504 unsigned long nr_bits, alloc_size; 1505 DECLARE_BITMAP(bm, MAX_NUMNODES); 1506 1507 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1508 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1509 1510 if (nmask) 1511 nm = compat_alloc_user_space(alloc_size); 1512 1513 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1514 1515 if (!err && nmask) { 1516 unsigned long copy_size; 1517 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1518 err = copy_from_user(bm, nm, copy_size); 1519 /* ensure entire bitmap is zeroed */ 1520 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1521 err |= compat_put_bitmap(nmask, bm, nr_bits); 1522 } 1523 1524 return err; 1525 } 1526 1527 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1528 compat_ulong_t, maxnode) 1529 { 1530 long err = 0; 1531 unsigned long __user *nm = NULL; 1532 unsigned long nr_bits, alloc_size; 1533 DECLARE_BITMAP(bm, MAX_NUMNODES); 1534 1535 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1536 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1537 1538 if (nmask) { 1539 err = compat_get_bitmap(bm, nmask, nr_bits); 1540 nm = compat_alloc_user_space(alloc_size); 1541 err |= copy_to_user(nm, bm, alloc_size); 1542 } 1543 1544 if (err) 1545 return -EFAULT; 1546 1547 return sys_set_mempolicy(mode, nm, nr_bits+1); 1548 } 1549 1550 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1551 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1552 compat_ulong_t, maxnode, compat_ulong_t, flags) 1553 { 1554 long err = 0; 1555 unsigned long __user *nm = NULL; 1556 unsigned long nr_bits, alloc_size; 1557 nodemask_t bm; 1558 1559 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1560 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1561 1562 if (nmask) { 1563 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1564 nm = compat_alloc_user_space(alloc_size); 1565 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1566 } 1567 1568 if (err) 1569 return -EFAULT; 1570 1571 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1572 } 1573 1574 #endif 1575 1576 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1577 unsigned long addr) 1578 { 1579 struct mempolicy *pol = NULL; 1580 1581 if (vma) { 1582 if (vma->vm_ops && vma->vm_ops->get_policy) { 1583 pol = vma->vm_ops->get_policy(vma, addr); 1584 } else if (vma->vm_policy) { 1585 pol = vma->vm_policy; 1586 1587 /* 1588 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1589 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1590 * count on these policies which will be dropped by 1591 * mpol_cond_put() later 1592 */ 1593 if (mpol_needs_cond_ref(pol)) 1594 mpol_get(pol); 1595 } 1596 } 1597 1598 return pol; 1599 } 1600 1601 /* 1602 * get_vma_policy(@vma, @addr) 1603 * @vma: virtual memory area whose policy is sought 1604 * @addr: address in @vma for shared policy lookup 1605 * 1606 * Returns effective policy for a VMA at specified address. 1607 * Falls back to current->mempolicy or system default policy, as necessary. 1608 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1609 * count--added by the get_policy() vm_op, as appropriate--to protect against 1610 * freeing by another task. It is the caller's responsibility to free the 1611 * extra reference for shared policies. 1612 */ 1613 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1614 unsigned long addr) 1615 { 1616 struct mempolicy *pol = __get_vma_policy(vma, addr); 1617 1618 if (!pol) 1619 pol = get_task_policy(current); 1620 1621 return pol; 1622 } 1623 1624 bool vma_policy_mof(struct vm_area_struct *vma) 1625 { 1626 struct mempolicy *pol; 1627 1628 if (vma->vm_ops && vma->vm_ops->get_policy) { 1629 bool ret = false; 1630 1631 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1632 if (pol && (pol->flags & MPOL_F_MOF)) 1633 ret = true; 1634 mpol_cond_put(pol); 1635 1636 return ret; 1637 } 1638 1639 pol = vma->vm_policy; 1640 if (!pol) 1641 pol = get_task_policy(current); 1642 1643 return pol->flags & MPOL_F_MOF; 1644 } 1645 1646 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1647 { 1648 enum zone_type dynamic_policy_zone = policy_zone; 1649 1650 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1651 1652 /* 1653 * if policy->v.nodes has movable memory only, 1654 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1655 * 1656 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1657 * so if the following test faile, it implies 1658 * policy->v.nodes has movable memory only. 1659 */ 1660 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1661 dynamic_policy_zone = ZONE_MOVABLE; 1662 1663 return zone >= dynamic_policy_zone; 1664 } 1665 1666 /* 1667 * Return a nodemask representing a mempolicy for filtering nodes for 1668 * page allocation 1669 */ 1670 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1671 { 1672 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1673 if (unlikely(policy->mode == MPOL_BIND) && 1674 apply_policy_zone(policy, gfp_zone(gfp)) && 1675 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1676 return &policy->v.nodes; 1677 1678 return NULL; 1679 } 1680 1681 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1682 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1683 int nd) 1684 { 1685 switch (policy->mode) { 1686 case MPOL_PREFERRED: 1687 if (!(policy->flags & MPOL_F_LOCAL)) 1688 nd = policy->v.preferred_node; 1689 break; 1690 case MPOL_BIND: 1691 /* 1692 * Normally, MPOL_BIND allocations are node-local within the 1693 * allowed nodemask. However, if __GFP_THISNODE is set and the 1694 * current node isn't part of the mask, we use the zonelist for 1695 * the first node in the mask instead. 1696 */ 1697 if (unlikely(gfp & __GFP_THISNODE) && 1698 unlikely(!node_isset(nd, policy->v.nodes))) 1699 nd = first_node(policy->v.nodes); 1700 break; 1701 default: 1702 BUG(); 1703 } 1704 return node_zonelist(nd, gfp); 1705 } 1706 1707 /* Do dynamic interleaving for a process */ 1708 static unsigned interleave_nodes(struct mempolicy *policy) 1709 { 1710 unsigned nid, next; 1711 struct task_struct *me = current; 1712 1713 nid = me->il_next; 1714 next = next_node(nid, policy->v.nodes); 1715 if (next >= MAX_NUMNODES) 1716 next = first_node(policy->v.nodes); 1717 if (next < MAX_NUMNODES) 1718 me->il_next = next; 1719 return nid; 1720 } 1721 1722 /* 1723 * Depending on the memory policy provide a node from which to allocate the 1724 * next slab entry. 1725 */ 1726 unsigned int mempolicy_slab_node(void) 1727 { 1728 struct mempolicy *policy; 1729 int node = numa_mem_id(); 1730 1731 if (in_interrupt()) 1732 return node; 1733 1734 policy = current->mempolicy; 1735 if (!policy || policy->flags & MPOL_F_LOCAL) 1736 return node; 1737 1738 switch (policy->mode) { 1739 case MPOL_PREFERRED: 1740 /* 1741 * handled MPOL_F_LOCAL above 1742 */ 1743 return policy->v.preferred_node; 1744 1745 case MPOL_INTERLEAVE: 1746 return interleave_nodes(policy); 1747 1748 case MPOL_BIND: { 1749 /* 1750 * Follow bind policy behavior and start allocation at the 1751 * first node. 1752 */ 1753 struct zonelist *zonelist; 1754 struct zone *zone; 1755 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1756 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1757 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1758 &policy->v.nodes, 1759 &zone); 1760 return zone ? zone->node : node; 1761 } 1762 1763 default: 1764 BUG(); 1765 } 1766 } 1767 1768 /* Do static interleaving for a VMA with known offset. */ 1769 static unsigned offset_il_node(struct mempolicy *pol, 1770 struct vm_area_struct *vma, unsigned long off) 1771 { 1772 unsigned nnodes = nodes_weight(pol->v.nodes); 1773 unsigned target; 1774 int c; 1775 int nid = NUMA_NO_NODE; 1776 1777 if (!nnodes) 1778 return numa_node_id(); 1779 target = (unsigned int)off % nnodes; 1780 c = 0; 1781 do { 1782 nid = next_node(nid, pol->v.nodes); 1783 c++; 1784 } while (c <= target); 1785 return nid; 1786 } 1787 1788 /* Determine a node number for interleave */ 1789 static inline unsigned interleave_nid(struct mempolicy *pol, 1790 struct vm_area_struct *vma, unsigned long addr, int shift) 1791 { 1792 if (vma) { 1793 unsigned long off; 1794 1795 /* 1796 * for small pages, there is no difference between 1797 * shift and PAGE_SHIFT, so the bit-shift is safe. 1798 * for huge pages, since vm_pgoff is in units of small 1799 * pages, we need to shift off the always 0 bits to get 1800 * a useful offset. 1801 */ 1802 BUG_ON(shift < PAGE_SHIFT); 1803 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1804 off += (addr - vma->vm_start) >> shift; 1805 return offset_il_node(pol, vma, off); 1806 } else 1807 return interleave_nodes(pol); 1808 } 1809 1810 /* 1811 * Return the bit number of a random bit set in the nodemask. 1812 * (returns NUMA_NO_NODE if nodemask is empty) 1813 */ 1814 int node_random(const nodemask_t *maskp) 1815 { 1816 int w, bit = NUMA_NO_NODE; 1817 1818 w = nodes_weight(*maskp); 1819 if (w) 1820 bit = bitmap_ord_to_pos(maskp->bits, 1821 get_random_int() % w, MAX_NUMNODES); 1822 return bit; 1823 } 1824 1825 #ifdef CONFIG_HUGETLBFS 1826 /* 1827 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1828 * @vma: virtual memory area whose policy is sought 1829 * @addr: address in @vma for shared policy lookup and interleave policy 1830 * @gfp_flags: for requested zone 1831 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1832 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1833 * 1834 * Returns a zonelist suitable for a huge page allocation and a pointer 1835 * to the struct mempolicy for conditional unref after allocation. 1836 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1837 * @nodemask for filtering the zonelist. 1838 * 1839 * Must be protected by read_mems_allowed_begin() 1840 */ 1841 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1842 gfp_t gfp_flags, struct mempolicy **mpol, 1843 nodemask_t **nodemask) 1844 { 1845 struct zonelist *zl; 1846 1847 *mpol = get_vma_policy(vma, addr); 1848 *nodemask = NULL; /* assume !MPOL_BIND */ 1849 1850 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1851 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1852 huge_page_shift(hstate_vma(vma))), gfp_flags); 1853 } else { 1854 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1855 if ((*mpol)->mode == MPOL_BIND) 1856 *nodemask = &(*mpol)->v.nodes; 1857 } 1858 return zl; 1859 } 1860 1861 /* 1862 * init_nodemask_of_mempolicy 1863 * 1864 * If the current task's mempolicy is "default" [NULL], return 'false' 1865 * to indicate default policy. Otherwise, extract the policy nodemask 1866 * for 'bind' or 'interleave' policy into the argument nodemask, or 1867 * initialize the argument nodemask to contain the single node for 1868 * 'preferred' or 'local' policy and return 'true' to indicate presence 1869 * of non-default mempolicy. 1870 * 1871 * We don't bother with reference counting the mempolicy [mpol_get/put] 1872 * because the current task is examining it's own mempolicy and a task's 1873 * mempolicy is only ever changed by the task itself. 1874 * 1875 * N.B., it is the caller's responsibility to free a returned nodemask. 1876 */ 1877 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1878 { 1879 struct mempolicy *mempolicy; 1880 int nid; 1881 1882 if (!(mask && current->mempolicy)) 1883 return false; 1884 1885 task_lock(current); 1886 mempolicy = current->mempolicy; 1887 switch (mempolicy->mode) { 1888 case MPOL_PREFERRED: 1889 if (mempolicy->flags & MPOL_F_LOCAL) 1890 nid = numa_node_id(); 1891 else 1892 nid = mempolicy->v.preferred_node; 1893 init_nodemask_of_node(mask, nid); 1894 break; 1895 1896 case MPOL_BIND: 1897 /* Fall through */ 1898 case MPOL_INTERLEAVE: 1899 *mask = mempolicy->v.nodes; 1900 break; 1901 1902 default: 1903 BUG(); 1904 } 1905 task_unlock(current); 1906 1907 return true; 1908 } 1909 #endif 1910 1911 /* 1912 * mempolicy_nodemask_intersects 1913 * 1914 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1915 * policy. Otherwise, check for intersection between mask and the policy 1916 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1917 * policy, always return true since it may allocate elsewhere on fallback. 1918 * 1919 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1920 */ 1921 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1922 const nodemask_t *mask) 1923 { 1924 struct mempolicy *mempolicy; 1925 bool ret = true; 1926 1927 if (!mask) 1928 return ret; 1929 task_lock(tsk); 1930 mempolicy = tsk->mempolicy; 1931 if (!mempolicy) 1932 goto out; 1933 1934 switch (mempolicy->mode) { 1935 case MPOL_PREFERRED: 1936 /* 1937 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1938 * allocate from, they may fallback to other nodes when oom. 1939 * Thus, it's possible for tsk to have allocated memory from 1940 * nodes in mask. 1941 */ 1942 break; 1943 case MPOL_BIND: 1944 case MPOL_INTERLEAVE: 1945 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1946 break; 1947 default: 1948 BUG(); 1949 } 1950 out: 1951 task_unlock(tsk); 1952 return ret; 1953 } 1954 1955 /* Allocate a page in interleaved policy. 1956 Own path because it needs to do special accounting. */ 1957 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1958 unsigned nid) 1959 { 1960 struct zonelist *zl; 1961 struct page *page; 1962 1963 zl = node_zonelist(nid, gfp); 1964 page = __alloc_pages(gfp, order, zl); 1965 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1966 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1967 return page; 1968 } 1969 1970 /** 1971 * alloc_pages_vma - Allocate a page for a VMA. 1972 * 1973 * @gfp: 1974 * %GFP_USER user allocation. 1975 * %GFP_KERNEL kernel allocations, 1976 * %GFP_HIGHMEM highmem/user allocations, 1977 * %GFP_FS allocation should not call back into a file system. 1978 * %GFP_ATOMIC don't sleep. 1979 * 1980 * @order:Order of the GFP allocation. 1981 * @vma: Pointer to VMA or NULL if not available. 1982 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1983 * @node: Which node to prefer for allocation (modulo policy). 1984 * @hugepage: for hugepages try only the preferred node if possible 1985 * 1986 * This function allocates a page from the kernel page pool and applies 1987 * a NUMA policy associated with the VMA or the current process. 1988 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1989 * mm_struct of the VMA to prevent it from going away. Should be used for 1990 * all allocations for pages that will be mapped into user space. Returns 1991 * NULL when no page can be allocated. 1992 */ 1993 struct page * 1994 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1995 unsigned long addr, int node, bool hugepage) 1996 { 1997 struct mempolicy *pol; 1998 struct page *page; 1999 unsigned int cpuset_mems_cookie; 2000 struct zonelist *zl; 2001 nodemask_t *nmask; 2002 2003 retry_cpuset: 2004 pol = get_vma_policy(vma, addr); 2005 cpuset_mems_cookie = read_mems_allowed_begin(); 2006 2007 if (pol->mode == MPOL_INTERLEAVE) { 2008 unsigned nid; 2009 2010 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2011 mpol_cond_put(pol); 2012 page = alloc_page_interleave(gfp, order, nid); 2013 goto out; 2014 } 2015 2016 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2017 int hpage_node = node; 2018 2019 /* 2020 * For hugepage allocation and non-interleave policy which 2021 * allows the current node (or other explicitly preferred 2022 * node) we only try to allocate from the current/preferred 2023 * node and don't fall back to other nodes, as the cost of 2024 * remote accesses would likely offset THP benefits. 2025 * 2026 * If the policy is interleave, or does not allow the current 2027 * node in its nodemask, we allocate the standard way. 2028 */ 2029 if (pol->mode == MPOL_PREFERRED && 2030 !(pol->flags & MPOL_F_LOCAL)) 2031 hpage_node = pol->v.preferred_node; 2032 2033 nmask = policy_nodemask(gfp, pol); 2034 if (!nmask || node_isset(hpage_node, *nmask)) { 2035 mpol_cond_put(pol); 2036 page = __alloc_pages_node(hpage_node, 2037 gfp | __GFP_THISNODE, order); 2038 goto out; 2039 } 2040 } 2041 2042 nmask = policy_nodemask(gfp, pol); 2043 zl = policy_zonelist(gfp, pol, node); 2044 mpol_cond_put(pol); 2045 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2046 out: 2047 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2048 goto retry_cpuset; 2049 return page; 2050 } 2051 2052 /** 2053 * alloc_pages_current - Allocate pages. 2054 * 2055 * @gfp: 2056 * %GFP_USER user allocation, 2057 * %GFP_KERNEL kernel allocation, 2058 * %GFP_HIGHMEM highmem allocation, 2059 * %GFP_FS don't call back into a file system. 2060 * %GFP_ATOMIC don't sleep. 2061 * @order: Power of two of allocation size in pages. 0 is a single page. 2062 * 2063 * Allocate a page from the kernel page pool. When not in 2064 * interrupt context and apply the current process NUMA policy. 2065 * Returns NULL when no page can be allocated. 2066 * 2067 * Don't call cpuset_update_task_memory_state() unless 2068 * 1) it's ok to take cpuset_sem (can WAIT), and 2069 * 2) allocating for current task (not interrupt). 2070 */ 2071 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2072 { 2073 struct mempolicy *pol = &default_policy; 2074 struct page *page; 2075 unsigned int cpuset_mems_cookie; 2076 2077 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2078 pol = get_task_policy(current); 2079 2080 retry_cpuset: 2081 cpuset_mems_cookie = read_mems_allowed_begin(); 2082 2083 /* 2084 * No reference counting needed for current->mempolicy 2085 * nor system default_policy 2086 */ 2087 if (pol->mode == MPOL_INTERLEAVE) 2088 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2089 else 2090 page = __alloc_pages_nodemask(gfp, order, 2091 policy_zonelist(gfp, pol, numa_node_id()), 2092 policy_nodemask(gfp, pol)); 2093 2094 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2095 goto retry_cpuset; 2096 2097 return page; 2098 } 2099 EXPORT_SYMBOL(alloc_pages_current); 2100 2101 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2102 { 2103 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2104 2105 if (IS_ERR(pol)) 2106 return PTR_ERR(pol); 2107 dst->vm_policy = pol; 2108 return 0; 2109 } 2110 2111 /* 2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2114 * with the mems_allowed returned by cpuset_mems_allowed(). This 2115 * keeps mempolicies cpuset relative after its cpuset moves. See 2116 * further kernel/cpuset.c update_nodemask(). 2117 * 2118 * current's mempolicy may be rebinded by the other task(the task that changes 2119 * cpuset's mems), so we needn't do rebind work for current task. 2120 */ 2121 2122 /* Slow path of a mempolicy duplicate */ 2123 struct mempolicy *__mpol_dup(struct mempolicy *old) 2124 { 2125 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2126 2127 if (!new) 2128 return ERR_PTR(-ENOMEM); 2129 2130 /* task's mempolicy is protected by alloc_lock */ 2131 if (old == current->mempolicy) { 2132 task_lock(current); 2133 *new = *old; 2134 task_unlock(current); 2135 } else 2136 *new = *old; 2137 2138 if (current_cpuset_is_being_rebound()) { 2139 nodemask_t mems = cpuset_mems_allowed(current); 2140 if (new->flags & MPOL_F_REBINDING) 2141 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2142 else 2143 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2144 } 2145 atomic_set(&new->refcnt, 1); 2146 return new; 2147 } 2148 2149 /* Slow path of a mempolicy comparison */ 2150 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2151 { 2152 if (!a || !b) 2153 return false; 2154 if (a->mode != b->mode) 2155 return false; 2156 if (a->flags != b->flags) 2157 return false; 2158 if (mpol_store_user_nodemask(a)) 2159 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2160 return false; 2161 2162 switch (a->mode) { 2163 case MPOL_BIND: 2164 /* Fall through */ 2165 case MPOL_INTERLEAVE: 2166 return !!nodes_equal(a->v.nodes, b->v.nodes); 2167 case MPOL_PREFERRED: 2168 return a->v.preferred_node == b->v.preferred_node; 2169 default: 2170 BUG(); 2171 return false; 2172 } 2173 } 2174 2175 /* 2176 * Shared memory backing store policy support. 2177 * 2178 * Remember policies even when nobody has shared memory mapped. 2179 * The policies are kept in Red-Black tree linked from the inode. 2180 * They are protected by the sp->lock rwlock, which should be held 2181 * for any accesses to the tree. 2182 */ 2183 2184 /* 2185 * lookup first element intersecting start-end. Caller holds sp->lock for 2186 * reading or for writing 2187 */ 2188 static struct sp_node * 2189 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2190 { 2191 struct rb_node *n = sp->root.rb_node; 2192 2193 while (n) { 2194 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2195 2196 if (start >= p->end) 2197 n = n->rb_right; 2198 else if (end <= p->start) 2199 n = n->rb_left; 2200 else 2201 break; 2202 } 2203 if (!n) 2204 return NULL; 2205 for (;;) { 2206 struct sp_node *w = NULL; 2207 struct rb_node *prev = rb_prev(n); 2208 if (!prev) 2209 break; 2210 w = rb_entry(prev, struct sp_node, nd); 2211 if (w->end <= start) 2212 break; 2213 n = prev; 2214 } 2215 return rb_entry(n, struct sp_node, nd); 2216 } 2217 2218 /* 2219 * Insert a new shared policy into the list. Caller holds sp->lock for 2220 * writing. 2221 */ 2222 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2223 { 2224 struct rb_node **p = &sp->root.rb_node; 2225 struct rb_node *parent = NULL; 2226 struct sp_node *nd; 2227 2228 while (*p) { 2229 parent = *p; 2230 nd = rb_entry(parent, struct sp_node, nd); 2231 if (new->start < nd->start) 2232 p = &(*p)->rb_left; 2233 else if (new->end > nd->end) 2234 p = &(*p)->rb_right; 2235 else 2236 BUG(); 2237 } 2238 rb_link_node(&new->nd, parent, p); 2239 rb_insert_color(&new->nd, &sp->root); 2240 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2241 new->policy ? new->policy->mode : 0); 2242 } 2243 2244 /* Find shared policy intersecting idx */ 2245 struct mempolicy * 2246 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2247 { 2248 struct mempolicy *pol = NULL; 2249 struct sp_node *sn; 2250 2251 if (!sp->root.rb_node) 2252 return NULL; 2253 read_lock(&sp->lock); 2254 sn = sp_lookup(sp, idx, idx+1); 2255 if (sn) { 2256 mpol_get(sn->policy); 2257 pol = sn->policy; 2258 } 2259 read_unlock(&sp->lock); 2260 return pol; 2261 } 2262 2263 static void sp_free(struct sp_node *n) 2264 { 2265 mpol_put(n->policy); 2266 kmem_cache_free(sn_cache, n); 2267 } 2268 2269 /** 2270 * mpol_misplaced - check whether current page node is valid in policy 2271 * 2272 * @page: page to be checked 2273 * @vma: vm area where page mapped 2274 * @addr: virtual address where page mapped 2275 * 2276 * Lookup current policy node id for vma,addr and "compare to" page's 2277 * node id. 2278 * 2279 * Returns: 2280 * -1 - not misplaced, page is in the right node 2281 * node - node id where the page should be 2282 * 2283 * Policy determination "mimics" alloc_page_vma(). 2284 * Called from fault path where we know the vma and faulting address. 2285 */ 2286 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2287 { 2288 struct mempolicy *pol; 2289 struct zone *zone; 2290 int curnid = page_to_nid(page); 2291 unsigned long pgoff; 2292 int thiscpu = raw_smp_processor_id(); 2293 int thisnid = cpu_to_node(thiscpu); 2294 int polnid = -1; 2295 int ret = -1; 2296 2297 BUG_ON(!vma); 2298 2299 pol = get_vma_policy(vma, addr); 2300 if (!(pol->flags & MPOL_F_MOF)) 2301 goto out; 2302 2303 switch (pol->mode) { 2304 case MPOL_INTERLEAVE: 2305 BUG_ON(addr >= vma->vm_end); 2306 BUG_ON(addr < vma->vm_start); 2307 2308 pgoff = vma->vm_pgoff; 2309 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2310 polnid = offset_il_node(pol, vma, pgoff); 2311 break; 2312 2313 case MPOL_PREFERRED: 2314 if (pol->flags & MPOL_F_LOCAL) 2315 polnid = numa_node_id(); 2316 else 2317 polnid = pol->v.preferred_node; 2318 break; 2319 2320 case MPOL_BIND: 2321 /* 2322 * allows binding to multiple nodes. 2323 * use current page if in policy nodemask, 2324 * else select nearest allowed node, if any. 2325 * If no allowed nodes, use current [!misplaced]. 2326 */ 2327 if (node_isset(curnid, pol->v.nodes)) 2328 goto out; 2329 (void)first_zones_zonelist( 2330 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2331 gfp_zone(GFP_HIGHUSER), 2332 &pol->v.nodes, &zone); 2333 polnid = zone->node; 2334 break; 2335 2336 default: 2337 BUG(); 2338 } 2339 2340 /* Migrate the page towards the node whose CPU is referencing it */ 2341 if (pol->flags & MPOL_F_MORON) { 2342 polnid = thisnid; 2343 2344 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2345 goto out; 2346 } 2347 2348 if (curnid != polnid) 2349 ret = polnid; 2350 out: 2351 mpol_cond_put(pol); 2352 2353 return ret; 2354 } 2355 2356 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2357 { 2358 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2359 rb_erase(&n->nd, &sp->root); 2360 sp_free(n); 2361 } 2362 2363 static void sp_node_init(struct sp_node *node, unsigned long start, 2364 unsigned long end, struct mempolicy *pol) 2365 { 2366 node->start = start; 2367 node->end = end; 2368 node->policy = pol; 2369 } 2370 2371 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2372 struct mempolicy *pol) 2373 { 2374 struct sp_node *n; 2375 struct mempolicy *newpol; 2376 2377 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2378 if (!n) 2379 return NULL; 2380 2381 newpol = mpol_dup(pol); 2382 if (IS_ERR(newpol)) { 2383 kmem_cache_free(sn_cache, n); 2384 return NULL; 2385 } 2386 newpol->flags |= MPOL_F_SHARED; 2387 sp_node_init(n, start, end, newpol); 2388 2389 return n; 2390 } 2391 2392 /* Replace a policy range. */ 2393 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2394 unsigned long end, struct sp_node *new) 2395 { 2396 struct sp_node *n; 2397 struct sp_node *n_new = NULL; 2398 struct mempolicy *mpol_new = NULL; 2399 int ret = 0; 2400 2401 restart: 2402 write_lock(&sp->lock); 2403 n = sp_lookup(sp, start, end); 2404 /* Take care of old policies in the same range. */ 2405 while (n && n->start < end) { 2406 struct rb_node *next = rb_next(&n->nd); 2407 if (n->start >= start) { 2408 if (n->end <= end) 2409 sp_delete(sp, n); 2410 else 2411 n->start = end; 2412 } else { 2413 /* Old policy spanning whole new range. */ 2414 if (n->end > end) { 2415 if (!n_new) 2416 goto alloc_new; 2417 2418 *mpol_new = *n->policy; 2419 atomic_set(&mpol_new->refcnt, 1); 2420 sp_node_init(n_new, end, n->end, mpol_new); 2421 n->end = start; 2422 sp_insert(sp, n_new); 2423 n_new = NULL; 2424 mpol_new = NULL; 2425 break; 2426 } else 2427 n->end = start; 2428 } 2429 if (!next) 2430 break; 2431 n = rb_entry(next, struct sp_node, nd); 2432 } 2433 if (new) 2434 sp_insert(sp, new); 2435 write_unlock(&sp->lock); 2436 ret = 0; 2437 2438 err_out: 2439 if (mpol_new) 2440 mpol_put(mpol_new); 2441 if (n_new) 2442 kmem_cache_free(sn_cache, n_new); 2443 2444 return ret; 2445 2446 alloc_new: 2447 write_unlock(&sp->lock); 2448 ret = -ENOMEM; 2449 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2450 if (!n_new) 2451 goto err_out; 2452 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2453 if (!mpol_new) 2454 goto err_out; 2455 goto restart; 2456 } 2457 2458 /** 2459 * mpol_shared_policy_init - initialize shared policy for inode 2460 * @sp: pointer to inode shared policy 2461 * @mpol: struct mempolicy to install 2462 * 2463 * Install non-NULL @mpol in inode's shared policy rb-tree. 2464 * On entry, the current task has a reference on a non-NULL @mpol. 2465 * This must be released on exit. 2466 * This is called at get_inode() calls and we can use GFP_KERNEL. 2467 */ 2468 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2469 { 2470 int ret; 2471 2472 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2473 rwlock_init(&sp->lock); 2474 2475 if (mpol) { 2476 struct vm_area_struct pvma; 2477 struct mempolicy *new; 2478 NODEMASK_SCRATCH(scratch); 2479 2480 if (!scratch) 2481 goto put_mpol; 2482 /* contextualize the tmpfs mount point mempolicy */ 2483 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2484 if (IS_ERR(new)) 2485 goto free_scratch; /* no valid nodemask intersection */ 2486 2487 task_lock(current); 2488 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2489 task_unlock(current); 2490 if (ret) 2491 goto put_new; 2492 2493 /* Create pseudo-vma that contains just the policy */ 2494 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2495 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2496 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2497 2498 put_new: 2499 mpol_put(new); /* drop initial ref */ 2500 free_scratch: 2501 NODEMASK_SCRATCH_FREE(scratch); 2502 put_mpol: 2503 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2504 } 2505 } 2506 2507 int mpol_set_shared_policy(struct shared_policy *info, 2508 struct vm_area_struct *vma, struct mempolicy *npol) 2509 { 2510 int err; 2511 struct sp_node *new = NULL; 2512 unsigned long sz = vma_pages(vma); 2513 2514 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2515 vma->vm_pgoff, 2516 sz, npol ? npol->mode : -1, 2517 npol ? npol->flags : -1, 2518 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2519 2520 if (npol) { 2521 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2522 if (!new) 2523 return -ENOMEM; 2524 } 2525 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2526 if (err && new) 2527 sp_free(new); 2528 return err; 2529 } 2530 2531 /* Free a backing policy store on inode delete. */ 2532 void mpol_free_shared_policy(struct shared_policy *p) 2533 { 2534 struct sp_node *n; 2535 struct rb_node *next; 2536 2537 if (!p->root.rb_node) 2538 return; 2539 write_lock(&p->lock); 2540 next = rb_first(&p->root); 2541 while (next) { 2542 n = rb_entry(next, struct sp_node, nd); 2543 next = rb_next(&n->nd); 2544 sp_delete(p, n); 2545 } 2546 write_unlock(&p->lock); 2547 } 2548 2549 #ifdef CONFIG_NUMA_BALANCING 2550 static int __initdata numabalancing_override; 2551 2552 static void __init check_numabalancing_enable(void) 2553 { 2554 bool numabalancing_default = false; 2555 2556 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2557 numabalancing_default = true; 2558 2559 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2560 if (numabalancing_override) 2561 set_numabalancing_state(numabalancing_override == 1); 2562 2563 if (num_online_nodes() > 1 && !numabalancing_override) { 2564 pr_info("%s automatic NUMA balancing. " 2565 "Configure with numa_balancing= or the " 2566 "kernel.numa_balancing sysctl", 2567 numabalancing_default ? "Enabling" : "Disabling"); 2568 set_numabalancing_state(numabalancing_default); 2569 } 2570 } 2571 2572 static int __init setup_numabalancing(char *str) 2573 { 2574 int ret = 0; 2575 if (!str) 2576 goto out; 2577 2578 if (!strcmp(str, "enable")) { 2579 numabalancing_override = 1; 2580 ret = 1; 2581 } else if (!strcmp(str, "disable")) { 2582 numabalancing_override = -1; 2583 ret = 1; 2584 } 2585 out: 2586 if (!ret) 2587 pr_warn("Unable to parse numa_balancing=\n"); 2588 2589 return ret; 2590 } 2591 __setup("numa_balancing=", setup_numabalancing); 2592 #else 2593 static inline void __init check_numabalancing_enable(void) 2594 { 2595 } 2596 #endif /* CONFIG_NUMA_BALANCING */ 2597 2598 /* assumes fs == KERNEL_DS */ 2599 void __init numa_policy_init(void) 2600 { 2601 nodemask_t interleave_nodes; 2602 unsigned long largest = 0; 2603 int nid, prefer = 0; 2604 2605 policy_cache = kmem_cache_create("numa_policy", 2606 sizeof(struct mempolicy), 2607 0, SLAB_PANIC, NULL); 2608 2609 sn_cache = kmem_cache_create("shared_policy_node", 2610 sizeof(struct sp_node), 2611 0, SLAB_PANIC, NULL); 2612 2613 for_each_node(nid) { 2614 preferred_node_policy[nid] = (struct mempolicy) { 2615 .refcnt = ATOMIC_INIT(1), 2616 .mode = MPOL_PREFERRED, 2617 .flags = MPOL_F_MOF | MPOL_F_MORON, 2618 .v = { .preferred_node = nid, }, 2619 }; 2620 } 2621 2622 /* 2623 * Set interleaving policy for system init. Interleaving is only 2624 * enabled across suitably sized nodes (default is >= 16MB), or 2625 * fall back to the largest node if they're all smaller. 2626 */ 2627 nodes_clear(interleave_nodes); 2628 for_each_node_state(nid, N_MEMORY) { 2629 unsigned long total_pages = node_present_pages(nid); 2630 2631 /* Preserve the largest node */ 2632 if (largest < total_pages) { 2633 largest = total_pages; 2634 prefer = nid; 2635 } 2636 2637 /* Interleave this node? */ 2638 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2639 node_set(nid, interleave_nodes); 2640 } 2641 2642 /* All too small, use the largest */ 2643 if (unlikely(nodes_empty(interleave_nodes))) 2644 node_set(prefer, interleave_nodes); 2645 2646 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2647 pr_err("%s: interleaving failed\n", __func__); 2648 2649 check_numabalancing_enable(); 2650 } 2651 2652 /* Reset policy of current process to default */ 2653 void numa_default_policy(void) 2654 { 2655 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2656 } 2657 2658 /* 2659 * Parse and format mempolicy from/to strings 2660 */ 2661 2662 /* 2663 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2664 */ 2665 static const char * const policy_modes[] = 2666 { 2667 [MPOL_DEFAULT] = "default", 2668 [MPOL_PREFERRED] = "prefer", 2669 [MPOL_BIND] = "bind", 2670 [MPOL_INTERLEAVE] = "interleave", 2671 [MPOL_LOCAL] = "local", 2672 }; 2673 2674 2675 #ifdef CONFIG_TMPFS 2676 /** 2677 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2678 * @str: string containing mempolicy to parse 2679 * @mpol: pointer to struct mempolicy pointer, returned on success. 2680 * 2681 * Format of input: 2682 * <mode>[=<flags>][:<nodelist>] 2683 * 2684 * On success, returns 0, else 1 2685 */ 2686 int mpol_parse_str(char *str, struct mempolicy **mpol) 2687 { 2688 struct mempolicy *new = NULL; 2689 unsigned short mode; 2690 unsigned short mode_flags; 2691 nodemask_t nodes; 2692 char *nodelist = strchr(str, ':'); 2693 char *flags = strchr(str, '='); 2694 int err = 1; 2695 2696 if (nodelist) { 2697 /* NUL-terminate mode or flags string */ 2698 *nodelist++ = '\0'; 2699 if (nodelist_parse(nodelist, nodes)) 2700 goto out; 2701 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2702 goto out; 2703 } else 2704 nodes_clear(nodes); 2705 2706 if (flags) 2707 *flags++ = '\0'; /* terminate mode string */ 2708 2709 for (mode = 0; mode < MPOL_MAX; mode++) { 2710 if (!strcmp(str, policy_modes[mode])) { 2711 break; 2712 } 2713 } 2714 if (mode >= MPOL_MAX) 2715 goto out; 2716 2717 switch (mode) { 2718 case MPOL_PREFERRED: 2719 /* 2720 * Insist on a nodelist of one node only 2721 */ 2722 if (nodelist) { 2723 char *rest = nodelist; 2724 while (isdigit(*rest)) 2725 rest++; 2726 if (*rest) 2727 goto out; 2728 } 2729 break; 2730 case MPOL_INTERLEAVE: 2731 /* 2732 * Default to online nodes with memory if no nodelist 2733 */ 2734 if (!nodelist) 2735 nodes = node_states[N_MEMORY]; 2736 break; 2737 case MPOL_LOCAL: 2738 /* 2739 * Don't allow a nodelist; mpol_new() checks flags 2740 */ 2741 if (nodelist) 2742 goto out; 2743 mode = MPOL_PREFERRED; 2744 break; 2745 case MPOL_DEFAULT: 2746 /* 2747 * Insist on a empty nodelist 2748 */ 2749 if (!nodelist) 2750 err = 0; 2751 goto out; 2752 case MPOL_BIND: 2753 /* 2754 * Insist on a nodelist 2755 */ 2756 if (!nodelist) 2757 goto out; 2758 } 2759 2760 mode_flags = 0; 2761 if (flags) { 2762 /* 2763 * Currently, we only support two mutually exclusive 2764 * mode flags. 2765 */ 2766 if (!strcmp(flags, "static")) 2767 mode_flags |= MPOL_F_STATIC_NODES; 2768 else if (!strcmp(flags, "relative")) 2769 mode_flags |= MPOL_F_RELATIVE_NODES; 2770 else 2771 goto out; 2772 } 2773 2774 new = mpol_new(mode, mode_flags, &nodes); 2775 if (IS_ERR(new)) 2776 goto out; 2777 2778 /* 2779 * Save nodes for mpol_to_str() to show the tmpfs mount options 2780 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2781 */ 2782 if (mode != MPOL_PREFERRED) 2783 new->v.nodes = nodes; 2784 else if (nodelist) 2785 new->v.preferred_node = first_node(nodes); 2786 else 2787 new->flags |= MPOL_F_LOCAL; 2788 2789 /* 2790 * Save nodes for contextualization: this will be used to "clone" 2791 * the mempolicy in a specific context [cpuset] at a later time. 2792 */ 2793 new->w.user_nodemask = nodes; 2794 2795 err = 0; 2796 2797 out: 2798 /* Restore string for error message */ 2799 if (nodelist) 2800 *--nodelist = ':'; 2801 if (flags) 2802 *--flags = '='; 2803 if (!err) 2804 *mpol = new; 2805 return err; 2806 } 2807 #endif /* CONFIG_TMPFS */ 2808 2809 /** 2810 * mpol_to_str - format a mempolicy structure for printing 2811 * @buffer: to contain formatted mempolicy string 2812 * @maxlen: length of @buffer 2813 * @pol: pointer to mempolicy to be formatted 2814 * 2815 * Convert @pol into a string. If @buffer is too short, truncate the string. 2816 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2817 * longest flag, "relative", and to display at least a few node ids. 2818 */ 2819 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2820 { 2821 char *p = buffer; 2822 nodemask_t nodes = NODE_MASK_NONE; 2823 unsigned short mode = MPOL_DEFAULT; 2824 unsigned short flags = 0; 2825 2826 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2827 mode = pol->mode; 2828 flags = pol->flags; 2829 } 2830 2831 switch (mode) { 2832 case MPOL_DEFAULT: 2833 break; 2834 case MPOL_PREFERRED: 2835 if (flags & MPOL_F_LOCAL) 2836 mode = MPOL_LOCAL; 2837 else 2838 node_set(pol->v.preferred_node, nodes); 2839 break; 2840 case MPOL_BIND: 2841 case MPOL_INTERLEAVE: 2842 nodes = pol->v.nodes; 2843 break; 2844 default: 2845 WARN_ON_ONCE(1); 2846 snprintf(p, maxlen, "unknown"); 2847 return; 2848 } 2849 2850 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2851 2852 if (flags & MPOL_MODE_FLAGS) { 2853 p += snprintf(p, buffer + maxlen - p, "="); 2854 2855 /* 2856 * Currently, the only defined flags are mutually exclusive 2857 */ 2858 if (flags & MPOL_F_STATIC_NODES) 2859 p += snprintf(p, buffer + maxlen - p, "static"); 2860 else if (flags & MPOL_F_RELATIVE_NODES) 2861 p += snprintf(p, buffer + maxlen - p, "relative"); 2862 } 2863 2864 if (!nodes_empty(nodes)) 2865 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2866 nodemask_pr_args(&nodes)); 2867 } 2868