xref: /openbmc/linux/mm/mempolicy.c (revision a06c488d)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 	return pol->flags & MPOL_MODE_FLAGS;
168 }
169 
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 				   const nodemask_t *rel)
172 {
173 	nodemask_t tmp;
174 	nodes_fold(tmp, *orig, nodes_weight(*rel));
175 	nodes_onto(*ret, tmp, *rel);
176 }
177 
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 	if (nodes_empty(*nodes))
181 		return -EINVAL;
182 	pol->v.nodes = *nodes;
183 	return 0;
184 }
185 
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (!nodes)
189 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
190 	else if (nodes_empty(*nodes))
191 		return -EINVAL;			/*  no allowed nodes */
192 	else
193 		pol->v.preferred_node = first_node(*nodes);
194 	return 0;
195 }
196 
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->v.nodes = *nodes;
202 	return 0;
203 }
204 
205 /*
206  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207  * any, for the new policy.  mpol_new() has already validated the nodes
208  * parameter with respect to the policy mode and flags.  But, we need to
209  * handle an empty nodemask with MPOL_PREFERRED here.
210  *
211  * Must be called holding task's alloc_lock to protect task's mems_allowed
212  * and mempolicy.  May also be called holding the mmap_semaphore for write.
213  */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 	int ret;
218 
219 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 	if (pol == NULL)
221 		return 0;
222 	/* Check N_MEMORY */
223 	nodes_and(nsc->mask1,
224 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 
226 	VM_BUG_ON(!nodes);
227 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 		nodes = NULL;	/* explicit local allocation */
229 	else {
230 		if (pol->flags & MPOL_F_RELATIVE_NODES)
231 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 		else
233 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 
235 		if (mpol_store_user_nodemask(pol))
236 			pol->w.user_nodemask = *nodes;
237 		else
238 			pol->w.cpuset_mems_allowed =
239 						cpuset_current_mems_allowed;
240 	}
241 
242 	if (nodes)
243 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 	else
245 		ret = mpol_ops[pol->mode].create(pol, NULL);
246 	return ret;
247 }
248 
249 /*
250  * This function just creates a new policy, does some check and simple
251  * initialization. You must invoke mpol_set_nodemask() to set nodes.
252  */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 				  nodemask_t *nodes)
255 {
256 	struct mempolicy *policy;
257 
258 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 
261 	if (mode == MPOL_DEFAULT) {
262 		if (nodes && !nodes_empty(*nodes))
263 			return ERR_PTR(-EINVAL);
264 		return NULL;
265 	}
266 	VM_BUG_ON(!nodes);
267 
268 	/*
269 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 	 * All other modes require a valid pointer to a non-empty nodemask.
272 	 */
273 	if (mode == MPOL_PREFERRED) {
274 		if (nodes_empty(*nodes)) {
275 			if (((flags & MPOL_F_STATIC_NODES) ||
276 			     (flags & MPOL_F_RELATIVE_NODES)))
277 				return ERR_PTR(-EINVAL);
278 		}
279 	} else if (mode == MPOL_LOCAL) {
280 		if (!nodes_empty(*nodes))
281 			return ERR_PTR(-EINVAL);
282 		mode = MPOL_PREFERRED;
283 	} else if (nodes_empty(*nodes))
284 		return ERR_PTR(-EINVAL);
285 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 	if (!policy)
287 		return ERR_PTR(-ENOMEM);
288 	atomic_set(&policy->refcnt, 1);
289 	policy->mode = mode;
290 	policy->flags = flags;
291 
292 	return policy;
293 }
294 
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 	if (!atomic_dec_and_test(&p->refcnt))
299 		return;
300 	kmem_cache_free(policy_cache, p);
301 }
302 
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 				enum mpol_rebind_step step)
305 {
306 }
307 
308 /*
309  * step:
310  * 	MPOL_REBIND_ONCE  - do rebind work at once
311  * 	MPOL_REBIND_STEP1 - set all the newly nodes
312  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
313  */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 				 enum mpol_rebind_step step)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		/*
325 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 		 * result
327 		 */
328 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 			nodes_remap(tmp, pol->v.nodes,
330 					pol->w.cpuset_mems_allowed, *nodes);
331 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 		} else if (step == MPOL_REBIND_STEP2) {
333 			tmp = pol->w.cpuset_mems_allowed;
334 			pol->w.cpuset_mems_allowed = *nodes;
335 		} else
336 			BUG();
337 	}
338 
339 	if (nodes_empty(tmp))
340 		tmp = *nodes;
341 
342 	if (step == MPOL_REBIND_STEP1)
343 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 		pol->v.nodes = tmp;
346 	else
347 		BUG();
348 
349 	if (!node_isset(current->il_next, tmp)) {
350 		current->il_next = next_node(current->il_next, tmp);
351 		if (current->il_next >= MAX_NUMNODES)
352 			current->il_next = first_node(tmp);
353 		if (current->il_next >= MAX_NUMNODES)
354 			current->il_next = numa_node_id();
355 	}
356 }
357 
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 				  const nodemask_t *nodes,
360 				  enum mpol_rebind_step step)
361 {
362 	nodemask_t tmp;
363 
364 	if (pol->flags & MPOL_F_STATIC_NODES) {
365 		int node = first_node(pol->w.user_nodemask);
366 
367 		if (node_isset(node, *nodes)) {
368 			pol->v.preferred_node = node;
369 			pol->flags &= ~MPOL_F_LOCAL;
370 		} else
371 			pol->flags |= MPOL_F_LOCAL;
372 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 		pol->v.preferred_node = first_node(tmp);
375 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
376 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 						   pol->w.cpuset_mems_allowed,
378 						   *nodes);
379 		pol->w.cpuset_mems_allowed = *nodes;
380 	}
381 }
382 
383 /*
384  * mpol_rebind_policy - Migrate a policy to a different set of nodes
385  *
386  * If read-side task has no lock to protect task->mempolicy, write-side
387  * task will rebind the task->mempolicy by two step. The first step is
388  * setting all the newly nodes, and the second step is cleaning all the
389  * disallowed nodes. In this way, we can avoid finding no node to alloc
390  * page.
391  * If we have a lock to protect task->mempolicy in read-side, we do
392  * rebind directly.
393  *
394  * step:
395  * 	MPOL_REBIND_ONCE  - do rebind work at once
396  * 	MPOL_REBIND_STEP1 - set all the newly nodes
397  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
398  */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 				enum mpol_rebind_step step)
401 {
402 	if (!pol)
403 		return;
404 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 		return;
407 
408 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 		return;
410 
411 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 		BUG();
413 
414 	if (step == MPOL_REBIND_STEP1)
415 		pol->flags |= MPOL_F_REBINDING;
416 	else if (step == MPOL_REBIND_STEP2)
417 		pol->flags &= ~MPOL_F_REBINDING;
418 	else if (step >= MPOL_REBIND_NSTEP)
419 		BUG();
420 
421 	mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423 
424 /*
425  * Wrapper for mpol_rebind_policy() that just requires task
426  * pointer, and updates task mempolicy.
427  *
428  * Called with task's alloc_lock held.
429  */
430 
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 			enum mpol_rebind_step step)
433 {
434 	mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436 
437 /*
438  * Rebind each vma in mm to new nodemask.
439  *
440  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
441  */
442 
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 	struct vm_area_struct *vma;
446 
447 	down_write(&mm->mmap_sem);
448 	for (vma = mm->mmap; vma; vma = vma->vm_next)
449 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 	up_write(&mm->mmap_sem);
451 }
452 
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 	[MPOL_DEFAULT] = {
455 		.rebind = mpol_rebind_default,
456 	},
457 	[MPOL_INTERLEAVE] = {
458 		.create = mpol_new_interleave,
459 		.rebind = mpol_rebind_nodemask,
460 	},
461 	[MPOL_PREFERRED] = {
462 		.create = mpol_new_preferred,
463 		.rebind = mpol_rebind_preferred,
464 	},
465 	[MPOL_BIND] = {
466 		.create = mpol_new_bind,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 };
470 
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 				unsigned long flags);
473 
474 struct queue_pages {
475 	struct list_head *pagelist;
476 	unsigned long flags;
477 	nodemask_t *nmask;
478 	struct vm_area_struct *prev;
479 };
480 
481 /*
482  * Scan through pages checking if pages follow certain conditions,
483  * and move them to the pagelist if they do.
484  */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 			unsigned long end, struct mm_walk *walk)
487 {
488 	struct vm_area_struct *vma = walk->vma;
489 	struct page *page;
490 	struct queue_pages *qp = walk->private;
491 	unsigned long flags = qp->flags;
492 	int nid, ret;
493 	pte_t *pte;
494 	spinlock_t *ptl;
495 
496 	if (pmd_trans_huge(*pmd)) {
497 		ptl = pmd_lock(walk->mm, pmd);
498 		if (pmd_trans_huge(*pmd)) {
499 			page = pmd_page(*pmd);
500 			if (is_huge_zero_page(page)) {
501 				spin_unlock(ptl);
502 				split_huge_pmd(vma, pmd, addr);
503 			} else {
504 				get_page(page);
505 				spin_unlock(ptl);
506 				lock_page(page);
507 				ret = split_huge_page(page);
508 				unlock_page(page);
509 				put_page(page);
510 				if (ret)
511 					return 0;
512 			}
513 		} else {
514 			spin_unlock(ptl);
515 		}
516 	}
517 
518 retry:
519 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
520 	for (; addr != end; pte++, addr += PAGE_SIZE) {
521 		if (!pte_present(*pte))
522 			continue;
523 		page = vm_normal_page(vma, addr, *pte);
524 		if (!page)
525 			continue;
526 		/*
527 		 * vm_normal_page() filters out zero pages, but there might
528 		 * still be PageReserved pages to skip, perhaps in a VDSO.
529 		 */
530 		if (PageReserved(page))
531 			continue;
532 		nid = page_to_nid(page);
533 		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
534 			continue;
535 		if (PageTail(page) && PageAnon(page)) {
536 			get_page(page);
537 			pte_unmap_unlock(pte, ptl);
538 			lock_page(page);
539 			ret = split_huge_page(page);
540 			unlock_page(page);
541 			put_page(page);
542 			/* Failed to split -- skip. */
543 			if (ret) {
544 				pte = pte_offset_map_lock(walk->mm, pmd,
545 						addr, &ptl);
546 				continue;
547 			}
548 			goto retry;
549 		}
550 
551 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
552 			migrate_page_add(page, qp->pagelist, flags);
553 	}
554 	pte_unmap_unlock(pte - 1, ptl);
555 	cond_resched();
556 	return 0;
557 }
558 
559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
560 			       unsigned long addr, unsigned long end,
561 			       struct mm_walk *walk)
562 {
563 #ifdef CONFIG_HUGETLB_PAGE
564 	struct queue_pages *qp = walk->private;
565 	unsigned long flags = qp->flags;
566 	int nid;
567 	struct page *page;
568 	spinlock_t *ptl;
569 	pte_t entry;
570 
571 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
572 	entry = huge_ptep_get(pte);
573 	if (!pte_present(entry))
574 		goto unlock;
575 	page = pte_page(entry);
576 	nid = page_to_nid(page);
577 	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
578 		goto unlock;
579 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
580 	if (flags & (MPOL_MF_MOVE_ALL) ||
581 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
582 		isolate_huge_page(page, qp->pagelist);
583 unlock:
584 	spin_unlock(ptl);
585 #else
586 	BUG();
587 #endif
588 	return 0;
589 }
590 
591 #ifdef CONFIG_NUMA_BALANCING
592 /*
593  * This is used to mark a range of virtual addresses to be inaccessible.
594  * These are later cleared by a NUMA hinting fault. Depending on these
595  * faults, pages may be migrated for better NUMA placement.
596  *
597  * This is assuming that NUMA faults are handled using PROT_NONE. If
598  * an architecture makes a different choice, it will need further
599  * changes to the core.
600  */
601 unsigned long change_prot_numa(struct vm_area_struct *vma,
602 			unsigned long addr, unsigned long end)
603 {
604 	int nr_updated;
605 
606 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
607 	if (nr_updated)
608 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
609 
610 	return nr_updated;
611 }
612 #else
613 static unsigned long change_prot_numa(struct vm_area_struct *vma,
614 			unsigned long addr, unsigned long end)
615 {
616 	return 0;
617 }
618 #endif /* CONFIG_NUMA_BALANCING */
619 
620 static int queue_pages_test_walk(unsigned long start, unsigned long end,
621 				struct mm_walk *walk)
622 {
623 	struct vm_area_struct *vma = walk->vma;
624 	struct queue_pages *qp = walk->private;
625 	unsigned long endvma = vma->vm_end;
626 	unsigned long flags = qp->flags;
627 
628 	if (vma->vm_flags & VM_PFNMAP)
629 		return 1;
630 
631 	if (endvma > end)
632 		endvma = end;
633 	if (vma->vm_start > start)
634 		start = vma->vm_start;
635 
636 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
637 		if (!vma->vm_next && vma->vm_end < end)
638 			return -EFAULT;
639 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
640 			return -EFAULT;
641 	}
642 
643 	qp->prev = vma;
644 
645 	if (flags & MPOL_MF_LAZY) {
646 		/* Similar to task_numa_work, skip inaccessible VMAs */
647 		if (vma_migratable(vma) &&
648 			vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
649 			change_prot_numa(vma, start, endvma);
650 		return 1;
651 	}
652 
653 	if ((flags & MPOL_MF_STRICT) ||
654 	    ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
655 	     vma_migratable(vma)))
656 		/* queue pages from current vma */
657 		return 0;
658 	return 1;
659 }
660 
661 /*
662  * Walk through page tables and collect pages to be migrated.
663  *
664  * If pages found in a given range are on a set of nodes (determined by
665  * @nodes and @flags,) it's isolated and queued to the pagelist which is
666  * passed via @private.)
667  */
668 static int
669 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
670 		nodemask_t *nodes, unsigned long flags,
671 		struct list_head *pagelist)
672 {
673 	struct queue_pages qp = {
674 		.pagelist = pagelist,
675 		.flags = flags,
676 		.nmask = nodes,
677 		.prev = NULL,
678 	};
679 	struct mm_walk queue_pages_walk = {
680 		.hugetlb_entry = queue_pages_hugetlb,
681 		.pmd_entry = queue_pages_pte_range,
682 		.test_walk = queue_pages_test_walk,
683 		.mm = mm,
684 		.private = &qp,
685 	};
686 
687 	return walk_page_range(start, end, &queue_pages_walk);
688 }
689 
690 /*
691  * Apply policy to a single VMA
692  * This must be called with the mmap_sem held for writing.
693  */
694 static int vma_replace_policy(struct vm_area_struct *vma,
695 						struct mempolicy *pol)
696 {
697 	int err;
698 	struct mempolicy *old;
699 	struct mempolicy *new;
700 
701 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
702 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
703 		 vma->vm_ops, vma->vm_file,
704 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
705 
706 	new = mpol_dup(pol);
707 	if (IS_ERR(new))
708 		return PTR_ERR(new);
709 
710 	if (vma->vm_ops && vma->vm_ops->set_policy) {
711 		err = vma->vm_ops->set_policy(vma, new);
712 		if (err)
713 			goto err_out;
714 	}
715 
716 	old = vma->vm_policy;
717 	vma->vm_policy = new; /* protected by mmap_sem */
718 	mpol_put(old);
719 
720 	return 0;
721  err_out:
722 	mpol_put(new);
723 	return err;
724 }
725 
726 /* Step 2: apply policy to a range and do splits. */
727 static int mbind_range(struct mm_struct *mm, unsigned long start,
728 		       unsigned long end, struct mempolicy *new_pol)
729 {
730 	struct vm_area_struct *next;
731 	struct vm_area_struct *prev;
732 	struct vm_area_struct *vma;
733 	int err = 0;
734 	pgoff_t pgoff;
735 	unsigned long vmstart;
736 	unsigned long vmend;
737 
738 	vma = find_vma(mm, start);
739 	if (!vma || vma->vm_start > start)
740 		return -EFAULT;
741 
742 	prev = vma->vm_prev;
743 	if (start > vma->vm_start)
744 		prev = vma;
745 
746 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
747 		next = vma->vm_next;
748 		vmstart = max(start, vma->vm_start);
749 		vmend   = min(end, vma->vm_end);
750 
751 		if (mpol_equal(vma_policy(vma), new_pol))
752 			continue;
753 
754 		pgoff = vma->vm_pgoff +
755 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
756 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
757 				 vma->anon_vma, vma->vm_file, pgoff,
758 				 new_pol, vma->vm_userfaultfd_ctx);
759 		if (prev) {
760 			vma = prev;
761 			next = vma->vm_next;
762 			if (mpol_equal(vma_policy(vma), new_pol))
763 				continue;
764 			/* vma_merge() joined vma && vma->next, case 8 */
765 			goto replace;
766 		}
767 		if (vma->vm_start != vmstart) {
768 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
769 			if (err)
770 				goto out;
771 		}
772 		if (vma->vm_end != vmend) {
773 			err = split_vma(vma->vm_mm, vma, vmend, 0);
774 			if (err)
775 				goto out;
776 		}
777  replace:
778 		err = vma_replace_policy(vma, new_pol);
779 		if (err)
780 			goto out;
781 	}
782 
783  out:
784 	return err;
785 }
786 
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
789 			     nodemask_t *nodes)
790 {
791 	struct mempolicy *new, *old;
792 	NODEMASK_SCRATCH(scratch);
793 	int ret;
794 
795 	if (!scratch)
796 		return -ENOMEM;
797 
798 	new = mpol_new(mode, flags, nodes);
799 	if (IS_ERR(new)) {
800 		ret = PTR_ERR(new);
801 		goto out;
802 	}
803 
804 	task_lock(current);
805 	ret = mpol_set_nodemask(new, nodes, scratch);
806 	if (ret) {
807 		task_unlock(current);
808 		mpol_put(new);
809 		goto out;
810 	}
811 	old = current->mempolicy;
812 	current->mempolicy = new;
813 	if (new && new->mode == MPOL_INTERLEAVE &&
814 	    nodes_weight(new->v.nodes))
815 		current->il_next = first_node(new->v.nodes);
816 	task_unlock(current);
817 	mpol_put(old);
818 	ret = 0;
819 out:
820 	NODEMASK_SCRATCH_FREE(scratch);
821 	return ret;
822 }
823 
824 /*
825  * Return nodemask for policy for get_mempolicy() query
826  *
827  * Called with task's alloc_lock held
828  */
829 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
830 {
831 	nodes_clear(*nodes);
832 	if (p == &default_policy)
833 		return;
834 
835 	switch (p->mode) {
836 	case MPOL_BIND:
837 		/* Fall through */
838 	case MPOL_INTERLEAVE:
839 		*nodes = p->v.nodes;
840 		break;
841 	case MPOL_PREFERRED:
842 		if (!(p->flags & MPOL_F_LOCAL))
843 			node_set(p->v.preferred_node, *nodes);
844 		/* else return empty node mask for local allocation */
845 		break;
846 	default:
847 		BUG();
848 	}
849 }
850 
851 static int lookup_node(struct mm_struct *mm, unsigned long addr)
852 {
853 	struct page *p;
854 	int err;
855 
856 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
857 	if (err >= 0) {
858 		err = page_to_nid(p);
859 		put_page(p);
860 	}
861 	return err;
862 }
863 
864 /* Retrieve NUMA policy */
865 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
866 			     unsigned long addr, unsigned long flags)
867 {
868 	int err;
869 	struct mm_struct *mm = current->mm;
870 	struct vm_area_struct *vma = NULL;
871 	struct mempolicy *pol = current->mempolicy;
872 
873 	if (flags &
874 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
875 		return -EINVAL;
876 
877 	if (flags & MPOL_F_MEMS_ALLOWED) {
878 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
879 			return -EINVAL;
880 		*policy = 0;	/* just so it's initialized */
881 		task_lock(current);
882 		*nmask  = cpuset_current_mems_allowed;
883 		task_unlock(current);
884 		return 0;
885 	}
886 
887 	if (flags & MPOL_F_ADDR) {
888 		/*
889 		 * Do NOT fall back to task policy if the
890 		 * vma/shared policy at addr is NULL.  We
891 		 * want to return MPOL_DEFAULT in this case.
892 		 */
893 		down_read(&mm->mmap_sem);
894 		vma = find_vma_intersection(mm, addr, addr+1);
895 		if (!vma) {
896 			up_read(&mm->mmap_sem);
897 			return -EFAULT;
898 		}
899 		if (vma->vm_ops && vma->vm_ops->get_policy)
900 			pol = vma->vm_ops->get_policy(vma, addr);
901 		else
902 			pol = vma->vm_policy;
903 	} else if (addr)
904 		return -EINVAL;
905 
906 	if (!pol)
907 		pol = &default_policy;	/* indicates default behavior */
908 
909 	if (flags & MPOL_F_NODE) {
910 		if (flags & MPOL_F_ADDR) {
911 			err = lookup_node(mm, addr);
912 			if (err < 0)
913 				goto out;
914 			*policy = err;
915 		} else if (pol == current->mempolicy &&
916 				pol->mode == MPOL_INTERLEAVE) {
917 			*policy = current->il_next;
918 		} else {
919 			err = -EINVAL;
920 			goto out;
921 		}
922 	} else {
923 		*policy = pol == &default_policy ? MPOL_DEFAULT :
924 						pol->mode;
925 		/*
926 		 * Internal mempolicy flags must be masked off before exposing
927 		 * the policy to userspace.
928 		 */
929 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
930 	}
931 
932 	if (vma) {
933 		up_read(&current->mm->mmap_sem);
934 		vma = NULL;
935 	}
936 
937 	err = 0;
938 	if (nmask) {
939 		if (mpol_store_user_nodemask(pol)) {
940 			*nmask = pol->w.user_nodemask;
941 		} else {
942 			task_lock(current);
943 			get_policy_nodemask(pol, nmask);
944 			task_unlock(current);
945 		}
946 	}
947 
948  out:
949 	mpol_cond_put(pol);
950 	if (vma)
951 		up_read(&current->mm->mmap_sem);
952 	return err;
953 }
954 
955 #ifdef CONFIG_MIGRATION
956 /*
957  * page migration
958  */
959 static void migrate_page_add(struct page *page, struct list_head *pagelist,
960 				unsigned long flags)
961 {
962 	/*
963 	 * Avoid migrating a page that is shared with others.
964 	 */
965 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
966 		if (!isolate_lru_page(page)) {
967 			list_add_tail(&page->lru, pagelist);
968 			inc_zone_page_state(page, NR_ISOLATED_ANON +
969 					    page_is_file_cache(page));
970 		}
971 	}
972 }
973 
974 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
975 {
976 	if (PageHuge(page))
977 		return alloc_huge_page_node(page_hstate(compound_head(page)),
978 					node);
979 	else
980 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
981 						    __GFP_THISNODE, 0);
982 }
983 
984 /*
985  * Migrate pages from one node to a target node.
986  * Returns error or the number of pages not migrated.
987  */
988 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
989 			   int flags)
990 {
991 	nodemask_t nmask;
992 	LIST_HEAD(pagelist);
993 	int err = 0;
994 
995 	nodes_clear(nmask);
996 	node_set(source, nmask);
997 
998 	/*
999 	 * This does not "check" the range but isolates all pages that
1000 	 * need migration.  Between passing in the full user address
1001 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1002 	 */
1003 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1004 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1005 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1006 
1007 	if (!list_empty(&pagelist)) {
1008 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1009 					MIGRATE_SYNC, MR_SYSCALL);
1010 		if (err)
1011 			putback_movable_pages(&pagelist);
1012 	}
1013 
1014 	return err;
1015 }
1016 
1017 /*
1018  * Move pages between the two nodesets so as to preserve the physical
1019  * layout as much as possible.
1020  *
1021  * Returns the number of page that could not be moved.
1022  */
1023 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1024 		     const nodemask_t *to, int flags)
1025 {
1026 	int busy = 0;
1027 	int err;
1028 	nodemask_t tmp;
1029 
1030 	err = migrate_prep();
1031 	if (err)
1032 		return err;
1033 
1034 	down_read(&mm->mmap_sem);
1035 
1036 	/*
1037 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1038 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1039 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1040 	 * The pair of nodemasks 'to' and 'from' define the map.
1041 	 *
1042 	 * If no pair of bits is found that way, fallback to picking some
1043 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1044 	 * 'source' and 'dest' bits are the same, this represents a node
1045 	 * that will be migrating to itself, so no pages need move.
1046 	 *
1047 	 * If no bits are left in 'tmp', or if all remaining bits left
1048 	 * in 'tmp' correspond to the same bit in 'to', return false
1049 	 * (nothing left to migrate).
1050 	 *
1051 	 * This lets us pick a pair of nodes to migrate between, such that
1052 	 * if possible the dest node is not already occupied by some other
1053 	 * source node, minimizing the risk of overloading the memory on a
1054 	 * node that would happen if we migrated incoming memory to a node
1055 	 * before migrating outgoing memory source that same node.
1056 	 *
1057 	 * A single scan of tmp is sufficient.  As we go, we remember the
1058 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1059 	 * that not only moved, but what's better, moved to an empty slot
1060 	 * (d is not set in tmp), then we break out then, with that pair.
1061 	 * Otherwise when we finish scanning from_tmp, we at least have the
1062 	 * most recent <s, d> pair that moved.  If we get all the way through
1063 	 * the scan of tmp without finding any node that moved, much less
1064 	 * moved to an empty node, then there is nothing left worth migrating.
1065 	 */
1066 
1067 	tmp = *from;
1068 	while (!nodes_empty(tmp)) {
1069 		int s,d;
1070 		int source = NUMA_NO_NODE;
1071 		int dest = 0;
1072 
1073 		for_each_node_mask(s, tmp) {
1074 
1075 			/*
1076 			 * do_migrate_pages() tries to maintain the relative
1077 			 * node relationship of the pages established between
1078 			 * threads and memory areas.
1079                          *
1080 			 * However if the number of source nodes is not equal to
1081 			 * the number of destination nodes we can not preserve
1082 			 * this node relative relationship.  In that case, skip
1083 			 * copying memory from a node that is in the destination
1084 			 * mask.
1085 			 *
1086 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1087 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1088 			 */
1089 
1090 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1091 						(node_isset(s, *to)))
1092 				continue;
1093 
1094 			d = node_remap(s, *from, *to);
1095 			if (s == d)
1096 				continue;
1097 
1098 			source = s;	/* Node moved. Memorize */
1099 			dest = d;
1100 
1101 			/* dest not in remaining from nodes? */
1102 			if (!node_isset(dest, tmp))
1103 				break;
1104 		}
1105 		if (source == NUMA_NO_NODE)
1106 			break;
1107 
1108 		node_clear(source, tmp);
1109 		err = migrate_to_node(mm, source, dest, flags);
1110 		if (err > 0)
1111 			busy += err;
1112 		if (err < 0)
1113 			break;
1114 	}
1115 	up_read(&mm->mmap_sem);
1116 	if (err < 0)
1117 		return err;
1118 	return busy;
1119 
1120 }
1121 
1122 /*
1123  * Allocate a new page for page migration based on vma policy.
1124  * Start by assuming the page is mapped by the same vma as contains @start.
1125  * Search forward from there, if not.  N.B., this assumes that the
1126  * list of pages handed to migrate_pages()--which is how we get here--
1127  * is in virtual address order.
1128  */
1129 static struct page *new_page(struct page *page, unsigned long start, int **x)
1130 {
1131 	struct vm_area_struct *vma;
1132 	unsigned long uninitialized_var(address);
1133 
1134 	vma = find_vma(current->mm, start);
1135 	while (vma) {
1136 		address = page_address_in_vma(page, vma);
1137 		if (address != -EFAULT)
1138 			break;
1139 		vma = vma->vm_next;
1140 	}
1141 
1142 	if (PageHuge(page)) {
1143 		BUG_ON(!vma);
1144 		return alloc_huge_page_noerr(vma, address, 1);
1145 	}
1146 	/*
1147 	 * if !vma, alloc_page_vma() will use task or system default policy
1148 	 */
1149 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1150 }
1151 #else
1152 
1153 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1154 				unsigned long flags)
1155 {
1156 }
1157 
1158 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1159 		     const nodemask_t *to, int flags)
1160 {
1161 	return -ENOSYS;
1162 }
1163 
1164 static struct page *new_page(struct page *page, unsigned long start, int **x)
1165 {
1166 	return NULL;
1167 }
1168 #endif
1169 
1170 static long do_mbind(unsigned long start, unsigned long len,
1171 		     unsigned short mode, unsigned short mode_flags,
1172 		     nodemask_t *nmask, unsigned long flags)
1173 {
1174 	struct mm_struct *mm = current->mm;
1175 	struct mempolicy *new;
1176 	unsigned long end;
1177 	int err;
1178 	LIST_HEAD(pagelist);
1179 
1180 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1181 		return -EINVAL;
1182 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1183 		return -EPERM;
1184 
1185 	if (start & ~PAGE_MASK)
1186 		return -EINVAL;
1187 
1188 	if (mode == MPOL_DEFAULT)
1189 		flags &= ~MPOL_MF_STRICT;
1190 
1191 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1192 	end = start + len;
1193 
1194 	if (end < start)
1195 		return -EINVAL;
1196 	if (end == start)
1197 		return 0;
1198 
1199 	new = mpol_new(mode, mode_flags, nmask);
1200 	if (IS_ERR(new))
1201 		return PTR_ERR(new);
1202 
1203 	if (flags & MPOL_MF_LAZY)
1204 		new->flags |= MPOL_F_MOF;
1205 
1206 	/*
1207 	 * If we are using the default policy then operation
1208 	 * on discontinuous address spaces is okay after all
1209 	 */
1210 	if (!new)
1211 		flags |= MPOL_MF_DISCONTIG_OK;
1212 
1213 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1214 		 start, start + len, mode, mode_flags,
1215 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1216 
1217 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1218 
1219 		err = migrate_prep();
1220 		if (err)
1221 			goto mpol_out;
1222 	}
1223 	{
1224 		NODEMASK_SCRATCH(scratch);
1225 		if (scratch) {
1226 			down_write(&mm->mmap_sem);
1227 			task_lock(current);
1228 			err = mpol_set_nodemask(new, nmask, scratch);
1229 			task_unlock(current);
1230 			if (err)
1231 				up_write(&mm->mmap_sem);
1232 		} else
1233 			err = -ENOMEM;
1234 		NODEMASK_SCRATCH_FREE(scratch);
1235 	}
1236 	if (err)
1237 		goto mpol_out;
1238 
1239 	err = queue_pages_range(mm, start, end, nmask,
1240 			  flags | MPOL_MF_INVERT, &pagelist);
1241 	if (!err)
1242 		err = mbind_range(mm, start, end, new);
1243 
1244 	if (!err) {
1245 		int nr_failed = 0;
1246 
1247 		if (!list_empty(&pagelist)) {
1248 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1249 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1250 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1251 			if (nr_failed)
1252 				putback_movable_pages(&pagelist);
1253 		}
1254 
1255 		if (nr_failed && (flags & MPOL_MF_STRICT))
1256 			err = -EIO;
1257 	} else
1258 		putback_movable_pages(&pagelist);
1259 
1260 	up_write(&mm->mmap_sem);
1261  mpol_out:
1262 	mpol_put(new);
1263 	return err;
1264 }
1265 
1266 /*
1267  * User space interface with variable sized bitmaps for nodelists.
1268  */
1269 
1270 /* Copy a node mask from user space. */
1271 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1272 		     unsigned long maxnode)
1273 {
1274 	unsigned long k;
1275 	unsigned long nlongs;
1276 	unsigned long endmask;
1277 
1278 	--maxnode;
1279 	nodes_clear(*nodes);
1280 	if (maxnode == 0 || !nmask)
1281 		return 0;
1282 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1283 		return -EINVAL;
1284 
1285 	nlongs = BITS_TO_LONGS(maxnode);
1286 	if ((maxnode % BITS_PER_LONG) == 0)
1287 		endmask = ~0UL;
1288 	else
1289 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1290 
1291 	/* When the user specified more nodes than supported just check
1292 	   if the non supported part is all zero. */
1293 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1294 		if (nlongs > PAGE_SIZE/sizeof(long))
1295 			return -EINVAL;
1296 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1297 			unsigned long t;
1298 			if (get_user(t, nmask + k))
1299 				return -EFAULT;
1300 			if (k == nlongs - 1) {
1301 				if (t & endmask)
1302 					return -EINVAL;
1303 			} else if (t)
1304 				return -EINVAL;
1305 		}
1306 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1307 		endmask = ~0UL;
1308 	}
1309 
1310 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1311 		return -EFAULT;
1312 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1313 	return 0;
1314 }
1315 
1316 /* Copy a kernel node mask to user space */
1317 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1318 			      nodemask_t *nodes)
1319 {
1320 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1321 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1322 
1323 	if (copy > nbytes) {
1324 		if (copy > PAGE_SIZE)
1325 			return -EINVAL;
1326 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1327 			return -EFAULT;
1328 		copy = nbytes;
1329 	}
1330 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1331 }
1332 
1333 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1334 		unsigned long, mode, const unsigned long __user *, nmask,
1335 		unsigned long, maxnode, unsigned, flags)
1336 {
1337 	nodemask_t nodes;
1338 	int err;
1339 	unsigned short mode_flags;
1340 
1341 	mode_flags = mode & MPOL_MODE_FLAGS;
1342 	mode &= ~MPOL_MODE_FLAGS;
1343 	if (mode >= MPOL_MAX)
1344 		return -EINVAL;
1345 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1346 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1347 		return -EINVAL;
1348 	err = get_nodes(&nodes, nmask, maxnode);
1349 	if (err)
1350 		return err;
1351 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1352 }
1353 
1354 /* Set the process memory policy */
1355 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1356 		unsigned long, maxnode)
1357 {
1358 	int err;
1359 	nodemask_t nodes;
1360 	unsigned short flags;
1361 
1362 	flags = mode & MPOL_MODE_FLAGS;
1363 	mode &= ~MPOL_MODE_FLAGS;
1364 	if ((unsigned int)mode >= MPOL_MAX)
1365 		return -EINVAL;
1366 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1367 		return -EINVAL;
1368 	err = get_nodes(&nodes, nmask, maxnode);
1369 	if (err)
1370 		return err;
1371 	return do_set_mempolicy(mode, flags, &nodes);
1372 }
1373 
1374 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1375 		const unsigned long __user *, old_nodes,
1376 		const unsigned long __user *, new_nodes)
1377 {
1378 	const struct cred *cred = current_cred(), *tcred;
1379 	struct mm_struct *mm = NULL;
1380 	struct task_struct *task;
1381 	nodemask_t task_nodes;
1382 	int err;
1383 	nodemask_t *old;
1384 	nodemask_t *new;
1385 	NODEMASK_SCRATCH(scratch);
1386 
1387 	if (!scratch)
1388 		return -ENOMEM;
1389 
1390 	old = &scratch->mask1;
1391 	new = &scratch->mask2;
1392 
1393 	err = get_nodes(old, old_nodes, maxnode);
1394 	if (err)
1395 		goto out;
1396 
1397 	err = get_nodes(new, new_nodes, maxnode);
1398 	if (err)
1399 		goto out;
1400 
1401 	/* Find the mm_struct */
1402 	rcu_read_lock();
1403 	task = pid ? find_task_by_vpid(pid) : current;
1404 	if (!task) {
1405 		rcu_read_unlock();
1406 		err = -ESRCH;
1407 		goto out;
1408 	}
1409 	get_task_struct(task);
1410 
1411 	err = -EINVAL;
1412 
1413 	/*
1414 	 * Check if this process has the right to modify the specified
1415 	 * process. The right exists if the process has administrative
1416 	 * capabilities, superuser privileges or the same
1417 	 * userid as the target process.
1418 	 */
1419 	tcred = __task_cred(task);
1420 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1421 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1422 	    !capable(CAP_SYS_NICE)) {
1423 		rcu_read_unlock();
1424 		err = -EPERM;
1425 		goto out_put;
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	task_nodes = cpuset_mems_allowed(task);
1430 	/* Is the user allowed to access the target nodes? */
1431 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1432 		err = -EPERM;
1433 		goto out_put;
1434 	}
1435 
1436 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1437 		err = -EINVAL;
1438 		goto out_put;
1439 	}
1440 
1441 	err = security_task_movememory(task);
1442 	if (err)
1443 		goto out_put;
1444 
1445 	mm = get_task_mm(task);
1446 	put_task_struct(task);
1447 
1448 	if (!mm) {
1449 		err = -EINVAL;
1450 		goto out;
1451 	}
1452 
1453 	err = do_migrate_pages(mm, old, new,
1454 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1455 
1456 	mmput(mm);
1457 out:
1458 	NODEMASK_SCRATCH_FREE(scratch);
1459 
1460 	return err;
1461 
1462 out_put:
1463 	put_task_struct(task);
1464 	goto out;
1465 
1466 }
1467 
1468 
1469 /* Retrieve NUMA policy */
1470 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1471 		unsigned long __user *, nmask, unsigned long, maxnode,
1472 		unsigned long, addr, unsigned long, flags)
1473 {
1474 	int err;
1475 	int uninitialized_var(pval);
1476 	nodemask_t nodes;
1477 
1478 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1479 		return -EINVAL;
1480 
1481 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1482 
1483 	if (err)
1484 		return err;
1485 
1486 	if (policy && put_user(pval, policy))
1487 		return -EFAULT;
1488 
1489 	if (nmask)
1490 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1491 
1492 	return err;
1493 }
1494 
1495 #ifdef CONFIG_COMPAT
1496 
1497 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498 		       compat_ulong_t __user *, nmask,
1499 		       compat_ulong_t, maxnode,
1500 		       compat_ulong_t, addr, compat_ulong_t, flags)
1501 {
1502 	long err;
1503 	unsigned long __user *nm = NULL;
1504 	unsigned long nr_bits, alloc_size;
1505 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1506 
1507 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1508 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1509 
1510 	if (nmask)
1511 		nm = compat_alloc_user_space(alloc_size);
1512 
1513 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1514 
1515 	if (!err && nmask) {
1516 		unsigned long copy_size;
1517 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1518 		err = copy_from_user(bm, nm, copy_size);
1519 		/* ensure entire bitmap is zeroed */
1520 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1521 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1522 	}
1523 
1524 	return err;
1525 }
1526 
1527 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1528 		       compat_ulong_t, maxnode)
1529 {
1530 	long err = 0;
1531 	unsigned long __user *nm = NULL;
1532 	unsigned long nr_bits, alloc_size;
1533 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1534 
1535 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1536 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1537 
1538 	if (nmask) {
1539 		err = compat_get_bitmap(bm, nmask, nr_bits);
1540 		nm = compat_alloc_user_space(alloc_size);
1541 		err |= copy_to_user(nm, bm, alloc_size);
1542 	}
1543 
1544 	if (err)
1545 		return -EFAULT;
1546 
1547 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1548 }
1549 
1550 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1551 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1552 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1553 {
1554 	long err = 0;
1555 	unsigned long __user *nm = NULL;
1556 	unsigned long nr_bits, alloc_size;
1557 	nodemask_t bm;
1558 
1559 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1560 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1561 
1562 	if (nmask) {
1563 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1564 		nm = compat_alloc_user_space(alloc_size);
1565 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1566 	}
1567 
1568 	if (err)
1569 		return -EFAULT;
1570 
1571 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1572 }
1573 
1574 #endif
1575 
1576 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1577 						unsigned long addr)
1578 {
1579 	struct mempolicy *pol = NULL;
1580 
1581 	if (vma) {
1582 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1583 			pol = vma->vm_ops->get_policy(vma, addr);
1584 		} else if (vma->vm_policy) {
1585 			pol = vma->vm_policy;
1586 
1587 			/*
1588 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1589 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1590 			 * count on these policies which will be dropped by
1591 			 * mpol_cond_put() later
1592 			 */
1593 			if (mpol_needs_cond_ref(pol))
1594 				mpol_get(pol);
1595 		}
1596 	}
1597 
1598 	return pol;
1599 }
1600 
1601 /*
1602  * get_vma_policy(@vma, @addr)
1603  * @vma: virtual memory area whose policy is sought
1604  * @addr: address in @vma for shared policy lookup
1605  *
1606  * Returns effective policy for a VMA at specified address.
1607  * Falls back to current->mempolicy or system default policy, as necessary.
1608  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1609  * count--added by the get_policy() vm_op, as appropriate--to protect against
1610  * freeing by another task.  It is the caller's responsibility to free the
1611  * extra reference for shared policies.
1612  */
1613 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1614 						unsigned long addr)
1615 {
1616 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1617 
1618 	if (!pol)
1619 		pol = get_task_policy(current);
1620 
1621 	return pol;
1622 }
1623 
1624 bool vma_policy_mof(struct vm_area_struct *vma)
1625 {
1626 	struct mempolicy *pol;
1627 
1628 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1629 		bool ret = false;
1630 
1631 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1632 		if (pol && (pol->flags & MPOL_F_MOF))
1633 			ret = true;
1634 		mpol_cond_put(pol);
1635 
1636 		return ret;
1637 	}
1638 
1639 	pol = vma->vm_policy;
1640 	if (!pol)
1641 		pol = get_task_policy(current);
1642 
1643 	return pol->flags & MPOL_F_MOF;
1644 }
1645 
1646 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1647 {
1648 	enum zone_type dynamic_policy_zone = policy_zone;
1649 
1650 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1651 
1652 	/*
1653 	 * if policy->v.nodes has movable memory only,
1654 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1655 	 *
1656 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1657 	 * so if the following test faile, it implies
1658 	 * policy->v.nodes has movable memory only.
1659 	 */
1660 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1661 		dynamic_policy_zone = ZONE_MOVABLE;
1662 
1663 	return zone >= dynamic_policy_zone;
1664 }
1665 
1666 /*
1667  * Return a nodemask representing a mempolicy for filtering nodes for
1668  * page allocation
1669  */
1670 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1671 {
1672 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1673 	if (unlikely(policy->mode == MPOL_BIND) &&
1674 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1675 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1676 		return &policy->v.nodes;
1677 
1678 	return NULL;
1679 }
1680 
1681 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1682 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1683 	int nd)
1684 {
1685 	switch (policy->mode) {
1686 	case MPOL_PREFERRED:
1687 		if (!(policy->flags & MPOL_F_LOCAL))
1688 			nd = policy->v.preferred_node;
1689 		break;
1690 	case MPOL_BIND:
1691 		/*
1692 		 * Normally, MPOL_BIND allocations are node-local within the
1693 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1694 		 * current node isn't part of the mask, we use the zonelist for
1695 		 * the first node in the mask instead.
1696 		 */
1697 		if (unlikely(gfp & __GFP_THISNODE) &&
1698 				unlikely(!node_isset(nd, policy->v.nodes)))
1699 			nd = first_node(policy->v.nodes);
1700 		break;
1701 	default:
1702 		BUG();
1703 	}
1704 	return node_zonelist(nd, gfp);
1705 }
1706 
1707 /* Do dynamic interleaving for a process */
1708 static unsigned interleave_nodes(struct mempolicy *policy)
1709 {
1710 	unsigned nid, next;
1711 	struct task_struct *me = current;
1712 
1713 	nid = me->il_next;
1714 	next = next_node(nid, policy->v.nodes);
1715 	if (next >= MAX_NUMNODES)
1716 		next = first_node(policy->v.nodes);
1717 	if (next < MAX_NUMNODES)
1718 		me->il_next = next;
1719 	return nid;
1720 }
1721 
1722 /*
1723  * Depending on the memory policy provide a node from which to allocate the
1724  * next slab entry.
1725  */
1726 unsigned int mempolicy_slab_node(void)
1727 {
1728 	struct mempolicy *policy;
1729 	int node = numa_mem_id();
1730 
1731 	if (in_interrupt())
1732 		return node;
1733 
1734 	policy = current->mempolicy;
1735 	if (!policy || policy->flags & MPOL_F_LOCAL)
1736 		return node;
1737 
1738 	switch (policy->mode) {
1739 	case MPOL_PREFERRED:
1740 		/*
1741 		 * handled MPOL_F_LOCAL above
1742 		 */
1743 		return policy->v.preferred_node;
1744 
1745 	case MPOL_INTERLEAVE:
1746 		return interleave_nodes(policy);
1747 
1748 	case MPOL_BIND: {
1749 		/*
1750 		 * Follow bind policy behavior and start allocation at the
1751 		 * first node.
1752 		 */
1753 		struct zonelist *zonelist;
1754 		struct zone *zone;
1755 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1756 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1757 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1758 							&policy->v.nodes,
1759 							&zone);
1760 		return zone ? zone->node : node;
1761 	}
1762 
1763 	default:
1764 		BUG();
1765 	}
1766 }
1767 
1768 /* Do static interleaving for a VMA with known offset. */
1769 static unsigned offset_il_node(struct mempolicy *pol,
1770 		struct vm_area_struct *vma, unsigned long off)
1771 {
1772 	unsigned nnodes = nodes_weight(pol->v.nodes);
1773 	unsigned target;
1774 	int c;
1775 	int nid = NUMA_NO_NODE;
1776 
1777 	if (!nnodes)
1778 		return numa_node_id();
1779 	target = (unsigned int)off % nnodes;
1780 	c = 0;
1781 	do {
1782 		nid = next_node(nid, pol->v.nodes);
1783 		c++;
1784 	} while (c <= target);
1785 	return nid;
1786 }
1787 
1788 /* Determine a node number for interleave */
1789 static inline unsigned interleave_nid(struct mempolicy *pol,
1790 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1791 {
1792 	if (vma) {
1793 		unsigned long off;
1794 
1795 		/*
1796 		 * for small pages, there is no difference between
1797 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1798 		 * for huge pages, since vm_pgoff is in units of small
1799 		 * pages, we need to shift off the always 0 bits to get
1800 		 * a useful offset.
1801 		 */
1802 		BUG_ON(shift < PAGE_SHIFT);
1803 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1804 		off += (addr - vma->vm_start) >> shift;
1805 		return offset_il_node(pol, vma, off);
1806 	} else
1807 		return interleave_nodes(pol);
1808 }
1809 
1810 /*
1811  * Return the bit number of a random bit set in the nodemask.
1812  * (returns NUMA_NO_NODE if nodemask is empty)
1813  */
1814 int node_random(const nodemask_t *maskp)
1815 {
1816 	int w, bit = NUMA_NO_NODE;
1817 
1818 	w = nodes_weight(*maskp);
1819 	if (w)
1820 		bit = bitmap_ord_to_pos(maskp->bits,
1821 			get_random_int() % w, MAX_NUMNODES);
1822 	return bit;
1823 }
1824 
1825 #ifdef CONFIG_HUGETLBFS
1826 /*
1827  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1828  * @vma: virtual memory area whose policy is sought
1829  * @addr: address in @vma for shared policy lookup and interleave policy
1830  * @gfp_flags: for requested zone
1831  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1832  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1833  *
1834  * Returns a zonelist suitable for a huge page allocation and a pointer
1835  * to the struct mempolicy for conditional unref after allocation.
1836  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1837  * @nodemask for filtering the zonelist.
1838  *
1839  * Must be protected by read_mems_allowed_begin()
1840  */
1841 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1842 				gfp_t gfp_flags, struct mempolicy **mpol,
1843 				nodemask_t **nodemask)
1844 {
1845 	struct zonelist *zl;
1846 
1847 	*mpol = get_vma_policy(vma, addr);
1848 	*nodemask = NULL;	/* assume !MPOL_BIND */
1849 
1850 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1851 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1852 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1853 	} else {
1854 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1855 		if ((*mpol)->mode == MPOL_BIND)
1856 			*nodemask = &(*mpol)->v.nodes;
1857 	}
1858 	return zl;
1859 }
1860 
1861 /*
1862  * init_nodemask_of_mempolicy
1863  *
1864  * If the current task's mempolicy is "default" [NULL], return 'false'
1865  * to indicate default policy.  Otherwise, extract the policy nodemask
1866  * for 'bind' or 'interleave' policy into the argument nodemask, or
1867  * initialize the argument nodemask to contain the single node for
1868  * 'preferred' or 'local' policy and return 'true' to indicate presence
1869  * of non-default mempolicy.
1870  *
1871  * We don't bother with reference counting the mempolicy [mpol_get/put]
1872  * because the current task is examining it's own mempolicy and a task's
1873  * mempolicy is only ever changed by the task itself.
1874  *
1875  * N.B., it is the caller's responsibility to free a returned nodemask.
1876  */
1877 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1878 {
1879 	struct mempolicy *mempolicy;
1880 	int nid;
1881 
1882 	if (!(mask && current->mempolicy))
1883 		return false;
1884 
1885 	task_lock(current);
1886 	mempolicy = current->mempolicy;
1887 	switch (mempolicy->mode) {
1888 	case MPOL_PREFERRED:
1889 		if (mempolicy->flags & MPOL_F_LOCAL)
1890 			nid = numa_node_id();
1891 		else
1892 			nid = mempolicy->v.preferred_node;
1893 		init_nodemask_of_node(mask, nid);
1894 		break;
1895 
1896 	case MPOL_BIND:
1897 		/* Fall through */
1898 	case MPOL_INTERLEAVE:
1899 		*mask =  mempolicy->v.nodes;
1900 		break;
1901 
1902 	default:
1903 		BUG();
1904 	}
1905 	task_unlock(current);
1906 
1907 	return true;
1908 }
1909 #endif
1910 
1911 /*
1912  * mempolicy_nodemask_intersects
1913  *
1914  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1915  * policy.  Otherwise, check for intersection between mask and the policy
1916  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1917  * policy, always return true since it may allocate elsewhere on fallback.
1918  *
1919  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1920  */
1921 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1922 					const nodemask_t *mask)
1923 {
1924 	struct mempolicy *mempolicy;
1925 	bool ret = true;
1926 
1927 	if (!mask)
1928 		return ret;
1929 	task_lock(tsk);
1930 	mempolicy = tsk->mempolicy;
1931 	if (!mempolicy)
1932 		goto out;
1933 
1934 	switch (mempolicy->mode) {
1935 	case MPOL_PREFERRED:
1936 		/*
1937 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1938 		 * allocate from, they may fallback to other nodes when oom.
1939 		 * Thus, it's possible for tsk to have allocated memory from
1940 		 * nodes in mask.
1941 		 */
1942 		break;
1943 	case MPOL_BIND:
1944 	case MPOL_INTERLEAVE:
1945 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1946 		break;
1947 	default:
1948 		BUG();
1949 	}
1950 out:
1951 	task_unlock(tsk);
1952 	return ret;
1953 }
1954 
1955 /* Allocate a page in interleaved policy.
1956    Own path because it needs to do special accounting. */
1957 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1958 					unsigned nid)
1959 {
1960 	struct zonelist *zl;
1961 	struct page *page;
1962 
1963 	zl = node_zonelist(nid, gfp);
1964 	page = __alloc_pages(gfp, order, zl);
1965 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1966 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1967 	return page;
1968 }
1969 
1970 /**
1971  * 	alloc_pages_vma	- Allocate a page for a VMA.
1972  *
1973  * 	@gfp:
1974  *      %GFP_USER    user allocation.
1975  *      %GFP_KERNEL  kernel allocations,
1976  *      %GFP_HIGHMEM highmem/user allocations,
1977  *      %GFP_FS      allocation should not call back into a file system.
1978  *      %GFP_ATOMIC  don't sleep.
1979  *
1980  *	@order:Order of the GFP allocation.
1981  * 	@vma:  Pointer to VMA or NULL if not available.
1982  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1983  *	@node: Which node to prefer for allocation (modulo policy).
1984  *	@hugepage: for hugepages try only the preferred node if possible
1985  *
1986  * 	This function allocates a page from the kernel page pool and applies
1987  *	a NUMA policy associated with the VMA or the current process.
1988  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1989  *	mm_struct of the VMA to prevent it from going away. Should be used for
1990  *	all allocations for pages that will be mapped into user space. Returns
1991  *	NULL when no page can be allocated.
1992  */
1993 struct page *
1994 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1995 		unsigned long addr, int node, bool hugepage)
1996 {
1997 	struct mempolicy *pol;
1998 	struct page *page;
1999 	unsigned int cpuset_mems_cookie;
2000 	struct zonelist *zl;
2001 	nodemask_t *nmask;
2002 
2003 retry_cpuset:
2004 	pol = get_vma_policy(vma, addr);
2005 	cpuset_mems_cookie = read_mems_allowed_begin();
2006 
2007 	if (pol->mode == MPOL_INTERLEAVE) {
2008 		unsigned nid;
2009 
2010 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2011 		mpol_cond_put(pol);
2012 		page = alloc_page_interleave(gfp, order, nid);
2013 		goto out;
2014 	}
2015 
2016 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2017 		int hpage_node = node;
2018 
2019 		/*
2020 		 * For hugepage allocation and non-interleave policy which
2021 		 * allows the current node (or other explicitly preferred
2022 		 * node) we only try to allocate from the current/preferred
2023 		 * node and don't fall back to other nodes, as the cost of
2024 		 * remote accesses would likely offset THP benefits.
2025 		 *
2026 		 * If the policy is interleave, or does not allow the current
2027 		 * node in its nodemask, we allocate the standard way.
2028 		 */
2029 		if (pol->mode == MPOL_PREFERRED &&
2030 						!(pol->flags & MPOL_F_LOCAL))
2031 			hpage_node = pol->v.preferred_node;
2032 
2033 		nmask = policy_nodemask(gfp, pol);
2034 		if (!nmask || node_isset(hpage_node, *nmask)) {
2035 			mpol_cond_put(pol);
2036 			page = __alloc_pages_node(hpage_node,
2037 						gfp | __GFP_THISNODE, order);
2038 			goto out;
2039 		}
2040 	}
2041 
2042 	nmask = policy_nodemask(gfp, pol);
2043 	zl = policy_zonelist(gfp, pol, node);
2044 	mpol_cond_put(pol);
2045 	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2046 out:
2047 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2048 		goto retry_cpuset;
2049 	return page;
2050 }
2051 
2052 /**
2053  * 	alloc_pages_current - Allocate pages.
2054  *
2055  *	@gfp:
2056  *		%GFP_USER   user allocation,
2057  *      	%GFP_KERNEL kernel allocation,
2058  *      	%GFP_HIGHMEM highmem allocation,
2059  *      	%GFP_FS     don't call back into a file system.
2060  *      	%GFP_ATOMIC don't sleep.
2061  *	@order: Power of two of allocation size in pages. 0 is a single page.
2062  *
2063  *	Allocate a page from the kernel page pool.  When not in
2064  *	interrupt context and apply the current process NUMA policy.
2065  *	Returns NULL when no page can be allocated.
2066  *
2067  *	Don't call cpuset_update_task_memory_state() unless
2068  *	1) it's ok to take cpuset_sem (can WAIT), and
2069  *	2) allocating for current task (not interrupt).
2070  */
2071 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2072 {
2073 	struct mempolicy *pol = &default_policy;
2074 	struct page *page;
2075 	unsigned int cpuset_mems_cookie;
2076 
2077 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2078 		pol = get_task_policy(current);
2079 
2080 retry_cpuset:
2081 	cpuset_mems_cookie = read_mems_allowed_begin();
2082 
2083 	/*
2084 	 * No reference counting needed for current->mempolicy
2085 	 * nor system default_policy
2086 	 */
2087 	if (pol->mode == MPOL_INTERLEAVE)
2088 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2089 	else
2090 		page = __alloc_pages_nodemask(gfp, order,
2091 				policy_zonelist(gfp, pol, numa_node_id()),
2092 				policy_nodemask(gfp, pol));
2093 
2094 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2095 		goto retry_cpuset;
2096 
2097 	return page;
2098 }
2099 EXPORT_SYMBOL(alloc_pages_current);
2100 
2101 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102 {
2103 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104 
2105 	if (IS_ERR(pol))
2106 		return PTR_ERR(pol);
2107 	dst->vm_policy = pol;
2108 	return 0;
2109 }
2110 
2111 /*
2112  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114  * with the mems_allowed returned by cpuset_mems_allowed().  This
2115  * keeps mempolicies cpuset relative after its cpuset moves.  See
2116  * further kernel/cpuset.c update_nodemask().
2117  *
2118  * current's mempolicy may be rebinded by the other task(the task that changes
2119  * cpuset's mems), so we needn't do rebind work for current task.
2120  */
2121 
2122 /* Slow path of a mempolicy duplicate */
2123 struct mempolicy *__mpol_dup(struct mempolicy *old)
2124 {
2125 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126 
2127 	if (!new)
2128 		return ERR_PTR(-ENOMEM);
2129 
2130 	/* task's mempolicy is protected by alloc_lock */
2131 	if (old == current->mempolicy) {
2132 		task_lock(current);
2133 		*new = *old;
2134 		task_unlock(current);
2135 	} else
2136 		*new = *old;
2137 
2138 	if (current_cpuset_is_being_rebound()) {
2139 		nodemask_t mems = cpuset_mems_allowed(current);
2140 		if (new->flags & MPOL_F_REBINDING)
2141 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2142 		else
2143 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2144 	}
2145 	atomic_set(&new->refcnt, 1);
2146 	return new;
2147 }
2148 
2149 /* Slow path of a mempolicy comparison */
2150 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2151 {
2152 	if (!a || !b)
2153 		return false;
2154 	if (a->mode != b->mode)
2155 		return false;
2156 	if (a->flags != b->flags)
2157 		return false;
2158 	if (mpol_store_user_nodemask(a))
2159 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2160 			return false;
2161 
2162 	switch (a->mode) {
2163 	case MPOL_BIND:
2164 		/* Fall through */
2165 	case MPOL_INTERLEAVE:
2166 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2167 	case MPOL_PREFERRED:
2168 		return a->v.preferred_node == b->v.preferred_node;
2169 	default:
2170 		BUG();
2171 		return false;
2172 	}
2173 }
2174 
2175 /*
2176  * Shared memory backing store policy support.
2177  *
2178  * Remember policies even when nobody has shared memory mapped.
2179  * The policies are kept in Red-Black tree linked from the inode.
2180  * They are protected by the sp->lock rwlock, which should be held
2181  * for any accesses to the tree.
2182  */
2183 
2184 /*
2185  * lookup first element intersecting start-end.  Caller holds sp->lock for
2186  * reading or for writing
2187  */
2188 static struct sp_node *
2189 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190 {
2191 	struct rb_node *n = sp->root.rb_node;
2192 
2193 	while (n) {
2194 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195 
2196 		if (start >= p->end)
2197 			n = n->rb_right;
2198 		else if (end <= p->start)
2199 			n = n->rb_left;
2200 		else
2201 			break;
2202 	}
2203 	if (!n)
2204 		return NULL;
2205 	for (;;) {
2206 		struct sp_node *w = NULL;
2207 		struct rb_node *prev = rb_prev(n);
2208 		if (!prev)
2209 			break;
2210 		w = rb_entry(prev, struct sp_node, nd);
2211 		if (w->end <= start)
2212 			break;
2213 		n = prev;
2214 	}
2215 	return rb_entry(n, struct sp_node, nd);
2216 }
2217 
2218 /*
2219  * Insert a new shared policy into the list.  Caller holds sp->lock for
2220  * writing.
2221  */
2222 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223 {
2224 	struct rb_node **p = &sp->root.rb_node;
2225 	struct rb_node *parent = NULL;
2226 	struct sp_node *nd;
2227 
2228 	while (*p) {
2229 		parent = *p;
2230 		nd = rb_entry(parent, struct sp_node, nd);
2231 		if (new->start < nd->start)
2232 			p = &(*p)->rb_left;
2233 		else if (new->end > nd->end)
2234 			p = &(*p)->rb_right;
2235 		else
2236 			BUG();
2237 	}
2238 	rb_link_node(&new->nd, parent, p);
2239 	rb_insert_color(&new->nd, &sp->root);
2240 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241 		 new->policy ? new->policy->mode : 0);
2242 }
2243 
2244 /* Find shared policy intersecting idx */
2245 struct mempolicy *
2246 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247 {
2248 	struct mempolicy *pol = NULL;
2249 	struct sp_node *sn;
2250 
2251 	if (!sp->root.rb_node)
2252 		return NULL;
2253 	read_lock(&sp->lock);
2254 	sn = sp_lookup(sp, idx, idx+1);
2255 	if (sn) {
2256 		mpol_get(sn->policy);
2257 		pol = sn->policy;
2258 	}
2259 	read_unlock(&sp->lock);
2260 	return pol;
2261 }
2262 
2263 static void sp_free(struct sp_node *n)
2264 {
2265 	mpol_put(n->policy);
2266 	kmem_cache_free(sn_cache, n);
2267 }
2268 
2269 /**
2270  * mpol_misplaced - check whether current page node is valid in policy
2271  *
2272  * @page: page to be checked
2273  * @vma: vm area where page mapped
2274  * @addr: virtual address where page mapped
2275  *
2276  * Lookup current policy node id for vma,addr and "compare to" page's
2277  * node id.
2278  *
2279  * Returns:
2280  *	-1	- not misplaced, page is in the right node
2281  *	node	- node id where the page should be
2282  *
2283  * Policy determination "mimics" alloc_page_vma().
2284  * Called from fault path where we know the vma and faulting address.
2285  */
2286 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	struct mempolicy *pol;
2289 	struct zone *zone;
2290 	int curnid = page_to_nid(page);
2291 	unsigned long pgoff;
2292 	int thiscpu = raw_smp_processor_id();
2293 	int thisnid = cpu_to_node(thiscpu);
2294 	int polnid = -1;
2295 	int ret = -1;
2296 
2297 	BUG_ON(!vma);
2298 
2299 	pol = get_vma_policy(vma, addr);
2300 	if (!(pol->flags & MPOL_F_MOF))
2301 		goto out;
2302 
2303 	switch (pol->mode) {
2304 	case MPOL_INTERLEAVE:
2305 		BUG_ON(addr >= vma->vm_end);
2306 		BUG_ON(addr < vma->vm_start);
2307 
2308 		pgoff = vma->vm_pgoff;
2309 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2310 		polnid = offset_il_node(pol, vma, pgoff);
2311 		break;
2312 
2313 	case MPOL_PREFERRED:
2314 		if (pol->flags & MPOL_F_LOCAL)
2315 			polnid = numa_node_id();
2316 		else
2317 			polnid = pol->v.preferred_node;
2318 		break;
2319 
2320 	case MPOL_BIND:
2321 		/*
2322 		 * allows binding to multiple nodes.
2323 		 * use current page if in policy nodemask,
2324 		 * else select nearest allowed node, if any.
2325 		 * If no allowed nodes, use current [!misplaced].
2326 		 */
2327 		if (node_isset(curnid, pol->v.nodes))
2328 			goto out;
2329 		(void)first_zones_zonelist(
2330 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2331 				gfp_zone(GFP_HIGHUSER),
2332 				&pol->v.nodes, &zone);
2333 		polnid = zone->node;
2334 		break;
2335 
2336 	default:
2337 		BUG();
2338 	}
2339 
2340 	/* Migrate the page towards the node whose CPU is referencing it */
2341 	if (pol->flags & MPOL_F_MORON) {
2342 		polnid = thisnid;
2343 
2344 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2345 			goto out;
2346 	}
2347 
2348 	if (curnid != polnid)
2349 		ret = polnid;
2350 out:
2351 	mpol_cond_put(pol);
2352 
2353 	return ret;
2354 }
2355 
2356 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2357 {
2358 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2359 	rb_erase(&n->nd, &sp->root);
2360 	sp_free(n);
2361 }
2362 
2363 static void sp_node_init(struct sp_node *node, unsigned long start,
2364 			unsigned long end, struct mempolicy *pol)
2365 {
2366 	node->start = start;
2367 	node->end = end;
2368 	node->policy = pol;
2369 }
2370 
2371 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2372 				struct mempolicy *pol)
2373 {
2374 	struct sp_node *n;
2375 	struct mempolicy *newpol;
2376 
2377 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2378 	if (!n)
2379 		return NULL;
2380 
2381 	newpol = mpol_dup(pol);
2382 	if (IS_ERR(newpol)) {
2383 		kmem_cache_free(sn_cache, n);
2384 		return NULL;
2385 	}
2386 	newpol->flags |= MPOL_F_SHARED;
2387 	sp_node_init(n, start, end, newpol);
2388 
2389 	return n;
2390 }
2391 
2392 /* Replace a policy range. */
2393 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2394 				 unsigned long end, struct sp_node *new)
2395 {
2396 	struct sp_node *n;
2397 	struct sp_node *n_new = NULL;
2398 	struct mempolicy *mpol_new = NULL;
2399 	int ret = 0;
2400 
2401 restart:
2402 	write_lock(&sp->lock);
2403 	n = sp_lookup(sp, start, end);
2404 	/* Take care of old policies in the same range. */
2405 	while (n && n->start < end) {
2406 		struct rb_node *next = rb_next(&n->nd);
2407 		if (n->start >= start) {
2408 			if (n->end <= end)
2409 				sp_delete(sp, n);
2410 			else
2411 				n->start = end;
2412 		} else {
2413 			/* Old policy spanning whole new range. */
2414 			if (n->end > end) {
2415 				if (!n_new)
2416 					goto alloc_new;
2417 
2418 				*mpol_new = *n->policy;
2419 				atomic_set(&mpol_new->refcnt, 1);
2420 				sp_node_init(n_new, end, n->end, mpol_new);
2421 				n->end = start;
2422 				sp_insert(sp, n_new);
2423 				n_new = NULL;
2424 				mpol_new = NULL;
2425 				break;
2426 			} else
2427 				n->end = start;
2428 		}
2429 		if (!next)
2430 			break;
2431 		n = rb_entry(next, struct sp_node, nd);
2432 	}
2433 	if (new)
2434 		sp_insert(sp, new);
2435 	write_unlock(&sp->lock);
2436 	ret = 0;
2437 
2438 err_out:
2439 	if (mpol_new)
2440 		mpol_put(mpol_new);
2441 	if (n_new)
2442 		kmem_cache_free(sn_cache, n_new);
2443 
2444 	return ret;
2445 
2446 alloc_new:
2447 	write_unlock(&sp->lock);
2448 	ret = -ENOMEM;
2449 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2450 	if (!n_new)
2451 		goto err_out;
2452 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2453 	if (!mpol_new)
2454 		goto err_out;
2455 	goto restart;
2456 }
2457 
2458 /**
2459  * mpol_shared_policy_init - initialize shared policy for inode
2460  * @sp: pointer to inode shared policy
2461  * @mpol:  struct mempolicy to install
2462  *
2463  * Install non-NULL @mpol in inode's shared policy rb-tree.
2464  * On entry, the current task has a reference on a non-NULL @mpol.
2465  * This must be released on exit.
2466  * This is called at get_inode() calls and we can use GFP_KERNEL.
2467  */
2468 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2469 {
2470 	int ret;
2471 
2472 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2473 	rwlock_init(&sp->lock);
2474 
2475 	if (mpol) {
2476 		struct vm_area_struct pvma;
2477 		struct mempolicy *new;
2478 		NODEMASK_SCRATCH(scratch);
2479 
2480 		if (!scratch)
2481 			goto put_mpol;
2482 		/* contextualize the tmpfs mount point mempolicy */
2483 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2484 		if (IS_ERR(new))
2485 			goto free_scratch; /* no valid nodemask intersection */
2486 
2487 		task_lock(current);
2488 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2489 		task_unlock(current);
2490 		if (ret)
2491 			goto put_new;
2492 
2493 		/* Create pseudo-vma that contains just the policy */
2494 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2495 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2496 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2497 
2498 put_new:
2499 		mpol_put(new);			/* drop initial ref */
2500 free_scratch:
2501 		NODEMASK_SCRATCH_FREE(scratch);
2502 put_mpol:
2503 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2504 	}
2505 }
2506 
2507 int mpol_set_shared_policy(struct shared_policy *info,
2508 			struct vm_area_struct *vma, struct mempolicy *npol)
2509 {
2510 	int err;
2511 	struct sp_node *new = NULL;
2512 	unsigned long sz = vma_pages(vma);
2513 
2514 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2515 		 vma->vm_pgoff,
2516 		 sz, npol ? npol->mode : -1,
2517 		 npol ? npol->flags : -1,
2518 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2519 
2520 	if (npol) {
2521 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2522 		if (!new)
2523 			return -ENOMEM;
2524 	}
2525 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2526 	if (err && new)
2527 		sp_free(new);
2528 	return err;
2529 }
2530 
2531 /* Free a backing policy store on inode delete. */
2532 void mpol_free_shared_policy(struct shared_policy *p)
2533 {
2534 	struct sp_node *n;
2535 	struct rb_node *next;
2536 
2537 	if (!p->root.rb_node)
2538 		return;
2539 	write_lock(&p->lock);
2540 	next = rb_first(&p->root);
2541 	while (next) {
2542 		n = rb_entry(next, struct sp_node, nd);
2543 		next = rb_next(&n->nd);
2544 		sp_delete(p, n);
2545 	}
2546 	write_unlock(&p->lock);
2547 }
2548 
2549 #ifdef CONFIG_NUMA_BALANCING
2550 static int __initdata numabalancing_override;
2551 
2552 static void __init check_numabalancing_enable(void)
2553 {
2554 	bool numabalancing_default = false;
2555 
2556 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2557 		numabalancing_default = true;
2558 
2559 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2560 	if (numabalancing_override)
2561 		set_numabalancing_state(numabalancing_override == 1);
2562 
2563 	if (num_online_nodes() > 1 && !numabalancing_override) {
2564 		pr_info("%s automatic NUMA balancing. "
2565 			"Configure with numa_balancing= or the "
2566 			"kernel.numa_balancing sysctl",
2567 			numabalancing_default ? "Enabling" : "Disabling");
2568 		set_numabalancing_state(numabalancing_default);
2569 	}
2570 }
2571 
2572 static int __init setup_numabalancing(char *str)
2573 {
2574 	int ret = 0;
2575 	if (!str)
2576 		goto out;
2577 
2578 	if (!strcmp(str, "enable")) {
2579 		numabalancing_override = 1;
2580 		ret = 1;
2581 	} else if (!strcmp(str, "disable")) {
2582 		numabalancing_override = -1;
2583 		ret = 1;
2584 	}
2585 out:
2586 	if (!ret)
2587 		pr_warn("Unable to parse numa_balancing=\n");
2588 
2589 	return ret;
2590 }
2591 __setup("numa_balancing=", setup_numabalancing);
2592 #else
2593 static inline void __init check_numabalancing_enable(void)
2594 {
2595 }
2596 #endif /* CONFIG_NUMA_BALANCING */
2597 
2598 /* assumes fs == KERNEL_DS */
2599 void __init numa_policy_init(void)
2600 {
2601 	nodemask_t interleave_nodes;
2602 	unsigned long largest = 0;
2603 	int nid, prefer = 0;
2604 
2605 	policy_cache = kmem_cache_create("numa_policy",
2606 					 sizeof(struct mempolicy),
2607 					 0, SLAB_PANIC, NULL);
2608 
2609 	sn_cache = kmem_cache_create("shared_policy_node",
2610 				     sizeof(struct sp_node),
2611 				     0, SLAB_PANIC, NULL);
2612 
2613 	for_each_node(nid) {
2614 		preferred_node_policy[nid] = (struct mempolicy) {
2615 			.refcnt = ATOMIC_INIT(1),
2616 			.mode = MPOL_PREFERRED,
2617 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2618 			.v = { .preferred_node = nid, },
2619 		};
2620 	}
2621 
2622 	/*
2623 	 * Set interleaving policy for system init. Interleaving is only
2624 	 * enabled across suitably sized nodes (default is >= 16MB), or
2625 	 * fall back to the largest node if they're all smaller.
2626 	 */
2627 	nodes_clear(interleave_nodes);
2628 	for_each_node_state(nid, N_MEMORY) {
2629 		unsigned long total_pages = node_present_pages(nid);
2630 
2631 		/* Preserve the largest node */
2632 		if (largest < total_pages) {
2633 			largest = total_pages;
2634 			prefer = nid;
2635 		}
2636 
2637 		/* Interleave this node? */
2638 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2639 			node_set(nid, interleave_nodes);
2640 	}
2641 
2642 	/* All too small, use the largest */
2643 	if (unlikely(nodes_empty(interleave_nodes)))
2644 		node_set(prefer, interleave_nodes);
2645 
2646 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2647 		pr_err("%s: interleaving failed\n", __func__);
2648 
2649 	check_numabalancing_enable();
2650 }
2651 
2652 /* Reset policy of current process to default */
2653 void numa_default_policy(void)
2654 {
2655 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2656 }
2657 
2658 /*
2659  * Parse and format mempolicy from/to strings
2660  */
2661 
2662 /*
2663  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2664  */
2665 static const char * const policy_modes[] =
2666 {
2667 	[MPOL_DEFAULT]    = "default",
2668 	[MPOL_PREFERRED]  = "prefer",
2669 	[MPOL_BIND]       = "bind",
2670 	[MPOL_INTERLEAVE] = "interleave",
2671 	[MPOL_LOCAL]      = "local",
2672 };
2673 
2674 
2675 #ifdef CONFIG_TMPFS
2676 /**
2677  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2678  * @str:  string containing mempolicy to parse
2679  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2680  *
2681  * Format of input:
2682  *	<mode>[=<flags>][:<nodelist>]
2683  *
2684  * On success, returns 0, else 1
2685  */
2686 int mpol_parse_str(char *str, struct mempolicy **mpol)
2687 {
2688 	struct mempolicy *new = NULL;
2689 	unsigned short mode;
2690 	unsigned short mode_flags;
2691 	nodemask_t nodes;
2692 	char *nodelist = strchr(str, ':');
2693 	char *flags = strchr(str, '=');
2694 	int err = 1;
2695 
2696 	if (nodelist) {
2697 		/* NUL-terminate mode or flags string */
2698 		*nodelist++ = '\0';
2699 		if (nodelist_parse(nodelist, nodes))
2700 			goto out;
2701 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2702 			goto out;
2703 	} else
2704 		nodes_clear(nodes);
2705 
2706 	if (flags)
2707 		*flags++ = '\0';	/* terminate mode string */
2708 
2709 	for (mode = 0; mode < MPOL_MAX; mode++) {
2710 		if (!strcmp(str, policy_modes[mode])) {
2711 			break;
2712 		}
2713 	}
2714 	if (mode >= MPOL_MAX)
2715 		goto out;
2716 
2717 	switch (mode) {
2718 	case MPOL_PREFERRED:
2719 		/*
2720 		 * Insist on a nodelist of one node only
2721 		 */
2722 		if (nodelist) {
2723 			char *rest = nodelist;
2724 			while (isdigit(*rest))
2725 				rest++;
2726 			if (*rest)
2727 				goto out;
2728 		}
2729 		break;
2730 	case MPOL_INTERLEAVE:
2731 		/*
2732 		 * Default to online nodes with memory if no nodelist
2733 		 */
2734 		if (!nodelist)
2735 			nodes = node_states[N_MEMORY];
2736 		break;
2737 	case MPOL_LOCAL:
2738 		/*
2739 		 * Don't allow a nodelist;  mpol_new() checks flags
2740 		 */
2741 		if (nodelist)
2742 			goto out;
2743 		mode = MPOL_PREFERRED;
2744 		break;
2745 	case MPOL_DEFAULT:
2746 		/*
2747 		 * Insist on a empty nodelist
2748 		 */
2749 		if (!nodelist)
2750 			err = 0;
2751 		goto out;
2752 	case MPOL_BIND:
2753 		/*
2754 		 * Insist on a nodelist
2755 		 */
2756 		if (!nodelist)
2757 			goto out;
2758 	}
2759 
2760 	mode_flags = 0;
2761 	if (flags) {
2762 		/*
2763 		 * Currently, we only support two mutually exclusive
2764 		 * mode flags.
2765 		 */
2766 		if (!strcmp(flags, "static"))
2767 			mode_flags |= MPOL_F_STATIC_NODES;
2768 		else if (!strcmp(flags, "relative"))
2769 			mode_flags |= MPOL_F_RELATIVE_NODES;
2770 		else
2771 			goto out;
2772 	}
2773 
2774 	new = mpol_new(mode, mode_flags, &nodes);
2775 	if (IS_ERR(new))
2776 		goto out;
2777 
2778 	/*
2779 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2780 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2781 	 */
2782 	if (mode != MPOL_PREFERRED)
2783 		new->v.nodes = nodes;
2784 	else if (nodelist)
2785 		new->v.preferred_node = first_node(nodes);
2786 	else
2787 		new->flags |= MPOL_F_LOCAL;
2788 
2789 	/*
2790 	 * Save nodes for contextualization: this will be used to "clone"
2791 	 * the mempolicy in a specific context [cpuset] at a later time.
2792 	 */
2793 	new->w.user_nodemask = nodes;
2794 
2795 	err = 0;
2796 
2797 out:
2798 	/* Restore string for error message */
2799 	if (nodelist)
2800 		*--nodelist = ':';
2801 	if (flags)
2802 		*--flags = '=';
2803 	if (!err)
2804 		*mpol = new;
2805 	return err;
2806 }
2807 #endif /* CONFIG_TMPFS */
2808 
2809 /**
2810  * mpol_to_str - format a mempolicy structure for printing
2811  * @buffer:  to contain formatted mempolicy string
2812  * @maxlen:  length of @buffer
2813  * @pol:  pointer to mempolicy to be formatted
2814  *
2815  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2816  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2817  * longest flag, "relative", and to display at least a few node ids.
2818  */
2819 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2820 {
2821 	char *p = buffer;
2822 	nodemask_t nodes = NODE_MASK_NONE;
2823 	unsigned short mode = MPOL_DEFAULT;
2824 	unsigned short flags = 0;
2825 
2826 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2827 		mode = pol->mode;
2828 		flags = pol->flags;
2829 	}
2830 
2831 	switch (mode) {
2832 	case MPOL_DEFAULT:
2833 		break;
2834 	case MPOL_PREFERRED:
2835 		if (flags & MPOL_F_LOCAL)
2836 			mode = MPOL_LOCAL;
2837 		else
2838 			node_set(pol->v.preferred_node, nodes);
2839 		break;
2840 	case MPOL_BIND:
2841 	case MPOL_INTERLEAVE:
2842 		nodes = pol->v.nodes;
2843 		break;
2844 	default:
2845 		WARN_ON_ONCE(1);
2846 		snprintf(p, maxlen, "unknown");
2847 		return;
2848 	}
2849 
2850 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2851 
2852 	if (flags & MPOL_MODE_FLAGS) {
2853 		p += snprintf(p, buffer + maxlen - p, "=");
2854 
2855 		/*
2856 		 * Currently, the only defined flags are mutually exclusive
2857 		 */
2858 		if (flags & MPOL_F_STATIC_NODES)
2859 			p += snprintf(p, buffer + maxlen - p, "static");
2860 		else if (flags & MPOL_F_RELATIVE_NODES)
2861 			p += snprintf(p, buffer + maxlen - p, "relative");
2862 	}
2863 
2864 	if (!nodes_empty(nodes))
2865 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2866 			       nodemask_pr_args(&nodes));
2867 }
2868